
Dialogic® Voice API
Programming Guide

October 2010

05-2332-007

Dialogic® Voice API Programming Guide
Dialogic Corporation

Copyright and Legal Notice

Copyright © 2004-2010 Dialogic Inc. All Rights Reserved. You may not reproduce this document in whole or in part without permission in writing from
Dialogic Inc. at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Inc. and its affiliates or subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in
the document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or
omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Inc. at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 926 Rock Avenue, San Jose,
California 95131 USA. Dialogic encourages all users of its products to procure all necessary intellectual property licenses required to implement any
concepts or applications and does not condone or encourage any intellectual property infringement and disclaims any responsibility related thereto.
These intellectual property licenses may differ from country to country and it is the responsibility of those who develop the concepts or applications to
be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, Diva ISDN, Making Innovation Thrive, Video is the New Voice, Diastar, Cantata, TruFax,
SwitchKit, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS (stylized), Eiconcard, SIPcontrol, TrustedVideo, Exnet, EXS, Connecting
to Growth, Fusion, Vision, PowerMedia, PacketMedia, BorderNet, inCloud9, I-Gate, Hi-Gate, NaturalAccess, NaturalCallControl, NaturalConference,
NaturalFax and Shiva, among others as well as related logos, are either registered trademarks or trademarks of Dialogic Inc. and its affiliates or
subsidiaries. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal
department at 926 Rock Avenue, San Jose, California 95131 USA. Any authorized use of Dialogic's trademarks will be subject to full respect of the
trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your decision to use open
source in connection with Dialogic products (including without limitation those referred to herein), nor is Dialogic responsible for any present or future
effects such usage might have, including without limitation effects on your products, your business, or your intellectual property rights.

Publication Date: October 2010

Document Number: 05-2332-007

Dialogic® Voice API Programming Guide 3
Dialogic Corporation

Contents

Revision History . 10

About This Publication . 12
Purpose . 12
Applicability . 12
Intended Audience. 12
How to Use This Publication . 13
Related Information . 13

1 Product Description . 14

1.1 Overview . 14
1.2 Dialogic® R4 API . 14
1.3 Dialogic® Host Media Processing (HMP) Software. 15
1.4 Call Progress Analysis. 15
1.5 Tone Generation and Detection Features . 15

1.5.1 Global Tone Detection (GTD) . 16
1.5.2 Global Tone Generation (GTG) . 16
1.5.3 Cadenced Tone Generation . 16

1.6 Dial Pulse Detection . 16
1.7 Play and Record Features . 17

1.7.1 Play and Record Functions. 17
1.7.2 Speed and Volume Control. 17
1.7.3 Transaction Record . 17
1.7.4 Silence Compressed Record . 17
1.7.5 Streaming to Board. 18

1.8 Send and Receive FSK Data. 18
1.9 Caller ID. 18
1.10 TDM Bus Routing . 18

2 Programming Models . 20

2.1 Dialogic® Standard Runtime Library . 20
2.2 Asynchronous Programming Models. 20
2.3 Synchronous Programming Model . 21

3 Device Handling . 22

3.1 Device Concepts . 22
3.2 Voice Device Names . 22

4 Event Handling . 24

4.1 Overview of Event Handling . 24
4.2 Event Management Functions . 24

5 Error Handling . 26

6 Application Development Guidelines . 27

6.1 General Considerations . 27

4 Dialogic® Voice API Programming Guide
Dialogic Corporation

Contents

6.1.1 Busy and Idle States . 27
6.1.2 Setting Termination Conditions for I/O Functions . 27
6.1.3 Setting Termination Conditions for Digits . 30
6.1.4 Clearing Structures Before Use . 30
6.1.5 Working with User-Defined I/O Functions . 30

6.2 Additional Considerations . 31
6.2.1 Multithreading and Multiprocessing . 31
6.2.2 Device Discovery . 32
6.2.3 Device Initialization Hint. 32
6.2.4 Tone Detection Considerations . 33

7 Call Progress Analysis . 34

7.1 Call Progress Analysis Overview . 34
7.2 Call Progress and Call Analysis Terminology. 35
7.3 Call Progress Analysis Components . 35
7.4 Call Progress Analysis Errors . 37
7.5 Using Call Progress Analysis on HMP Voice Devices . 37

7.5.1 Call Progress Analysis Rules. 37
7.5.2 Initiating Call Progress Analysis . 38
7.5.3 Setting Up Call Progress Analysis Parameters . 38
7.5.4 Executing a Dial Function . 39
7.5.5 Determining the Outcome of a Call . 39
7.5.6 Obtaining Additional Call Outcome Information. 40

7.6 Call Progress Analysis Tone Detection on HMP Voice Devices. 41
7.6.1 Tone Detection Overview . 41
7.6.2 Types of Tones . 41
7.6.3 Ringback Detection . 42
7.6.4 Busy Tone Detection . 43
7.6.5 Fax or Modem Tone Detection . 43
7.6.6 SIT Frequency Detection . 43

7.7 Media Tone Detection on HMP Voice Devices. 45
7.7.1 Positive Voice Detection (PVD) . 45
7.7.2 Positive Answering Machine Detection (PAMD) . 45

7.8 Default Call Progress Analysis Tone Definitions on HMP Voice Devices. 46
7.9 Modifying Default Call Progress Analysis Tone Definitions on HMP Voice Devices 47

7.9.1 API Functions for Manipulating Tone Definitions. 47
7.9.2 TONE_DATA Data Structure . 48
7.9.3 Rules for Modifying a Tone Definition . 49
7.9.4 Rules for Using a Single Tone Proxy for a Dual Tone . 49
7.9.5 Steps to Modify a Tone Definition . 50

7.10 Using Call Progress Analysis on Springware Boards . 50
7.10.1 Initiating Call Progress Analysis . 50
7.10.2 Setting Up Call Progress Analysis Parameters . 51
7.10.3 Enabling Call Progress Analysis . 51
7.10.4 Executing a Dial Function . 52
7.10.5 Determining the Outcome of a Call . 52
7.10.6 Obtaining Additional Call Outcome Information. 53

7.11 Call Progress Analysis Tone Detection on Springware Boards . 54
7.11.1 Tone Detection Overview . 55
7.11.2 Types of Tones . 55

Dialogic® Voice API Programming Guide 5
Dialogic Corporation

Contents

7.11.3 Dial Tone Detection . 56
7.11.4 Ringback Detection. 56
7.11.5 Busy Tone Detection . 57
7.11.6 Fax or Modem Tone Detection . 57
7.11.7 Loop Current Detection. 57

7.12 Media Tone Detection on Springware Boards . 58
7.12.1 Positive Voice Detection (PVD) . 59
7.12.2 Positive Answering Machine Detection (PAMD). 59

7.13 Default Call Progress Analysis Tone Definitions on Springware Boards. 60
7.14 Modifying Default Call Progress Analysis Tone Definitions on Springware Boards 60
7.15 SIT Frequency Detection on Springware Boards . 61

7.15.1 Tri-Tone SIT Sequences. 62
7.15.2 Setting Tri-Tone SIT Frequency Detection Parameters . 62
7.15.3 Obtaining Tri-Tone SIT Frequency Information . 64
7.15.4 Global Tone Detection Tone Memory Usage . 65
7.15.5 Frequency Detection Errors . 65
7.15.6 Setting Single Tone Frequency Detection Parameters. 65
7.15.7 Obtaining Single Tone Frequency Information . 66

7.16 Cadence Detection in Basic Call Progress Analysis on Springware Boards 66
7.16.1 Overview. 67
7.16.2 Typical Cadence Patterns. 67
7.16.3 Elements of a Cadence . 68
7.16.4 Outcomes of Cadence Detection . 69
7.16.5 Setting Selected Cadence Detection Parameters. 70
7.16.6 Obtaining Cadence Information . 74

8 Recording and Playback . 75

8.1 Overview of Recording and Playback . 75
8.2 Digital Recording and Playback. 75
8.3 Play and Record Functions . 76
8.4 Play and Record Convenience Functions . 76
8.5 Voice Encoding Methods . 76
8.6 G.726 Voice Coder . 78
8.7 Transaction Record . 79
8.8 Silence Compressed Record . 79

8.8.1 Overview. 79
8.8.2 Enabling . 80
8.8.3 Encoding Methods Supported . 81

8.9 Recording with the Voice Activity Detector . 81
8.9.1 Overview. 82
8.9.2 Enabling . 82
8.9.3 Encoding Methods Supported . 83

8.10 Streaming to Board . 83
8.10.1 Streaming to Board Overview. 83
8.10.2 Streaming to Board Functions . 83
8.10.3 Implementing Streaming to Board . 84
8.10.4 Streaming to Board Guidelines. 84

9 Speed and Volume Control . 87

9.1 Speed and Volume Control Overview . 87

6 Dialogic® Voice API Programming Guide
Dialogic Corporation

Contents

9.2 Speed and Volume Convenience Functions. 88
9.3 Speed and Volume Adjustment Functions . 88
9.4 Speed and Volume Modification Tables . 88
9.5 Play Adjustment Digits . 92
9.6 Setting Play Adjustment Conditions . 92
9.7 Explicitly Adjusting Speed and Volume . 92

10 Send and Receive FSK Data. 93

10.1 Overview of ADSI and Two-Way FSK Support. 93
10.2 ADSI Protocol . 94
10.3 ADSI Operation. 95
10.4 One-Way ADSI . 95
10.5 Two-Way ADSI . 96

10.5.1 Transmit to On-Hook CPE. 96
10.5.2 Two-Way FSK . 96

10.6 Fixed-Line Short Message Service (SMS) . 97
10.7 ADSI and Two-Way FSK Voice Library Support. 97
10.8 Developing ADSI Applications . 98

10.8.1 Technical Overview of One-Way ADSI Data Transfer. 98
10.8.2 Implementing One-Way ADSI Using dx_TxIottData(). 99
10.8.3 Technical Overview of Two-Way ADSI Data Transfer. 100
10.8.4 Implementing Two-Way ADSI Using dx_TxIottData(). 101
10.8.5 Implementing Two-Way ADSI Using dx_TxRxIottData() 102

10.9 Modifying Older One-Way ADSI Applications. 103

11 Caller ID . 105

11.1 Overview of Caller ID . 105
11.2 Caller ID Formats . 105
11.3 Accessing Caller ID Information . 107
11.4 Enabling Channels to Use the Caller ID Feature . 108
11.5 Error Handling. 108
11.6 Caller ID Technical Specifications . 108

12 Global Tone Detection and Generation, and Cadenced Tone Generation. 110

12.1 Global Tone Detection (GTD) . 110
12.1.1 Overview of Global Tone Detection . 110
12.1.2 Global Tone Detection on HMP Software versus Springware Boards. 111
12.1.3 Defining Global Tone Detection Tones . 111
12.1.4 Building Tone Templates . 111
12.1.5 Working with Tone Templates . 113
12.1.6 Retrieving Tone Events . 114
12.1.7 Setting GTD Tones as Termination Conditions . 115
12.1.8 Guidelines for Creating User-Defined Tones. 115
12.1.9 Global Tone Detection Application . 116

12.2 Global Tone Generation (GTG) . 117
12.2.1 Using GTG. 117
12.2.2 GTG Functions . 117
12.2.3 Building and Implementing a Tone Generation Template 117

12.3 Cadenced Tone Generation . 118
12.3.1 Using Cadenced Tone Generation . 118
12.3.2 How To Generate a Custom Cadenced Tone . 118

Dialogic® Voice API Programming Guide 7
Dialogic Corporation

Contents

12.3.3 How To Generate a Non-Cadenced Tone . 121
12.3.4 TN_GENCAD Data Structure - Cadenced Tone Generation 121
12.3.5 How To Generate a Standard PBX Call Progress Signal 121
12.3.6 Predefined Set of Standard PBX Call Progress Signals 122
12.3.7 Important Considerations for Using Predefined Call Progress Signals. 127

13 Global Dial Pulse Detection . 129

13.1 Overview . 129
13.2 Global DPD Parameters . 130
13.3 Enabling Global DPD. 130
13.4 Global DPD Programming Considerations . 130
13.5 Retrieving Digits from the Digit Buffer . 131
13.6 Retrieving Digits as Events . 131
13.7 Dial Pulse Detection Digit Type Reporting. 132
13.8 Defines for Digit Type Reporting . 132
13.9 Implementing Global DPD . 132
13.10 Global DPD Example Code . 133

14 Building Applications. 135

14.1 Dialogic® Voice and SRL API Libraries. 135
14.2 Compiling and Linking . 136

14.2.1 Include Files . 136
14.2.2 Required Libraries for Linux . 136
14.2.3 Required Libraries for Windows® . 137
14.2.4 Variables for Compiling and Linking . 137

Index . 138

8 Dialogic® Voice API Programming Guide
Dialogic Corporation

Contents

Figures

1 Basic Call Progress Analysis Components (Springware only) . 36
2 Perfect Call Call Progress Analysis Components. 36
3 Call Outcomes for Call Progress Analysis (HMP Voice Devices). 40
4 Call Outcomes for Call Progress Analysis (Springware) . 53
5 A Standard Busy Signal . 67
6 A Standard Single Ring . 68
7 A Type of Double Ring . 68
8 Cadence Detection . 68
9 Elements of Established Cadence . 69
10 No Ringback Due to Continuous No Signal . 71
11 No Ringback Due to Continuous Nonsilence . 72
12 Cadence Detection Salutation Processing . 74
13 Silence Compressed Record Parameters Illustrated . 81
14 Example of Custom Cadenced Tone Generation. 120
15 Standard PBX Call Progress Signals (Part 1) . 124
16 Standard PBX Call Progress Signals (Part 2) . 125
17 Dialogic® Voice and SRL API Libraries . 135

Dialogic® Voice API Programming Guide 9
Dialogic Corporation

Contents

Tables

1 Voice Device Inputs for Event Management Functions . 25
2 Voice Device Returns from Event Management Functions . 25
3 Call Progress Analysis Support with dx_dial() (HMP Voice Devices). 37
4 Special Information Tone Sequences (HMP Voice Devices). 44
5 Default Call Progress Analysis Tone Definitions (HMP Software). 46
6 Default Call Progress Analysis Tone Definitions (Springware) . 60
7 Special Information Tone Sequences (Springware) . 62
8 Voice Encoding Methods (HMP Software) . 77
9 Voice Encoding Methods (Springware) . 77
10 Default Speed Modification Table . 90
11 Default Volume Modification Table . 91
12 Supported CLASS Caller ID Information . 106
13 Standard Bell System Network Call Progress Tones . 113
14 Asynchronous/Synchronous Tone Event Handling . 114
15 Standard PBX Call Progress Signals. 123
16 TN_GENCAD Definitions for Standard PBX Call Progress Signals . 126

Dialogic® Voice API Programming Guide 10

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2332-007 October 2010 Made global changes to add Dialogic® Springware Architecture board support for
Dialogic® HMP Software.

Product Description chapter : Added two forms of Call Progress Analysis, Dial Pulse
Detection, Send and Receive FSK Data, Caller ID.

Event Handling chapter : Added dx_sethook() to Table 1 and Table 2.

Application Development Guidelines chapter : In Setting Termination Conditions for
I/O Functions, added loop current drop, maximum length of non-silence, pattern
of silence and non-silence, maximum FSK data received. In Additional
Considerations, added Device Discovery.

Call Progress Analysis chapter : Added support for Springware boards.

Recording and Playback chapter : Added coder support for Springware boards
section in Voice Encoding Methods. In Voice Encoding Methods (HMP
Software) table, (1) added G.729A; (2) added 24 and 40 Kbps for G.726; (3)
added linear PCM 64 Kbps; (4) removed VOX from the GSM 6.10 full rate
(Microsoft format) row; (5) removed GSM 6.10 full rate (TIPHON format) row.
Updated and added Springware board support in Transaction Record, Silence
Compressed Record, and Recording with the Voice Activity Detector. Added a
new first step (calling dx_open()) in Implementing Streaming to Board.

Speed and Volume Control chapter : Added support for Springware boards.

Send and Receive FSK Data chapter : New. Applies to Springware boards only.

Caller ID chapter : New. Applies to Springware boards only.

Global Tone Detection and Generation, and Cadenced Tone Generation chapter :
Added support for Springware boards.

Global Dial Pulse Detection chapter : New. Applies to Springware boards only.

Building Applications chapter : Removed information about run-time linking in
Required Libraries for Linux and Required Libraries for Windows® sections, as
this is no longer supported.

05-2332-006 April 2009 Recording and Playback chapter : Added GSM 6.10 full-rate coder (Microsoft format
and TIPHON format) to Voice Encoding Methods table. Added Recording with
the Voice Activity Detector. Updated Streaming to Board Guidelines to indicate
that on Windows® the bulk queue buffer size can be modified;
dx_setchxfercnt() is supported on Windows®.

05-2332-005 January 2008 Made global changes to reflect Dialogic brand.

Product Description chapter : Added information about silence compressed record in
Play and Record Features section.

Recording and Playback chapter : Added support for silence compressed record in
Silence Compressed Record section.

05-2332-004 August 2006 Product Description chapter : Added support for speed control in Speed and Volume
Control section.

Speed and Volume Control chapter : Added support for speed control.

Dialogic® Voice API Programming Guide 11

Dialogic Corporation

Revision History

05-2332-003 December 2005 Product Description chapter : Updated TDM Bus Routing section to include
information about Dialogic® digital network interface boards.

Application Development Guidelines chapter : Added note about continuous speech
processing (CSP) multiprocess support in Multithreading and Multiprocessing
section. Added bullet about digits not always being cleared by dx_clrdigbuf() in
Tone Detection Considerations section.

Call Progress Analysis chapter : Updated dial tone detection row to ‘yes’ in Call
Progress Analysis Support with dx_dial() table.
Updated to add support for ATDX_CRTNID() and enhanced SIT sequences.
Added eight new SIT sequences that can be returned by ATDX_CRTNID() for
DM3 boards in Types of Tones section.
Revised values of TID_SIT_NC (Freq of first segment changed from 950/1001 to
950/1020) and TID_SIT_VC (Freq of first segment changed from 950/1001 to
950/1020) in table of Special Information Tone Sequences (DM3); also added
four new SIT sequences to this table.
Added note about SIT sequences that cannot be modified in API Functions for
Manipulating Tone Definitions section.
Added note about SRL device mapper functions in Steps to Modify a Tone
Definition on DM3 Boards section.

Recording and Playback chapter : Added 128 Kbps (8 kHz, 16-bit) linear PCM to
Voice Encoding Methods table.
Added cross-reference to a related technical note in Transaction Record section.

Global Tone Detection and Generation, and Cadenced Tone Generation chapter :
Added note about the effect of exhausting the number of tone templates in
Guidelines for Creating User-Defined Tones section.
Added bullet about the effect of adding a tone with a frequency of zero in
Guidelines for Creating User-Defined Tones section. [PTR 34546]

05-2332-002 April 2005 Product Description chapter : Added section on Transaction Record.

Application Development Guidelines chapter : Added caveat about dx_clrdigbuf() in
Tone Detection Considerations section.

Recording and Playback chapter : Added section on Transaction Record.

Global Tone Detection and Generation, and Cadenced Tone Generation chapter :
Updated the following sections: Overview of Global Tone Detection, Building
Tone Templates, Working with Tone Templates, and Guidelines for Creating
User-Defined Tones. Added new section on Global Tone Detection on HMP
versus Springware Boards.

05-2332-001 September 2004 Initial version of document.

Document No. Publication Date Description of Revisions

Dialogic® Voice API Programming Guide 12

Dialogic Corporation

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This guide provides instructions for developing applications on Linux and Windows® operating
systems using the Dialogic® Voice API that is supplied with the Dialogic® Host Media Processing
(HMP) Software product.

This document is a companion guide to the Dialogic® Voice API Library Reference, which
describes the voice functions, data structures, events, and error codes.

Applicability

This document version is published for Dialogic® Host Media Processing Software Release
3.0WIN Service Update and Dialogic® Host Media Processing Software Release 4.1LIN Service
Update.

This document also applies to Dialogic® Springware Architecture PCIe boards that are supported
by Dialogic® HMP Software; for example, the D/80PCIE-LS board.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This guide is intended for software developers who choose to access the voice software. They may
include distributors, system integrators, toolkit developers, independent software vendors (ISVs),
value added resellers (VARs), and original equipment manufacturers (OEMs).

Dialogic® Voice API Programming Guide 13

Dialogic Corporation

About This Publication

How to Use This Publication

This publication assumes that you are familiar with the Linux or Windows® operating systems and
the C programming language.

The information in this guide is organized as follows:

• Chapter 1, “Product Description” introduces the features of the voice library and provides a
brief description of each feature.

• Chapter 2, “Programming Models” provides a brief overview of supported programming
models.

• Chapter 3, “Device Handling” discusses topics related to devices, such as device naming
concepts.

• Chapter 4, “Event Handling” provides information on functions used to handle events.

• Chapter 5, “Error Handling” provides information on handling errors in your application.

• Chapter 6, “Application Development Guidelines” provides programming guidelines and
techniques for developing an application using the voice library.

• Chapter 7, “Call Progress Analysis” describes components of call progress analysis and
discusses how one can use call progress analysis.

• Chapter 8, “Recording and Playback” discusses playback and recording features, such as
encoding algorithms, and play and record API functions.

• Chapter 9, “Speed and Volume Control” explains how to control the speed and volume of
playback recordings through API functions and data structures.

• Chapter 10, “Send and Receive FSK Data” describes the two-way frequency shift keying
(FSK) feature and the Analog Display Services Interface (ADSI).

• Chapter 11, “Caller ID” describes the caller ID feature.

• Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation”
describes the tone detection and tone generation features.

• Chapter 13, “Global Dial Pulse Detection” discusses the Global DPD feature, the API
functions provided for this feature, and programming guidelines.

• Chapter 14, “Building Applications” discusses compiling and linking requirements such as
include files and library files.

Related Information

See the following for additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Dialogic® Voice API Programming Guide 14
Dialogic Corporation

11.Product Description

This chapter provides information on Dialogic® Voice API library features and capabilities. The
following topics are covered:

• Overview . 14

• Dialogic® R4 API . 14

• Dialogic® Host Media Processing (HMP) Software. 15

• Call Progress Analysis. 15

• Tone Generation and Detection Features. 15

• Dial Pulse Detection . 16

• Play and Record Features . 17

• Send and Receive FSK Data . 18

• Caller ID . 18

• TDM Bus Routing . 18

1.1 Overview

The Dialogic® Voice API provides a comprehensive set of features for building a wide range of
computer telephony applications such as voice messaging, interactive voice response,
telemarketing/call center, operator services, and more. Features include DTMF detection, tone
signaling, global tone detection and generation, call progress analysis, and a variety of voice
encoding algorithms selectable on a channel-by-channel basis.

The Dialogic® Voice API consists of a C language library of functions, device drivers, and
firmware.

The Dialogic® Voice API library is well integrated with other technology libraries provided by
Dialogic such as fax, conferencing, speech, and multimedia services. This architecture enables new
capabilities to be added to your application as needed.

1.2 Dialogic® R4 API

The term R4 API (“System Software Release 4 Application Programming Interface”) describes the
direct interface used for creating computer telephony application programs. The Dialogic® R4 API
is a rich set of proprietary APIs for building computer telephony applications on Dialogic®
products, including Dialogic® Host Media Processing (HMP) software. These APIs encompass
technologies such as fax, conferencing, speech, and multimedia. This document describes the
Dialogic® Voice API.

Dialogic® Voice API Programming Guide 15
Dialogic Corporation

Product Description

The R4 API supports the original Dialogic® Springware architecture products (also referred to
herein as “Dialogic® Springware boards” or “Springware boards”) and the later Dialogic® DM3
mediastream architecture products (also referred to herein as “Dialogic® DM3 boards” or “DM3
boards”).

Feature differences between these two categories of products, as well as restrictions and
limitations, are noted in this document as applicable.

1.3 Dialogic® Host Media Processing (HMP) Software

Dialogic® Host Media Processing (HMP) Software performs media processing tasks on general-
purpose servers without the need for specialized hardware. When installed on a system, Dialogic®
HMP Software performs like a virtual Dialogic® DM3 board to the customer application, but all
media processing takes place on the host processor.

Note: In this document, the term “DM3 board” or “ board” represents the virtual Dialogic® DM3 board.
The terms are used interchangeably with Dialogic® HMP Software.

1.4 Call Progress Analysis

Call progress analysis monitors the progress of an outbound call after it is dialed into the Public
Switched Telephone Network (PSTN).

There are two forms of call progress analysis: basic and Perfect Call. Perfect Call call progress
analysis uses an improved method of signal identification and can detect fax machines and
answering machines. Basic call progress analysis provides backward compatibility for older
applications written before Perfect Call call progress analysis became available.

Basic call progress analysis is supported on Dialogic® Springware boards only.

See Chapter 7, “Call Progress Analysis” for detailed information about this feature.

1.5 Tone Generation and Detection Features

In addition to DTMF and MF tone detection and generation, the following signaling features are
provided by the voice library:

• Global Tone Detection (GTD)

• Global Tone Generation (GTG)

• Cadenced Tone Generation

16 Dialogic® Voice API Programming Guide
Dialogic Corporation

Product Description

1.5.1 Global Tone Detection (GTD)

Global tone detection allows you to define single or dual-frequency tones for detection on a
channel-by-channel basis. Global tone detection and GTD tones are also known as user-defined
tone detection and user-defined tones.

Use global tone detection to detect single- or dual-frequency tones outside the standard DTMF
range of 0-9, a-d, *, and #. The characteristics of a tone can be defined and tone detection can be
enabled using GTD functions and data structures provided in the voice library.

See Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation” for more
information about global tone detection.

1.5.2 Global Tone Generation (GTG)

Global tone generation allows you to define a single- or dual-frequency tone in a tone generation
template and to play the tone on a specified channel.

See Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation” for more
information about global tone generation.

1.5.3 Cadenced Tone Generation

Cadenced tone generation is an enhancement to global tone generation. It allows you to generate a
tone with up to 4 single- or dual-tone elements, each with its own on/off duration, which creates the
signal pattern or cadence. You can define your own custom cadenced tone or take advantage of the
built-in set of standard PBX call progress signals, such as dial tone, ringback, and busy.

See Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation” for more
information about cadenced tone generation.

1.6 Dial Pulse Detection

Dial pulse detection (DPD) allows applications to detect dial pulses from rotary or pulse phones by
detecting the audible clicks produced when a number is dialed, and to use these clicks as if they
were DTMF digits. Global dial pulse detection, called global DPD, is a software-based dial pulse
detection method that can use country-customized parameters for extremely accurate performance.

Dial pulse detection is supported on Dialogic® Springware boards only.

See Chapter 13, “Global Dial Pulse Detection” for more information about this feature.

Dialogic® Voice API Programming Guide 17
Dialogic Corporation

Product Description

1.7 Play and Record Features

The play and record features that are supported by the Dialogic® Voice API library include the
following:

• Play and Record Functions

• Speed and Volume Control

• Transaction Record

• Silence Compressed Record

• Streaming to Board

1.7.1 Play and Record Functions

The Dialogic® Voice API library includes several functions and data structures for recording and
playing audio data. These allow you to digitize and store human voice; then retrieve, convert, and
play this digital information.

For more information about play and record features, see Chapter 8, “Recording and Playback”.
For information about voice encoding methods supported, see Section 8.5, “Voice Encoding
Methods”, on page 76. For information about play and record functions, see the Dialogic® Voice
API Library Reference.

1.7.2 Speed and Volume Control

The speed and volume control feature allows you to control the speed and volume of a message
being played on a channel, for example, by entering a DTMF tone.

Se Chapter 9, “Speed and Volume Control” for more information about this feature.

1.7.3 Transaction Record

The transaction record feature allows voice activity on two channels to be summed and stored in a
single file, or in a combination of files, devices, and memory. This feature is useful in call center
applications where it is necessary to archive a verbal transaction or record a live conversation.

See Chapter 8, “Recording and Playback” for more information on the transaction record feature.

1.7.4 Silence Compressed Record

The silence compressed record (SCR) feature enables recording with silent pauses eliminated. This
results in smaller recorded files with no loss of intelligibility.

When the audio level is at or falls below the silence threshold for a minimum duration of time,
silence compressed record begins. If a short burst of noise (glitch) is detected, the compression
does not end unless the glitch is longer than a specified period of time.

18 Dialogic® Voice API Programming Guide
Dialogic Corporation

Product Description

See Chapter 8, “Recording and Playback” for more information.

1.7.5 Streaming to Board

The streaming to board feature allows you to stream data to a network interface in real time. Unlike
the standard voice play feature (store and forward), data can be streamed in real time with little
delay as the amount of initial data required to start the stream is configurable. The streaming to
board feature is essential for applications such as text-to-speech, distributed prompt servers, and IP
gateways.

Streaming to board is not supported on Dialogic® Springware boards.

For more information about this feature, see Chapter 8, “Recording and Playback”.

1.8 Send and Receive FSK Data

The send and receive frequency shift keying (FSK) data interface is used for Analog Display
Services Interface (ADSI) and fixed-line short message service, also called small message service,
or SMS. Frequency shift keying is a frequency modulation technique to send digital data over
voiced band telephone lines. ADSI allows information to be transmitted for display on a display-
based telephone connected to an analog loop start line, and to store and forward SMS messages in
the Public Switched Telephone Network (PSTN). The telephone must be a true ADSI-compliant or
fixed line SMS-compliant device.

Send and receive FSK data is supported on Dialogic® Springware boards only.

See Chapter 10, “Send and Receive FSK Data” for more information on ADSI, FSK, and SMS.

1.9 Caller ID

An application can enable the caller ID feature on specific channels to process caller ID
information as it is received with an incoming call. Caller ID information can include the calling
party’s directory number (DN), the date and time of the call, and the calling party’s subscriber
name.

Caller ID as described here is applicable to Dialogic® Springware boards only.

See Chapter 11, “Caller ID” for more information about this feature.

1.10 TDM Bus Routing

A time division multiplexing (TDM) bus is a technique for transmitting a number of separate
digitized signals simultaneously over a communication medium. TDM bus includes the CT Bus.

Dialogic® Voice API Programming Guide 19
Dialogic Corporation

Product Description

The CT Bus is an implementation of the computer telephony bus standard developed by the
Enterprise Computer Telephony Forum (ECTF) and accepted industry-wide. The H.100 hardware
specification covers CT Bus implementation using the PCI form factor. The CT Bus has 4096 bi-
directional time slots.

On Dialogic® HMP Software, no physical TDM bus exists but its functionality is implemented in
the software. Starting with Dialogic® HMP Software Release 2.0 for Windows®, Dialogic® HMP
Interface Boards are supported. These boards have a bridge device that is capable of streaming data
between HMP Software and boards connected to the CT Bus. Additionally, the bridge device is
capable of providing clocking to HMP Software. The clocking provided to HMP Software from an
HMP Interface Board is derived from CT Bus clocking. For more information on clocking, see the
Configuration Guide associated with your software release.

For information on TDM bus routing functions, see the Dialogic® Voice API Library Reference.

Dialogic® Voice API Programming Guide 20
Dialogic Corporation

22.Programming Models

This chapter briefly discusses the Dialogic® Standard Runtime Library and supported
programming models:

• Dialogic® Standard Runtime Library . 20

• Asynchronous Programming Models . 20

• Synchronous Programming Model . 21

2.1 Dialogic® Standard Runtime Library

The Dialogic® Standard Runtime Library (SRL) provides a set of common system functions that
are device independent and are applicable to all Dialogic® devices. The SRL consists of a data
structure, event management functions, device management functions (called standard attribute
functions), and device mapper functions. You can use the SRL to simplify application
development, such as by writing common event handlers to be used by all devices.

When developing voice processing applications, refer to the Standard Runtime Library
documentation in tandem with the voice library documentation. For more information on the
Standard Runtime Library, see the Dialogic® Standard Runtime Library API Library Reference and
Dialogic® Standard Runtime Library API Programming Guide.

2.2 Asynchronous Programming Models

Asynchronous programming enables a single program to control multiple voice channels within a
single process. This allows the development of complex applications where multiple tasks must be
coordinated simultaneously.

The asynchronous programming model uses functions that do not block thread execution; that is,
the function continues processing under the hood. A Standard Runtime Library (SRL) event later
indicates function completion.

Generally, if you are building applications that use any significant density, you should use the
asynchronous programming model to develop field solutions.

For complete information on asynchronous programming models, see the Dialogic® Standard
Runtime Library API Programming Guide.

Dialogic® Voice API Programming Guide 21
Dialogic Corporation

Programming Models

2.3 Synchronous Programming Model

The synchronous programming model uses functions that block application execution until the
function completes. This model requires that each channel be controlled from a separate process.
This allows you to assign distinct applications to different channels dynamically in real time.

Synchronous programming models allow you to scale an application by simply instantiating more
threads or processes (one per channel). This programming model may be easy to encode and
manage but it relies on the system to manage scalability. Applying the synchronous programming
model can consume large amounts of system overhead, which reduces the achievable densities and
negatively impacts timely servicing of both hardware and software interrupts. Using this model, a
developer can only solve system performance issues by adding memory or increasing CPU speed
or both. The synchronous programming models may be useful for testing or very low-density
solutions.

For complete information on synchronous programming models, see the Dialogic® Standard
Runtime Library API Programming Guide.

Dialogic® Voice API Programming Guide 22
Dialogic Corporation

33.Device Handling

This chapter describes the concept of a voice device and how voice devices are named and used.

• Device Concepts . 22

• Voice Device Names . 22

3.1 Device Concepts

The following concepts are important in understanding devices and device handling:

device
A device is a computer component controlled through a software device driver. A resource
board, such as a voice resource, fax resource, and conferencing resource, and network
interface board, contains one or more logical board devices. Each channel or time slot on the
board is also considered a device.

device channel
A device channel refers to a data path that processes one incoming or outgoing call at a time
(equivalent to the terminal equipment terminating a phone line).

device name
A device name is a literal reference to a device, used to gain access to the device via an
xx_open() function, where “xx” is the prefix defining the device to be opened. For example,
“dx” is the prefix for voice device and “fx” for fax device.

device handle
A device handle is a numerical reference to a device, obtained when a device is opened using
xx_open(), where “xx” is the prefix defining the device to be opened. The device handle is
used for all operations on that device.

virtual boards
The device driver views a single voice board with more than four channels as multiple
emulated Dialogic® D/4x boards. These emulated boards are called virtual boards. For
example, a system with 44 voice channels consists of 11 virtual boards.

3.2 Voice Device Names

The software assigns a device name to each device or each component on a board. A voice device is
named dxxxBn, where n is the device number assigned in sequential order down the list of sorted
voice boards. A device corresponds to a grouping of two or four voice channels.

For example, a system running Dialogic® Host Media Processing (HMP) software with 44 voice
channels has 11 virtual board devices, where each device consists of four channels. Examples of
board device names for voice boards are dxxxB1 and dxxxB2.

Dialogic® Voice API Programming Guide 23
Dialogic Corporation

Device Handling

A device name can be appended with a channel or component identifier. A voice channel device is
named dxxxBnCy, where y corresponds to one of the voice channels. Examples of channel device
names for voice boards are dxxxB1C1 and dxxxB1C2.

Use the Dialogic® Standard Runtime Library device mapper functions to retrieve information on
all devices in a system.

For complete information on device handling, see the Dialogic® Standard Runtime Library API
Programming Guide.

Dialogic® Voice API Programming Guide 24
Dialogic Corporation

44.Event Handling

This chapter provides information on functions used to retrieve and handle events. Topics include:

• Overview of Event Handling . 24

• Event Management Functions . 24

4.1 Overview of Event Handling

An event indicates that a specific activity has occurred on a channel. The voice driver reports
channel activity to the application program in the form of events, which allows the program to
identify and respond to a specific occurrence on a channel. Events provide feedback on the
progress and completion of functions and indicate the occurrence of other channel activities.
Dialogic® Voice API library events are defined in the dxxxlib.h header file.

For a list of events that may be returned by the voice software, see the Dialogic® Voice API Library
Reference.

4.2 Event Management Functions

Event management functions are used to retrieve and handle events being sent to the application
from the firmware. These functions are contained in the Dialogic® Standard Runtime Library
(SRL) and defined in srllib.h. The SRL provides a set of common system functions that are device
independent and are applicable to all Dialogic® devices. For more information on event
management and event handling, see the Dialogic® Standard Runtime Library API Programming
Guide.

Event management functions include:

• sr_enbhdlr()

• sr_dishdlr()

• sr_getevtdev()

• sr_getevttype()

• sr_getevtlen()

• sr_getevtdatap()

For details on SRL functions, see the Dialogic® Standard Runtime Library API Library Reference.

The event management functions retrieve and handle voice device termination events for functions
that run in asynchronous mode, such as dx_dial() and dx_play(). For complete function reference
information, see the Dialogic® Voice API Library Reference.

Dialogic® Voice API Programming Guide 25
Dialogic Corporation

Event Handling

Each of the event management functions applicable to the voice boards are listed in the following
tables. Table 1 lists values that are required by event management functions. Table 2 list values that
are returned for event management functions that are used with voice devices.

Table 1. Voice Device Inputs for Event Management Functions

Event Management
Function

Voice Device
Input

Valid Value Related Voice Functions

sr_enbhdlr()
Enable event handler

evt_type TDX_PLAY dx_play()

TDX_PLAYTONE dx_playtone()

TDX_RECORD dx_rec()

TDX_GETDIG dx_getdig()

TDX_DIAL dx_dial()

TDX_CALLP dx_dial()

TDX_SETHOOK dx_sethook()

TDX_ERROR All asynchronous functions

sr_dishdlr()
Disable event handler

evt_type As above As above

Table 2. Voice Device Returns from Event Management Functions

Event Management
Function

Return
Description

Returned Value Related Voice Functions

sr_getevtdev()
Get device handle

device voice device handle

sr_getevttype()
Get event type

event type TDX_PLAY dx_play()

TDX_PLAYTONE dx_playtone()

TDX_RECORD dx_rec()

TDX_GETDIG dx_getdig()

TDX_DIAL dx_dial()

TDX_CALLP dx_dial()

TDX_CST dx_setevtmsk()

TDX_SETHOOK dx_sethook()

TDX_ERROR All asynchronous functions

sr_getevtlen()
Get event data length

event length sizeof (DX_CST)

sr_getevtdatap()
Get pointer to event data

event data pointer to DX_CST structure

Dialogic® Voice API Programming Guide 26
Dialogic Corporation

55.Error Handling

This chapter discusses how to handle errors that can occur when running an application.

All Dialogic® Voice API library functions return a value to indicate success or failure of the
function. A return value of zero or a non-negative number indicates success. A return value of -1
indicates failure.

If a Dialogic® Voice API library function fails, call the standard attribute functions
ATDV_LASTERR() and ATDV_ERRMSGP() to determine the reason for failure. For more
information on these functions, see the Dialogic® Standard Runtime Library API Library
Reference.

If an extended attribute function fails, two types of errors can be generated. An extended attribute
function that returns a pointer will produce a pointer to the ASCIIZ string “Unknown device” if it
fails. An extended attribute function that does not return a pointer will produce a value of
AT_FAILURE if it fails. Extended attribute functions for the voice library are prefaced with
“ATDX_”.

Notes: 1. The dx_open() and dx_close() functions are exceptions to the above error handling rules. On
Linux, if these functions fail, the return code is -1, and the specific error is found in the errno
variable contained in errno.h. On Windows®, if these functions fail, the return code is -1. Use
dx_fileerrno() to obtain the system error value.

2. If ATDV_LASTERR() returns the EDX_SYSTEM error code, an operating system error has
occurred. On Linux, check the global variable errno contained in errno.h. On Windows®, use
dx_fileerrno() to obtain the system error value.

For a list of errors that can be returned by a Dialogic® Voice API library function, see the
Dialogic® Voice API Library Reference. You can also look up the error codes in the dxxxlib.h file.

Dialogic® Voice API Programming Guide 27
Dialogic Corporation

66.Application Development
Guidelines

This chapter provides programming guidelines and techniques for developing an application using
the Dialogic® Voice API library. The following topics are discussed:

• General Considerations . 27

• Additional Considerations . 31

6.1 General Considerations

The following considerations apply to all applications written using the Dialogic® Voice API:

• Busy and Idle States

• Setting Termination Conditions for I/O Functions

• Setting Termination Conditions for Digits

• Clearing Structures Before Use

• Working with User-Defined I/O Functions

See feature chapters for programming guidelines specific to a feature, such as call progress
analysis, recording and playback, and so on.

6.1.1 Busy and Idle States

The operation of some library functions are dependent on the state of the device when the function
call is made. A device is in an idle state when it is not being used, and in a busy state when it is
dialing, stopped, being configured, or being used for other I/O functions. Idle represents a single
state; busy represents the set of states that a device may be in when it is not idle. State-dependent
functions do not make a distinction between the individual states represented by the term busy.
They only distinguish between idle and busy states.

For more information on categories of functions and their description, see the Dialogic® Voice API
Library Reference.

6.1.2 Setting Termination Conditions for I/O Functions

When an I/O function is issued, you must pass a set of termination conditions as one of the function
parameters. Termination conditions are events monitored during the I/O process that will cause an
I/O function to terminate. When the termination condition is met, a termination reason is returned
by ATDX_TERMMSK(). If the I/O function is running in synchronous mode, the
ATDX_TERMMSK() function returns a termination reason after the I/O function has completed.

28 Dialogic® Voice API Programming Guide
Dialogic Corporation

Application Development Guidelines

If the I/O function is running in asynchronous mode, the ATDX_TERMMSK() function returns a
termination reason after the function termination event has arrived. I/O functions can terminate
under several conditions as described later in this section.

You can predict events that will occur during I/O (such as a digit being received or the call being
disconnected) and set termination conditions accordingly. The flow of control in a voice
application is based on the termination condition. Setting these conditions properly allows you to
build voice applications that can anticipate a caller's actions.

To set termination conditions, values are placed in fields of a DV_TPT structure. If you set more
than one termination condition, the first one that occurs will terminate the I/O function. The
DV_TPT structures can be configured as a linked list or array, with each DV_TPT specifying a
single terminating condition.

The termination conditions are described in the following paragraphs.

byte transfer count
Applies when playing or recording a file with dx_play() or dx_rec(). The maximum number
of bytes is set in the DX_IOTT structure. This condition will cause termination if the
maximum number of bytes is used before one of the termination conditions specified in the
DV_TPT occurs.

dx_stopch() occurred
The dx_stopch() function will terminate any I/O function, except dx_dial() (with call
progress analysis disabled), and stop the device.

end of file reached
Applies when playing a file. This condition will cause termination if -1 has been specified in
the io_length field of the DX_IOTT, and no other termination condition has occurred before
the end of the file is reached. When this termination condition is met, a TM_EOD termination
reason is returned from ATDX_TERMMSK().

loop current drop (DX_LCOFF)
Not supported on Dialogic® HMP Software using the voice library; however, support is
available via call control API. For more information, see the Dialogic® Global Call Analog
Technology User’s Guide.

In some central offices, switches, and PBXs, a drop in loop current indicates disconnect
supervision. An I/O function can terminate if the loop current drops for a specified amount of
time. The amount of time is specified in the tp_length field of a DV_TPT structure. The
amount of time can be specified in 100 msec units (default) or 10 msec units. 10 msec can be
specified in the tp_flags field of the DV_TPT. When this termination condition is met, a
TM_LCOFF termination reason is returned from ATDX_TERMMSK().

maximum delay between digits (DX_IDDTIME)
Monitors the length of time between the digits being received. A specific length of time can be
placed in the tp_length field of a DV_TPT. If the time between receiving digits is more than
this period of time, the function terminates. The amount of time can be specified in 100 msec
units (default) or 10 msec units. 10 msec units can be specified in the tp_flags field of the
DV_TPT. When this termination condition is met, a TM_IDDTIME termination reason is
returned from ATDX_TERMMSK().

On Dialogic® HMP Software, this termination condition is only supported by the dx_getdig()
function.

Dialogic® Voice API Programming Guide 29
Dialogic Corporation

Application Development Guidelines

maximum digits received (DX_MAXDTMF)
Counts the number of digits in the channel's digit buffer. If the buffer is not empty before the
I/O function is called, the digits that are present in the buffer when the function is initiated are
counted as well. The maximum number of digits to receive is set by placing a number from 1
to 31 in the tp_length field of a DV_TPT. This value specifies the number of digits allowed in
the buffer before termination. When this termination condition is met, a TM_MAXDTMF
termination reason is returned from ATDX_TERMMSK().

maximum length of non-silence ((DX_MAXNOSIL)
Supported on Springware boards only.

Non-silence is the absence of silence: noise or meaningful sound, such as a person speaking.
This condition is enabled by setting the tp_length field of a DV_TPT to a specific period of
time. When non-silence is detected for this length of time, the I/O function will terminate. This
termination condition is frequently used to detect dial tone, or the howler tone that is used by
central offices to indicate that a phone has been off-hook for an extended period of time. The
amount of time can be specified in 100 msec units (default) or 10 msec units. 10 msec units
can be specified in the tp_flags field of the DV_TPT. When this termination condition is met, a
TM_MAXNOSIL termination reason is returned from ATDX_TERMMSK().

maximum length of silence (DX_MAXSIL)
Enabled by setting the tp_length field of a DV_TPT. The specified value is the length of time
that continuous silence will be detected before it terminates the I/O function. The amount of
time can be specified in 100 msec units (default) or 10 msec units. 10 msec units can be
specified in the tp_flags field of the DV_TPT. When this termination condition is met, a
TM_MAXSIL termination reason is returned from ATDX_TERMMSK().

pattern of silence and non-silence (DX_PMON and DX_PMOFF)
Supported on Springware boards only.

A known pattern of silence and non-silence can terminate a function. A pattern can be
specified by using DX_PMON and DX_PMOFF in the tp_termno field in two separate
DV_TPT structures, where one represents a period of silence and one represents a period of
non-silence. When this termination condition is met, a TM_PATTERN termination reason is
returned from ATDX_TERMMSK().

DX_PMOFF and DX_PMON termination conditions must be used together. The DX_PMON
terminating condition must directly follow the DX_PMOFF terminating condition. A
combination of both DV_TPT structures using these conditions is used to form a single
termination condition.

specific digit received (DX_DIGMASK)
Digits received during an I/O function are collected in a channel's digit buffer. If the buffer is
not empty before an I/O function executes, the digits in the buffer are treated as being received
during the I/O execution. This termination condition is enabled by specifying a digit bit mask
in the tp_length field of a DV_TPT structure. If any digit specified in the bit mask appears in
the digit buffer, the I/O function will terminate. When this termination condition is met, a
TM_DIGIT termination reason is returned from ATDX_TERMMSK().

On HMP Software, using more than one DV_TPT structure for detecting different digits is not
supported. Instead, use one DV_TPT structure, set DX_DIGMASK in the tp_termno field, and
bitwise-OR "DM_1 | DM_2" in the tp_length field. For uniformity, it is also strongly
recommended to use the same method to detect different digits on Springware boards.

30 Dialogic® Voice API Programming Guide
Dialogic Corporation

Application Development Guidelines

maximum function time (DX_MAXTIME)
A time limit may be placed on the execution of an I/O function. The tp_length field of a
DV_TPT can be set to a specific length of time in 100 msec units. The I/O function will
terminate when it executes longer than this period of time. The amount of time can be
specified in 100 msec units (default) or 10 msec units. 10 msec units can be specified in the
tp_flags field of the DV_TPT. When this termination condition is met, a TM_MAXTIME
termination reason is returned from ATDX_TERMMSK().

DX_MAXTIME is not supported by tone generation functions such as dx_playtone() and
dx_playtoneEx().

user-defined digit received (DX_DIGTYPE)
User-defined digits received during an I/O function are collected in a channel's digit buffer. If
the buffer is not empty before an I/O function executes, the digits in the buffer are treated as
being received during the I/O execution. This termination condition is enabled by specifying
the digit and digit type in the tp_length field of a DV_TPT structure. If any digit specified in
the bit mask appears in the digit buffer, the I/O function will terminate. When this termination
condition is met, a TM_DIGIT termination reason is returned from ATDX_TERMMSK().

user-defined tone on/off event detected (DX_TONE)
Used with global tone detection. Before specifying a user-defined tone as a termination
condition, the tone must first be defined using the GTD dx_bld...() functions, and tone
detection on the channel must be enabled using the dx_addtone() or dx_enbtone() function.
To set tone on/off to be a termination condition, specify DX_TONE in the tp_termno field of
the DV_TPT. You must also specify DX_TONEON or DX_TONEOFF in the tp_data field.
When this termination condition is met, a TM_TONE termination reason is returned from
ATDX_TERMMSK().

6.1.3 Setting Termination Conditions for Digits

To specify a timeout for dx_getdig() if the first digit is not received within a specified time period,
use the DX_MAXTIME termination condition in the DV_TPT structure.

To specify an additional timeout if subsequent digits are not received, use the DX_IDDTIME
(interdigit delay) termination condition and the TF_FIRST flag in the DV_TPT structure. The
TF_FIRST flag specifies that the timer will start after the first digit is received; otherwise the timer
starts when the dx_getdig() function is called.

6.1.4 Clearing Structures Before Use

Two library functions are provided to clear structures. dx_clrcap() clears DX_CAP structures and
dx_clrtpt() clears DV_TPT structures.

It is good practice to clear the field values of any structure before using the structure in a function
call. Doing so will help prevent unintentional settings or terminations.

6.1.5 Working with User-Defined I/O Functions

Two library functions can be used to install user-defined I/O functions, also called user I/O
functions or UIO: dx_setuio() and dx_setdevuio().

Dialogic® Voice API Programming Guide 31
Dialogic Corporation

Application Development Guidelines

The following cautions apply when working with user I/O functions:

• Do not include sleeps, critical sections, or any other delays in the user I/O function.

• Do not call any other Dialogic function inside the user I/O function. One exception is the
ec_getblkinfo() function which is called from within a user I/O function. For more
information on this function, see the Dialogic® Continuous Speech Processing API Library
Reference.

The reason for these cautions is as follows. On Springware boards, while the user I/O function is
executing, the Dialogic® Standard Runtime Library (SRL) is blocked and cannot process further
messages from the driver. Data will be lost if the driver cannot hand off messages to the SRL. On
HMP Software, you may see chopped audio or underruns. In all cases, be aware that the risk of
underruns increases as density rises.

6.2 Additional Considerations

The following information provides programming guidelines and considerations for developing
voice applications:

• Multithreading and Multiprocessing

• Device Discovery

• Device Initialization Hint

• Tone Detection Considerations

6.2.1 Multithreading and Multiprocessing

The Dialogic® Voice API supports multithreading and multiprocessing on the board level but not
on the channel level on Dialogic® HMP Software.

The following restrictions apply:

• A channel can only be opened in one process at a time; the same channel cannot be used by
more than one process concurrently. However, multiple processes can access different sets of
channels. Ensure that each process is provided with a unique set of devices to manipulate.

• If a channel is opened in process A and then closed, process B is allowed to open the same
channel. However, you should avoid this type of sequence. Since closing a channel is an
asynchronous operation, there is a small gap between the time when the xx_close() function
returns in process A and the time when process B is allowed to open the same channel. If
process B opens the channel too early, unpredictable results may occur.

• Multiple processes that define tones (GTD or GTG) do not share tone definitions in the
firmware. For example, if you define tone A in process 1 for channel dxxxB1C1 and the same
tone A in process 2 for channel dxxxB1C1 , two firmware tones are consumed. In other words,
the same tone defined from different processes is not shared in the firmware; hence this limits
the number of tones that can be created overall. For more information, see Chapter 12, “Global
Tone Detection and Generation, and Cadenced Tone Generation”.

32 Dialogic® Voice API Programming Guide
Dialogic Corporation

Application Development Guidelines

It is recommended that you develop your application using a limited number of total threads rather
than a single thread per channel. For more information on programming models and performance
considerations, see the Dialogic® Standard Runtime Library API Programming Guide.

Note: The continuous speech processing architecture allows a voice channel to be shared between
processes or applications on Dialogic® JCT (Springware) boards or on Dialogic® HMP Software
(starting with Dialogic® Host Media Processing Software Release 1.3 for Windows®), providing
one process does the play activity and the other process does the record/stream activity. Other CSP
scenarios are not supported, such as playing or recording/streaming from both processes.

6.2.2 Device Discovery

Applications that use both HMP Software devices and Springware devices must have a way of
differentiating what type of device is to be opened. The TDM bus routing functions such as
dx_getctinfo() provide a programming solution. HMP Software devices are identified by the
CT_DFHMPDM3 value in the ct_devfamily field of the CT_DEVINFO structure. Springware
devices are identified by CT_DFD41E in the ct_devfamily field. See the Dialogic® Voice API
Library Reference for details on the CT_DEVINFO structure.

Note: Use SRL device mapper functions to return information about the structure of the system. For
information on these functions, see the Dialogic® Standard Runtime Library API Library
Reference.

The following procedure shows how to initialize an application and perform device discovery when
the application supports both HMP Software devices and Springware boards.

1. Open the first voice channel device on the first voice board in the system with dx_open().

2. Call dx_getctinfo() and check the CT_DEVINFO.ct_devfamily value.

3. If ct_devfamily is CT_DFHMPDM3, then flag all the voice channel devices associated with
the board as HMP Software type. If ct_devfamily is CT_DFD41E, then flag all the voice
channel devices associated with the board as Springware type.

4. Close the voice channel with dx_close().

5. Repeat steps 1 to 4 for each voice board.

6.2.3 Device Initialization Hint

The xx_open() functions for the voice (dx), Global Call (gc), network (dt), and fax (fx) APIs are
asynchronous for HMP Software devices (on Springware boards, these functions are synchronous).
This should usually have no impact on an application, except in cases where a subsequent function
calls on an HMP Software device that is still initializing, that is, is in the process of opening. In
such cases, the initialization must be finished before the follow-up function can work. The function
won’t return an error, but it is blocked until the device is initialized.

For instance, if your application calls dx_open() on an HMP Software device followed by
dx_getfeaturelist(), the dx_getfeaturelist() function is blocked until the initialization of the
device is completed internally, even though dx_open() has already returned success. In other
words, the initialization (dx_open()) may appear to be complete, but, in truth, it is still going on in
parallel.

Dialogic® Voice API Programming Guide 33
Dialogic Corporation

Application Development Guidelines

With some applications, this may cause slow device-initialization performance. You can avoid this
problem in one of several ways, depending on the type of application:

• In multithreaded applications, you can reorganize the way the application opens and then
configures devices. The recommendation is to do as many xx_open() functions as possible
(grouping the devices) in one thread arranging them in a loop before proceeding with the next
function. For example, you would have one loop through the grouping of devices do all the
xx_open() functions first, and then start a second loop through the devices to configure them,
instead of doing one single loop where an xx_open() is immediately followed by other API
functions on the same device. With this method, by the time all xx_open() commands are
completed, the first channel will be initialized, so you won't experience any internal delays.

This change is not necessary for all applications, but if you experience poor initialization
performance, you can gain back speed by using this hint.

• Perform device initialization in a single thread. This way, device initialization can still be done
in a loop, and by the time the subsequent function is called on the first device, initialization on
that device has completed.

6.2.4 Tone Detection Considerations

The following consideration applies to tone detection on HMP Software:

• Digits will not always be cleared by the time the dx_clrdigbuf() function returns, because
processing may continue on the board even after the function returns. For this reason, careful
consideration should be given when using this function before or during a section where digit
detection or digit termination is required; the digit may be cleared after the function has
returned or possibly during the next function call.

Dialogic® Voice API Programming Guide 34
Dialogic Corporation

77.Call Progress Analysis

This chapter provides detailed information about the call progress analysis feature. The following
topics are discussed:

• Call Progress Analysis Overview . 34

• Call Progress and Call Analysis Terminology. 35

• Call Progress Analysis Components . 35

• Call Progress Analysis Errors . 37

• Using Call Progress Analysis on HMP Voice Devices . 37

• Call Progress Analysis Tone Detection on HMP Voice Devices 41

• Media Tone Detection on HMP Voice Devices . 45

• Default Call Progress Analysis Tone Definitions on HMP Voice Devices 46

• Modifying Default Call Progress Analysis Tone Definitions on HMP Voice Devices . 47

• Using Call Progress Analysis on Springware Boards . 50

• Call Progress Analysis Tone Detection on Springware Boards. 54

• Media Tone Detection on Springware Boards. 58

• Default Call Progress Analysis Tone Definitions on Springware Boards 60

• Modifying Default Call Progress Analysis Tone Definitions on Springware Boards . . 60

• SIT Frequency Detection on Springware Boards . 61

• Cadence Detection in Basic Call Progress Analysis on Springware Boards. 66

7.1 Call Progress Analysis Overview

Call progress analysis monitors the progress of an outbound call after it is dialed into the Public
Switched Telephone Network (PSTN).

By using call progress analysis (CPA) you can determine for example:

• whether the line is answered and, in many cases, how the line is answered

• whether the line rings but is not answered

• whether the line is busy

• whether there is a problem in completing the call

The outcome of the call is returned to the application when call progress analysis has completed.

Dialogic® Voice API Programming Guide 35
Dialogic Corporation

Call Progress Analysis

There are two forms of call progress analysis:

 Perfect Call call progress analysis
Also called enhanced call progress analysis. Uses an improved method of signal identification
and can detect fax machines and answering machines. You should design all new applications
using Perfect Call call progress analysis.

Note: In this document, the term call progress analysis refers to Perfect Call call progress
analysis unless stated otherwise.

Basic call progress analysis
Supported on Springware boards for backward compatibility only.

Provides backward compatibility for older applications written before Perfect Call call
progress analysis became available. It is strongly recommended that you do not design new
applications using basic call progress analysis.

If your application also uses the Dialogic® Global Call API, see the Global Call documentation set
for call progress analysis special considerations. The Global Call API is a common signaling
interface for network-enabled applications, regardless of the signaling protocol needed to connect
to the local telephone network. Call progress analysis support varies with the protocol used.

7.2 Call Progress and Call Analysis Terminology

A distinction is made between activity that occurs before a call is connected and after a call is
connected. The following terms are used:

call progress (pre-connect)
This term refers to activity to determine the status of a call connection, such as busy, no
ringback, no dial tone, and can also include the frequency detection of Special Information
Tones (SIT), such as operator intercept. This activity occurs before a call is connected.

call analysis (post-connect)
This term refers to activity to determine the destination party’s media type, such as voice
detection, answering machine detection, fax tone detection, modem, and so on. This activity
occurs after a call is connected.

call progress analysis
This term refers to the feature set that encompasses both call progress and call analysis.

7.3 Call Progress Analysis Components

Call progress analysis uses the following techniques to determine the progress of a call as
applicable:

• cadence detection (pre-connect part of call progress analysis)

• frequency detection (pre-connect part of call progress analysis)

• loop current detection (pre-connect part of call progress analysis)

• positive voice detection (post-connect part of call progress analysis)

• positive answering machine detection (post-connect part of call progress analysis)

36 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

• fax tone detection (post-connect part of call progress analysis)

Figure 1 illustrates the components of basic call progress analysis (supported on Springware boards
only). In basic call progress analysis, cadence detection is the sole means of detecting a no
ringback, busy, or no answer.

Figure 1. Basic Call Progress Analysis Components (Springware only)

Figure 2 illustrates the components of Perfect Call call progress analysis. These components can
operate simultaneously. Perfect Call call progress analysis uses cadence detection plus frequency
detection to identify these signals plus fax machine tones. A connect can be detected through the
complementary methods of cadence detection, frequency detection, positive voice detection, and
positive answering machine detection.

Note: Loop current detection shown in Figure 2 is not applicable to Dialogic® HMP voice devices.

Figure 2. Perfect Call Call Progress Analysis Components

Incoming
Signal

Frequency
Detection

Cadence
Detection

Loop
Current

Detection

Positive
Voice

Detection

Intercept
(SIT)

No
Ringback Busy

No
Answer Connect

Incoming
Signal

Frequency
Detection

Cadence
Detection

Loop
Current

Detection

Intercept
(SIT)

No
RingbackBusy

No
Answer ConnectFax Tone

No
Dialtone

Positive
Voice or

Answering
Machine
Detection

Dialogic® Voice API Programming Guide 37
Dialogic Corporation

Call Progress Analysis

7.4 Call Progress Analysis Errors

If ATDX_CPTERM() returns CR_ERROR, you can use ATDX_CPERROR() to determine the
call progress analysis error that occurred.

7.5 Using Call Progress Analysis on HMP Voice Devices

The following topics provide information on how to use call progress analysis on Dialogic® HMP
voice devices:

• Call Progress Analysis Rules

• Initiating Call Progress Analysis

• Setting Up Call Progress Analysis Parameters

• Executing a Dial Function

• Determining the Outcome of a Call

• Obtaining Additional Call Outcome Information

7.5.1 Call Progress Analysis Rules

The following rules apply to the use of call progress analysis on Dialogic® HMP voice devices:

• For IP ports using IP protocols:

– Pre-connect is typically provided by the protocol via the Dialogic® Global Call API or via
a native IP protocol API.

– In general the dx_dial() function does not need to be used for pre-connect call progress.
However, the dx_dial() function may be used if inband pre-connect call progress is
available.

– The dx_dial() function may be used for post-connect call analysis.

Table 3 provides information on call progress analysis scenarios supported with the dx_dial()
function on Dialogic® HMP voice devices.

Table 3. Call Progress Analysis Support with dx_dial() (HMP Voice Devices)

CPA Feature dx_dial() support

Busy Yes

No ringback Yes

SIT frequency detection Yes

No answer Yes

Cadence break Yes

Loop current detection No

Dial tone detection Yes

Fax tone detection Yes

38 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

7.5.2 Initiating Call Progress Analysis

Review the information in Section 7.5.1, “Call Progress Analysis Rules”, on page 37.

If you choose to use the voice API for call progress analysis on HMP voice devices, follow these
steps to initiate an outbound call with call progress analysis:

1. Set up the call analysis parameter structure (DX_CAP), which contains parameters to control
the operation of call progress analysis, such as positive voice detection and positive answering
machine detection.

2. Call dx_dial() to start call progress analysis during the desired phase of the call.

3. Use the ATDX_CPTERM() extended attribute function to determine the outcome of the call.

4. Obtain additional termination information as desired using extended attribute functions.

Each of these steps is described in more detail next. For a full description of the functions and data
structures described in this chapter, see the Dialogic® Voice API Library Reference.

7.5.3 Setting Up Call Progress Analysis Parameters

The call progress analysis parameters structure, DX_CAP, is used by dx_dial(). It contains
parameters to control the operation of call progress analysis features, such as positive voice
detection (PVD) and positive answering machine detection (PAMD). To customize the parameters
for your environment, you must set up the DX_CAP structure before calling a dial function.

To set up the DX_CAP structure for call progress analysis on HMP voice devices:

1. Execute the dx_clrcap() function to clear the DX_CAP and initialize the parameters to 0. The
value 0 indicates that the default value will be used for that particular parameter. dx_dial() can
also be set to run with default call progress analysis parameter values, by specifying a NULL
pointer to the DX_CAP structure.

2. Set a DX_CAP parameter to another value if you do not want to use the default value. The
ca_intflg field (intercept mode flag) of DX_CAP enables and disables the following call
progress analysis components: SIT frequency detection, positive voice detection (PVD), and
positive answering machine detection (PAMD). Use one of the following values for the
ca_intflg field:

• DX_OPTDIS. Disables Special Information Tone (SIT) frequency detection, PAMD, and
PVD. This setting provides call progress without SIT frequency detection.

• DX_OPTNOCON. Enables SIT frequency detection and returns an “intercept”
immediately after detecting a valid frequency. This setting provides call progress with SIT
frequency detection.

Positive Voice Detection (PVD) Yes

Positive Answering Machine Detection
(PAMD)

Yes

Table 3. Call Progress Analysis Support with dx_dial() (HMP Voice Devices) (Continued)

CPA Feature dx_dial() support

Dialogic® Voice API Programming Guide 39
Dialogic Corporation

Call Progress Analysis

• DX_PVDENABLE. Enables PVD and fax tone detection. Provides PVD call analysis
only (no call progress).

• DX_PVDOPTNOCON. Enables PVD, DX_OPTNOCON, and fax tone detection. This
setting provides call progress with SIT frequency detection and PVD call analysis.

• DX_PAMDENABLE. Enables PAMD, PVD, and fax tone detection. This setting provides
PAMD and PVD call analysis only (no call progress).

• DX_PAMDOPTEN. Enables PAMD, PVD, DX_OPTNOCON, and fax tone detection.
This setting provides full call progress and call analysis.

Note: DX_OPTEN and DX_PVDOPTEN are obsolete. Use DX_OPTNOCON and
DX_PVDOPTNOCON instead.

7.5.4 Executing a Dial Function

To use call progress analysis on HMP voice devices, call dx_dial() with the mode function
argument set to DX_CALLP. Termination of dialing with call progress analysis is indicated
differently depending on whether the function is running asynchronously or synchronously.

If running asynchronously, use Dialogic® Standard Runtime Library (SRL) event management
functions to determine when dialing with call progress analysis is complete (TDX_CALLP
termination event).

If running synchronously, wait for the function to return a value greater than 0 to indicate
successful completion.

Notes: 1. On HMP voice devices, dx_dial() cannot be used to start an outbound call; instead use the
Dialogic® Global Call API.

2. To issue dx_dial() without dialing digits, specify “ ” in the dialstrp argument.

7.5.5 Determining the Outcome of a Call

In asynchronous mode, once dx_dial() with call progress analysis has terminated, use the
extended attribute function ATDX_CPTERM() to determine the outcome of the call. (In
synchronous mode, dx_dial() returns the outcome of the call.) ATDX_CPTERM() will return
one of the following call progress analysis termination results:

CR_BUSY
Called line was busy.

CR_CEPT
Called line received operator intercept (SIT).

CR_CNCT
Called line was connected. Use ATDX_CONNTYPE() to return the connection type for a
completed call.

CR_ERROR
Call progress analysis error occurred. Use ATDX_CPERROR() to return the type of error.

CR_FAXTONE
Called line was answered by fax machine or modem.

40 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

CR_NOANS
Called line did not answer.

CR_NORB
No ringback on called line.

CR_STOPD
Call progress analysis stopped due to dx_stopch().

Figure 3 illustrates the possible outcomes of call progress analysis on HMP voice devices.

Figure 3. Call Outcomes for Call Progress Analysis (HMP Voice Devices)

7.5.6 Obtaining Additional Call Outcome Information

To obtain additional call progress analysis information on HMP voice devices, use the following
extended attribute functions:

ATDX_CPERROR()
Returns call analysis error.

ATDX_CPTERM()
Returns last call analysis termination reason.

ATDX_CONNTYPE()
Returns connection type.

Frequency
Detection

Cadence
Detection

Positive
Voice or

Answering
Machine
Detection

Incoming
Signal

Connect
Reason

Termination Reason: From ATDX_CPTERM().
Connect Reason: From ATDX_CONNTYPE().

CON_CAD
CON_PVD

CON_PAMD

Termi-
nation
Reason

Connect

CR_CNCT

No
Ringback

CR_NORB

Busy

CR_BUSY

Faxtone

CR_FAXTONE

Intercept
(SIT)

CR_CEPT

No
Answer

CR_NOANS

Dialogic® Voice API Programming Guide 41
Dialogic Corporation

Call Progress Analysis

7.6 Call Progress Analysis Tone Detection on HMP
Voice Devices

The following topics discuss tone detection used in call progress analysis on HMP voice devices:

• Tone Detection Overview

• Types of Tones

• Ringback Detection

• Busy Tone Detection

• Fax or Modem Tone Detection

• SIT Frequency Detection

7.6.1 Tone Detection Overview

On HMP voice devices, call progress analysis uses a combination of cadence detection and
frequency detection to identify certain signals during the course of an outgoing call. Cadence
detection identifies repeating patterns of sound and silence, and frequency detection determines the
pitch of the signal. Together, the cadence and frequency of a signal make up its “tone definition”.

7.6.2 Types of Tones

Tone definitions are used to identify several kinds of signals.

The following defined tones and tone identifiers are provided by the voice library for HMP voice
devices. Tone identifiers are returned by the ATDX_CRTNID() function.

TID_BUSY1
First signal busy

TID_BUSY2
Second signal busy

TID_DIAL_INTL
International dial tone

TID_DIAL_LCL
Local dial tone

TID_DISCONNECT
Disconnect tone (post-connect)

TID_FAX1
First fax or modem tone

TID_FAX2
Second fax or modem tone

TID_RNGBK1
Ringback (detected as single tone)

42 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

TID_RNGBK2
Ringback (detected as dual tone)

TID_SIT_ANY
Catch all (returned for a Special Information Tone sequence or SIT sequence that falls outside
the range of known default SIT sequences)

TID_SIT_INEFFECTIVE_OTHER or
TID_SIT_IO

Ineffective other SIT sequence

TID_SIT_NO_CIRCUIT or
TID_SIT_NC

No circuit found SIT sequence

TID_SIT_NO_CIRCUIT_INTERLATA or
TID_SIT_NC_INTERLATA

InterLATA no circuit found SIT sequence

TID_SIT_OPERATOR_INTERCEPT or
TID_SIT_IC

Operator intercept SIT sequence

TID_SIT_REORDER_TONE or
TID_SIT_RO

Reorder (system busy) SIT sequence

TID_SIT_REORDER_TONE_INTERLATA or
TID_SIT_RO_INTERLATA

InterLATA reorder (system busy) SIT sequence

TID_SIT_VACANT_CIRCUIT or
TID_SIT_VC

Vacant circuit SIT sequence

Some of these tone identifiers may be used as input to function calls to change the tone definitions.
For more information, see Section 7.9, “Modifying Default Call Progress Analysis Tone
Definitions on HMP Voice Devices”, on page 47.

7.6.3 Ringback Detection

Call progress analysis uses the tone definition for ringback to identify the first ringback signal of an
outgoing call. At the end of the first ringback (that is, normally, at the beginning of the second
ringback), a timer goes into effect. The system continues to identify ringback signals (but does not
count them). If a break occurs in the ringback cadence, the call is assumed to have been answered,
and call progress analysis terminates with the reason CR_CNCT (connect); the connection type
returned by the ATDX_CONNTYPE() function will be CON_CAD (cadence break).

However, if the timer expires before a connect is detected, then the call is deemed unanswered, and
call progress analysis terminates with the reason CR_NOANS.

To enable ringback detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For
details, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

Dialogic® Voice API Programming Guide 43
Dialogic Corporation

Call Progress Analysis

The following DX_CAP fields govern ringback behavior for HMP voice devices:

ca_cnosig
Continuous No Signal: the maximum length of silence (no signal) allowed immediately after
the ca_stdely period (in 10 msec units). If this duration is exceeded, call progress analysis is
terminated with the reason CR_NORB (no ringback detected). Default value: 4000 (40
seconds).

ca_noanswer
No Answer: the length of time to wait after the first ringback before deciding that the call is
not answered (in 10 msec units). If this duration is exceeded, call progress analysis is
terminated with the reason CR_NOANS (no answer). Default value: 3000 (30 seconds).

7.6.4 Busy Tone Detection

Call progress analysis specifies two busy tones: TID_BUSY1 and TID_BUSY2. If either of them is
detected while frequency detection and cadence detection are active, then call progress is
terminated with the reason CR_BUSY. ATDX_CRTNID() identifies which busy tone was
detected.

To enable busy tone detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For
details, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

7.6.5 Fax or Modem Tone Detection

Call progress analysis specifies two tones: TID_FAX1 and TID_FAX2. If either of these tones is
detected while frequency detection and cadence detection are active, then call progress is
terminated with the reason CR_FAXTONE. ATDX_CRTNID() identifies which fax or modem
tone was detected.

To enable fax or modem tone detection, use the ca_intflg field of the DX_CAP structure. For
details, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

7.6.6 SIT Frequency Detection

Special Information Tone (SIT) frequency detection is a component of call progress analysis. On
HMP voice devices, SIT sequences are defined as standard tone IDs.

To enable SIT frequency detection, use the ca_intflg field of the DX_CAP structure. For more
information, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

Table 4 shows default tone definitions for SIT sequences used on HMP voice devices. The values in
the “Freq.” column represent minimum and maximum values in Hz. “Time” refers to minimum
and maximum on time in 10 msec units; the maximum off time between each segment is 5 (or 50
msec). The repeat count is 1 for all SIT segments. N/A means “not applicable.”

44 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

The following considerations apply to SIT sequences on HMP voice devices:

• A single tone proxy for the dual tone (also called twin tone) exists for each of the three
segments in a SIT sequence. The default definition for the minimum value and maximum
value (in Hz) is 0. For more information on this tone, see Section 7.9.4, “Rules for Using a
Single Tone Proxy for a Dual Tone”, on page 49.

• These tone IDs have aliases:

– TID_SIT_NO_CIRCUIT (TID_SIT_NC)

– TID_SIT_OPERATOR_INTERCEPT (TID_SIT_IC)

– TID_SIT_VACANT_CIRCUIT (TID_SIT_VC)

– TID_SIT_REORDER_TONE (TID_SIT_RO)

– TID_SIT_NO_CIRCUIT_INTERLATA (TID_SIT_NC_INTERLATA)

– TID_SIT_REORDER_TONE_INTERLATA (TID_SIT_RO_INTERLATA)

– TID_SIT_INEFFECTIVE_OTHER (TID_SIT_IO)

• Default SIT definitions can be modified, except for the following SIT sequences: TID_SIT_
ANY, TID_SIT_IO, TID_SIT_NC_INTERLATA, and TID_SIT_RO_INTERLATA. For more
information, see Section 7.9, “Modifying Default Call Progress Analysis Tone Definitions on
HMP Voice Devices”, on page 47.

• For TID_SIT_ANY, the frequency and time of the first and second segments are open; that is,
they are ignored. Only the frequency of the third segment is relevant. This catch-all SIT
sequence definition is intended to cover SIT sequences that fall outside the range of the
defined SIT sequences.

Table 4. Special Information Tone Sequences (HMP Voice Devices)

SIT 1st Segment 2nd Segment 3rd Segment

Tone ID Description Freq. Time Freq. Time Freq. Time

TID_SIT_NC No Circuit Found 950/1020 32/45 1400/1450 32/45 1740/1850 N/A

TID_SIT_IC Operator
Intercept

874/955 15/30 1310/1430 15/30 1740/1850 N/A

TID_SIT_VC Vacant Circuit 950/1020 32/45 1310/1430 15/30 1740/1850 N/A

TID_SIT_RO Reorder
(system busy)

874/955 15/30 1400/1450 32/45 1740/1850 N/A

TID_SIT_NC_
INTERLATA

InterLATA No
Circuit Found

874/955 32/45 1310/1430 32/45 1740/1850 N/A

TID_SIT_RO_
INTERLATA

InterLATA
Reorder (system
busy)

950/1020 15/30 1310/1430 32/45 1740/1850 N/A

TID_SIT_IO Ineffective Other 874/955 32/45 1400/1450 15/30 1740/1850 N/A

TID_SIT_ANY Catch all tone
definition

Open Open Open Open 1725/1825 N/A

Dialogic® Voice API Programming Guide 45
Dialogic Corporation

Call Progress Analysis

7.7 Media Tone Detection on HMP Voice Devices

Media tone detection in call progress analysis on HMP voice devices is discussed in the following
topics:

• Positive Voice Detection (PVD)

• Positive Answering Machine Detection (PAMD)

7.7.1 Positive Voice Detection (PVD)

Positive voice detection (PVD) can detect when a call has been answered by determining whether
an audio signal is present that has the characteristics of a live or recorded human voice. This
provides a very precise method for identifying when a connect occurs.

The ca_intflg field in DX_CAP enables/disables PVD. For information on enabling PVD, see
Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

PVD is especially useful in those situations where no other method of answer supervision is
available, and where the cadence is not clearly broken for cadence detection to identify a connect
(for example, when the nonsilence of the cadence is immediately followed by the nonsilence of
speech).

If the ATDX_CONNTYPE() function returns CON_PVD, the connect was due to positive voice
detection.

7.7.2 Positive Answering Machine Detection (PAMD)

Whenever PAMD is enabled, positive voice detection (PVD) is also enabled.

The ca_intflg field in DX_CAP enables/disables PAMD and PVD. For information on enabling
PAMD, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

When enabled, detection of an answering machine will result in the termination of call analysis
with the reason CR_CNCT (connected); the connection type returned by the
ATDX_CONNTYPE() function will be CON_PAMD.

The following DX_CAP fields govern positive answering machine detection on HMP voice
devices:

ca_pamd_spdval
PAMD Speed Value: To distinguish between a greeting by a live human and one by an
answering machine, use one of the following settings:

• PAMD_FULL – look at the greeting (long method). The long method looks at the full
greeting to determine whether it came from a human or a machine. Using PAMD_FULL
gives a very accurate determination; however, in situations where a fast decision is more
important than accuracy, PAMD_QUICK might be preferred.

• PAMD_QUICK – look at connect only (quick method). The quick method examines only
the events surrounding the connect time and makes a rapid judgment as to whether or not
an answering machine is involved.

46 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

• PAMD_ACCU – look at the greeting (long method) and use the most accuracy for
detecting an answering machine. This setting provides the most accurate evaluation. It
detects live voice as accurately as PAMD_FULL but is more accurate than PAMD_FULL
(although slightly slower) in detecting an answering machine. Use the setting
PAMD_ACCU when accuracy is more important than speed.

Default value: PAMD_ACCU

The recommended setting for the call analysis parameter structure (DX_CAP)
ca_pamd_spdval field is PAMD_ACCU.

ca_pamd_failtime
maximum time to wait for positive answering machine detection or positive voice detection
after a cadence break. Default Value: 400 (in 10 msec units).

7.8 Default Call Progress Analysis Tone Definitions on
HMP Voice Devices

Table 5 provides the range of values for default tone definitions on HMP voice devices. These
default tone definitions are used in call progress analysis. Amplitudes are given in dBm,
frequencies in Hz, and duration in 10 msec units. A dash in a table cell means not applicable.

Notes: 1. On HMP voice devices, voice API functions are provided to manipulate the tone definitions in
this table (see Section 7.9, “Modifying Default Call Progress Analysis Tone Definitions on HMP
Voice Devices”, on page 47). However, not all the functionality provided by these tones is
available through the Dialogic® Voice API. You may need to use the Dialogic® Global Call API
to access the functionality, for example, in the case of disconnect tone detection.

2. An On Time maximum value of 0 indicates that this is a continuous tone. For example,
TID_DIAL_LCL has an On Time range of 10 to 0. This means that the tone is on for 100 msecs.
The minimum requirement for detecting a tone is that it must be continuous for at least 100
msecs (10 in 10 msec units) after it is detected.

3. A single tone proxy for a dual tone (twin tone) can help improve the accuracy of dual tone
detection in some cases. For more information, see Section 7.9.4, “Rules for Using a Single Tone
Proxy for a Dual Tone”, on page 49.

Table 5. Default Call Progress Analysis Tone Definitions (HMP Software)

Tone ID
Freq1
(in Hz)

Freq2
(in Hz)

On Time
(in 10 msec)

Off Time
(in 10 msec)

Reps
Twin Tone
Freq (Hz)

TID_BUSY1 450 - 510 590 - 650 30 - 100 30 - 100 2 0

TID_BUSY2 450 - 510 590 - 650 10 - 40 10 - 40 2 0

TID_FAX2 2000 - 2300 - 10 - 0 - 1 -

TID_RNGBK1 350 - 550 350 - 550 75 - 300 0 - 800 1 350 - 550

TID_RNGBK2
(segment 0)

350 - 550 350 - 550 20 - 100 20 - 100 1 350 - 550

TID_RNGBK2
(segment 1)

350 - 550 350 - 550 20 - 100 100 - 600 1 350 - 550

Dialogic® Voice API Programming Guide 47
Dialogic Corporation

Call Progress Analysis

7.9 Modifying Default Call Progress Analysis Tone
Definitions on HMP Voice Devices

On HMP Software, call progress analysis tones are maintained in the software. More information
on tone definitions is provided in the following topics:

• API Functions for Manipulating Tone Definitions

• TONE_DATA Data Structure

• Rules for Modifying a Tone Definition

• Rules for Using a Single Tone Proxy for a Dual Tone

• Steps to Modify a Tone Definition

7.9.1 API Functions for Manipulating Tone Definitions

The following Dialogic® Voice API functions are used to manipulate the default tone definitions
shown in Table 5, “Default Call Progress Analysis Tone Definitions (HMP Software)”, on page 46
and some, but not all, of the default tone definitions shown in Table 4, “Special Information Tone
Sequences (HMP Voice Devices)”, on page 44.

Note: Default SIT definitions can be modified, except for the following SIT sequences: TID_SIT_ ANY,
TID_SIT_IO, TID_SIT_NC_INTERLATA, and TID_SIT_RO_INTERLATA.

dx_querytone()
gets tone information for a specific call progress tone

dx_deletetone()
deletes a specific call progress tone

dx_createtone()
creates a new tone definition for a specific call progress tone

TID_DIAL_INTL 300 - 380 400 - 480 100 - 0 - 1 300 - 480

TID_DIAL_LCL 300 - 380 400 - 480 10 - 0 - 1 0

TID_DISCONNECT 360 - 410 430 - 440 30 - 60 30 - 60 1 360 - 440

TID_FAX1 1050 - 1150 - 10 - 60 - 1 -

Table 5. Default Call Progress Analysis Tone Definitions (HMP Software) (Continued)

Tone ID
Freq1
(in Hz)

Freq2
(in Hz)

On Time
(in 10 msec)

Off Time
(in 10 msec)

Reps
Twin Tone
Freq (Hz)

TID_FAX2 2000 - 2300 - 10 - 0 - 1 -

TID_RNGBK1 350 - 550 350 - 550 75 - 300 0 - 800 1 350 - 550

TID_RNGBK2
(segment 0)

350 - 550 350 - 550 20 - 100 20 - 100 1 350 - 550

TID_RNGBK2
(segment 1)

350 - 550 350 - 550 20 - 100 100 - 600 1 350 - 550

48 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

7.9.2 TONE_DATA Data Structure

The TONE_DATA structure contains tone information for a specific call progress tone. This
structure contains a nested array of TONE_SEG substructures. A maximum of six TONE_SEG
substructures can be specified. The TONE_DATA structure specifies the following key
information:

TONE_SEG.structver
Specifies the version of the TONE_SEG structure. Used to ensure that an application is binary
compatible with future changes to this data structure.

TONE_SEG.tn_dflag
Specifies whether the tone is dual tone or single tone. Values are 1 for dual tone and 0 for
single tone.

TONE_SEG.tn1_min
Specifies the minimum frequency in Hz for tone 1.

TONE_SEG.tn1_max
Specifies the maximum frequency in Hz for tone 1.

TONE_SEG.tn2_min
Specifies the minimum frequency in Hz for tone 2.

TONE_SEG.tn2_max
Specifies the maximum frequency in Hz for tone 2.

TONE_SEG.tn_twinmin
Specifies the minimum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tn_twinmax
Specifies the maximum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tnon_min
Specifies the debounce minimum ON time in 10 msec units.

TONE_SEG.tnon_max
Specifies the debounce maximum ON time in 10 msec units.

TONE_SEG.tnoff_min
Specifies the debounce minimum OFF time in 10 msec units.

TONE_SEG.tnoff_max
Specifies the debounce maximum OFF time in 10 msec units.

TONE_DATA.structver
Specifies the version of the TONE_DATA structure. Used to ensure that an application is
binary compatible with future changes to this data structure.

TONE_DATA.tn_rep_cnt
Specifies the debounce rep count.

TONE_DATA.numofseg
Specifies the number of segments for a multi-segment tone.

Dialogic® Voice API Programming Guide 49
Dialogic Corporation

Call Progress Analysis

7.9.3 Rules for Modifying a Tone Definition

Consider the following rules and guidelines for modifying default tone definitions on HMP voice
devices, using the Dialogic® Voice API library:

• You must issue dx_querytone(), dx_deletetone(), and dx_createtone() in this order, one
tone at a time, for each tone definition to be modified.

• Attempting to create a new tone definition before deleting the current call progress tone will
result in an EDX_TNQUERYDELETE error.

• When dx_querytone(), dx_deletetone(), or dx_createtone() is issued in asynchronous
mode and is immediately followed by another similar call prior to completion of the previous
call on the same device, the subsequent call will fail with device busy.

• Only default call progress analysis tones and SIT sequences are supported for these three
functions. For a list of these tones, see Table 4, “Special Information Tone Sequences (HMP
Voice Devices)”, on page 44 and Table 5, “Default Call Progress Analysis Tone Definitions
(HMP Software)”, on page 46.

• These three Dialogic® Voice API functions are provided to manipulate the call progress
analysis tone definitions. However, not all the functionality provided by these tones is
available through the Dialogic® Voice API. You may need to use the Dialogic® Global Call
API to access the functionality, for example, in the case of disconnect tone detection.

• If the application deletes all the default call progress analysis tones in a particular set (where a
set is defined as busy tones, dial tones, ringback tones, fax tones, disconnect tone, and special
information tones), the set itself is deleted from the board and call progress analysis cannot be
performed successfully. Therefore, you must have at least one tone defined in each tone set in
order for call progress analysis to perform successfully.

7.9.4 Rules for Using a Single Tone Proxy for a Dual Tone

A single tone proxy (also called a twin tone) acts as a proxy for a dual tone. A single tone proxy
can be defined when you run into difficulty detecting a dual tone. This situation can arise when the
two frequencies of the dual tone are close together, are very short tones, or are even multiples of
each other. In these cases, the dual tone might be detected as a single tone. A single tone proxy can
help improve the detection of the dual tone by providing an additional tone definition.

The TONE_SEG.tn_twinmin field defines the minimum frequency of the tone and
TONE_SEG.tn_twinmax field defines the maximum frequency of the tone.

Consider the following guidelines when creating a single tone proxy on HMP voice devices:

• It is recommended that you add at least 60 Hz to the top of the dual tone range and subtract at
least 60 Hz from the bottom of the dual tone range. For example:

Freq1 (Hz): 400 - 500

Freq 2 (Hz): 600 - 700

Twin tone freq (Hz): 340 - 760

• Before using the TONE_DATA structure in a function call, set any unused fields in the
structure to zero to prevent possible corruption of data in the allocated memory space. This
guideline is applicable to unused fields in any data structure.

50 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

7.9.5 Steps to Modify a Tone Definition

To modify a default tone definition on HMP voice devices using the voice API library, follow these
steps:

Note: This procedure assumes that you have already opened the board device handle in your application.
To get the board name in the form brdBn, use the SRLGetPhysicalBoardName() function. This
function and other device mapper functions return information about the structure of the system.
For more information, see the Dialogic® Standard Runtime Library API Library Reference.

1. Get the tone information for the call progress tone to be modified using dx_querytone().
After the function completes successfully, the relevant tone information is contained in the
TONE_DATA structure.

2. Delete the current call progress tone using dx_deletetone() before creating a new tone
definition.

3. Create a new tone definition for the call progress tone using dx_createtone(). Specify the new
tone information in the TONE_DATA structure.

4. Repeat steps 1-3 in this order for each tone to be modified.

7.10 Using Call Progress Analysis on Springware Boards

The following topics provide information on how to use call progress analysis when making an
outbound call on Springware boards:

• Initiating Call Progress Analysis

• Setting Up Call Progress Analysis Parameters

• Enabling Call Progress Analysis

• Executing a Dial Function

• Determining the Outcome of a Call

• Obtaining Additional Call Outcome Information

7.10.1 Initiating Call Progress Analysis

Perform the following procedure to initiate an outbound call with call progress analysis on
Springware boards:

1. Set up the call analysis parameter structure (DX_CAP), which contains parameters to control
the operation of call progress analysis, such as frequency detection, cadence detection, loop
current, positive voice detection, and positive answering machine detection.

2. On Springware boards, enable call progress analysis on a specified channel using
dx_initcallp(). Modify tone definitions as appropriate.

3. Call dx_dial() to start an outbound call.

4. Use the ATDX_CPTERM() extended attribute function to determine the outcome of the call.

5. Obtain additional termination, frequency, or cadence information (such as the length of the
salutation) as desired using extended attribute functions.

Dialogic® Voice API Programming Guide 51
Dialogic Corporation

Call Progress Analysis

Each of these steps is described in more detail next. For a full description of the functions and data
structures described in this chapter, see the Dialogic® Voice API Library Reference.

7.10.2 Setting Up Call Progress Analysis Parameters

The call progress analysis parameters structure, DX_CAP, is used by dx_dial(). It contains
parameters to control the operation of call progress analysis features, such as frequency detection,
positive voice detection (PVD), and positive answering machine detection (PAMD).

To customize the parameters for your environment, you must set up the call progress analysis
parameter structure before calling a dial function.

To set up the DX_CAP structure for call progress analysis on Springware boards:

1. Execute the dx_clrcap() function to clear the DX_CAP and initialize the parameters to 0. The
value 0 indicates that the default value will be used for that particular parameter. dx_dial() can
also be set to run with default call progress analysis parameter values, by specifying a NULL
pointer to the DX_CAP structure.

2. Set a DX_CAP parameter to another value if you do not want to use the default value. The
ca_intflg field (intercept mode flag) of DX_CAP enables and disables the following call
progress analysis components: SIT frequency detection, positive voice detection (PVD), and
positive answering machine detection (PAMD). Use one of the following values for the
ca_intflg field:

• DX_OPTDIS. Disables Special Information Tone (SIT) frequency detection, PAMD, and
PVD.

• DX_OPTNOCON. Enables SIT frequency detection and returns an “intercept”
immediately after detecting a valid frequency.

• DX_PVDENABLE. Enables PVD and fax tone detection.

• DX_PVDOPTNOCON. Enables PVD, DX_OPTNOCON, and fax tone detection.

• DX_PAMDENABLE. Enables PAMD, PVD, and fax tone detection.

• DX_PAMDOPTEN. Enables PAMD, PVD, DX_OPTNOCON, and fax tone detection.

Note: DX_OPTEN and DX_PVDOPTEN are obsolete. Use DX_OPTNOCON and
DX_PVDOPTNOCON instead.

7.10.3 Enabling Call Progress Analysis

On Springware boards, call progress analysis is activated on a per-channel basis and is initiated
using dx_initcallp().

Perform the following steps to enable call progress analysis. This procedure needs to be followed
only once per channel; thereafter, any outgoing calls made using a dial function will benefit from
call progress analysis.

1. Make any desired modifications to the default dial tone, busy tone, fax tone, and ringback
signal definitions using the dx_chgfreq(), dx_chgdur(), and dx_chgrepcnt() functions.

52 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

2. Call dx_deltones() to clear all tone templates remaining on the channel. Note that this
function deletes all global tone definition (GTD) tones for the given channel, and not just those
involved with call progress analysis.

3. Execute the dx_initcallp() function to activate call progress analysis. Call progress analysis
stays active until dx_deltones() is called.

The dx_initcallp() function initializes call progress analysis on the specified channel using the
current tone definitions. Once the channel is initialized with these tone definitions, this
initialization cannot be altered. The only way to change the tone definitions in effect for a given
channel is to issue a dx_deltones() call for that channel, then invoke another dx_initcallp() with
different tone definitions.

7.10.4 Executing a Dial Function

To use call progress analysis, call dx_dial() with the mode function argument set to DX_CALLP.
Termination of dialing with call progress analysis is indicated differently depending on whether the
function is running asynchronously or synchronously.

If running asynchronously, use the Dialogic® Standard Runtime Library (SRL) Event Management
functions to determine when dialing with call progress analysis is complete (TDX_CALLP
termination event).

If running synchronously, wait for the function to return a value greater than 0 to indicate
successful completion.

7.10.5 Determining the Outcome of a Call

In asynchronous mode, once dx_dial() with call progress analysis has terminated, use the
extended attribute function ATDX_CPTERM() to determine the outcome of the call. (In
synchronous mode, dx_dial() returns the outcome of the call.) ATDX_CPTERM() will return
one of the following call progress analysis termination results:

CR_BUSY
Called line was busy.

CR_CEPT
Called line received operator intercept (SIT). Extended attribute functions provide information
on detected frequencies and duration.

CR_CNCT
Called line was connected. Use ATDX_CONNTYPE() to return the connection type for a
completed call.

CR_ERROR
Call progress analysis error occurred. Use ATDX_CPERROR() to return the type of error.

CR_FAXTONE
Called line was answered by fax machine or modem.

CR_NOANS
Called line did not answer.

Dialogic® Voice API Programming Guide 53
Dialogic Corporation

Call Progress Analysis

CR_NODIALTONE
Timeout occurred while waiting for dial tone.

CR_NORB
No ringback on called line.

CR_STOPD
Call progress analysis stopped due to dx_stopch().

Figure 4 illustrates the possible outcomes of call progress analysis on Dialogic® Springware
boards.

Figure 4. Call Outcomes for Call Progress Analysis (Springware)

7.10.6 Obtaining Additional Call Outcome Information

To obtain additional call progress analysis information, use the following extended attribute
functions:

ATDX_ANSRSIZ()
Returns duration of answer.

ATDX_CPERROR()
Returns call analysis error.

ATDX_CPTERM()
Returns last call analysis termination.

ATDX_CONNTYPE()
Returns connection type

Frequency
Detection

Cadence
Detection

Loop
Current

Detection

Positive
Voice or

Answering
Machine
Detection

Incoming
Signal

Connect
Reason

Termination Reason: From ATDX_CPTERM().
Connect Reason: From ATDX_CONNTYPE().

CR_CAD
CON_LPC
CON_PVD

CON_PAMD

Termination
Reason

Connect

CR_CNCT

No
Ringback

CR_NORB

Busy

CR_BUSY

Faxtone

CR_FAXTONE

Intercept
(SIT)

CR_CEPT

No
Dialtone
CR_NO-

DIALTONE

No
Answer

CR_NOANS

54 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

ATDX_CRTNID()
Returns the identifier of the tone that caused the most recent call progress analysis termination.

ATDX_DTNFAIL()
Returns the dial tone character that indicates which dial tone call progress analysis failed to
detect.

ATDX_FRQDUR()
Returns duration of first frequency detected.

ATDX_FRQDUR2()
Returns duration of second frequency detected.

ATDX_FRQDUR3()
Returns duration of third frequency detected.

ATDX_FRQHZ()
Returns frequency detected in Hz of first detected tone.

ATDX_FRQHZ2()
Returns frequency of second detected tone.

ATDX_FRQHZ3()
Returns frequency of third detected tone.

ATDX_LONGLOW()
Returns duration of longer silence.

ATDX_FRQOUT()
Returns percent of frequency out of bounds.

ATDX_SHORTLO()
Returns duration of shorter silence.

ATDX_SIZEHI()
Returns duration of non-silence.

7.11 Call Progress Analysis Tone Detection on
Springware Boards

Tone detection in Perfect Call call progress analysis differs from the one in basic call progress
analysis. The following topics discuss tone detection in Perfect Call call progress analysis on
Dialogic® Springware boards:

• Tone Detection Overview

• Types of Tones

• Dial Tone Detection

• Ringback Detection

• Busy Tone Detection

• Fax or Modem Tone Detection

• Loop Current Detection

Dialogic® Voice API Programming Guide 55
Dialogic Corporation

Call Progress Analysis

7.11.1 Tone Detection Overview

Perfect Call call progress analysis uses a combination of cadence detection and frequency detection
to identify certain signals during the course of an outgoing call. Cadence detection identifies
repeating patterns of sound and silence, and frequency detection determines the pitch of the signal.
Together, the cadence and frequency of a signal make up its “tone definition”.

Unlike basic call progress analysis, which uses fields in the DX_CAP structure to store signal
cadence information, Perfect Call call progress analysis uses tone definitions which are contained
in the voice driver itself. Functions are available to modify these default tone definitions.

7.11.2 Types of Tones

Tone definitions are used to identify several kinds of signals.

The following defined tones and tone identifiers are provided by the voice library on Springware
boards. Tone identifiers are returned by the ATDX_CRTNID() function.

TID_BUSY1
Busy signal

TID_BUSY2
Alternate busy signal

TID_DIAL_INTL
International dial tone

TID_DIAL_LCL
Local dial tone

TID_DIAL_XTRA
Special (extra) dial tone

TID_FAX1
CNG (calling) fax tone or modem tone

TID_FAX2
CED (called station) fax tone or modem tone

TID_RNGBK1
Ringback

TID_RNGBK2
Ringback

The tone identifiers are used as input to function calls to change the tone definitions. For more
information, see Section 7.14, “Modifying Default Call Progress Analysis Tone Definitions on
Springware Boards”, on page 60.

56 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

7.11.3 Dial Tone Detection

Wherever call progress analysis is in effect, a dial string for an outgoing call may specify special
ASCII characters that instruct the system to wait for a certain kind of dial tone. The following
additional special characters may appear in a dial string:

L
wait for a local dial tone

I
wait for an international dial tone

X
wait for a special (“extra”) dial tone

The tone definitions for each of these dial tones is set for each channel at the time of the
dx_initcallp() function. In addition, the following DX_CAP fields identify how long to wait for a
dial tone, and how long the dial tone must remain stable.

ca_dtn_pres
Dial Tone Present: the length of time that the dial tone must be continuously present (in 10
msec units). If a dial tone is present for this amount of time, dialing of the dial string proceeds.
Default value: 100 (one second).

ca_dtn_npres
Dial Tone Not Present: the length of time to wait before declaring the dial tone not present (in
10 msec units). If a dial tone of sufficient length (ca_dtn_pres) is not found within this period
of time, call progress analysis terminates with the reason CR_NODIALTONE. The dial tone
character (L, I, or X) for the missing dial tone can be obtained using ATDX_DTNFAIL().
Default value: 300 (three seconds).

ca_dtn_deboff
Dial Tone Debounce: the maximum duration of a break in an otherwise continuous dial tone
before it is considered invalid (in 10 msec units). This parameter is used for ignoring short
drops in dial tone. If a drop longer than ca_dtn_deboff occurs, then dial tone is no longer
considered present, and another dial tone must begin and be continuous for ca_dtn_pres.
Default value: 10 (100 msec).

7.11.4 Ringback Detection

Call progress analysis uses the tone definition for ringback to identify the first ringback signal of an
outgoing call. At the end of the first ringback (that is, normally, at the beginning of the second
ringback), a timer goes into effect. The system continues to identify ringback signals (but does not
count them). If a break occurs in the ringback cadence, the call is assumed to have been answered,
and call progress analysis terminates with the reason CR_CNCT (connect); the connection type
returned by the ATDX_CONNTYPE() function will be CON_CAD (cadence break).

However, if the timer expires before a connect is detected, then the call is deemed unanswered, and
call progress analysis terminates with the reason CR_NOANS.

To enable ringback detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For
details, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.

Dialogic® Voice API Programming Guide 57
Dialogic Corporation

Call Progress Analysis

The following DX_CAP fields govern ringback behavior:

ca_stdely

Start Delay: the delay after dialing has been completed before starting cadence detection,
frequency detection, and positive voice detection (in 10 msec units). Default: 25 (0.25
seconds).

ca_cnosig
Continuous No Signal: the maximum length of silence (no signal) allowed immediately after
the ca_stdely period (in 10 msec units). If this duration is exceeded, call progress analysis is
terminated with the reason CR_NORB (no ringback detected). Default value: 4000 (40
seconds).

ca_noanswer
No Answer: the length of time to wait after the first ringback before deciding that the call is
not answered (in 10 msec units). If this duration is exceeded, call progress analysis is
terminated with the reason CR_NOANS (no answer). Default value: 3000 (30 seconds).

ca_maxintering

Maximum Inter-ring: the maximum length of time to wait between consecutive ringback
signals (in 10 msec units). If this duration is exceeded, call progress analysis is terminated with
the reason CR_CNCT (connected). Default value: 800 (8 seconds).

7.11.5 Busy Tone Detection

Call progress analysis specifies two busy tones: TID_BUSY1 and TID_BUSY2. If either of them is
detected while frequency detection and cadence detection are active, then call progress is
terminated with the reason CR_BUSY. ATDX_CRTNID() identifies which busy tone was
detected.

To enable busy tone detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For
details, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.

7.11.6 Fax or Modem Tone Detection

Two tones are defined: TID_FAX1 and TID_FAX2. If either of these tones is detected while
frequency detection and cadence detection are active, then call progress is terminated with the
reason CR_FAXTONE. ATDX_CRTNID() identifies which fax or modem tone was detected.

To enable fax or modem tone detection, turn on SIT frequency detection in the DX_CAP ca_intflg
field. For details, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.

7.11.7 Loop Current Detection

Loop current detection, available through the dx_dial() function, is supported on Springware
boards only.

58 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

Some telephone systems return a momentary drop in loop current when a connection has been
established (answer supervision). Loop current detection returns a connect when a transient loop
current drop is detected.

In some environments, including most PBXs, answer supervision is not provided. In these
environments, Loop current detection will not function. Check with your Central Office or PBX
supplier to see if answer supervision based on loop current changes is available.

In some cases, the application may receive one or more transient loop current drops before an
actual connection occurs. This is particularly true when dialing long-distance numbers, when the
call may be routed through several different switches. Any one of these switches may be capable of
generating a momentary drop in loop current.

To disable loop current detection, set DX_CAP ca_lcdly to -1.

Note: For applications that use loop current reversal to signal a disconnect, it is recommended that
DXBD_MINLCOFF be set to 2 to prevent Loop Current On and Loop Current Off from being
reported instead of Loop Current Reversal.

7.11.7.1 Loop Current Detection Parameters Affecting a Connect

To prevent detecting a connect prematurely or falsely due to a spurious loop current drop, you can
delay the start of loop current detection by using the parameter ca_lcdly.

Loop current detection returns a connect after detecting a loop current drop. To allow the person
who answered the phone to say “hello” before the application proceeds, you can delay the return of
the connect by using the parameter ca_lcdly1.

ca_lcdly
Loop Current Delay: the delay after dialing has been completed and before beginning Loop
Current Detection. To disable loop current detection, set to -1. Default: 400 (10 msec units).

ca_lcdly1
Loop Current Delay 1: the delay after loop current detection detects a transient drop in loop
current and before call progress analysis returns a connect to the application. Default: 10 (10
msec units).

If the ATDX_CONNTYPE() function returns CON_LPC, the connect was due to loop current
detection.

Note: When a connect is detected through positive voice detection or loop current detection, the
DX_CAP parameters ca_hedge, ca_ansrdgl, and ca_maxansr are ignored.

7.12 Media Tone Detection on Springware Boards

Media tone detection in call progress analysis on Springware boards is discussed in the following
topics:

• Positive Voice Detection (PVD)

• Positive Answering Machine Detection (PAMD)

Dialogic® Voice API Programming Guide 59
Dialogic Corporation

Call Progress Analysis

7.12.1 Positive Voice Detection (PVD)

Positive voice detection (PVD) can detect when a call has been answered by determining whether
an audio signal is present that has the characteristics of a live or recorded human voice. This
provides a very precise method for identifying when a connect occurs.

The ca_intflg field in DX_CAP enables/disables PVD. For information on enabling PVD, see
Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.

PVD is especially useful in those situations where answer supervision is not available for loop
current detection to identify a connect, and where the cadence is not clearly broken for cadence
detection to identify a connect (for example, when the nonsilence of the cadence is immediately
followed by the nonsilence of speech).

If the ATDX_CONNTYPE() function returns CON_PVD, the connect was due to positive voice
detection.

7.12.2 Positive Answering Machine Detection (PAMD)

Whenever PAMD is enabled, positive voice detection (PVD) is also enabled.

The ca_intflg field in DX_CAP enables/disables PAMD and PVD. For information on enabling
PAMD, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.

When enabled, detection of an answering machine will result in the termination of call analysis
with the reason CR_CNCT (connected); the connection type returned by the
ATDX_CONNTYPE() function will be CON_PAMD.

The following DX_CAP fields govern positive answering machine detection on Springware
boards:

ca_pamd_spdval
PAMD Speed Value: To distinguish between a greeting by a live human and one by an
answering machine, use one of the following settings:

• PAMD_FULL – look at the greeting (long method). The long method looks at the full
greeting to determine whether it came from a human or a machine. Using PAMD_FULL
gives a very accurate determination; however, in situations where a fast decision is more
important than accuracy, PAMD_QUICK might be preferred.

• PAMD_QUICK – look at connect only (quick method). The quick method examines only
the events surrounding the connect time and makes a rapid judgment as to whether or not
an answering machine is involved.

• PAMD_ACCU – look at the greeting (long method) and use the most accuracy for
detecting an answering machine. This setting provides the most accurate evaluation. It
detects live voice as accurately as PAMD_FULL but is more accurate than PAMD_FULL
(although slightly slower) in detecting an answering machine. Use the setting
PAMD_ACCU when accuracy is more important than speed.

Default value: PAMD_FULL

The recommended setting for the call analysis parameter structure (DX_CAP)
ca_pamd_spdval field is PAMD_ACCU.

60 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

ca_pamd_qtemp
PAMD Qualification Template: the algorithm to use in PAMD. At present there is only one
template: PAMD_QUAL1TMP. This parameter must be set to this value.

ca_pamd_failtime
maximum time to wait for positive answering machine detection or positive voice detection
after a cadence break. Default Value: 400 (in 10 msec units).

ca_pamd_minring
minimum allowable ring duration for positive answering machine detection. Default Value:
190 (in 10 msec units).

7.13 Default Call Progress Analysis Tone Definitions on
Springware Boards

Table 6 provides call progress analysis default tone definitions for Springware boards. Frequencies
are specified in Hz, durations in 10 msec units, and repetitions in integers. For information on
manipulating these tone definitions, see Section 7.14, “Modifying Default Call Progress Analysis
Tone Definitions on Springware Boards”, on page 60.

7.14 Modifying Default Call Progress Analysis Tone
Definitions on Springware Boards

On Dialogic® Springware boards, call progress analysis makes use of global tone detection (GTD)
tone definitions for three different types of dial tones, two busy tones, one ringback tone, and two
fax tones. The tone definitions specify the frequencies, durations, and repetition counts necessary
to identify each of these signals. Each signal may consist of a single tone or a dual tone.

Table 6. Default Call Progress Analysis Tone Definitions (Springware)

Tone ID
Freq1
(in Hz)

Freq2
(in Hz)

On Time
(in 10 msec)

Off Time
(in 10 msec)

Reps

TID_BUSY1 500 ± 200 55 ± 40 55 ± 40 4

TID_BUSY2 500 ± 200 500 ± 200 55 ± 40 55 ± 40 4

TID_DIAL_LCL 400 ± 125

TID_DIAL_INTL 402 ± 125

TID_DIAL_XTRA 401 ± 125

TID_DISCONNECT 500 ± 200 500 ± 200 55 ± 40 55 ± 40 4

TID_FAX1 1650 ± 100 20 ± 20

TID_FAX2 1100 ± 50 25 ± 25

TID_RNGBK1 450 ± 150 130 ± 105 580 ± 415

TID_RNGBK2 450 ± 150 450 ± 150 130 ± 105 580 ± 415

Dialogic® Voice API Programming Guide 61
Dialogic Corporation

Call Progress Analysis

The voice driver contains default definitions for each of these tones. The default definitions will
allow applications to identify the tones correctly in most countries and for most switching
equipment. However, if a situation arises in which the default tone definitions are not adequate,
three functions are provided to modify the standard tone definitions:

dx_chgfreq()
specifies frequencies and tolerances for one or both frequencies of a single- or dual-frequency
tone

dx_chgdur()
specifies the cadence (on time, off time, and acceptable deviations) for a tone

dx_chgrepcnt()
specifies the repetition count required to identify a tone

These functions can be used to modify the tone definitions shown in Table 6, “Default Call
Progress Analysis Tone Definitions (Springware)”, on page 60. These functions only change the
tone definitions; they do not alter the behavior of call progress analysis itself. When the
dx_initcallp() function is invoked to activate call progress analysis on a particular channel, it uses
the current tone definitions to initialize that channel. Multiple calls to dx_initcallp() may therefore
use varying tone definitions, and several channels can operate simultaneously with different tone
definitions.

For more information on tones and tone detection, see Section 7.11, “Call Progress Analysis Tone
Detection on Springware Boards”, on page 54.

Note: The Learn Mode API and Tone Set File (TSF) API provide a more comprehensive way to manage
call progress tones, in particular the unique call progress tones produced by PBXs, key systems,
and PSTNs. Applications can learn tone characteristics using the Learn Mode API. Information on
several different tones forms one tone set. Tone sets can be written to a tone set file using the Tone
Set File API. For more information, see the Learn Mode and Tone Set File API Software Reference
for Linux and Windows Operating Systems.

7.15 SIT Frequency Detection on Springware Boards

Special Information Tone (SIT) frequency detection is a component of call progress analysis on
Springware boards. The following topics provide more information on this component:

• Tri-Tone SIT Sequences

• Setting Tri-Tone SIT Frequency Detection Parameters

• Obtaining Tri-Tone SIT Frequency Information

• Global Tone Detection Tone Memory Usage

• Frequency Detection Errors

• Setting Single Tone Frequency Detection Parameters

• Obtaining Single Tone Frequency Information

62 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

7.15.1 Tri-Tone SIT Sequences

SIT frequency detection operates simultaneously with all other call progress analysis detection
methods. The purpose of frequency detection is to detect the tri-tone special information tone (SIT)
sequences and other single-frequency tones. Detection of a SIT sequence indicates an operator
intercept or other problem in completing the call.

SIT frequency detection can detect virtually any single-frequency tone below 2100 Hz and above
300 Hz.

Table 7 provides tone information for the four SIT sequences on Springware boards. The
frequencies are represented in Hz and the length of the signal is in 10 msec units. The length of the
first segment is not dependable; often it is shortened or cut.

7.15.2 Setting Tri-Tone SIT Frequency Detection Parameters

Frequency detection on Springware voice boards is designed to detect all three tones in a tri-tone
SIT sequence. To detect all three tones in a SIT sequence, you must specify the frequency detection
parameters in the DX_CAP for all three tones in the sequence.

To detect all four tri-tone SIT sequences:

1. Set an appropriate frequency detection range in the DX_CAP to detect each tone across all
four SIT sequences. Set the first frequency detection range to detect the first tone for all four
SIT sequences (approximately 900 to 1000 Hz). Set the second frequency detection range to
detect the second tone for all four SIT sequences (approximately 1350 to 1450 Hz). Set the
third frequency detection range to detect the third tone for all four SIT sequences
(approximately 1725 to 1825 Hz).

2. Set an appropriate detection time using the ca_timefrq and ca_mxtimefrq parameters to detect
each tone across all four SIT sequences. For each tone, set ca_timefrq to 5 and ca_mxtimefrq
to 50 to detect all SIT tones. The tones range in length from 27 to 38 (in 10 msec units), with
some tones occasionally cut short by the Central Office.

Note: Occasionally, the first tone can also be truncated by a delay in the onset of call
progress analysis due to the setting of ca_stdely.

3. After a SIT sequence is detected, ATDX_CPTERM() will return CR_CEPT to indicate an
operator intercept, and you can determine which SIT sequence was detected by obtaining the

Table 7. Special Information Tone Sequences (Springware)

SIT 1st Segment 2nd Segment 3rd Segment

Name Description Freq. Len. Freq. Len. Freq. Len.

NC No Circuit Found 985 38 1429 38 1777 38

IC Operator
Intercept

914 27 1371 27 1777 38

VC Vacant Circuit 985 38 1370 27 1777 38

RO Reorder
(system busy)

914 27 1429 38 1777 38

Dialogic® Voice API Programming Guide 63
Dialogic Corporation

Call Progress Analysis

actual detected frequency and duration for the tri-tone sequence using extended attribute
functions. These functions are described in detail in the Voice API Library Reference.

The following fields in the DX_CAP are used for frequency detection on voice boards. Frequencies
are specified in Hertz, and time is specified in 10 msec units. To enable detection of the second and
third tones, you must set the frequency detection range and time for each tone.

General

The following field in the DX_CAP is used for frequency detection on voice boards.

ca_stdely
Start Delay. The delay after dialing has been completed and before starting frequency
detection. This parameter also determines the start of cadence detection and positive voice
detection. Note that this can affect detection of the first element of an operator intercept tone.

Default: 25 (10 msec units).

First Tone

The following fields in the DX_CAP are used for frequency detection for the first tone.
Frequencies are specified in Hertz, and time is specified in 10 msec units.

ca_lowerfrq
Lower bound for first tone in Hz.

Default: 900.

ca_upperfrq
Upper bound for first tone in Hz. Adjust higher for additional operator intercept tones.

Default: 1000.

ca_timefrq
Minimum time for first tone to remain in bounds. The minimum amount of time required for
the audio signal to remain within the frequency detection range for it to be detected. The audio
signal must not be greater than ca_upperfrq or lower than ca_lowerfrq for at least the time
interval specified in ca_timefrq.

Default: 5 (10 msec units).

ca_mxtimefrq
Maximum allowable time for first tone to be present.

Default: 0 (10 msec units).

Second Tone

The following fields in the DX_CAP are used for frequency detection for the second tone.
Frequencies are specified in Hertz, and time is specified in 10 msec units. To enable detection of
the second and third tones, you must set the frequency detection range and time for each tone.

Note: This tone is disabled initially and must be activated by the application using these variables.

ca_lower2frq
Lower bound for second tone in Hz. Default: 0.

64 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

ca_upper2frq
Upper bound for second tone in Hz. Default: 0.

ca_time2frq
Minimum time for second tone to remain in bounds. Default: 0 (10 msec units).

ca_mxtime2frq
Maximum allowable time for second tone to be present. Default: 0 (10 msec units).

Third Tone

The following fields in the DX_CAP are used for frequency detection for the third tone.
Frequencies are specified in Hertz, and time is specified in 10 msec units. To enable detection of
the second and third tones, you must set the frequency detection range and time for each tone.

Note: This tone is disabled initially and must be activated by the application using these variables.

ca_lower3frq
Lower bound for third tone in Hz. Default: 0.

ca_upper3frq
Upper bound for third tone in Hz. Default: 0.

ca_time3frq
Minimum time for third tone to remain in bounds. Default: 0 (10 msec units).

ca_mxtime3frq
Maximum allowable time for third tone to be present. Default: 0 (10 msec units).

7.15.3 Obtaining Tri-Tone SIT Frequency Information

Upon detection of the specified sequence of frequencies, you can use extended attribute functions
to provide the exact frequency and duration of each tone in the sequence. The frequency and
duration information will allow exact determination of all four SIT sequences.

On Springware boards, the following extended attribute functions are used to provide information
on the frequencies detected by call progress analysis.

ATDX_FRQHZ()
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP
ca_lowerfrq and ca_upperfrq parameters; usually the first tone of an SIT sequence. This
function can be called on non-DSP boards.

ATDX_FRQDUR()
Duration of the tone detected in the tone detection range specified by the DX_CAP
ca_lowerfrq and ca_upperfrq parameters; usually the first tone of an SIT sequence (10 msec
units).

ATDX_FRQHZ2()
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP
ca_lower2frq and ca_upper2frq parameters; usually the second tone of an SIT sequence.

Dialogic® Voice API Programming Guide 65
Dialogic Corporation

Call Progress Analysis

ATDX_FRQDUR2()
Duration of the tone detected in the tone detection range specified by the DX_CAP
ca_lower2frq and ca_upper2frq parameters; usually the second tone of an SIT sequence (10
msec units).

ATDX_FRQHZ3()
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP
ca_lower3frq and ca_upper3frq parameters; usually the third tone of an SIT sequence.

ATDX_FRQDUR3()
Duration of the tone detected in the tone detection range specified by the DX_CAP
ca_lower3frq and ca_upper3frq parameters; usually the third tone of an SIT sequence (10
msec units).

7.15.4 Global Tone Detection Tone Memory Usage

On Dialogic® Springware boards, if you use call progress analysis to identify the tri-tone SIT
sequences, call progress analysis will create tone detection templates internally, and this will
reduce the number of tone templates that can be created using Global Tone Detection functions.

Call progress analysis will create one tone detection template for each single-frequency tone with a
100 Hz detection range. For example, if detecting the set of tri-tone SIT sequences (three
frequencies) on each of four channels, the number of allowable user-defined tones will be reduced
by three per channel.

If you initiate call progress analysis and there is not enough memory to create the SIT tone
detection templates internally, you will get a CR_MEMERR error. This indicates that you are
trying to exceed the maximum number of tone detection templates. The tone detection range
should be limited to a maximum of 100 Hz per tone to reduce the chance of exceeding the available
memory.

7.15.5 Frequency Detection Errors

On Dialogic® Springware boards, the frequency detection range specified by the lower and upper
bounds for each tone cannot overlap; otherwise, an error will be produced when the driver attempts
to create the internal tone detection templates. For example, if ca_upperfrq is 1000 and
ca_lower2frq is also 1000, an overlap occurs and will result in an error. Also, the lower bound of
each frequency detection range must be less than the upper bound (for example, ca_lower2frq must
be less than ca_upper2frq).

7.15.6 Setting Single Tone Frequency Detection Parameters

The following paragraphs describe how to set single tone frequency detection on Dialogic®
Springware boards.

Setting single tone frequency detection parameters allows you to identify that a SIT sequence was
encountered because one of the tri-tones in the SIT sequence was detected. But frequency detection
cannot determine exactly which SIT sequence was encountered, because it is necessary to identify
two tones in the SIT sequence to distinguish among the four possible SIT sequences.

66 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

The default frequency detection range is 900-1000 Hz, which is set to detect the first tone in any
SIT sequence. Because the first tone is often truncated, you may want to increase ca_upperfrq to
1800 Hz so that it includes the third tone. If this results in too many false detections, you can set
frequency detection to detect only the third tone by setting ca_lowerfrq to 1750 and ca_upperfrq to
1800.

The following fields in the DX_CAP are used for frequency detection. Frequencies are specified in
Hertz, and time is specified in 10 msec units.

ca_stdely
Start Delay: the delay after dialing has been completed and before starting frequency
detection. This parameter also determines the start of cadence detection. Default: 25 (10 msec
units).

ca_lowerfrq
lower bound for tone in Hz. Default: 900.

ca_upperfrq
upper bound for tone in Hz. Default: 1000.

ca_timefrq
time frequency. Minimum time for 1st tone in an SIT to remain in bounds. The minimum
amount of time required for the audio signal to remain within the frequency detection range
specified by ca_upperfrq and ca_lowerfrq for it to be considered valid. Default: 5 (10 msec
units)

7.15.7 Obtaining Single Tone Frequency Information

On Dialogic® Springware boards, upon detection of a frequency in the specified range, you can use
the ATDX_FRQHZ() extended attribute function to return the frequency in Hz of the tone
detected in the range specified by the DX_CAP ca_lowerfrq and ca_upperfrq parameters. The
frequency returned is usually the first tone of an SIT sequence.

7.16 Cadence Detection in Basic Call Progress Analysis
on Springware Boards

Cadence detection is a component of basic call progress analysis. The following topics discuss
cadence detection and some of the most commonly adjusted cadence detection parameters in basic
call progress analysis on Springware boards:

• Overview

• Typical Cadence Patterns

• Elements of a Cadence

• Outcomes of Cadence Detection

• Setting Selected Cadence Detection Parameters

• Obtaining Cadence Information

Dialogic® Voice API Programming Guide 67
Dialogic Corporation

Call Progress Analysis

7.16.1 Overview

Caution: Cadence detection in basic call progress analysis is supported on Springware boards and is
provided for backward compatibility purposes only. You should not develop new applications
based on basic call progress analysis. Instead you should use Perfect Call call progress analysis.
For information on cadence detection in Perfect Call call progress analysis, see Section 7.11, “Call
Progress Analysis Tone Detection on Springware Boards”, on page 54.

The cadence detection algorithm has been optimized for use in the United States standard network
environment.

If your system is operating in another type of environment (such as behind a PBX), you can
customize the cadence detection algorithm to suit your system through the adjustment of the
cadence detection parameters.

Cadence detection analyzes the audio signal on the line to detect a repeating pattern of sound and
silence, such as the pattern produced by a ringback or a busy signal. These patterns are called audio
cadences. Once a cadence has been established, it can be classified as a single ring, a double ring,
or a busy signal by comparing the periods of sound and silence to established parameters.

Note: Sound is referred to as nonsilence.

The algorithm used for cadence detection is disclosed and protected under U.S. patent 4,477,698 of
Melissa Electronic Labs, and other patents pending.

7.16.2 Typical Cadence Patterns

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is
provided for backward compatibility purposes only.

Figure 5, Figure 6, and Figure 7 show some typical cadence patterns for a standard busy signal, a
standard single ring, and a double ring.

Figure 5. A Standard Busy Signal

The timings are given in units of 10ms.

nonsilence

silence

50

50

50

50 50

50 50

68 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

Figure 6. A Standard Single Ring

Figure 7. A Type of Double Ring

7.16.3 Elements of a Cadence

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is
provided for backward compatibility purposes only.

From the preceding cadence examples, you can see that a given cadence may contain two silence
periods with different durations, such as for a double ring; but in general, the nonsilence periods
have the same duration. To identify and distinguish between the different types of cadences, the
voice driver must detect two silence and two nonsilence periods in the audio signal. Figure 8
illustrates cadence detection.

Figure 8. Cadence Detection

The timings are given in units of 10ms.

nonsilence

silence

200 200

400
≈

≈≈

The timings are given in units of 10ms.

nonsilence

silence

50

225
≈

50 50

25

nonsilence

silence

Dialing
Complete

Period Used to
Establish Cadence

Periods Compared to the
Established Cadence

Dialogic® Voice API Programming Guide 69
Dialogic Corporation

Call Progress Analysis

Once the cadence is established, the cadence values can be retrieved using the following extended
attribute functions:

ATDX_SIZEHI()
length of the nonsilence period (in 10 msec units) for the detected cadence

ATDX_SHORTLOW()
length of the shortest silence period for the detected cadence (in 10 msec units)

ATDX_LONGLOW()
length of the longest silence period for the detected cadence (in 10 msec units).

Only one nonsilence period is used to define the cadence because the nonsilence periods have the
same duration. Figure 9 shows the elements of an established cadence.

Figure 9. Elements of Established Cadence

The durations of subsequent states are compared with these fields to see if the cadence has been
broken.

7.16.4 Outcomes of Cadence Detection

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is
provided for backward compatibility purposes only.

Cadence detection can identify the following conditions during the period used to establish the
cadence or after the cadence has been established:

• No Ringback

• Connect

• Busy

• No Answer

Although loop current detection and positive voice detection provide complementary means of
detecting a connect, cadence detection provides the only way in basic call progress analysis to
detect a no ringback, busy, or no answer.

The timings are given in units of 10ms.

nonsilence

silence

ATDX_LONGLOW

≈

50 50

25

ATDX_SHORTLOWATDX_SIZEHIGH

225

70 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

Cadence detection can identify the following conditions during the period used to establish the
cadence:

No Ringback
While the cadence is being established, cadence detection determines whether the signal is
continuous silence or nonsilence. In this case, cadence detection returns a no ringback,
indicating there is a problem in completing the call.

Connect
While the cadence is being established, cadence detection determines whether the audio signal
departs from acceptable network standards for busy or ring signals. In this case, cadence
detection returns a connect, indicating that there was a “break” from general cadence
standards.

Cadence detection can identify the following conditions after the cadence has been established:

Connect
After the cadence has been established, cadence detection determines whether the audio signal
departs from the established cadence. In this case, cadence detection returns a connect,
indicating that there was a break in the established cadence.

No Answer
After the cadence has been established, cadence detection determines whether the cadence
belongs to a single or double ring. In this case, cadence detection can return a no answer,
indicating there was no break in the ring cadence for a specified number of times.

Busy
After the cadence has been established, cadence detection determines whether the cadence
belongs to a slow busy signal. In this case, cadence detection can return a busy, indicating that
the busy cadence was repeated for a specified number of times.

To determine whether the ring cadence is a double or single ring, compare the value returned by the
ATDX_SHORTLOW() function to the DX_CAP field ca_lo2rmin. If the
ATDX_SHORTLOW() value is less than ca_lo2rmin, the cadence is a double ring; otherwise, it
is a single ring.

7.16.5 Setting Selected Cadence Detection Parameters

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is
provided for backward compatibility purposes only.

Only the most commonly adjusted cadence detection parameters are discussed here. For a complete
listing and description of the DX_CAP data structure, see the Dialogic® Voice API Library
Reference.

You should only need to adjust cadence detection parameters for network environments that do not
conform to the U.S. standard network environment (such as behind a PBX).

Dialogic® Voice API Programming Guide 71
Dialogic Corporation

Call Progress Analysis

7.16.5.1 General Cadence Detection Parameters

The following are general cadence detection parameters in DX_CAP:

ca_stdely
Start Delay: the delay after dialing has been completed and before starting cadence detection.
This parameter also determines the start of frequency detection and positive voice detection.
Default: 25 (10 msec units) = 0.25 seconds.

Be careful with this variable. Setting this variable too small may allow switching transients or,
if too long, miss critical signaling.

ca_higltch
High Glitch: the maximum nonsilence period to ignore. Used to help eliminate spurious
nonsilence intervals. Default: 19 (in 10 msec units).

To eliminate audio signal glitches over the telephone line, the parameters ca_logltch and
ca_higltch are used to determine the minimum acceptable length of a valid silence or
nonsilence duration. Any silence interval shorter than ca_logltch is ignored, and any
nonsilence interval shorter than ca_higltch is ignored.

ca_logltch
Low Glitch: the maximum silence period to ignore. Used to help eliminate spurious silence
intervals. Default: 15 (in 10 msec units).

7.16.5.2 Cadence Detection Parameters Affecting a No Ringback

After cadence detection begins, it waits for an audio signal of nonsilence. The maximum waiting
time is determined by the parameter ca_cnosig (continuous no signal). If the length of this period of
silence exceeds the value of ca_cnosig, a no ringback is returned. Figure 10 illustrates this. This
usually indicates a dead or disconnected telephone line or some other system malfunction.

ca_cnosig
Continuous No Signal: the maximum time of silence (no signal) allowed immediately after
cadence detection begins. If exceeded, a no ringback is returned. Default: 4000 (in 10 msec
units), or 40 seconds.

Figure 10. No Ringback Due to Continuous No Signal

CA_STDELY
250

CA_CNOSIG
4000

No Ringback
Returned

The timings are given in units of 10ms.

nonsilence

silence

Dialing
Complete

≈

72 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

If the length of any period of nonsilence exceeds the value of ca_cnosil (continuous nonsilence), a
no ringback is returned, shown in Figure 11.

ca_cnosil
Continuous Nonsilence: the maximum length of nonsilence allowed. If exceeded, a no
ringback is returned. Default: 650 (in 10 msec units), or 6.5 seconds.

Figure 11. No Ringback Due to Continuous Nonsilence

7.16.5.3 Cadence Detection Parameters Affecting a No Answer or Busy

By using the ca_nbrdna parameter, you can set the maximum number of ring cadence repetitions
that will be detected before returning a no answer.

By using the ca_nbrdna and ca_nsbusy parameters, you can set the maximum number of busy
cadence repetitions.

ca_nbrdna
Number of Rings Before Detecting No Answer: the number of single or double rings to wait
before returning a no answer. Default: 4.

ca_nsbusy
Nonsilence Busy: the number of nonsilence periods in addition to ca_nbrdna to wait before
returning a busy. Default: 0. ca_nsbusy is added to ca_nbrdna to give the actual number of
busy cadences at which to return busy. Note that even though ca_nsbusy is declared as an
unsigned variable, it can be a small negative number.
Do not allow ca_nbrdna + ca_nsbusy to equal 2. This is a foible of the 2’s complement bit
mapping of a small negative number to an unsigned variable.

7.16.5.4 Cadence Detection Parameters Affecting a Connect

You can cause cadence detection to measure the length of the salutation when the phone is
answered. The salutation is the greeting when a person answers the phone, or an announcement
when an answering machine or computer answers the phone.

By examining the length of the greeting or salutation you receive when the phone is answered, you
may be able to distinguish between an answer at home, at a business, or by an answering machine.

The length of the salutation is returned by the ATDX_ANSRSIZ() function. By examining the
value returned, you can estimate the kind of answer that was received.

The timings are given in units of 10ms.

nonsilence

silence

CA_CNOSIL
650

No Ringback
Returned

Dialogic® Voice API Programming Guide 73
Dialogic Corporation

Call Progress Analysis

Normally, a person at home will answer the phone with a brief salutation that lasts about 1 second,
such as “Hello” or “Smith Residence.” A business will usually answer the phone with a longer
greeting that lasts from 1.5 to 3 seconds, such as “Good afternoon, Dialogic Corporation.” An
answering machine or computer will usually play an extended message that lasts more than 3 or 4
seconds.

This method is not 100% accurate, for the following reasons:

• The length of the salutation can vary greatly.

• A pause in the middle of the salutation can cause a premature connect event.

• If the phone is picked up in the middle of a ringback, the ringback tone may be considered part
of the salutation, making the ATDX_ANSRSIZ() return value inaccurate.

In the last case, if someone answers the phone in the middle of a ring and quickly says “Hello”, the
nonsilence of the ring will be indistinguishable from the nonsilence of voice that immediately
follows, and the resulting ATDX_ANSRSIZ() return value may include both the partial ring and
the voice. In this case, the return value may deviate from the actual salutation by 0 to +1.8 seconds.
The salutation would appear to be the same as when someone answers the phone after a full ring
and says two words.

Note: A return value of 180 to 480 may deviate from the actual length of the salutation by 0 to +1.8
seconds.

Cadence detection will measure the length of the salutation when the ca_hedge (hello edge)
parameter is set to 2 (the default).

ca_hedge
Hello Edge: the point at which a connect will be returned to the application, either the rising
edge (immediately when a connect is detected) or the falling edge (after the end of the
salutation).

1 = rising edge. 2 = falling edge. Default: 2 (connect returned on falling edge of salutation).
Try changing this if the called party has to say “Hello” twice to trigger the answer event.

Because a greeting might consist of several words, call progress analysis waits for a specified
period of silence before assuming the salutation is finished. The ca_ansrdgl (answer deglitcher)
parameter determines when the end of the salutation occurs. This parameter specifies the maximum
amount of silence allowed in a salutation before it is determined to be the end of the salutation. To
use ca_ansrdgl, set it to approximately 50 (in 10 msec units).

ca_ansrdgl
Answer Deglitcher: the maximum silence period (in 10 msec units) allowed between words in
a salutation. This parameter should be enabled only when you are interested in measuring the
length of the salutation. Default: -1 (disabled).

The ca_maxansr (maximum answer) parameter determines the maximum allowable answer size
before returning a connect.

ca_maxansr
Maximum Answer: the maximum allowable length of ansrsize. When ansrsize exceeds
ca_maxansr, a connect is returned to the application. Default: 1000 (in 10 msec units), or 10
seconds.

74 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

Figure 12 shows how the ca_ansrdgl parameter works.

Figure 12. Cadence Detection Salutation Processing

When ca_hedge = 2, cadence detection waits for the end of the salutation before returning a
connect. The end of the salutation occurs when the salutation contains a period of silence that
exceeds ca_ansrdgl or the total length of the salutation exceeds ca_maxansr. When the connect
event is returned, the length of the salutation can be retrieved using the ATDX_ANSRSIZ()
function.

After call progress analysis is complete, call ATDX_ANSRSIZ(). If the return value is less than
180 (1.8 seconds), you have probably contacted a residence. A return value of 180 to 300 is
probably a business. If the return value is larger than 480, you have probably contacted an
answering machine. A return value of 0 means that a connect was returned because excessive
silence was detected. This can vary greatly in practice.

Note: When a connect is detected through positive voice detection or loop current detection, the
DX_CAP parameters ca_hedge, ca_ansrdgl, and ca_maxansr are ignored.

7.16.6 Obtaining Cadence Information

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is
provided for backward compatibility purposes only.

To return cadence information, you can use the following extended attribute functions:

ATDX_SIZEHI()
duration of the cadence non-silence period (in 10 msec units)

ATDX_SHORTLOW()
duration of the cadence shorter silence period (in 10 msec units)

ATDX_LONGLOW()
duration of the cadence longer silence period (in 10 msec units)

ATDX_ANSRSIZ()
duration of answer if a connect occurred (in 10 msec units)

ATDX_CONNTYPE()
connection type. If ATDX_CONNTYPE() returns CON_CAD, the connect was due to
cadence detection.

CA_ANSRDGL

Connect Event
Returned Here

nonsilence

silence

Connection
Detected

Salutation

"Good Afternoon," "Intel Corporation"

CA_ANSRDGL

Dialogic® Voice API Programming Guide 75
Dialogic Corporation

88.Recording and Playback

This chapter discusses playback and recording features supported by the Dialogic® Voice API
library. The following topics are discussed:

• Overview of Recording and Playback . 75

• Digital Recording and Playback . 75

• Play and Record Functions . 76

• Play and Record Convenience Functions . 76

• Voice Encoding Methods. 76

• G.726 Voice Coder. 78

• Transaction Record . 79

• Silence Compressed Record . 79

• Recording with the Voice Activity Detector . 81

• Streaming to Board . 83

8.1 Overview of Recording and Playback

The primary voice processing operations provided by a Dialogic® voice board include:

• recording: digitizing and storing human voice

• playback: retrieving, converting, and playing the stored, digital information to reconstruct the
human voice.

The following features related to voice recording and playback operation are documented in other
chapters in this document:

• Controlling when a playback or recording terminates using I/O termination conditions is
documented in Section 6.1.2, “Setting Termination Conditions for I/O Functions”, on page 27.

• Controlling the speed and volume when messages are played back is documented in Chapter 9,
“Speed and Volume Control”.

8.2 Digital Recording and Playback

In digital speech recording, the voice board converts the human voice from a continuous sound
wave, or analog signal, into a digital representation. The Dialogic® voice board does this by
frequently sampling the amplitude of the sound wave at individual points in the speech signal.

76 Dialogic® Voice API Programming Guide
Dialogic Corporation

Recording and Playback

The accuracy, and thus the quality, of the digital recording is affected by:

• the sampling rate (number of samples per second), also called digitization rate

• the precision, or resolution, of each sample (the amount of data that is used to represent 1
sample).

If the samples are taken at a greater frequency, the digital representation will be more accurate and
the voice quality will be greater. Likewise, if more bits are used to represent the sample (higher
resolution), the sample will be more accurate and the voice quality will be greater.

In digital speech playback, the voice board reconstructs the speech signal by converting the
digitized voice back into analog voltages. If the voice data is played back at the same rate at which
it was recorded, an approximation of the original speech will result.

8.3 Play and Record Functions

The C language function library includes several functions for recording and playing audio data,
such as dx_rec(), dx_reciottdata(), dx_play(), and dx_playiottdata(). Recording takes audio
data from a specified channel and encodes it for storage in memory, in a file on disk, or on a custom
device. Playing decodes the stored audio data and plays it on the specified channel. The storage
location is one factor in determining which record and play functions should be used. The storage
location affects the access speed for retrieving and storing audio data.

One or more of the following data structures are used in conjunction with certain play and record
functions: DV_TPT to specify a termination condition for the function, DX_IOTT to identify a
source or destination for the data, and DX_XPB to specify the file format, data format, sampling
rate, and resolution.

8.4 Play and Record Convenience Functions

Several convenience functions are provided to make it easier to implement play and record
functionality in an application. Some examples are: dx_playf(), dx_playvox(), dx_playwav(),
dx_recf(), and dx_recvox(). These functions are specific cases of the dx_play() and dx_rec()
functions and run in synchronous mode.

For example, dx_playf() performs a playback from a single file by specifying the filename. The
same operation can be done using dx_play() and specifying a DX_IOTT structure with only one
entry for that file. Using dx_playf() is more convenient for a single file playback because you do
not have to set up a DX_IOTT structure for the one file and the application does not need to open
the file. dx_recf() provides the same single file convenience for the dx_rec() function.

8.5 Voice Encoding Methods

A digitized audio recording is characterized by several parameters as follows:

• the number of samples per second, or sampling rate

Dialogic® Voice API Programming Guide 77
Dialogic Corporation

Recording and Playback

• the number of bits used to store a sample, or resolution

• the rate at which data is recorded or played

There are many encoding and storage schemes available for digitized voice.

Note: Not all voice coders are supported in all scenarios, such as for silence compressed record or for
speed control. Whenever a restriction exists, it is noted.

The voice encoding methods or data formats supported on Dialogic® HMP Software are listed in
Table 8.

The voice encoding methods supported on Dialogic® Springware boards are listed in Table 9.

Table 8. Voice Encoding Methods (HMP Software)

Digitizing Method
Sampling Rate

(kHz)
Resolution (Bits) Bit Rate (Kbps) File Format

OKI ADPCM 6 4 24 VOX, WAVE

OKI ADPCM 8 4 32 VOX, WAVE

G.711 PCM
A-law and mu-law

6 8 48 VOX, WAVE

G.711 PCM
A-law and mu-law

8 8 64 VOX, WAVE

Linear PCM 8 8 64 VOX, WAVE

Linear PCM 8 16 128 VOX, WAVE

Linear PCM 11 8 88 VOX, WAVE

GSM 6.10 full rate
(Microsoft format)

8 (value ignored) 13 WAVE

G.726 bit exact 8 2 16 VOX, WAVE

G.726 bit exact 8 3 24 VOX, WAVE

G.726 bit exact 8 4 32 VOX, WAVE

G.726 bit exact 8 5 40 VOX, WAVE

G.729A 8 8 64 WAVE

Table 9. Voice Encoding Methods (Springware)

Digitizing Method
Sampling Rate

(kHz)
Resolution (Bits) Bit Rate (Kbps) File Format

OKI ADPCM 6 4 24 VOX, WAVE

OKI ADPCM 8 4 32 VOX, WAVE

G.711 PCM
A-law and mu-law

6 8 48 VOX, WAVE

G.711 PCM
A-law and mu-law

8 8 64 VOX, WAVE

Linear PCM 8 8 64 VOX, WAVE

78 Dialogic® Voice API Programming Guide
Dialogic Corporation

Recording and Playback

8.6 G.726 Voice Coder

G.726 is an ITU-T recommendation that specifies an adaptive differential pulse code modulation
(ADPCM) technique for recording and playing back audio files. It is useful for applications that
require speech compression, encoding for noise immunity, and uniformity in transmitting voice and
data signals.

The voice library provides support for a G.726 bit exact voice coder that is compliant with the
ITU-T G.726 recommendation.

Audio encoded in the G.726 bit exact format complies with Voice Profile for Internet Mail (VPIM),
a communications protocol that makes it possible to send and receive messages from disparate
messaging systems over the Internet. G.726 bit exact is the audio encoding and decoding standard
supported by VPIM.

VPIM follows the little endian ordering. The 4-bit code words of the G.726 encoding must be
packed into octets/bytes as follows:

• The first code word (A) is placed in the four least significant bits of the first octet, with the
least significant bit (LSB) of the code word (A0) in the least significant bit of the octet.

• The second code word (B) is placed in the four most significant bits of the first octet, with the
most significant bit (MSB) of the code word (B3) in the most significant bit of the octet.

• Subsequent pairs of the code words are packed in the same way into successive octets, with the
first code word of each pair placed in the least significant four bits of the octet. It is preferable
to extend the voice sample with silence such that the encoded value consists of an even number
of code words. However, if the voice sample consists of an odd number of code words, then the
last code word will be discarded.

The G.726 encoding for VPIM is illustrated here:

 +--+--+--+--+--+--+--+--+
 |B3|B2|B1|B0|A3|A2|A1|A0|
 +--+--+--+--+--+--+--+--+
MSB -> | 7| 6| 5| 4| 3| 2| 1| 0| <- LSB
 +--+--+--+--+--+--+--+--+
 32K ADPCM / Octet Mapping

For more information on G.726 and VPIM, see RFC 3802 on the Internet Engineering Task Force
(IETF) website at http://www.ietf.org.

Linear PCM 11 8 88 VOX, WAVE

GSM 6.10 full rate
(Microsoft format)

8 (value ignored) 13 WAVE

G.726 bit exact 8 4 32 VOX, WAVE

Table 9. Voice Encoding Methods (Springware)

Digitizing Method
Sampling Rate

(kHz)
Resolution (Bits) Bit Rate (Kbps) File Format

http://www.ietf.org

Dialogic® Voice API Programming Guide 79
Dialogic Corporation

Recording and Playback

To use the G.726 voice coder, specify the coder in the DX_XPB structure. Then use
dx_playiottdata() and dx_reciottdata() functions to play and record with this coder.
Alternatively, you can also use dx_playvox() and dx_recvox() convenience functions.

To determine the voice resource handles used with the play and record functions, use SRL device
mapper functions to return information about the structure of the system.

8.7 Transaction Record

Transaction record enables the recording of a two-party conversation by allowing two time-division
multiplexing (TDM) bus time slots from a single channel to be recorded. This feature is useful for
call center applications where it is necessary to archive a verbal transaction or record a live
conversation. A live conversation requires two time slots on the TDM bus, but Dialogic® voice
boards today can only record one time slot at a time. No loss of channel density is realized with this
feature. Voice activity on two channels can be summed and stored in a single file, or in a
combination of files, devices, and/or memory.

Use the following function for transaction record on Windows®:

dx_mreciottdata()
records voice data from two channels to a data file, memory, or custom device

On Dialogic® Springware boards on Linux, use the following functions for transaction record:

dx_recm()
records voice data from two channels to a data file, memory, or custom device

dx_recmf()
records voice data from two channels to a single file

8.8 Silence Compressed Record

The silence compressed record (SCR) feature is discussed in more detail in the following topics:

• Overview

• Enabling

• Encoding Methods Supported

8.8.1 Overview

The silence compressed record feature (SCR) enables recording with silent pauses eliminated. This
results in smaller recorded files with no loss of intelligibility.

On Dialogic® Springware boards, when the audio level is at or falls below the silence threshold for
a minimum duration of time, SCR begins. When a short burst of noise (glitch) is detected, the
compression does not end unless the glitch is longer than a specified period of time.

80 Dialogic® Voice API Programming Guide
Dialogic Corporation

Recording and Playback

On Dialogic® HMP Software, the SCR algorithm is based on energy detection and zero crossing.

The SCR algorithm operates on one msec blocks of speech and uses a two-fold approach to
determine whether a sample is speech or silence. Two probability of speech values are calculated
using a zero crossing algorithm and an energy detection algorithm. These values are put together to
calculate a combined probability of speech.

The energy detection algorithm allows you to modify the background noise threshold range.
Signals above the high threshold are declared speech, and signals below the low threshold are
declared silence.

Speech or silence is declared based on the previous sample, the current combined probability of
speech in relation to the speech probability threshold and silence probability threshold parameters,
and the trailing silence parameter.

8.8.2 Enabling

On Dialogic® HMP Software, use dx_setparm() and the DXCH_SCRFEATURE define to turn
silence compressed record (SCR) on and off. Once enabled, voice record functions automatically
record with SCR. For information on modifying SCR parameters, see the Configuration Guide.

On Dialogic® Springware boards, you enable SCR in the voice.prm file which is downloaded to the
board during initialization. You must edit this file and set appropriate values for the SCR
parameters for use in your working environment before initializing the board. You cannot enable
this feature through the voice API. After SCR is enabled in the voice.prm file, it is automatically
activated by the use of voice record functions such as dx_rec().

On Dialogic® Springware boards, the SCR parameters specify the silence threshold, the duration of
silence at the end of speech before silence compression begins, the duration of a glitch in the line
which does not stop silence compression, and more. Figure 13 illustrates how these parameters
work. See the Springware Architecture Products Configuration Guide for details of the parameters
and information on how to enable and configure this feature.

Dialogic® Voice API Programming Guide 81
Dialogic Corporation

Recording and Playback

Figure 13. Silence Compressed Record Parameters Illustrated

8.8.3 Encoding Methods Supported

On Dialogic® HMP Software, the following encoding algorithms and sampling rates are supported
in silence compressed record (SCR):

• OKI ADPCM, 6 kHz and 8 kHz

• linear PCM, 8 kHz and 11 kHz

• G.711 PCM, 6 kHz and 8 kHz

• G.726, 8 kHz

On Dialogic® Springware boards, the following encoding algorithms and sampling rates are
supported in SCR:

• OKI ADPCM, 6 kHz and 8 kHz

• linear PCM, 8 kHz and 11 kHz

• G.711 PCM, 6 kHz and 8 kHz

8.9 Recording with the Voice Activity Detector

Recording with the voice activity detector is discussed in the following topics:

• Overview

• Enabling

• Encoding Methods Supported

SCR_THRES
(dB)

Begin
Compression

Begin
Compression

Speech
Detected

Compression
Ends Silence Less

Than SCR_T
Compression
Not Enabled

Noise Spike
(Glitch)

Compression
Continues

SCR_T
(10 ms Unit)

SCR_PC
(Bytes)

SCR_T
(10 ms Unit)

SCR_DG
(10 ms Unit)

End of
Speech

SCR_PC
(bytes)

82 Dialogic® Voice API Programming Guide
Dialogic Corporation

Recording and Playback

8.9.1 Overview

The voice activity detector (VAD) is not supported on Dialogic® Springware boards.

The dx_reciottdata() function, used to record voice data, has two modes that work with the voice
activity detector. One mode enables voice activity detection with event notification upon detection.
The second mode adds initial silence compression on the line before voice energy is detected; if
initial silence is greater than the default allowable amount of silence, the amount in excess is
eliminated. This mode uses the same algorithm as the silence compressed record (SCR) feature
described in Section 8.8, “Silence Compressed Record”, on page 79.

The voice activity detector is a component in the voice software that examines the incoming signal
and determines if the signal contains significant energy and is likely to be voice.

8.9.2 Enabling

The modes related to the voice activity detector are specified in the mode parameter of the
dx_reciottdata() function. They are:

RM_VADNOTIFY
Generates an event, TDX_VAD, on detection of voice energy during the recording operation.

Note: TDX_VAD does not indicate function termination; it is an unsolicited event. Do not
confuse this event with the TEC_VAD event which is used in the continuous speech
processing (CSP) library.

RM_ISCR
Adds initial silence compression to the VAD capability. Initial silence here refers to the
amount of silence on the line before voice activity is detected. When using RM_ISCR, the
default value for the amount of initial silence allowable is 3 seconds. Any initial silence longer
than that will be eliminated to the default allowable amount. This default value can be changed
by modifying a parameter in the .config file for the board and then generating a new .fcd file.
The 0x416 parameter must be added in the [encoder] section of the .config file. For details on
using this parameter, see the Configuration Guide.

Note: The RM_ISCR mode can only be used in conjunction with RM_VADNOTIFY.

When these two modes are used together, no data is recorded as output until voice activity is
detected on the line. The TDX_VAD event indicates the initiation of voice. The output file will be
empty before voice activity is detected, although some initial silence may be included as specified
in the .fcd file.

To enable these modes, OR them to the mode parameter. For example:

t_Return=dx_reciottdata(DevHandle, Iott, Tpt, &t_Xpb, EV_ASYNC|RM_VADNOTIFY);

t_Return=dx_reciottdata(DevHandle, Iott, Tpt, &t_Xpb, EV_ASYNC|RM_VADNOTIFY|RM_ISCR);

Note: The dx_reciottdata() function does not perform echo-cancelled streaming. For automatic speech
recognition applications, use record or streaming functions in the Dialogic® Continuous Speech
Processing (CSP) API library. For more information, see the Dialogic® Continuous Speech
Processing API Programming Guide and Dialogic® Continuous Speech Processing API
Programming Guide.

Dialogic® Voice API Programming Guide 83
Dialogic Corporation

Recording and Playback

8.9.3 Encoding Methods Supported

The following encoding algorithms and sampling rates are supported for recording with the voice
activity detector:

• OKI ADPCM, 6 kHz and 8 kHz

• linear PCM, 8 kHz and 8 kHz

• G.711 PCM, 6 kHz and 8 kHz

• G.726, 8 kHz

8.10 Streaming to Board

The streaming to board feature is discussed in the following topics:

• Streaming to Board Overview

• Streaming to Board Functions

• Implementing Streaming to Board

• Streaming to Board Guidelines

8.10.1 Streaming to Board Overview

The streaming to board feature is not supported on Dialogic® Springware boards.

The streaming to board feature provides a way to stream data in real time to a network interface.
Unlike the standard voice play feature (store and forward method), data can be streamed with little
delay as the amount of initial data required to start the stream is configurable. The streaming to
board feature is essential for applications such as text-to-speech, distributed prompt servers, and IP
gateways.

The streaming to board feature uses a circular stream buffer to hold data, provides configurable
high and low water mark parameters, and generates events when those water marks are reached.

8.10.2 Streaming to Board Functions

The following functions are used by the streaming to board feature:

dx_OpenStreamBuffer()
creates and initializes a circular stream buffer

dx_SetWaterMark()
sets high and low water marks for the circular stream buffer

dx_PutStreamData()
places data into the circular stream buffer

dx_GetStreamInfo()
retrieves information about the circular stream buffer

84 Dialogic® Voice API Programming Guide
Dialogic Corporation

Recording and Playback

dx_ResetStreamBuffer()
resets internal data for a circular stream buffer

dx_CloseStreamBuffer()
deletes a circular stream buffer

8.10.3 Implementing Streaming to Board

Perform the following steps to implement streaming to board in your application:

Note: These steps do not represent every task that must be performed to create a working application but
are intended as general guidelines for implementing streaming to board.

1. Before calling the dx_OpenStreamBuffer() function, you must call dx_Open() on a board,
channel, or physical board. Otherwise, the DM3 library will not load, and
dx_OpenStreamBuffer() will fail.

2. Decide on the size of the circular stream buffer. This value is used as input to the
dx_OpenStreamBuffer() function. To determine the circular stream buffer size, see
Section 8.10.4, “Streaming to Board Guidelines”, on page 84.

3. Based on the circular stream buffer and the bulk queue buffer size, decide on values for the
high and low water marks for the circular stream buffer. To determine high and low water mark
values, see Section 8.10.4, “Streaming to Board Guidelines”, on page 84.

4. Initialize and create a circular stream buffer using dx_OpenStreamBuffer().

5. Set the high and low water marks using dx_SetWaterMark().

6. Start the play using dx_playiottdata() or dx_play() in asynchronous mode with the io_type
field in DX_IOTT data structure set to IO_STREAM.

7. Put data in the circular stream buffer using dx_PutStreamData().

8. Wait for events.

The TDX_LOWWATER event is generated every time data in the buffer falls below the low
water mark. The TDX_HIGHWATER event is generated every time data in the buffer is above
the high water mark. The application receives TDX_LOWWATER and TDX_HIGHWATER
events regardless of whether or not dx_SetWaterMark() is used in your application. These
events are generated when there is a play operation with this buffer and are reported on the
device that is performing the play. If there is no active play, the application will not receive any
of these events.

TDX_PLAY indicates that play has completed.

9. When all files are played, issue dx_CloseStreamBuffer().

8.10.4 Streaming to Board Guidelines

On Windows®

Consider the following usage guidelines when implementing streaming to board in your
application on a Windows® system:

• You can create as many circular stream buffers as needed on a channel. You can use more than
one circular stream buffer per play via the DX_IOTT structure. In this case, specify that the

Dialogic® Voice API Programming Guide 85
Dialogic Corporation

Recording and Playback

data ends in one buffer using the STREAM_EOD flag so that the play can process the next
DX_IOTT structure in the chain.

• In general, the larger you define the circular stream buffer size, the better. Factors to take into
consideration include the average input file size, the amount of memory on your system, the
total number of channels in your system, and so on. Having an optimal circular stream buffer
size results in the high and low water marks being reached less often. In a well-tuned system,
the high and low water marks should rarely be reached.

• When adjusting circular stream buffer sizes, be aware that you must also adjust the high and
low water marks accordingly.

• Recommendation for the high water mark: it should be based on the following:

size of the circular stream buffer minus two times the size of the bulk queue buffer

For example, if the circular stream buffer is 100 kbytes, and the bulk queue buffer size is
8 kbytes, set the high water mark to 84 kbytes. The bulk queue buffer size is set through the
dx_setchxfercnt() function.

• Recommendation for the low water mark:

– If the bulk queue buffer size is less than 8 kbytes, the low water mark should be four times
the size of the bulk queue buffer size.

– If the bulk queue buffer size is greater than 8 kbytes and less than 16 kbytes, the low water
mark should be three times the size of the bulk queue buffer size.

– If the bulk queue buffer size is greater than 16 kbytes, the low water mark should be two
times the size of the bulk queue buffer size.

• When a TDX_LOWWATER event is received, continue putting data in the circular stream
buffer. Remember to set STREAM_EOD flag to EOD on the last piece of data.

• When a TDX_HIGHWATER event is received, stop putting data in the circular stream buffer.
If using a text-to-speech (TTS) engine, you will have to stop the engine from sending more
data. If you cannot control the output of the TTS engine, you will need to control the input to
the engine.

• It is recommended that you enable the TDX_UNDERRUN event to notify the application of
firmware underrun conditions on the board. Specify DM_UNDERRUN in dx_setevtmsk().

On Linux

Consider the following usage guidelines when implementing streaming to board in your
application on a Linux system:

• You can create as many circular stream buffers as needed on a channel. You can use more than
one circular stream buffer per play via the DX_IOTT structure. In this case, specify that the
data ends in one buffer using the STREAM_EOD flag so that the play can process the next
DX_IOTT structure in the chain.

• The bulk queue buffer specifies the size of the buffer used to transfer voice data between the
application and the driver. This buffer is set to 16 kbytes and cannot be modified; the
dx_setchxfercnt() function, which is used to modify the bulk queue buffer size, is not
currently supported.

• In general, the larger you define the circular stream buffer size, the better. Factors to take into
consideration include the average input file size, the amount of memory on your system, the
total number of channels in your system, and so on. Having an optimal circular stream buffer

86 Dialogic® Voice API Programming Guide
Dialogic Corporation

Recording and Playback

size results in the high and low water marks being reached less often. In a well-tuned system,
the high and low water marks should rarely be reached.

• When adjusting circular stream buffer sizes, be aware that you must also adjust the high and
low water marks accordingly.

• Recommendation for the high water mark: it should be based on the following:

size of the circular stream buffer minus two times the size of the bulk queue buffer

For example, if the circular stream buffer is 500 kbytes, and the bulk queue buffer size is
16 kbytes, set the high water mark to 468 kbytes (500-32=468).

• Recommendation for the low water mark: it should be two times the size of the bulk queue
buffer size.

Based on the previous example, since the bulk queue buffer size is 16 kbytes, set the low water
mark to 32 kbytes.

• When a TDX_LOWWATER event is received, continue putting data in the circular stream
buffer. Remember to set STREAM_EOD flag to EOD on the last piece of data.

• When a TDX_HIGHWATER event is received, stop putting data in the circular stream buffer.
If using a text-to-speech (TTS) engine, you will have to stop the engine from sending more
data. If you cannot control the output of the TTS engine, you will need to control the input to
the engine.

• It is recommended that you enable the TDX_UNDERRUN event to notify the application of
firmware underrun conditions on the board. Specify DM_UNDERRUN in dx_setevtmsk().

Dialogic® Voice API Programming Guide 87
Dialogic Corporation

99.Speed and Volume Control

This chapter describes how to control the speed and volume of play on a channel. The following
topics are discussed:

• Speed and Volume Control Overview . 87

• Speed and Volume Convenience Functions. 88

• Speed and Volume Adjustment Functions. 88

• Speed and Volume Modification Tables . 88

• Play Adjustment Digits . 92

• Setting Play Adjustment Conditions . 92

• Explicitly Adjusting Speed and Volume . 92

9.1 Speed and Volume Control Overview

The voice software contains functions and data structures to control the speed and volume of play
on a channel. This allows an end user to control the speed or volume of a message by entering a
DTMF tone, for example.

Note: On Dialogic® HMP Software, before using the speed control feature, you must enable this feature
in the [decoder] section of the CONFIG file. The speed control feature is disabled by default to
preserve MIPS usage. For more information on enabling speed control, see the Configuration
Guide.

On Dialogic® HMP Software, speed can be controlled on playbacks using the following encoding
methods:

• OKI ADPCM 24 kbps and 32 kbps

• G.711 PCM A-law or mu-law encoding 48 kbps and 64 kbps

• linear PCM 128 kbps

On Dialogic® Springware boards, speed can be controlled on playbacks using 24 kbps or 32 kbps
OKI ADPCM only.

If an attempt is made to adjust speed on an unsupported board, the firmware will ignore the request
and play will continue at normal speed.

Volume can be controlled on all playbacks regardless of the encoding algorithm. For a list of
supported encoding methods, see Section 8.5, “Voice Encoding Methods”, on page 76.

88 Dialogic® Voice API Programming Guide
Dialogic Corporation

Speed and Volume Control

9.2 Speed and Volume Convenience Functions

The convenience functions set a digit that will adjust speed or volume, but do not use any data
structures. These convenience functions will only function properly if you use the default settings
of the speed or volume modification tables. These functions assume that the modification tables
have not been modified. The convenience functions are:

dx_addspddig()
adds a digit that will modify speed by a specified amount

dx_addvoldig()
adds a digit that will modify volume by a specified amount

9.3 Speed and Volume Adjustment Functions

Speed or volume can be adjusted explicitly or can be set to adjust in response to a preset condition,
such as a specific digit. For example, speed could be set to increase a certain amount when “1” is
pressed on the telephone keypad. The functions used for speed and volume adjustment are:

dx_setsvcond()
Sets conditions that adjust speed or volume. Use this function to adjust speed or volume in
response to a DTMF digit or start of play.

dx_adjsv()
Adjusts speed or volume explicitly. Use this function if your adjustment condition is not a digit
or start of play. For example, the application could call this function after detecting a spoken
word (voice recognition) or a certain key on the keyboard.

9.4 Speed and Volume Modification Tables

Each channel has a speed or volume modification table for play speed or play volume adjustments.
Except for the value of the settings, the table is the same for speed and volume.

Each speed or volume modification table (SVMT) table has 21 entries, 20 that allow for a
maximum of 10 increases and decreases in speed or volume. The entry in the middle of the table is
referred to as the “origin” entry that represents normal speed or volume. The normal speed or
volume is how playback occurs when the speed and volume control feature is not used. See
Table 10, “Default Speed Modification Table”, on page 90 and Table 11, “Default Volume
Modification Table”, on page 91.

The origin, or normal speed or volume, is the basis for all settings in the table. Typically, the origin
is set to 0. Speed and volume increases or decreases by moving up or down the tables. Other entries
in the table specify a speed or volume setting in terms of a deviation from normal. For example, if a
speed modification table (SMT) entry is -10, this value represents a 10% decrease from the normal
speed.

Dialogic® Voice API Programming Guide 89
Dialogic Corporation

Speed and Volume Control

Although the origin is typically set to normal speed/volume, changing the setting of the origin does
not affect the other settings, because all values in the SVMT are based on a deviation from normal
speed/volume.

Speed and volume control adjustments are specified by moving the current speed/volume pointer in
the table to another SVMT table entry; this translates to increasing or decreasing the current
speed/volume to the value specified in the table entry.

A speed/volume adjustment stays in effect until the next adjustment on that channel or until a
system reset.

The SVMT is like a 21-speed bicycle. You can select the gear ratio for each of the 21 speeds before
you go for a ride (by changing the values in the SVMT). And you can select any gear once you are
on the bike, like adjusting the current speed/volume to any setting in the SVMT.

To change the default values of the speed or volume modification table, use the dx_setsvmt()
function, which in turn uses the DX_SVMT data structure. To return the current values of a table to
the DX_SVMT structure, use dx_getsvmt(). The DX_SVCB data structure uses this table when
setting adjustment conditions.

Adjustments to speed or volume are made by dx_adjsv() and dx_setsvcond() according to the
speed or volume modification table settings. These functions adjust speed or volume to one of the
following:

• a specified level (that is, to a specified absolute position in the speed table or volume table)

• a change in level (that is, by a specified number of steps up or down in the speed table or
volume table)

For example, by default, each entry in the volume modification table is equivalent to 2 dB from the
origin. Volume could be decreased by 2 dB by specifying position 1 in the table, or by moving one
step down from the origin.

90 Dialogic® Voice API Programming Guide
Dialogic Corporation

Speed and Volume Control

The default speed modification table is shown in Table 10.

Consider the following usage information on the speed modification table:

• Each entry in the table is a percentage deviation from the default play speed (“origin”). For
example, the decrease[6] position reduces speed by 40%. This is four steps from the origin.

• The total speed modification range is from -50% to +50%. In this table, the lowest position
used is the decrease[5] position. The remaining decrease fields are set to -128 (80h). If these
“nonadjustment” positions are selected, the default action is to play at the decrease[5] speed.

• These fields can be reset, as long as no values lower than -50 are used. For example, you could
spread the 50% speed decrease over 10 steps rather than 5. Similarly, you could spread the
50% speed increase over 10 steps rather than 5.

• The default entries for index values -10 to -6 and +6 to +10 are -128 which represent a null-
entry. To customize the table entries, you must use the dx_setsvmt() function.

• On Dialogic® HMP Software, when adjustment is associated with a DTMF digit, speed can be
increased or decreased in increments of 1 (10%) only. To achieve an increase in speed of 30%
for example, the user would press the DTMF digit three times.

Table 10. Default Speed Modification Table

Table Entry Default Value (%) Absolute Position

decrease[0] -128 (80h) -10

decrease[1] -128 (80h) -9

decrease[2] -128 (80h) -8

decrease[3] -128 (80h) -7

decrease[4] -128 (80h) -6

decrease[5] -50 -5

decrease[6] -40 -4

decrease[7] -30 -3

decrease[8] -20 -2

decrease[9] -10 -1

origin 0 0

increase[0] +10 1

increase[1] +20 2

increase[2] +30 3

increase[3] +40 4

increase[4] +50 5

increase[5] -128 (80h) 6

increase[6] -128 (80h) 7

increase[7] -128 (80h) 8

increase[8] -128 (80h) 9

increase[9] -128 (80h) 10

Dialogic® Voice API Programming Guide 91
Dialogic Corporation

Speed and Volume Control

The default volume modification table is shown in Table 11.

Consider the following usage information on the volume modification table:

• Each entry in the table is a deviation in decibels from the starting point or volume (“origin”).
Each entry in the table is equivalent to 2 dB from the origin. Volume can be decreased 2 dB by
specifying position 1 in the table, or by moving one step down. For example, the increase[1]
position (two steps from the origin) increases volume by 4 dB.

• The total volume modification range is from -20 dB to +10 dB. In this table, the highest
position utilized is the increase[4] position. The remaining increase fields are set to -128 (80h).
If these “non-adjustment” positions are selected, the default action is to play at the increase[4]
volume. These fields can be reset, as long as no values higher than +10 are used; for example,
you could spread the 10 dB volume increase over 10 steps rather than 5.

• In the volume modification table, the default entries for index values +6 to +10 are -128 which
represent a null-entry. To customize the table entries, you must use the dx_setsvmt() function.

• On Dialogic® HMP Software, when adjustment is associated with a DTMF digit, volume can
be increased or decreased in increments of 1 (2 dB) only. To achieve an increase in volume of
6 dB for example, the user would press the DTMF digit three times.

Table 11. Default Volume Modification Table

Table Entry Default Value (dB) Absolute Position

decrease[0] -20 -10

decrease[1] -18 -9

decrease[2] -16 -8

decrease[3] -14 -7

decrease[4] -12 -6

decrease[5] -10 -5

decrease[6] -08 -4

decrease[7] -06 -3

decrease[8] -04 -2

decrease[9] -02 -1

origin 0 0

increase[0] +02 1

increase[1] +04 2

increase[2] +06 3

increase[3] +08 4

increase[4] +10 5

increase[5] -128 (80h) 6

increase[6] -128 (80h) 7

increase[7] -128 (80h) 8

increase[8] -128 (80h) 9

increase[9] -128 (80h) 10

92 Dialogic® Voice API Programming Guide
Dialogic Corporation

Speed and Volume Control

9.5 Play Adjustment Digits

The voice software processes play adjustment digits differently from normal digits:

• If a play adjustment digit is entered during playback, it causes a play adjustment only and has
no other effect. This means that the digit is not added to the digit queue; it cannot be retrieved
with the dx_getdig() function.

• On Dialogic® HMP Software, digits that are used for play adjustment may also be used as a
terminating condition. If a digit is defined as both, then both actions are applied upon detection
of that digit.

• On Dialogic® Springware boards, digits that are used for play adjustment will not be used as a
terminating condition. If a digit is defined as both, then the play adjustment will take priority.

• If the digit queue contains adjustment digits when a play begins and play adjustment is set to
be level sensitive, the digits will affect the speed or volume and then be removed from the
queue.

9.6 Setting Play Adjustment Conditions

Adjustment conditions are set in the same way for speed or volume. The following steps describe
how to set conditions upon which volume should be adjusted:

1. Set up the volume modification table (if you do not want to use the defaults):

• Set up the DX_SVMT structure to specify the size and number of the steps in the table.

• Call the dx_setsvmt() function, which points to the DX_SVMT structure, to modify the
volume modification table (dx_setsvmt() can also be used to reset the table to its default
values).

2. Set up the DX_SVCB structure to specify the condition, the size, and the type of adjustment.

3. Call dx_setsvcond(), which points to an array of DX_SVCB structures. All subsequent plays
will adjust volume as required whenever one of the conditions specified in the array occurs.

9.7 Explicitly Adjusting Speed and Volume

Speed and volume adjustments are made in the same way. The following steps describe how to
adjust speed, but you can use exactly the same procedure for volume:

1. Set up the speed modification table (if you do not want to use the defaults):

• Set up the DX_SVMT structure to specify the size and number of the steps in the table.

• Call the dx_setsvmt() function, which points to the DX_SVMT structure, to modify the
speed modification table (dx_setsvmt() can also be used to reset the table to its default
values).

2. When required, call dx_adjsv() to adjust the speed modification table by specifying the size
and type of the adjustment.

Dialogic® Voice API Programming Guide 93
Dialogic Corporation

1010.Send and Receive FSK Data

This chapter describes the Analog Display Services Interface (ADSI) protocol, two-way frequency
shift keying (FSK), and guidelines for implementing ADSI and two-way FSK support using voice
library functions.

• Overview of ADSI and Two-Way FSK Support . 93

• ADSI Protocol . 94

• ADSI Operation . 95

• One-Way ADSI . 95

• Two-Way ADSI . 96

• Fixed-Line Short Message Service (SMS) . 97

• ADSI and Two-Way FSK Voice Library Support . 97

• Developing ADSI Applications . 98

• Modifying Older One-Way ADSI Applications . 103

10.1 Overview of ADSI and Two-Way FSK Support

The features and functionality described in this chapter apply to Dialogic® Springware boards only.

The Analog Display Services Interface (ADSI) is a Telcordia Technologies (formerly Bellcore)
standard that defines a protocol used to transmit data to a display-based, ADSI-compliant
telephone. ADSI enables data to be sent across an analog telephone line, providing asynchronous
data communications with 8 data bits, 1 start and 1 stop bit, and no parity.

For many years, one-way ADSI support was provided through the dx_play() and dx_playf()
functions. This ADSI support enabled developers to use Dialogic® telecom boards to make ADSI
servers that work with ADSI phones and to support ADSI features such as visual voice mail. This
is referred to as the “older” implementation of one-way ADSI.

Dialogic has expanded the capabilities of basic ADSI with the introduction of two-way frequency
shift keying (FSK) capabilities. Two-way FSK is a convenient and robust mechanism to exchange
small amounts of data between the telephone and the server using FSK as the transport layer. The
two-way FSK functionality allows products to transmit and receive half-duplex FSK Bell 202 1200
bps data over the Public Switched Telephone Network (PSTN).

One of the applications of two-way FSK is fixed-line short message service, also called small
message service, or SMS. (This service is also known as text messaging.) This service allows the
server and display-based telephone to exchange short text messages via the PSTN.

As with basic ADSI, the transmission and reception of two-way FSK data is initiated after a call
between the server and the display-based telephone (or CPE) has been established, by one of the

94 Dialogic® Voice API Programming Guide
Dialogic Corporation

Send and Receive FSK Data

devices sending a special alerting signal (typically a CAS tone). The other device will then
acknowledge and the data transmission (and/or reception) will then be initiated. Once the data
transmission/reception is complete, the devices switch back to voice mode.

This newer implementation of ADSI is supported through the dx_RxIottData(),
dx_TxIottData(), and dx_TxRxIottData() functions. This implementation is referred to simply
as “ADSI Support” or “Two-Way ADSI.” This newer ADSI support provides for both one-way and
two-way ADSI transmission and is the recommended method for implementing either one-way or
two-way ADSI in an application program. The older one-way ADSI support can be used but is not
recommended. Future enhancements to ADSI feature and functionality will not be made to the
dx_play() and dx_playf() functions. See Section 10.9, “Modifying Older One-Way ADSI
Applications”, on page 103 for information on converting from the older to the newer method for
using ADSI.

10.2 ADSI Protocol

ADSI is a superset of the caller ID and call waiting functions. ADSI is built on the same protocol as
caller ID and shares the same ADSI Data Message Format (ADMF). The ADSI protocol requires a
Bell 202/V.23 1200 bps FSK-based modem for data transmission.

The ADSI protocol supports a variable display size on a display-based telephone. An ADSI
telephone can work in either voice mode or data mode. Voice mode is for normal telephone audio
communication, and data mode is for transmitting ADSI commands and controlling the telephone
display (voice is muted in data mode). An ADSI alert tone is used to verify that the hardware is
connected to an ADSI telephone and to alert the telephone that ADSI data will be transferred.

The ADSI protocol consists of three defined layers, as follows:

message assembly layer
assembles the body of the ADMF message

data link layer
generates the checksum, which is used for error detection, and sends it to the driver

physical layer
transports the composite message via the modem to the CPE on a transparent (bit-for-bit) basis

Dialogic provides only the physical layer and a portion of the data link layer of the ADSI protocol.
The user is responsible for creating the ADSI messages and the corresponding checksums.

The ADSI data must conform to interface requirements described in Telcordia Technologies
Generic Requirements GR-30-CORE, Voiceband Data Transmission Interface Generic
Requirements. For information about message requirements (how the data should be displayed on
the CPE), see Generic Requirements GR-1273, Generic Requirements for and SPCS to Customer
Premises Equipment Data Interface for Analog Display Services. To obtain a copy of these
technical references, visit http://www.telcordia.com.

Dialogic® Voice API Programming Guide 95
Dialogic Corporation

Send and Receive FSK Data

10.3 ADSI Operation

ADSI data is encoded using a standard 1200 baud modem specification and transmitted to the
telephone on the voice channel. The voice is muted for the data transfer to occur. Responses from
the ADSI telephone are mapped into DTMF sequences.

ADSI data is sent to the ADSI telephone in a message burst corresponding to a single transmission.
Each message burst or transmission can contain up to 5 messages, with each message consisting of
one or more ADSI commands.

The ADSI alert tone causes the ADSI telephone to switch to data mode for 1 message burst or
transmission. When the transmission is complete, the ADSI phone will revert to voice mode unless
the transmission contained a message with the “Switch to Data” command.

After the data is transmitted, the ADSI telephone sends an acknowledgment consisting of a DTMF
“d” plus a digit from 1 to 5 indicating the number of messages in the transmission that the ADSI
telephone received and understood. By obtaining this message count and comparing it with the
number of messages transmitted, you can check for errors and retransmit any messages not
received. (If you send 4 messages and the telephone receives 2, you must resend messages 3 and 4.)

You can send more than one transmission during a call. After the initial transmission of a call, you
do not have to re-establish the handshaking (sending the alert tone or receiving the
acknowledgment digit) as long as you have left the ADSI telephone in data mode using the ADSI
“Switch to Data” command. This is useful for performing additional data transmissions during the
same call without needing to send the alert tone or receive the acknowledgment digit for each
transmission.

10.4 One-Way ADSI

One-way ADSI support enables Dialogic® telecom boards to be used as ADSI servers and to
support ADSI features such as visual voice mail. One-way ADSI allows for the one-way
transmission of data from a server to a customer premises equipment (CPE) device, such as a
display-based telephone. The phone (CPE) sends dual tone multi-frequency (DTMF) messages to
the server, indicating whether the data was received successfully.

For a more detailed description of the one-way ADSI data transfer process, see Section 10.8,
“Developing ADSI Applications”, on page 98.

ADSI data can be transferred only to display-based telephones that are ADSI compliant. Check
with your telephone manufacturer to find out if your telephone is a true ADSI-compliant device.
An ADSI alert tone, referred to as a CAS (CPE Alerting Signal), is sent by the server to query a
CPE device, such as an ADSI display phone. The device responds appropriately and, if the device
is ADSI-compliant, the ADSI data transfer is initiated.

Note: ADSI-compliant phones are also referred to as "Type 3 CPE Devices" by Telcordia Technologies
and by the Electronic Industry Association/Telecommunications Industry Association (EIA/TIA).

96 Dialogic® Voice API Programming Guide
Dialogic Corporation

Send and Receive FSK Data

10.5 Two-Way ADSI

Two-way ADSI includes several enhancements to one-way ADSI, including two-way frequency
shift keying (FSK). The following topics discuss two-way ADSI:

• Transmit to On-Hook CPE

• Two-Way FSK

10.5.1 Transmit to On-Hook CPE

The transmit to on-hook customer premises equipment (CPE) feature allows messages to be sent to
an ADSI phone when the phone is either on-hook or off-hook.

This feature supports the transmission of FSK data burst messages to CPE devices that are kept in
the on-hook state by either the Central Office (CO) or the PBX/KTS. This allows an ADSI/Caller
ID phone to receive and potentially display messages while it is in the on-hook state. For example,
ADSI phones can be configured, accessed, and downloaded with features, outside of regular
business hours while the phone is on-hook, without ringing and without subscriber intervention.

Note: The transmit to on-hook CPE feature works only if the CO supports this feature.

10.5.2 Two-Way FSK

The two-way frequency shift keying (FSK) feature allows users to send and receive character or
binary data at 1200 bits/second between the server and compatible devices, such as certain ADSI
phones with keyboards. The two-way FSK feature supports applications such as off-line e-mail
editing and sending FSK Caller ID data to a customer premises equipment (CPE) device.

FSK (frequency shift keying) is a modulation technique used to transfer data over voice lines. The
basic ADSI capability supports only FSK Transmit (one-way FSK), in which an FSK message is
sent from the server to an ADSI display phone, with the phone in the off-hook state. The phone
(CPE) sends dual tone multi-frequency (DTMF) messages to the server. As DTMF messages are
sent to the server, the effective data rate is very slow, approximately 6 characters per second
maximum. This speed is satisfactory for ACK/NAK signaling but it is not usable for any bulk data
transport in the inbound direction from the CPE.

FSK data reception uses a DSP-based Bell 202/V.23 low speed (1200 baud) modem receiver. A
1200 baud modem does not need to train for data transmission, and therefore is faster than a high-
speed modem for short data bursts.

Two-way FSK for ADSI supports the transmission and the reception of FSK data between the
server and the CPE. The server initiates the reception of data from the CPE by sending a CAS to
tell the CPE to switch to data mode, followed by a message that tells the CPE to switch to
peripheral mode. Once it is in peripheral mode, the CPE can send FSK messages to the server using
the ADSI Data Message Format (ADMF), instead of the slower DTMF-based scheme.

See Section 10.8, “Developing ADSI Applications”, on page 98 for a more detailed description of
how to use library functions to develop two-way ADSI data transfer applications. For more

Dialogic® Voice API Programming Guide 97
Dialogic Corporation

Send and Receive FSK Data

information about two-way FSK transmission, see Telcordia Technologies Special Report SR-
3462, A Two-Way Frequency Shift Keying Communication for the ADSI.

In addition to features provided by basic ADSI, two-way FSK for ADSI can be used in the
following applications:

• sending and receiving e-mail between display-based ADSI phones and the server

• sending FSK caller ID data to a CPE device

10.6 Fixed-Line Short Message Service (SMS)

Fixed-line short message service or SMS is a service that allows text messages to be sent and
received in the PSTN network. SMS is also known as small message service or text messaging.

The voice library supports the creation of fixed-line SMS applications through the
dx_RxIottData(), dx_TxIottData(), and dx_TxRxIottData() functions.

Fixed-line SMS solutions can be created using the standard Telcordia Technologies (formerly
Bellcore) ADSI specification or using the ETSI-FSK specification ETSI ES 201 912.

The ETSI-FSK specification differs from the ADSI FSK specification in these ways:

• It uses a different physical layer. Settings for channel seizure and mark length differ. For more
information on FSK transmission requirements, see ITU-T EN 300 659-2 specification.

• It uses different handshaking and timing specifications.

To set the voice channel to ETSI compatibility, specify the two-way FSK transmit framing
parameters in the voice.prm file. For more information on these parameters, see the Configuration
Guide for Springware boards.

10.7 ADSI and Two-Way FSK Voice Library Support

The following voice library functions and data structures support this functionality:

dx_RxIottData() function
Receives ADSI data on a specified channel.

dx_TxIottData() function
Transmits ADSI data on a specified channel.

dx_TxRxIottData() function
Starts a transmit-initiated reception of data (two-way ADSI) on a specified channel.

ADSI_XFERSTRUC data structure
Stores information for the transmission and reception of ADSI data. It is used by the
dx_RxIottData(), dx_TxIottData(), and dx_TxRxIottData() functions.

DV_TPT data structure
Specifies a termination condition for an I/O function; in this case, dx_RxIottData(),
dx_TxIottData(), or dx_TxRxIottData().

98 Dialogic® Voice API Programming Guide
Dialogic Corporation

Send and Receive FSK Data

ATDX_TERMMSK() function
Returns the reason for the last I/O function termination.

To determine whether your board supports FSK, use dx_getfeaturelist() to return information
about the features supported in the FEATURE_TABLE structure; the ft_play field, FT_ADSI bit, is
used to indicate FSK support.

Two-way FSK transmit framing parameters for ETSI compatibility are set in the voice.prm file. For
more information on these parameters, see the Configuration Guide for Springware boards.

10.8 Developing ADSI Applications

This section provides the following information on developing applications for one-way and two-
way ADSI FSK:

• Technical Overview of One-Way ADSI Data Transfer

• Implementing One-Way ADSI Using dx_TxIottData()

• Technical Overview of Two-Way ADSI Data Transfer

• Implementing Two-Way ADSI Using dx_TxIottData()

• Implementing Two-Way ADSI Using dx_TxRxIottData()

10.8.1 Technical Overview of One-Way ADSI Data Transfer

In one-way ADSI data transfer, the ADSI server sends ADSI messages to a CPE device, such as an
ADSI-compliant telephone. The transactions that occur between the server and the CPE during
one-way ADSI data transfer are as follows:

1. The server initiates the data transfer by sending a CPE Alerting Signal (CAS) to the CPE.

2. When the CPE receives the CAS, the device generates an ACK (DTMF ‘A’ signal) to the
server. At this point the CPE device has switched from voice mode to data mode. (If the CPE
device remains in data mode, subsequent transmissions do not require the CAS.)

Note: Only ADSI-compliant CPE devices will respond to the CAS sent by the server. Check
with your manufacturer to verify that your CPE device is a true ADSI-compliant
device. ADSI-compliant devices are also referred to as "Type 3 CPE Devices" by
Telcordia Technologies and the EIA/TIA.

3. Upon receipt of the ACK signal, the server initiates the FSK transmission sequence. Each FSK
transmission sequence can contain anywhere from 1 to 5 messages.

4. The CPE receives the FSK data and uses the checksum included within the sequence to
determine the number of messages successfully received.

5. The CPE device then responds to the server with an acknowledgment digit (DTMF ‘D’)
followed by a DTMF of ‘0’ through ‘5,’ which indicates the number of messages successfully
received.

6. The server interprets the DTMF as follows:

• ACK = ‘D’ followed by a DTMF in the range of 1 – 5

• NAK = ‘D’ followed by a DTMF ‘0’

Dialogic® Voice API Programming Guide 99
Dialogic Corporation

Send and Receive FSK Data

10.8.2 Implementing One-Way ADSI Using dx_TxIottData()

The dx_TxIottData() function is used to send the CAS to the CPE and implement one-way ADSI
data transfer. To transfer ADSI FSK data, configure the function parameters and structures as
follows:

• Set the wType parameter DT_ADSI.

• Configure the DX_IOTT structure with the appropriate ADSI FSK data file(s). The application
is responsible for constructing the messages and checksums for each transmission.

• Set the termination conditions with the DV_TPT structure.

• Set dwTxDataMode within the ADSI_XFERSTRUC referenced by lpParams to
ADSI_ALERT to generate the CAS.

The following scenario illustrates the function calls that are required to generate an initial CAS to
the CPE and begin one-way ADSI data transfer.

1. Prior to executing dx_TxIottData(), clear the digit buffer for the desired voice channel using
dx_clrdigbuf().

2. Issue dx_TxIottData(). To generate an initial CAS to the CPE device, dwTxDataMode within
ADSI_XFERSTRUC must be set to ADSI_ALERT.

3. The CAS is received by the CPE and the CPE sends an acknowledgment digit (DTMF ‘A’) to
the voice device.

Note: If the DTMF acknowledgment digit is not received from the CPE device within 500
ms following the end of the CAS, the function will return a 0 but the termination
mask returned by ATDX_TERMMSK() will be TM_MAXTIME to indicate an
ADSI protocol error. (The function will return a -1 if a failure is due to a general
transmission error.)

4. Upon receipt of the DTMF ‘A’ ACK, the voice device automatically transmits the data file
referenced in the DX_IOTT structure.

5. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the
number of messages successfully received. (The application is responsible for determining
whether the message count acknowledgment matches the number of messages that were
transmitted and for re-transmitting any messages.)

Note: Upon successful completion, the function terminates with a TM_EOD (end of data)
termination mask returned by ATDX_TERMMSK().

6. After completion of dx_TxIottData(), the dx_getdig() function retrieves the DTMF ACK
sequence from the CPE device. Set the DV_TPT tp_termno field to DX_DIGTYPE to receive
the DTMF string "adx," where "x" is the message count acknowledgment digit (1-5).

After the CAS is sent to the CPE, as described in the preceding scenario, the CPE is in data mode.
Provided that the ADSI messages sent to the CPE instruct the CPE to remain in data mode,
subsequent ADSI transmissions to the CPE do not require the CAS. To send ADSI data without the
CAS, set the dwTxDataMode within the ADSI_XFERSTRUC referenced by lpParams to
ADSI_NOALERT. All other settings are the same as above.

100 Dialogic® Voice API Programming Guide
Dialogic Corporation

Send and Receive FSK Data

The following scenario illustrates the function calls that are required to transfer ADSI data when
the CPE is already in data mode (without sending a CAS).

1. Prior to executing dx_TxIottData(), issue dx_clrdigbuf() to ensure that the voice channel
digit buffer is empty.

2. Issue dx_TxIottData() and set dwTxDataMode within the ADSI_XFERSTRUC data
structure to ADSI_NOALERT. This initiates the immediate transfer of the data file(s)
referenced in the DX_IOTT structure to the CPE device.

3. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the
number of messages successfully received. (The application is responsible for determining
whether the message count acknowledgment matches the number of messages that were
transmitted and for re-transmitting any messages.)

4. After completion of dx_TxIottData(), the dx_getdig() function retrieves the DTMF ACK
sequence from the CPE device. Set the DV_TPT tp_termno field to DX_DIGTYPE to receive
the DTMF string "adx," where "x" is the message count acknowledgment digit (1-5).

10.8.3 Technical Overview of Two-Way ADSI Data Transfer

In two-way ADSI data transfer, both the ADSI server and CPE device can transmit and receive
ADSI data messages. The CAS is used to initiate the transfer of ADSI FSK data and to return the
CPE to voice mode after the data exchange is completed.

The transactions that occur between the server and the CPE in two-way ADSI data transfer are as
follows:

1. The server initiates the data transfer by sending a CPE Alerting Signal (CAS) to the CPE
equipment.

2. Upon receipt of the CAS, the CPE device generates an ACK (DTMF ‘A’ signal) to the server.
At this point the CPE device has switched from voice mode to data mode. (Once the CPE
device is in data mode, subsequent FSK data transmissions do not require the CAS.)

Note: Only ADSI-compliant CPE devices will respond to the CAS sent by the server. Check
with your manufacturer to verify that your CPE device is a true ADSI-compliant
device. ADSI-compliant devices are also referred to as "Type 3 CPE Devices" by
Telcordia Technologies.

3. When the ACK signal is received, the server initiates the FSK transmission sequence. Each
FSK transmission sequence can contain anywhere from 1 to 5 messages. A "Switch to
Peripheral Mode" message (using 0x0A as a ‘requested peripheral’ code) must be included
within the FSK transmission sequence.

4. The CPE receives the FSK data and uses the checksum included within the sequence to
determine the number of messages successfully received.

5. The CPE device then responds to the server with a DTMF ‘D’ followed by a DTMF ‘0’
through ‘5’ to indicate the number of messages successfully received. In addition, the CPE
device acknowledges the "Switch to Peripheral Mode" message by responding with either

• DTMF ‘B,’ indicating that the requested peripheral is available and on line

• DTMF ‘A,’ indicating that the requested peripheral is not available

6. The server interprets the DTMF signals as follows:

• ‘D’ followed by a DTMF in the range of 1 – 5 = ACK

Dialogic® Voice API Programming Guide 101
Dialogic Corporation

Send and Receive FSK Data

• ‘D’ followed by a DTMF ‘0’ = NAK

• DTMF ‘B’ = requested peripheral available (ready to receive and transmit ADSI data)

• DTMF ‘A’ = requested peripheral unavailable (unable to transmit or receive ADSI data)

Once the CPE device has acknowledged the "Switch to Peripheral Mode" message, the CPE may
transmit data to the server at any time. The server must be prepared to receive data at any time until
the CPE peripheral is switched back to voice mode. To return the CPE peripheral to voice mode,
the server sends a CAS to the CPE. Upon receipt of the CAS, the CPE responds with a DTMF ‘A’
signal. Receipt of DTMF ‘A’ at the server completes the return to voice mode transition.

10.8.4 Implementing Two-Way ADSI Using dx_TxIottData()

The dx_TxIottData() function is used to implement two-way ADSI data transfer. The
dx_TxIottData() function transmits the CAS and the subsequent "Switch to Peripheral Mode
Message" to the CPE. To transfer ADSI FSK data, set the parameters and configure the structures
as described below:

• Set the wType parameter DT_ADSI.

• Configure the DX_IOTT structure with the appropriate ADSI FSK data file(s), including the
"Switch to Peripheral Mode" message. The application is responsible for constructing the
messages and checksums for each transmission.

• Set the termination conditions with the DV_TPT structure.

• Set dwTxDataMode within the ADSI_XFERSTRUC referenced by lpParams to
ADSI_ALERT to generate the CAS.

The following scenario illustrates the function calls that are required to generate an initial CAS to
the CPE and begin two-way ADSI data transfer.

1. Prior to executing dx_TxIottData(), clear the digit buffer for the desired voice channel using
dx_clrdigbuf().

2. Issue dx_TxIottData(). To generate an initial CAS to the CPE device, set dwTxDataMode
within ADSI_XFERSTRUC data structure to ADSI_ALERT.

3. The CAS is received by the CPE and the CPE sends an acknowledgment digit (DTMF ‘A’) to
the voice device.

Note: If the DTMF acknowledgment digit is not received from the CPE device within 500
ms following the end of the CAS, the function will return a 0 but the termination
mask returned by ATDX_TERMMSK() will be TM_MAXTIME to indicate an
ADSI protocol error. (The function will return a -1 if a failure is due to a general
transmission error.)

4. Upon receipt of the DTMF ‘A’ ACK, the voice device automatically transmits the data file
referenced in the DX_IOTT structure, which must include the "Switch to Peripheral Mode"
message.

5. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the
number of messages successfully received. (The application is responsible for determining
whether the message count acknowledgment matches the number of messages that were
transmitted and for re-transmitting any messages.)

102 Dialogic® Voice API Programming Guide
Dialogic Corporation

Send and Receive FSK Data

Note: Upon successful completion, the function terminates with a TM_EOD (end of data)
termination mask returned by ATDX_TERMMSK().

6. The CPE responds to the "Switch to Peripheral Mode" message with either DTMF ‘B’ if the
peripheral is available or DTMF ‘A’ if the peripheral is unavailable.

7. After completion of dx_TxIottData(), the dx_getdig() function retrieves the DTMF ACK
sequence from the CPE device. Set the DV_TPT tp_termno parameter to DX_DIGTYPE to
receive the DTMF string "adxb," where "x" is the message count acknowledgment digit (1-5).
When the DTMF string is received, additional messages can be sent and received between the
server and the CPE peripheral.

10.8.5 Implementing Two-Way ADSI Using dx_TxRxIottData()

After the two-way ADSI transmission is implemented using the dx_TxIottData() function,
additional ADSI FSK messages are typically sent to the CPE peripheral to configure the display
and soft keys. Since at this point the CPE peripheral has been configured to send data to the server,
the dx_TxRxIottData() function should be used to send the data to the CPE and then quickly turn
around and be ready to receive data from the CPE.

To transfer ADSI FSK data using dx_TxRxIottData(), set the function parameters and configure
the structures as described below:

• Set wType to DT_ADSI.

• Configure DX_IOTT structures referenced by lpTxIott and lpRxIott with the appropriate
ADSI FSK data files. The application is responsible for constructing the messages and
checksums for each transmission.

• Set the termination conditions for the transmit and receive portions of the function with the
DV_TPT structures referenced by lpTxTerminations and lpRxTerminations, respectively.

• Set dwTxDataMode and dwRxDataMode within the ADSI_XFERSTRUC referenced by
lpParams to ADSI_NOALERT to transmit and receive FSK ADSI data without generation of
a CAS.

The following scenario illustrates the function calls that are required to send and receive FSK
ADSI data between the server and the CPE.

1. Prior to executing dx_TxIottData(), clear the digit buffer for the desired voice channel using
dx_clrdigbuf().

2. Issue dx_TxRxIottData() with dwTxDataMode and dwRxDataMode within
ADSI_XFERSTRUC set to ADSI_NOALERT. This initiates the transmission of the data file
referenced in the DX_IOTT structure to the CPE. The server voice channel is placed
automatically in FSK ADSI data receive mode to receive data from the CPE.

3. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the
number of messages successfully received. (The application is responsible for determining
whether the message count acknowledgment matches the number of messages that were
transmitted and for re-transmitting any messages.)

4. The server voice channel is ready and waiting for data from the CPE.

Dialogic® Voice API Programming Guide 103
Dialogic Corporation

Send and Receive FSK Data

5. The CPE sends FSK ADSI data to the server. When an ADSI FSK message is successfully
received or when the termination conditions set in lpRxTerminations are met, the
dx_TxRxIottData() function completes.

6. After completion of dx_TxRxIottData(), the dx_getdig() function retrieves the DTMF ACK
sequence for the transmit portion of the function. When the DTMF string is received,
additional messages can be sent and received between the server and the CPE peripheral.

7. In another thread of execution at the server, the received message(s) are processed by the
application to determine the number of messages received and the integrity of the information.

8. Issue dx_RxIottData() to receive messages from the CPE. This function should be issued as
soon as possible because the CPE peripheral can send data to the server after a minimum of
100 msec following the completion of its transmission.

If data needs to be transmitted to the CPE when the server is waiting to receive data, issue
dx_stopch() to terminate the current dx_RxIottData() function. Upon confirmation of
termination of dx_RxIottData(), issue dx_clrdigbuf() to clear the voice device channel
buffer, and then issue dx_TxIottData() to send the data to the CPE.

10.9 Modifying Older One-Way ADSI Applications

Prior to the release of the two-way ADSI, including two-way FSK, applications used the
dx_play() function to implement one-way ADSI applications. With two-way ADSI, transmit and
receive data functions are introduced for data transfer. To take advantage of on-hook ADSI transfer
in a one-way ADSI application, and/or to introduce two-way FSK concepts into applications, older
applications need to be modified.

Applications developed prior to the release of the two-way ADSI use the following sequence of
commands to generate a CAS tone followed by transmission of an ADSI file:

 /* Setup DX_IOTT to play from disk */
 /* Setup DV_TPT for termination conditions */

 /* Initiate ADSI play when DTMF ‘A’ is received from CPE */
 parmval = DM_A;
 if (dx_setparm(Voice_Device, DXCH_DTINITSET, (void *)&parmval) == -1) {
 /* Process error */
 }

 /* Clear digit buffer for impending ADSI protocol DTMFs */
 if (dx_clrdigbuf(Voice_Device) == -1) {
 /* Process error */
 }

 /* Send CAS followed by ADSI data when DTMF ‘A’ is received */
 if (dx_play(Voice_Device, &Iott_struct, &Tpt_struct, EV_SYNC | PM_ADSIALERT) == -1) {
 /* Process error */
 }

104 Dialogic® Voice API Programming Guide
Dialogic Corporation

Send and Receive FSK Data

In older applications, the use of dx_play() for ADSI transmission can be replaced with the
specialized dx_TxIottData() data transfer function. The same DV_TPT and DX_IOTT are used
by dx_TxIottData() as for dx_play(), however, the following additional parameters need to be
configured:

wType
specifies the data type transferred. To transfer ADSI FSK data, wType is set to DT_ADSI

lpParams
specifies the data type specific information. To transmit CAS followed by the ADSI FSK
message, dwTxDataMode within the ADSI_XFERSTRUC data structure pointed to by
lpParams is set to ADSI_ALERT.

Using these parameters, the CAS will be transmitted and, upon receipt of DTMF ‘A,’ the ADSI
FSK data will be sent to the CPE device.

The following sample code illustrates the use of the dx_TxIottData() function to generate a CAS
tone and transmit an ADSI file:

 /* Setup DX_IOTT to play from disk */
 /* Setup DV_TPT for termination conditions */

 /* Setup ADSI_XFERSTRUC to send CAS followed by ADSI FSK upon receipt of DTMF ‘A’ */
 adsimode.cbSize = sizeof(adsimode);
 adsimode.dwTxDataMode = ADSI_ALERT;

 /* Clear digit buffer for impending ADSI protocol DTMFs */
 if (dx_clrdigbuf(Voice_Device) == -1) {
 /* Process error */
 }

 /* Send CAS followed by ADSI data when DTMF ‘A’ is received */
 if (dx_TxIottData(Voice_Device, &IOTT, &TPT, DT_ADSI, &adsimode, EV_SYNC) == -1) {
 /* Process error */
 }

Dialogic® Voice API Programming Guide 105
Dialogic Corporation

1111.Caller ID

This chapter provides information on caller ID. The following topics are covered:

• Overview of Caller ID . 105

• Caller ID Formats . 105

• Accessing Caller ID Information. 107

• Enabling Channels to Use the Caller ID Feature. 108

• Error Handling . 108

• Caller ID Technical Specifications . 108

11.1 Overview of Caller ID

The caller ID feature described in this chapter applies to Dialogic® Springware boards only.

Caller Identification (caller ID) is a service provided by local telephone companies to enable the
subscriber to receive information about the caller. Caller ID information can include the calling
party’s directory number (DN), the date and time of the call, and the calling party’s subscriber
name. An application can enable the caller ID feature on specific channels to process caller ID
information as it is received with an incoming call. The caller ID information is transmitted using
FSK (frequency shift keying) to the subscriber from the service provider (telephone company
Central Office) at 1200 baud.

If caller ID is enabled, on-hook detection (DTMF, MF, and global tone detection) will not function.

Caller ID is also available via the Global Call API. For more information, see the Global Call
Analog Technology User’s Guide.

11.2 Caller ID Formats

The following caller ID formats are supported:

CLASS (Custom Local Area Signaling Services)
a set of standards published by Bellcore (now known as Telcordia Technologies) and supported
on boards with loop-start capabilities in the following formats:

• Single Data Message (SDM) format

• Mltiple Data Message (MDM) format

ACLIP (Analog Calling Line Identity Presentation)
a standard used in Singapore published by the Telecommunications Authority of Singapore
and supported in the following formats:

• Single Data Message (SDM) format

106 Dialogic® Voice API Programming Guide
Dialogic Corporation

Caller ID

• Multiple Data Message (MDM) format

CLIP (Calling Line Identity Presentation)
a standard used in the United Kingdom published by British Telecommunications (BT)

JCLIP (Japanese Calling Line Identity Presentation)
a standard for “Number Display” used in Japan published by Nippon Telegraph and Telephone
Corporation (NTT).

Note: JCLIP operation requires that the Japanese country-specific parameter file be
installed and configured (select Japan in the Dialogic country configuration).

Caller ID information is received from the Central Office (CO) between the first and second ring
for CLASS and ACLIP, and before the first ring for CLIP. This information is supported as sent by
the service provider in the format types described in Table 12.

Note: One or more of the caller ID features listed above may not be available from your service provider.
Contact your service provider to determine the caller ID options available from your CO.

Table 12. Supported CLASS Caller ID Information

Caller ID Information

CLASS and
ACLIP

CLIP JCLIP

SDM * MDM ** MDM **

Frame header (indicating SDM or MDM format type) X X X

Calling line’s Directory Number (DN) X X X X

Date X X X

Time X X X

Calling line’s subscriber name X X

Calling line’s DN (digits only) X X

Dialed directory number (digits only) X X X

Reason why caller DN is not available X X X

Reason why calling subscriber name is not available X X X

Indicate if the call is forwarded X

Indicate if the call is “long distance” X

Type of call (such as voice, ringback when free,
message waiting call)

X

Network Message System status (number of
messages waiting)

X

* Single Data Message
** Multiple Data Message

Dialogic® Voice API Programming Guide 107
Dialogic Corporation

Caller ID

11.3 Accessing Caller ID Information

You can process caller ID information in your application in the following ways:

• For CLASS or ACLIP, the caller ID information is received from the service provider between
the first and second ring. Set the ring event in the application to occur on or after the second
ring. The ring event indicates reception of the CLASS or ACLIP caller ID information from
the CO.

• For CLIP or JCLIP, the caller ID information is received from the service provider before the
first ring. Set the ring event in the application to occur on or after the first ring. The ring event
indicates reception of the CLIP caller ID information from the CO.

The caller ID information is available for the call from the moment the ring event is generated (if
the ring event is set in your application as stated above) until one of the following occurs:

• If the call is answered (application channel goes off-hook), the caller ID information is
available until the call is disconnected (application channel goes on-hook).

• If the call is unanswered (application channel remains on-hook), caller ID information is
available until rings are no longer received from the CO (signaled by ring event, if enabled).

Notes: 1. If the call is answered before the caller ID information has been received from the CO, caller ID
information will not be available to the application.

2. If the application remains on-hook and the ring event is received before the caller ID information
has been received from the CO, caller ID information will not be available until the beginning of
the second ring.

The following voice API functions are used to access caller ID information received from the CO.
These functions are not supported on Dialogic® HMP Software:

dx_gtcallid()
Returns the calling line Directory Number (DN). Issue this function for applications that
require only the calling line DN.

dx_gtextcallid()
Returns the requested caller ID message. Issue this function for each type of caller ID message
required.

dx_wtcallid()
Waits for a specified number of rings and returns the calling station’s DN. This convenience
function combines the functionality of the dx_setevtmsk(), dx_getevt(), and dx_gtcallid()
functions.

Contact your service provider to determine the caller ID options available from your CO. Based on
the options provided, you can determine which caller ID function best meets the application’s
needs.

To determine if caller ID information has been received from the CO, before issuing a
dx_gtcallid() or dx_gtextcallid(), check the event data in the DX_EBLK event block structure.
When the ring event is received (set by the application as stated above), the event data field in the
event block is bit mapped and indicates that caller ID information is available when bit 0 (LSB) is
set to 1 (see the function code examples in the Voice API Library Reference).

108 Dialogic® Voice API Programming Guide
Dialogic Corporation

Caller ID

11.4 Enabling Channels to Use the Caller ID Feature

During Dialogic System Service startup, before the initial use of caller ID functions, the
application must enable the caller ID feature on the channels requiring caller ID.

On Springware boards, caller ID is enabled by setting the DXCH_CALLID channel-based
parameter to DX_CALLIDENABLE using dx_setparm(). The default setting is caller ID
disabled, DX_CALLIDDISABLE.

11.5 Error Handling

When the caller ID function completes, check the return code:

• If the caller ID function completes successfully, the buffer will contain the caller ID
information.

• If the caller ID function fails, an error code will be returned that indicates the reason for the
error. The call is still active when the error is returned.

When using the dx_gtextcallid() function, error codes depend upon the Message Type ID
argument (infotype) passed to the function. All Message Types can produce an EDX_CLIDINFO
error. Message Type CLIDINFO_CALLID can also produce EDX_CLIDOOA and
EDX_CLIDBLK errors.

When using the dx_gtcallid() caller ID function, if an error is returned indicating that the caller’s
phone number (DN) is blocked or out of area, other information (for example, date or time) may be
available by issuing the dx_gtextcallid() caller ID function. The information that is available,
other than the caller’s phone number, is determined by the CO.

11.6 Caller ID Technical Specifications

For information about caller ID technical specifications, contact the appropriate authority and
request the technical references you require:

CLASS
CLASS documents are published by Telcordia Technologies (previously Bellcore). To obtain a
copy of these technical references, visit http://www.telcordia.com.

• TR-NWT-000031 (issue 4) CLASS Feature Calling Number Delivery

• TR-NWT-001188 CLASS Feature Calling Name Delivery Generic Requirements

• TR-NWT-000030 (issue 2) Voice Data Transmission Interface Generic Requirement

ACLIP
Contact the Telecommunications Authority of Singapore and Telcordia Technologies.

• TAS TS PSTN1 A-CLIP: 1994

• Bellcore specification TR-NWT-000030 (see Telcordia Technologies contact info
provided in CLASS)

Dialogic® Voice API Programming Guide 109
Dialogic Corporation

Caller ID

CLIP
Contact British Telecommunications.

• SIN (Supplier Information Note) 242 (issue 01)

• SIN (Supplier Information Note) 227 (issue 01)

JCLIP
Contact Nippon Telegraph and Telephone Corporation.

• Telephone Service Interfaces, Edition 5, Technical Reference

Dialogic® Voice API Programming Guide 110
Dialogic Corporation

1212.Global Tone Detection and
Generation, and Cadenced Tone
Generation

This chapter discusses global tone detection (GTD), global tone generation (GTG), and cadenced
tone generation:

• Global Tone Detection (GTD) . 110

• Global Tone Generation (GTG). 117

• Cadenced Tone Generation . 118

12.1 Global Tone Detection (GTD)

Global tone detection (GTD) is described in the following sections:

• Overview of Global Tone Detection

• Global Tone Detection on HMP Software versus Springware Boards

• Defining Global Tone Detection Tones

• Building Tone Templates

• Working with Tone Templates

• Retrieving Tone Events

• Setting GTD Tones as Termination Conditions

• Guidelines for Creating User-Defined Tones

• Global Tone Detection Application

12.1.1 Overview of Global Tone Detection

Global tone detection (GTD) allows you to define single or dual frequency tones for detection. The
characteristics of a tone are defined in a GTD tone template. A tone template contains parameters
that allow you to assign frequency bounds and cadence components. GTD can detect single and
dual frequency tones by comparing all incoming sounds to the GTD tone templates. Global tone
detection and GTD tones are also known as user-defined tone detection and user-defined tones.

The typical use of global tone detection is to detect single and dual frequency tones other than
those automatically provided with the voice software. This includes tones outside the standard
DTMF set (0-9, a-d, *, and #), and the standard MF set (0-9, a-c, and *). GTD works
simultaneously with DTMF and MF tone detection.

Dialogic® Voice API Programming Guide 111
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

When GTD detects a tone, it responds by producing either a tone event on the event queue or a
digit on the digit queue. The particular response depends on the GTD tone configuration.

12.1.2 Global Tone Detection on HMP Software versus Springware
Boards

On Dialogic® HMP Software, tone templates are managed internally on a board basis, while on
Springware boards, tone templates are managed internally on a channel basis.

On Dialogic® HMP Software, once a tone template is defined, it can be added to any number of
channels for global tone detection on a board. The tone template is stored only once on the board.
A counter in the tone template tracks the number of channels that are using this template; the
template remains active until the very last channel of the board deletes the template.

On Dialogic® HMP Software, the memory available for all tone templates (including call progress
analysis tones and user-defined tones) is pre-allocated and fixed. Each tone template takes up the
same amount of memory. However, a limitation exists on the number of tone templates that can be
active at one time on a channel, due to the number of events that are generated. See Section 12.1.8,
“Guidelines for Creating User-Defined Tones”, on page 115 for more information.

On Dialogic® Springware boards, once a tone template is defined, it can be added to any number of
channels for global tone detection as well. However, the tone template is stored for each channel
that uses it.

12.1.3 Defining Global Tone Detection Tones

GTD tones can have an associated ASCII digit (and digit type) specified using the digit and
digtype parameters in the dx_addtone() function. When the tone is detected, the digit is placed in
the DV_DIGIT buffer and can be retrieved using the dx_getdig() function. When the tone is
detected, either the tone event or the digit associated with the tone can be used as a termination
condition to terminate I/O functions.

Termination conditions are set using the DV_TPT data structure. To terminate on multiple tones (or
digits), you must specify the terminating conditions for each tone in a separate DV_TPT data
structure.

12.1.4 Building Tone Templates

When creating a tone template, you can define the following:

• single frequency or dual frequency (300 - 3500 Hz)

• optional ASCII digit associated with the tone template

• cadence components

Adding a tone template to a channel enables detection of a tone on that channel. Although only one
tone template can be created at a time, multiple tone templates can be added to a channel. Each

112 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

channel can have a different set of tone templates. Once created, tone templates can be selectively
enabled or disabled.

API Library Functions

The following functions are used to build and define tone templates:

dx_bldst()
Defines a single frequency tone. Subsequent calls to dx_addtone() will use this tone until
another tone is defined.

dx_blddt()
Defines a simple dual frequency tone. Subsequent calls to dx_addtone() will use this tone
until another tone is defined.

Note that the boards cannot detect dual tones with frequency components closer than
approximately 63 Hz. Use a single tone description to detect dual tones that are closer together
than the ranges specified above.

dx_bldstcad()
Defines a simple single frequency cadence tone. Subsequent calls to dx_addtone() will use
this tone until another tone is defined. A single frequency cadence tone has single frequency
signals with specific on/off characteristics.

dx_blddtcad()
Defines a simple dual frequency cadence tone. Subsequent calls to dx_addtone() will use this
tone until another tone is defined. A dual frequency cadence tone has dual frequency signals
with specific on/off characteristics. The minimum on- and off-time for cadence detection is 40
msec on and 40 msec off.

dx_setgtdamp()
Sets the amplitudes used by GTD. The amplitudes set using dx_setgtdamp() are the default
amplitudes that apply to all tones built using the build-tone functions. The amplitudes remain
valid for all tones built until dx_setgtdamp() is called again and amplitudes are changed.

Instructions for Building Tone Templates

Follow these steps to build a tone template for global tone detection:

1. Determine the characteristics of the tone you wish to detect: single frequency or dual
frequency tone, frequency range, cadence components, and so on.

2. Use the appropriate build-tone function, such as dx_bldst(), dx_blddt() and so on, to build
and define the tone template. The functions require that you specify a unique tone ID for each
tone template.

3. Use the dx_addtone() function to add the tone template to a channel. Subsequent calls to
dx_addtone() will add this tone template until another tone is defined. Adding a tone
template to a channel enables detection of a tone on that channel.

4. Repeat steps 1 - 3 as needed.

Dialogic® Voice API Programming Guide 113
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

Tips and Hints for Building Tone Templates

The following are tips and hints when building a tone template for global tone detection:

• After using a build-tone function to define a new tone template, you must call dx_addtone()
to add the tone template to a channel and enable detection of that tone on a channel.

• After using a build-tone function to define a tone template, if the template is not added to a
channel, the next call to a build-tone function will overwrite the tone definition contained in
the previous template.

• Only one tone template can be created at a time; however, multiple tone templates can be
added to a channel. Each channel can have a different set of tone templates. Once created, tone
templates can be selectively disabled or enabled by using dx_distone() and dx_enbtone().
See Section 12.1.5, “Working with Tone Templates”, on page 113 for more information.

• Each tone template must have a unique tone ID.

• On Windows®, do not use tone IDs 261, 262 and 263; they are reserved for library use.

• A particular tone template that has been added to a channel cannot be changed or deleted. A
tone template can be disabled on a channel, but to delete a tone template, all tone templates on
that channel must be deleted. See Section 12.1.5, “Working with Tone Templates”, on
page 113 for more information.

Table 13 lists some standard Bell System Network call progress tones. The frequencies are useful
to know when creating tone templates.

12.1.5 Working with Tone Templates

After building a tone template, use the following functions to add/delete tone templates or to
enable/disable tone detection:

dx_addtone()
Adds a tone template that was defined by the most recent build-tone function call to the
specified channel. Adding a tone template to a channel downloads it to the board and enables
detection of tone-on and tone-off events for that tone template.

Table 13. Standard Bell System Network Call Progress Tones

Tone Frequency (Hz) On Time (msec) Off Time (msec)

Dial 350 + 440 Continuous

Busy 480 + 620 500 500

Congestion (Toll) 480 + 620 200 300

Reorder (Local) 480 + 620 300 200

Ringback 440 + 480 2000 4000

114 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

dx_deltones()
Removes all tone templates previously added to a channel with dx_addtone(). If no tone
templates were previously enabled for this channel, the function has no effect.

dx_deltones() does not affect tones defined by build-tone template functions and tone
templates not yet defined. If you have added tones for call progress analysis, these tones are
also deleted.

dx_distone()
Disables detection of a user-defined tone on a channel as well as the DE_TONEON and/or
DE_TONEOFF events for that tone. Detection capability for user-defined tones is enabled on a
channel by default when dx_addtone() is called.

dx_enbtone()
Enables detection of a user-defined tone that was previously disabled by dx_distone(). Also
enables detection of DE_TONEON and/or DE_TONEOFF events for that tone. Detection
capability for user-defined tones is enabled on a channel by default when dx_addtone() is
called.

12.1.6 Retrieving Tone Events

Tone-on events (DE_TONEON) and tone-off events (DE_TONEOFF) are call status transition
(CST) events. Retrieval of these events is handled differently for asynchronous and synchronous
applications. Table 14 outlines the different processes for retrieving tone events.

You can optionally specify an associated ASCII digit (and digit type) with the tone template. In this
case, the tone template is treated like DTMF tones. When the digit is detected, it is placed in the
digit buffer and can be used for termination. When an associated ASCII digit is specified, tone
events will not be generated for that tone.

Cadence tone on events are reported differently on Dialogic® HMP Software versus on Springware
boards. On Dialogic® HMP Software, if a cadence tone occurs continuously, a DE_TONEON
event is reported for each on/off cycle. On Springware boards, a DE_TONEON event is reported
for the first on/off cycle only. On Dialogic® HMP Software and on Dialogic® Springware boards, a
DE_TONEOFF event is reported when the tone is no longer present.

Table 14. Asynchronous/Synchronous Tone Event Handling

Synchronous Asynchronous

Call dx_addtone() or dx_enbtone() to
enable tone-on/off detection.

Call dx_addtone() or dx_enbtone() to
enable tone-on/off detection.

Call dx_getevt() to wait for CST event(s).
Events are returned in the DX_EBLK data
structure.

Use Dialogic® Standard Runtime Library
(SRL) to asynchronously wait for TDX_CST
event(s).

N/A Use sr_getevtdatap() to retrieve DX_CST
data structure.

Note: These procedures are the same as the retrieval of any other CST event, except that
dx_addtone() or dx_enbtone() are used to enable event detection instead of
dx_setevtmsk().

Dialogic® Voice API Programming Guide 115
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

12.1.7 Setting GTD Tones as Termination Conditions

To detect a GTD (user-defined) tone, you can specify it as a termination condition for I/O
functions. Set the tp_termno field in the DV_TPT structure to DX_TONE, and specify
DX_TONEON or DX_TONEOFF in the tp_data field.

12.1.8 Guidelines for Creating User-Defined Tones

The following guidelines apply when creating user-defined tones:

Note: The terms “user-defined tones” and “tone templates” are used interchangeably. Each tone template
specifies the characteristics of one user-defined tone.

• The maximum number of user-defined tone templates is based on tone templates that define a
dual tone with a frequency range (bandwidth) of 63 Hz. (The detection range is the difference
between the minimum and maximum defined frequencies for the tone.)

• On Dialogic® HMP Software, the maximum number of user-defined tone templates is 40.

Note: In the case where the number of of tone templates is exhausted, no error is returned
on dx_addtone() and subsequent tone detection may fail.

• On Dialogic® HMP Software, the number of user-defined tone templates that are active and
enabled on a channel is limited due to the number of events that a channel can report. The
default maximum number of events for a channel is 20. (A tone-on event and a tone-off event
in the same tone template count as two events.)

• On Dialogic® HMP Software, the default call progress analysis tones (which include tri-tone
special information tone sequences or SIT sequences) are created at board initialization time
and are available for use. If you create new call progress analysis tone templates using
dx_querytone(), dx_deletetone() and dx_createtone(), each tone template counts as a user-
defined tone template, which reduces the number of user-defined tones you can create.

• On Dialogic® HMP Software, building and adding tones of zero frequency values to a tone
template can cause firmware failures.

• On Dialogic® Springware boards, if you use call progress analysis to detect the different call
progress signals (dial tone, busy tone, ringback tone, fax or modem tone), call progress
analysis creates GTD tones. This reduces the number of user-defined tones you can create.

• On Springware boards, if you use call progress analysis to identify tri-tone special information
tone (SIT) sequences, call progress analysis creates GTD tones, which reduces the number of
user-defined tones you can create. Call progress analysis creates one GTD tone template for
each single frequency tone that you define in the DX_CAP structure.

• On Springware boards, if you initiate call progress analysis and there is not enough memory to
create the GTD tones, you will get an EDX_MAXTMPLT error. This indicates that you are
trying to exceed the maximum number of GTD tones.

• On Springware boards, if you use a build tone function (such as dx_blddt()) to define a user-
defined tone that alone or with existing user-defined tones exceeds the available memory, you
will get an EDX_MAXTMPLT error.

• On Springware boards on Linux, call progress analysis SIT detection releases GTD memory
when call progress analysis has completed. The other features do not release GTD memory
until a dx_deltones() is performed.

116 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

• On Springware boards on Linux, if you initiate call progress analysis and there is not enough
memory to create the SIT sequences internally, you will get a T_CAERROR event and the
evtdata field will contain MEMERR.

• On Springware boards on Windows, if you initiate call progress analysis and there is not
enough memory to create the SIT sequences internally, you will get a CR_MEMERR.

• The dx_deltones() function deletes all user-defined tones from a specified channel and
releases the memory that was used for those user-defined tones. When an associated ASCII
digit is specified, tone events will not be generated for that tone.

12.1.9 Global Tone Detection Application

A sample application for global tone detection (GTD) is detecting leading edge debounce time.

Rather than detecting a signal immediately, an application may want to wait for a period of time
(debounce time) before the DE_TONEON event is generated indicating the detection of the signal.
The dx_bldstcad() and dx_blddtcad() functions can detect leading edge debounce on-time. A
tone must be present at a given frequency and for a period of time (debounce time) before a
DE_TONEON event is generated. The debounce time is specified using the tone-on time, tone-on
time deviation, tone-off time, tone-off time deviation, and repetition count parameters in the
dx_bldstcad() or dx_blddtcad() functions.

On Dialogic® HMP Software, to detect leading edge debounce time, specify the following values
for the dx_bldstcad() or dx_blddtcad() function parameters listed below:

• For ontime, specify 1/2 of the desired debounce time

• For ontdev, specify -1/2 of the desired debounce time

• For offtime, specify 0

• For offtdev, specify 0

• For repcnt, specify 0

On Dialogic® Springware boards, to detect leading edge debounce time, specify the following
values for the dx_bldstcad() or dx_blddtcad() function parameters listed below:

• For ontime, specify the desired debounce time

• For ontdev, specify 3

• For offtime, specify 0

• For offtdev, specify 0

• For repcnt, specify 1

Note: The dx_blddt() and dx_bldst() functions cannot be used to detect leading edge debounce time
because they do not have timing field parameters.

Dialogic® Voice API Programming Guide 117
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

12.2 Global Tone Generation (GTG)

The following topics provide information on using global tone generation:

• Using GTG

• GTG Functions

• Building and Implementing a Tone Generation Template

12.2.1 Using GTG

Global tone generation enables the creation of user-defined tones. The tone generation template,
TN_GEN, is used to define the tones with the following information:

• Single or dual tone

• Frequency fields

• Amplitude for each frequency

• Duration of tone

12.2.2 GTG Functions

The following functions are used to generate tones:

dx_bldtngen()
Builds a tone generation template. This convenience function sets up the tone generation
template data structure (TN_GEN) by allowing the assignment of specified values to the
appropriate fields. The tone generation template is placed in the user’s return buffer and can
then be used by the dx_playtone() function to generate the tone.

dx_playtone()
Plays a tone specified by the tone generation template (pointed to by tngenp). Termination
conditions are set using the DV_TPT structure. The reason for termination is returned by the
ATDX_TERMMSK() function. dx_playtone() returns a 0 to indicate that it has completed
successfully.

12.2.3 Building and Implementing a Tone Generation Template

The tone generation template defines the frequency, amplitude, and duration of a single or dual
frequency tone to be played. You can use the convenience function dx_bldtngen() to set up the
structure. Use dx_playtone() to play the tone.

The TN_GEN data structure is defined as:

typedef struct {
 unsigned short tg_dflag; /* dual tone = 1, single tone = 0 */
 unsigned short tg_freq1; /* frequency of tone 1 (in Hz) */
 unsigned short tg_freq2; /* frequency of tone 2 (in Hz) */
 short int tg_ampl1; /* amplitude of tone 1 (in dB) */
 short int tg_ampl2; /* amplitude of tone 2 (in dB) */
 short int tg_dur; /* duration (in 10 msec units) */
} TN_GEN;

118 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

After you build the TN_GEN data structure, there are two ways to define each tone template. You
may either:

• Include the values in the structure

• Pass the values to TN_GEN using the dx_bldtngen() function

If you include the values in the structure, you must create a structure for each tone template. If you
pass the values using the dx_playtone() function, then you can reuse the structure. If you are only
changing one value in a template with many variables, it may be more convenient to use several
structures in the code instead of reusing just one.

After defining the template by either of these methods, pass TN_GEN to dx_playtone() to play the
tone.

12.3 Cadenced Tone Generation

The following topics provide information on enabling and using cadenced tone generation:

• Using Cadenced Tone Generation

• How To Generate a Custom Cadenced Tone

• How To Generate a Non-Cadenced Tone

• TN_GENCAD Data Structure - Cadenced Tone Generation

• How To Generate a Standard PBX Call Progress Signal

• Predefined Set of Standard PBX Call Progress Signals

• Important Considerations for Using Predefined Call Progress Signals

12.3.1 Using Cadenced Tone Generation

Cadenced tone generation is an enhancement to global tone generation that enables you to generate
a signal with up to four single or dual tone elements, each with its own on/off duration creating the
signal pattern or cadence.

Cadenced tone generation is accomplished with the dx_playtoneEx() function and the
TN_GENCAD data structure.

You can define your own custom cadenced tone or take advantage of the built-in set of standard
PBX call progress signals.

12.3.2 How To Generate a Custom Cadenced Tone

A custom cadenced tone is defined by specifying in a TN_GENCAD data structure the repeating
elements of the signal (the cycle) and the number of desired repetitions.

The cycle can consist of up to 4 segments, each with its own tone definition and cadence. A
segment consists of a TN_GEN single or dual tone definition (frequency, amplitude, & duration)
followed by a corresponding off-time (silence duration) that is optional. The dx_bldtngen()

Dialogic® Voice API Programming Guide 119
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

function can be used to set up the TN_GEN components of the TN_GENCAD structure. The tone
duration, or on-time, from TN_GEN (tg_dur) and the offtime from TN_GENCAD are combined to
produce the cadence for the segment. The segments are seamlessly concatenated in ascending order
to generate the signal cycle.

Use the following procedure to generate a custom cadenced tone:

1. Identify the repeating elements of the signal (the cycle).

2. Use a TN_GENCAD structure to define the segments in the cycle:

a. Start with the first tone element in the cycle and identify the single or dual tone
frequencies, amplitudes, and duration (on-time).

b. Use the dx_bldtngen() function to specify this tone definition in tone[0] (the first
TN_GEN tone array element) of the TN_GENCAD structure.

c. Identify the off-time for the first tone element and specify it in offtime[0]. If the first tone
element is followed immediately by a second tone element, set offtime[0] = 0.

d. Define the next segment of the cycle in tone[1] and offtime[1] the same way as above, and
so on, up to the maximum of 4 segments or until you reach the end of the cycle.

3. Use the TN_GENCAD to define the parameters of the cycle:

a. Specify the number of segments in the cycle (numsegs).

b. Specify the number of cycle repetitions (cycles).

4. Set the termination conditions in a DV_TPT structure.

5. Call the dx_playtoneEx() function and use the tngencadp parameter to specify the custom
cadenced tone that you defined in the TN_GENCAD.

For an illustration of this procedure, see Figure 14.

120 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

Figure 14. Example of Custom Cadenced Tone Generation

Signal Description:
Repetition of combined tones
(440 = 480 Hz) ON for 0.8 to
1.2 seconds, followed by 440
Hz tone ON for 0.2 seconds,
and tone OFF for 2.7 to 3.3
seconds applied within a power
range of -14.5 to 17.5 dBm.

Note:
Dialogic provides a predefined
set of standard call progress
signals that can be generated
by dx_playtoneEx(). This
example shows how you would
define the Special Audible Ring
Tone 1 as a custom cadence
tone if it were not already in the
standard set as
CP_RINGBACK1_CALLWAIT.

Description of the Cadence
Tome Used in this Example

Define the Signal as a
Dialogic Custom Cadence Tome

Set the TN_GENCAD Parameters
tngencad.cycles = 255;
tngencad.numsegs = 2;
tngencad.offtime (0) = 0;
tngencad.offtime (1) = 300;
dx_bidtngen(&tgencad.tone(0),440, 480, -16, -16,
100)

Call thhe dx_playtoneEx()
dx_playtoneEx (dxxxdev, &tngencad, tpt, EV_SYNC)

TN_GENCAD tngencad
cycles = 255
numsegs = 2
offtime(0) = 0
offtime(1) = 300
offtime(2) = 0
offtime(3) = 0

TN_GEN tone (0)
dflag(0) = 0
tgfreq1(0) = 440
tgfreq2(0) = 480
tg_amp11(0) = -16
tg_amp12(0) = -16
tg_dur(0) = 100

TN_GEN tone (1)
dflag(1) = 0
tgfreq1(1) = 440
tgfreq2(1) = 0
tg_amp11(1) = -16
tg_amp12(1) = 0
tg_dur(1) = 20

TN_GEN tone (2)
dflag(2) = 0
tgfreq1(2) = 0
tgfreq2(2) = 0
tg_amp11(2) = 0
tg_amp12(2) = 0
tg_dur(2) = 0

TN_GEN tone (3)
dflag(3) = 0
tgfreq1(3) = 0
tgfreq2(3) = 0
tg_amp11(3) = 0
tg_amp12(3) = 0
tg_dur(3) = 0

The TN_GENCAD Definition and
Resulting Signal

Segment 1
440 = 480 Hz
dual tone at -16
dB with on-time
of 100 (10ms
units) and no
off time.

Segment 2
SIngle tone of 440 Hz at
-16 dB with on-time of
20 (10ms units) and off-
time of 300 (or 3

Cycle:
2 segments repeating indefinitely, or until a tpt termination
occurs.

440+480
Hz

100 20

440
Hz

-16
dB 300

Dialogic® Voice API Programming Guide 121
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

12.3.3 How To Generate a Non-Cadenced Tone

Both dx_playtoneEx() and dx_playtone() can generate a non-cadenced tone.

Non-cadenced call progress signals can be generated by the dx_playtone() function if you define
them in a TN_GEN: Dial Tone, Executive Override Tone, and Busy Verification Tone Part A.

The dx_playtoneEx() function can also generate a non-cadenced tone by using a TN_GENCAD
data structure that defines a single segment.

If you want to generate a continuous, non-cadenced signal, use a single segment and zero off-time,
and specify 1) an infinite number of cycles, 2) an infinite on-time, or 3) both. (You must also
specify the appropriate termination conditions in a DV_TPT structure or else the tone will never
end). For example:

cycles = 255;
numsegs = 1;
offtime[0] = 0;
tone[0].tg_dur = -1

12.3.4 TN_GENCAD Data Structure - Cadenced Tone Generation

TN_GENCAD is a voice library data structure (dxxxlib.h) that defines a cadenced tone that can be
generated by using the dx_playtoneEx() function.

The TN_GENCAD data structure contains a tone array with four elements that are TN_GEN data
structures (Tone Generation Templates).

For examples of TN_GENCAD, see the definitions of standard call progress signals in Table 16,
“TN_GENCAD Definitions for Standard PBX Call Progress Signals”, on page 126.

12.3.5 How To Generate a Standard PBX Call Progress Signal

Use the following procedure to generate a standard PBX call progress signal from the predefined
set of standard PBX call progress signals:

1. Select a call progress signal from Table 15, “Standard PBX Call Progress Signals”, on
page 123 and note the signal ID (see also Figure 15, “Standard PBX Call Progress Signals
(Part 1)”, on page 124).

2. Set the termination conditions in a DV_TPT structure.

3. Call the dx_playtoneEx() function and specify the signal ID for the tngencadp parameter.
For example:
dx_playtoneEx(dxxxdev, CP_BUSY, tpt, EV_SYNC)

122 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

12.3.6 Predefined Set of Standard PBX Call Progress Signals

The following information describes the predefined set of standard PBX call progress signals that
are provided by Dialogic:

• Table 15, “Standard PBX Call Progress Signals”, on page 123 lists the predefined, standard,
call progress signals and their signal IDs. The signal IDs can be used with the
dx_playtoneEx() function to generate the signal. (The #defines for the signal IDs are located
in the dxxxlib.h file.)

• Figure 15, “Standard PBX Call Progress Signals (Part 1)”, on page 124 illustrates the signals
along with their tone specifications and cadences. The signals were divided into two parts so
they could be illustrated to scale while providing sufficient detail. Part 1 uses a smaller scale
than Part 2. (For this reason, the order of the signals is different than in the tables.)

• Table 16, “TN_GENCAD Definitions for Standard PBX Call Progress Signals”, on page 126
lists the TN_GENCAD definitions of the signal cycle and segment definitions for each
predefined call progress signal. These definitions are located in the dxgtd.c file.

• Section 12.3.7, “Important Considerations for Using Predefined Call Progress Signals”, on
page 127 describes what standard was used, how the standard was implemented, information
regarding the signal power levels, usage and other considerations.

Dialogic® Voice API Programming Guide 123
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

Table 15. Standard PBX Call Progress Signals

Name Meaning Signal ID (tngencadp)

Dial Tone Ready for dialing CP_DIAL

Reorder Tone (Paths-Busy, All-Trunks-
Busy, Fast Busy)

Call blocked: resources
unavailable

CP_REORDER

Busy Tone (Slow Busy) Called line is busy CP_BUSY

Audible Ring Tone 1 (Ringback Tone) Called party is being alerted CP_RINGBACK1

Audible Ring Tone 2 1 (Slow Ringback
Tone)

Called party is being alerted CP_RINGBACK2

Special Audible Ring Tone 1 1 Called party has Call Waiting
feature and is being alerted

CP_RINGBACK1_CALLWAIT

Special Audible Ring Tone 2 1 Called party has Call Waiting
feature and is being alerted

CP_RINGBACK2_CALLWAIT

Recall Dial Tone Ready for additional dialing on
established connection

CP_RECALL_DIAL

Intercept Tone Call blocked: invalid CP_INTERCEPT

Call Waiting Tone 1 2 Call is waiting: single burst C_CALLWAIT1

Call Waiting Tone 2 2 Call is waiting: double burst CP_CALLWAIT2

Busy Verification Tone (Part A) Alerts parties that attendant is
about to enter connection

CP_BUSY_VERIFY_A

Busy Verification Tone (Part B) Attendant remains connected CP_BUSY_VERIFY_B

Executive Override Tone Overriding party about to be
bridged onto connection

CP_EXEC_OVERRIDE

Confirmation Tone Feature has been activated or
deactivated

CP_FEATURE_CONFIRM

Stutter Dial Tone (Message Waiting
Dial Tone)

Message waiting; ready for dialing CP_STUTTER_DIAL or
CP_MSG_WAIT_DIAL

1 Either of the two Audible Ring Tones can be used but are not intended to be intermixed in a system. When using the
Special Audible Ring Tone (1 or 2), it should correspond to the Audible Ring Tone (1 or 2) that is used.
2 The two Call Waiting Tones (1 & 2) can be used to differentiate between internally and externally originated calls. Call
Waiting Tone 2 is defined as a double burst in this implementation, although “multiple” bursts are permissible.

124 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

Figure 15. Standard PBX Call Progress Signals (Part 1)

25

CP_RINGBACK2
440 + 480 Hz

-16 dB

≈100

≈400

CP_RINGBACK1
440 + 480 Hz

-16 dB ≈300

≈100

CP_BUSY
480 + 620 Hz

-21 dB 50

50

50

50

25CP_REORDER
480 + 620 Hz

-21 dB 25

25

25

25 25

25

CP_DIAL
350 + 440 Hz

-16 dB

Continuous

CP_RINGBACK2_CALLWAIT
a) 440 + 480 Hz b) 440 Hz

-16 dB 400

20200≈
440+480

Hz
440
Hz

CP_RINGBACK1_CALLWAIT
a) 440 + 480 Hz b) 440 Hz

-16 dB ≈300

≈100 20

440
Hz

440+480
Hz

Dialogic® Voice API Programming Guide 125
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

Figure 16. Standard PBX Call Progress Signals (Part 2)

continuous10 10

10 10

10

10

CP_RECALL_DIAL
350 + 440 Hz

-17 db

CP_INTERCEPT
a) 440 Hz + b) 620 Hz

-14 db

CP_CALLWAIT1
440 Hz
-23 db

CP_CALLWAIT2
440 Hz
-23 db

CP_BUSY_VERIFY_A
440 Hz
-14 db

CP_BUSY_VERIFY_B
440 Hz
-14 db

CP_EXEC_OVERRIDE
440 Hz
 -14 db

CP_FEATURE_CONFIRM
350 + 440 Hz

-17 db

CP_MSG_WAIT_DIAL or
CP_STUTTER_DIAL

350 + 440 Hz
-17 db

25 25 25 25

440
Hz

620
Hz

440
Hz

620
Hz

25 25

440
Hz

620
Hz

25 25

440
Hz

620
Hz

2020

1000
=

20

20

20

1000
=

20

20

20

175

60

900
=

300
=

10 10 10

10 10

125
=

25

125
=

25

126 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

Table 16. TN_GENCAD Definitions for Standard PBX Call Progress Signals

SIGNAL_ID

Cycle Definition Segment Definitions

Number
of

Cycles1

Number of
Segments
in Cycle

Frequency
#1 (Hz)

Frequency
#2 (Hz)

Amplitude
#1 (dB)

Amplitude
#2 (dB)

On-
Time2

(10
msec)

Off-
Time
(10

msec)

cycles numsegs tg_freq1 tg_freq2 tg_ampl1 tg_ampl2 tg_dur offtime

CP_DIAL

1 1 350 440 -17 -17 -1 0

CP_REORDER

255 1 480 620 -21 -21 25 25

CP_BUSY

255 1 480 620 -21 -21 50 50

CP_RINGBACK1

255 1 440 480 -16 -16 100 300

CP_RINGBACK2

255 1 440 480 -16 -16 200 400

CP_RINGBACK1_CALLWAIT

255 2 440
440

480
0

-16
-16

-16
0

100
20

0
300

CP_RINGBACK2_CALLWAIT

255 2 440
440

480
0

-16
-16

-16
0

200
20

0
400

CP_RECALL_DIAL

1 4 350
350
350
350

440
440
440
440

-17
-17
-17
-17

-17
-17
-17
-17

10
10
10
-1

10
10
10
0

CP_INTERCEPT

255 2 440
620

0
0

-14
-14

0
0

25
25

0
0

CP_CALLWAIT1

1 2 440
440

0
0

-23
-23

0
0

20
20

1000
0

CP_CALLWAIT2

1 4 440
440
440
440

0
0
0
0

-23
-23
-23
-23

0
0
0
0

20
20
20
20

20
1000

20
0

1 255 specifies an infinite number of cycles (cycles)
2 -1 specifies an infinite tone duration (tg_dur)

Dialogic® Voice API Programming Guide 127
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

12.3.7 Important Considerations for Using Predefined Call
Progress Signals

Take into account the following considerations when using the predefined call progress signals:

• Signal definitions are based on the TIA/EIA Standard: Requirements for Private Branch
Exchange (PBX) Switching Equipment, TIA/EIA-464-B, April 1996 (Telecommunications
Industry Association in association with the Electronic Industries Association, Standards and
Technology Department, 2500 Wilson Blvd., Arlington, VA 22201). To order copies, contact
Global Engineering Documents in the USA at 1-800-854-7179 or 1-303-397-7956.

• A separate Line Lockout Warning Tone, which indicates that the station line has been locked
out because dialing took too long or the station failed to disconnect at the end of a call, is not
necessary and is not recommended. You can use the Reorder tone over trunks; or the Intercept,
Reorder, or Busy tone over stations.

• For signals that specify an infinite repetition of the signal cycle (cycles = 255 on Dialogic®
Springware board or 40 on Dialogic® DM3 board) or an infinite duration of a tone
(tg_dur = -1), you must specify the appropriate termination conditions in the DV_TPT
structure used by dx_playtoneEx().

• There may be more than one way to use TN_GENCAD to generate a given signal. For
example, the three bursts of the Confirmation Tone can be created through one cycle

CP_BUSY_VERIFY_A

1 1 440 0 -14 0 175 0

CP_BUSY_VERIFY_B

255 1 440 0 -14 0 60 900

CP_EXEC_OVERRIDE

1 1 440 0 -14 0 300 0

CP_FEATURE_CONFIRM

1 3 350
350
350

440
440
440

-17
-17
-17

-17
-17
-17

10
10
10

10
10
0

CP_STUTTER_DIAL or CP_MSG_WAIT_DIAL

255 1 350 440 -17 -17 125 25

Table 16. TN_GENCAD Definitions for Standard PBX Call Progress Signals (Continued)

SIGNAL_ID

Cycle Definition Segment Definitions

Number
of

Cycles1

Number of
Segments
in Cycle

Frequency
#1 (Hz)

Frequency
#2 (Hz)

Amplitude
#1 (dB)

Amplitude
#2 (dB)

On-
Time2

(10
msec)

Off-
Time
(10

msec)

cycles numsegs tg_freq1 tg_freq2 tg_ampl1 tg_ampl2 tg_dur offtime

1 255 specifies an infinite number of cycles (cycles)
2 -1 specifies an infinite tone duration (tg_dur)

128 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Tone Detection and Generation, and Cadenced Tone Generation

containing three segments (as in the Dialogic implementation) or through a single segment that
is repeated in three cycles.

• To generate a continuous, non-cadenced signal, you can use dx_playtoneEx() and
TN_GENCAD to specify a single segment with zero off-time and with an infinite number of
cycles and/or an infinite on-time.

Alternatively, you could use dx_playtone() and TN_GEN to generate a non-cadenced signal.
The following non-cadenced call progress signals could be generated by the dx_playtone()
function if you defined them in a TN_GEN: 1) Dial Tone, 2) Executive Override Tone, and 3)
Busy Verification Tone Part A.

• Note that the Intercept Tone consists of alternating single tones.

• Although the TIA/EIA Standard describes the Busy Verification Tone as one signal, the two
segments are separate tones/events: Part A is a single burst almost three times longer than Part
B and it alerts the parties before the attendant intrudes; Part B is a short burst every 9 seconds
continuing as long as the interruption lasts. The TIA/EIA Standard does not define an off-time
between Part A and B. Therefore, the application developer is responsible for implementing
the timing between the two parts of this signal.

• The TIA/EIA Standard specifies the range of permissible power levels per frequency for 1) the
Central Office trunk interface and 2) all other interfaces (including off-premise stations and tie
trunks). The Dialogic implementation adopted the approximate middle value in the acceptable
range of power levels for applying the signals to the CO trunk interface. These power levels
were more restrictive than those for the other interfaces. According to the following statement
in the TIA/EIA Standard, additional requirements and considerations may apply:

“Studies have shown that the lower level tones that are transmitted over trunks should be 6 dB
hotter at the trunk interface (than at the line interface) to compensate for increased loss on the
end-to-end connection. In the case of tones used at higher levels, the 6 dB difference is not
used since power at trunk interfaces must be limited to -13 dBm0 total when averaged over any
3-second interval to prevent carrier overload. Maximum permissible powers listed are
consistent with this requirement taking into account the allowable interruption rates for the
various tones. Uninterrupted tones, such as Dial Tone and Intercept Tone, shall be
continuously limited to -13 dBm.”

For related power level information, see also Note 1 for Tables 29 and 30, Section 5.9, and
Section 6.3.5.

Dialogic® Voice API Programming Guide 129
Dialogic Corporation

1313.Global Dial Pulse Detection

Global dial pulse detection (global DPD) is a signaling component of the voice library. The
following topics provide more information on global DPD:

• Overview . 129

• Global DPD Parameters. 130

• Enabling Global DPD . 130

• Global DPD Programming Considerations . 130

• Retrieving Digits from the Digit Buffer . 131

• Retrieving Digits as Events . 131

• Dial Pulse Detection Digit Type Reporting . 132

• Defines for Digit Type Reporting . 132

• Implementing Global DPD . 132

• Global DPD Example Code. 133

13.1 Overview

Global dial pulse detection is supported on Dialogic® Springware boards only.

Dial Pulse Detection (DPD) allows applications to detect dial pulses from rotary or pulse phones by
detecting the audible clicks produced when a number is dialed, and to use these clicks as if they
were DTMF digits. Dialogic global dial pulse detection, called global DPD, is a software-based
dial pulse detection method that can use country-customized parameters for accurate performance.

Global DPD provides the following features and benefits:

• The algorithm is adaptive and can train on a DPD digit encountered, with the greatest accuracy
produced from training on a digit that has 5 or more pulses. Global DPD does not require a
leading “0” to train the global DPD algorithm.

• Can be performed simultaneously with DTMF detection. The application can determine
whether the digit detected is a DTMF or DPD digit.

• Can be performed simultaneously with Global Tone Detection (GTD). For example, the
application can use GTD to monitor for dial tone or busy tones simultaneously with DPD.

• Supports pulse-digit cut-through during a voice playback, with the correct digit returned in the
digit buffer. Global DPD uses echo cancellation, which provides more accurate reporting of
digits during voice playback.

• The application can enable global DPD and volume control. (Previously, there was a
restriction that DPD digits had to be sent to the event queue instead of the digit queue if
volume control was enabled.)

130 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Dial Pulse Detection

The following applications are supported by the global DPD feature:

• Analog applications using the loop-start telephone interface on a supported voice board

• Digital applications using a supported voice board

13.2 Global DPD Parameters

This feature is referred to as global DPD because its detection algorithm supports a wide range of
dial pulses from 8 pulse-per-second (PPS) to 22 PPS telephones.

Customized global DPD download parameters are provided for several countries such as
Argentina, Brazil, Colombia, India, Japan, Mexico and Venezuela.

On Linux, these parameters are contained in the voice.prm file. To download the global DPD
parameters, select a specific country when the boards are configured.

On Windows®, configure DPD and select a specific country on the Country Property Sheet using
the Dialogic® Configuration Manager (DCM).

13.3 Enabling Global DPD

Global Dial Pulse Detection (DPD) is available by default via software; separate GDPD
enablement packages are no longer required.

Global DPD must be implemented on a call-by-call basis. Use dx_setdigtyp() to enable DPD.

For any digit detected, you can determine the digit type such as DTMF or DPD by using the
DV_DIGIT data structure in the application. When a dx_getdig() or dx_getdigEx() function call
is performed, the digits are collected from the firmware and transferred to the user’s digit buffer.
The digits are stored as an array inside the DV_DIGIT structure.

You then use a pointer to the structure that contains a digit buffer. For an example, see
Section 13.10, “Global DPD Example Code”, on page 133. This method allows you to determine
very quickly whether a pulse or DTMF telephone is being used.

13.4 Global DPD Programming Considerations

The global DPD algorithm will accurately detect digits in the supported regions without requesting
a special training digit from the caller or requiring any other restrictions on the application.
However, consider the following programming guidelines when designing the application:

• Talk-off rejection (the ability of the algorithm to distinguish between dial pulses and the
human voice) will improve after the first digit is detected.

• Digit detection will be slightly more accurate (about 2%) after detecting a digit of 5 or greater.
It is not necessary to dial a special training digit to do this. The application may simply restrict

Dialogic® Voice API Programming Guide 131
Dialogic Corporation

Global Dial Pulse Detection

the first menu to digits 5, 6, 7, 8, 9, and 0, and the training will be complete. Subsequent menus
may be unrestricted.

• In general, detection accuracy is greater for higher digits than for lower. While detection
accuracy is very high, it may be further improved by restricting menu selections, whenever
convenient, to digits greater than 3.

13.5 Retrieving Digits from the Digit Buffer

To get the digits from the digit buffer, use the following synchronous programming model:

1. Define a data structure of type DV_DIGIT (the DV_DIGIT structure is defined by including
the dxxxlib.h header file).

2. Enable DPD on the desired channels using the dx_setdigtyp() function.

3. For each new connection, use dx_setdigtyp() with the D_DPDZ mask, which initializes the
DPD algorithm. After collecting the first DPD digit string, the mask can be set to D_DPD for
the remainder of that connection. Each subsequent invocation of dx_setdigtyp() must use the
D_DPD mask.

4. Execute the dx_getdig() function to collect and transfer the digits to the user’s digit buffer.
The digits are stored in the dg_value field of the DV_DIGIT structure. The corresponding digit
types (dial pulse, DTMF, and so on) are stored in the dg_type field of the DV_DIGIT structure.
For more information, see the DV_DIGIT structure in the Voice API Library Reference.

13.6 Retrieving Digits as Events

To get the digits as events, use the following asynchronous programming model using the
dx_setevtmsk(), sr_waitevt(), and sr_getevtdatap() functions and the DX_CST data structure.

1. Since the supported voice boards come with channels capable of global DPD, you must enable
DPD on the desired channels using the dx_setdigtyp() function.

2. For each new connection, use dx_setdigtyp() with the D_DPDZ mask, which initializes the
DPD algorithm. After collecting the first DPD digit string, the mask can be set to D_DPD for
the remainder of that connection. Each subsequent invocation of dx_setdigtyp() must use the
D_DPD mask.

3. Use dx_setevtmsk() to enable digit detection.

4. Use sr_waitevt() to wait for events.

5. When a CST event occurs, use sr_getevtdatap() to retrieve the pointer to the DX_CST
structure.

6. The cst_data field (DX_CST structure) for a DE_DIGITS event contains an ASCII digit (low
byte) and the digit type (high byte).

132 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Dial Pulse Detection

13.7 Dial Pulse Detection Digit Type Reporting

Two defines are provided for identifying the dial pulse detection digit type, depending upon how
the digit type is retrieved:

DG_DPD
Dial pulse detection digit from the DX_EBLK event queue data (cst_data) through a
DE_DIGITS Call Status Transition event

DG_DPD_ASCII
Dial pulse detection digit from the DV_DIGIT dg_type digit buffer using dx_getdig()

Obtaining the digit type for DPD digits is valid only in the case when the voice and DPD
capabilities are both present on the same board. In the case where a voice board does not support
DPD, you cannot detect DPD digits or obtain the DPD digit type even though you can enable DPD
and digit type reporting without an error.

13.8 Defines for Digit Type Reporting

Use the defines as shown here to determine the digit type from the value returned in the dg_type
(digit type) field from the DV_DIGIT digit buffer. If you get the digit from the DV_DIGIT dg_type
digit buffer using dx_getdig(), you should use the digit type define that has the “_ASCII” suffix.
Otherwise, if you get the digit from the DX_EBLK event queue data (cst_data) through a
DE_DIGITS Call Status Transition event, you should use the digit type define without the
“_ASCII” suffix.

13.9 Implementing Global DPD

Use the following procedure to implement global DPD:

1. Define a data structure of type DV_DIGIT (this structure is specified in the DXDIGIT.H file).

2. Enable DPD on the desired channels using the dx_setdigtyp() function. For new calls you
must use the D_DPDZ mask that initializes the DPD detector for new calls.

Defines for dg_type from

Digit Type Digit Buffer Event Queue

DTMF DG_DTMF_ASCII DG_DTMF

DPD DG_DPD_ASCII DG_DPD

MF DG_MF_ASCII DG_MF

GTD DG_USER1_ASCII DG_USER1

(user-defined) DG_USER2_ASCII DG_USER2

DG_USER3_ASCII DG_USER3

DG_USER4_ASCII DG_USER4

DG_USER5_ASCII DG_USER5

Dialogic® Voice API Programming Guide 133
Dialogic Corporation

Global Dial Pulse Detection

3. Execute the dx_getdig() function to collect and transfer the digits to the user’s digit buffer.
The digits are stored in the dg_value field of the DV_DIGIT structure with the corresponding
digit types stored in the dg_type field of the DV_DIGIT structure.

13.10 Global DPD Example Code

The following example illustrates how to set up and use global DPD. The code uses the
synchronous model.

/*$ dx_setdigtyp()and dx_getdig() example for global dial pulse detection $*/

#include <stdio.h>
#include "srllib.h"
#include "dxxxlib.h"

void main(int argc, char **argv)
{

 int dev; /* Dialogic device handle */
 DV_DIGIT dig;
 DV_TPT tpt;

 /*
 * Open device, make or accept call
 */

 /* set up TPT to wait for 3 digits and terminate */
 dx_clrtpt(&tpt, 1);
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXDTMF;
 tpt.tp_length = 3;
 tpt.tp_flags = TF_MAXDTMF;

 /* enable DPD and DTMF digits */
 dx_setdigtyp(dev, D_DPDZ|D_DTMF);

 /* clear the digit buffer */
 dx_clrdigbuf(dev);

 /* collect 3 digits from the user */
 if (dx_getdig(dev, &tpt, &dig, EV_SYNC) == -1) {
 /* error, display error message */
 printf("dx_getdig error %d, %s\n", ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
 } else {
 /* display digits received and digit type */
 printf("Received \"%s\"\n", dig.dg_value);
 printf("Digit type is ");
 /*
 * digit types have 0x30 ORed with them strip it off
 * so that we can use the DG_xxx equates from the header files
 */
 switch ((dig.dg_type[0] & 0x000f)) {
 case DG_DTMF:
 printf("DTMF\n");
 break;
 case DG_DPD:
 printf("DPD\n");
 break;
 default:
 printf("Unknown, %d\n", (dig.dg_type[0] &0x000f));
 }

134 Dialogic® Voice API Programming Guide
Dialogic Corporation

Global Dial Pulse Detection

 }

 /*
 * continue processing call
 */

Dialogic® Voice API Programming Guide 135
Dialogic Corporation

1414.Building Applications

This chapter provides information on building applications using the Dialogic® Voice API library.
The following topics are discussed:

• Dialogic® Voice and SRL API Libraries . 135

• Compiling and Linking . 136

14.1 Dialogic® Voice and SRL API Libraries

The C-language application programming interface (API) included with the voice software
provides a library of functions used to create voice processing applications.

The Dialogic® Voice API library and the Dialogic® Standard Runtime Library (SRL) files are part
of the voice software. These libraries provide the interface to the voice driver. For detailed
information on the SRL, see the Dialogic® Standard Runtime Library API Programming Guide
and Dialogic® Standard Runtime Library API Programming Guide.

Figure 17 illustrates how the Dialogic® Voice and SRL API libraries interface with the driver.

Figure 17. Dialogic® Voice and SRL API Libraries

APPLICATION

STANDARD
RUNTIME
LIBRARY

VOICE
LIBRARY

DRIVER

136 Dialogic® Voice API Programming Guide
Dialogic Corporation

Building Applications

14.2 Compiling and Linking

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries for Linux

• Required Libraries for Windows®

• Variables for Compiling and Linking

14.2.1 Include Files

Function prototypes and equates are defined in include files, also known as header files.
Applications that use the Dialogic® Voice API library functions must contain statements for
include files in this form, where filename represents the include file name:

#include <filename.h>

The following header files must be included in application code in the order shown prior to
calling Dialogic® Voice API library functions:

srllib.h
Contains function prototypes and equates for the Dialogic® Standard Runtime Library (SRL).
Used for all application development.

dxxxlib.h
Contains function prototypes and equates for the Dialogic® Voice API library. Used for voice
processing applications.

Note: srllib.h must be included in code before all other Dialogic header files.

14.2.2 Required Libraries for Linux

By default, the library files are located in the directory given by the INTEL_DIALOGIC_LIB
environment variable.

You must link the following shared object library files in the order shown when building your
voice processing application:

libdxxx.so
Main voice library file. Specify -ldxxx in makefile.

libsrl.so
Standard Runtime Library file. Specify -lsrl in makefile.

If you use curses, you must ensure that it is the last library to be linked.

Note: When building an application, list Dialogic® libraries before all other libraries.

Dialogic® Voice API Programming Guide 137
Dialogic Corporation

Building Applications

14.2.3 Required Libraries for Windows®

By default, the library files are located in the directory given by the INTEL_DIALOGIC_LIB
environment variable.

You must link the following library files in the order shown when building your voice processing
application:

libdxxmt.lib
Main voice library file.

libsrlmt.lib
Standard Runtime Library file.

14.2.4 Variables for Compiling and Linking

The following variables provide a standardized way of referencing the directories that contain
header files and shared objects:

INTEL_DIALOGIC_DIR
Variable that points to the directory in which the release software is installed.

INTEL_DIALOGIC_INC
Variable that points to the directory in which header files are stored.

INTEL_DIALOGIC_LIB
Variable that points to the directory in which shared library files are stored.

These variables are automatically set at login and should be used in compiling and linking
commands.

Dialogic® Voice API Programming Guide 138

Dialogic Corporation

Index

A
Adaptive Differential Pulse Code Modulation (ADPCM) 78

ADPCM, G.726 78

ADSI_XFERSTRUC data structure 97

A-law PCM 77

Analog Display Services Interface (ADSI) 18, 93

answering machine detection 59

asynchronous programming model 20

ATDV_ERRMSGP() 26

ATDV_LASTERR() 26

ATDX_CONNTYPE() 45, 59

ATDX_CPTERM() 38, 50

ATDX_CRTNID() 43, 57

ATDX_FRQDUR() 64

ATDX_FRQDUR2() 65

ATDX_FRQDUR3() 65

ATDX_FRQHZ() 64

ATDX_FRQHZ2() 64

ATDX_FRQHZ3() 65

ATDX_TERMMSK() 98, 117

B
basic call progress analysis 35

bridge device 19

busy state 27

busy tone 123

busy tone detection 43, 57

busy verification tone 123

C
cadence detection 35, 67

cadenced tone generation 118
custom tone 118
dx_playtoneEx() 118

call progress analysis 35
activating, Springware 51
ATDX_CPERROR() 37
ATDX_CPTERM() 38, 50
busy tone detection 43
call outcomes 39, 52
components 36
dial tone detection 56
disabling, Springware 52
DX_CAP parameter structure 38, 50
errors 37
extended attribute functions 40
extended attribute functions, Springware 53
fax machine detection, DM3 57
fax tone detection, Springware 43
frequency detection 62

errors 65
initiating, Springware 52
modem detection 43, 57
modifying tone definitions, Springware 60
positive answering machine detection 45
positive answering machine detection, Springware 59
positive voice detection 45, 59
ringback detection 42, 56
rules 37
SIT tones 62
special information tone (SIT) frequency detection 43
Springware 50
termination results 39, 52
tone definitions 60
tone detection 41
tone detection, DM3 41
tone detection, Springware 55
tone template, Springware 60
tone templates 46
tone templates, modifying 47
tone types 41, 55
tri-tone frequency detection parameters 62
types 35
use of global tone detection 60
using Global Call API 35

call progress signals, PBX 121

call status transition
event handling

asynchronous 114
synchronous 114

call waiting tone 123

Dialogic® Voice API Programming Guide 139

Dialogic Corporation

caller ID
accessing information 107
enabling 108
error handling 108
support 105
supported formats 105

channel
definition 22

CLASS caller ID 105

clocking 19

coders 76

compiling
library files 136, 137
variables 137

CON_CAD connection type 56

CON_LPC connection type 58

CON_PAMD connection type 59

CON_PVD connection type 59

confirmation tone 123

continuous tone 121

convenience functions
dx_wtcallid() 107
speed and volume 88

CP_BUSY 123

CP_BUSY_VERIFY_A 123

CP_BUSY_VERIFY_B 123

CP_CALLWAIT1 123

CP_CALLWAIT2 123

CP_DIAL 123

CP_EXEC_OVERRIDE 123

CP_FEATURE_CONFIRM 123

CP_INTERCEPT 123

CP_MSG_WAIT_DIAL 123

CP_RECALL_DIAL 123

CP_REORDER 123, 126

CP_RINGBACK1 123

CP_RINGBACK1_CALLWAIT 123

CP_RINGBACK2 123

CP_RINGBACK2_CALLWAIT 123

CP_STUTTER_DIAL 123

CT Bus 18

curses 136

Custom Local Area Signaling Services 105

D
data formats 76

data structures
clearing 30

device
definition 22
handle for 22
initializing hint 32
states of 27

device mapper functions 23

device name
definition 22

dial pulse detection 16
see Global DPD 129

dial tone 123
detection 56

dial tone (message waiting) 123

dial tone (recall) 123

dial tone (stutter) 123

Digital Network Interface boards 19

digitizing methods 76

disabling call progress analysis, Springware 52

DV_DIGIT data structure 131

DV_TPT data structure 97
clearing 30
setting termination conditions 28

dx_addspddig() 88

dx_addtone() 112
used with global tone detection 111
used with tone templates 113

dx_addvoldig() 88

dx_adjsv() 88, 92

dx_blddt() 112

dx_blddtcad() 112

dx_bldst() 112

dx_bldstcad() 112

dx_bldtngen() 117

DX_CAP data structure 38, 50, 59
clearing 30
SIT tone setup 62

dx_chgdur() 61

dx_chgfreq() 61

dx_chgrepcnt() 61

dx_clrcap() 30, 38, 51

dx_clrtpt() 30

dx_createtone() 47

DX_CST data structure 131

dx_deletetone() 47

dx_deltones() 52
used with tone templates 114

dx_dial() 50, 52

140 Dialogic® Voice API Programming Guide
Dialogic Corporation

dx_distone() 114

dx_enbtone() 114

dx_getdig() 30, 92, 131
used with global tone detection 111

dx_getevt() 114

dx_getfeaturelist() 32, 98

dx_getsvmt() 89

dx_gtcallid() 107

dx_gtextcallid() 107

dx_initcallp() 50, 51

dx_mreciottdata() 79

dx_open() 32

dx_play() 76

dx_playf() 76

dx_playiottdata() 79

dx_playtone() 117

dx_playtoneEx()
used with cadenced tone generation 118

dx_playvox() 76

dx_querytone() 47

dx_rec() 76, 80

dx_recf() 76

dx_reciottdata() 79, 82

dx_recm(_) 79

dx_recmf(_) 79

dx_recvox() 76

dx_RxIottData() 97

dx_setdevuio() 30

dx_setdigtyp() 131

dx_setevtmsk() 114

dx_setgtdamp() 112

dx_setparm()
enabling caller ID 108

dx_setsvcond() 88, 92

dx_setsvmt() 89, 92

dx_setuio() 30

DX_SVCB data structure 92

DX_SVMT data structure 92

dx_TxIottData() 97

dx_TxRxIottData() 97

dx_wtcallid() 107

dxxxlib.h 136

E
encoding algorithms 76

G.726 details 78
support in SCR 81

enhanced call progress analysis 35

error handling 26

error handling in caller ID 108

ETSI-FSK specification 97

event handling 24

event management functions 24

executive override tone 123

extended attribute functions
call progress analysis 40
call progress analysis, Springware 53

F
fast busy 123

fax machine detection 57

fax tone detection 36, 43

FEATURE_TABLE data structure 98

frequency detection 35, 62

frequency shift keying (FSK) 18, 93

functions
error 26

G
G.711 PCM A-law voice coder 77

G.711 PCM mu-law voice coder 77

G.726 bit exact voice coder 77, 78

global dial pulse detection 16, 129

Global DPD
getting digits 131

global DPD 16, 129
enabling 130
example code 133
getting digits 131
improving detection 130

global tone detection
applications 116
building tone templates 111
call progress analysis memory usage 65
defining tones 111
definition 110
leading edge detection 116
maximum number of tones 115
multiprocessing considerations 31
using with PBX 112
with caller ID 105

Dialogic® Voice API Programming Guide 141

Dialogic Corporation

global tone generation
cadenced 118
definition 117
TN_GEN data structure 117
tone generation template 117

GSM 6.10 full rate voice coder 77, 78

H
header files

voice and SRL 136

HMP Interface Boards 19

I
I/O functions

terminations 27

idle state 27

include files
voice and SRL 136

infinite tone 121

INTEL_DIALOGIC_DIR 137

INTEL_DIALOGIC_INC 137

INTEL_DIALOGIC_LIB 137

intercept tone 123

L
leading edge detection using debounce time 116

libdxxmt.lib 137

libdxxx.so 136

library files 136, 137

libsrl.so 136

libsrlmt.lib 137

linear PCM 77, 78

linking
library files 136, 137
variables 137

loop current detection 35
parameters affecting a connect 58
use in call progress analysis 58

M
message waiting dial tone 123

modem detection 57

modem tone detection 43

mu-law PCM 77

multiprocessing 31

multithreading 31

N
non-cadenced tone 121

O
OKI ADPCM 77

one-way ADSI
implementing 99
technical overview 98

operator intercept
SIT tones 62

P
PAMD 59

PAMD See Positive Answering Machine Detection 59

PAMD_ACCU 59

PAMD_FULL 59

PAMD_QUICK 59

parameter files, voice.prm 80

PBX call progress signals
cadenced tone generation 118
standard 121

Perfect Call call progress analysis 35

playback 75

positive answering machine detection 35, 45, 59

positive voice detection 35, 45

positive voice detection using call progress analysis 59

post-connect call analysis 35

pre-connect call progress 35

Private Branch Exchange (PBX) Switching Equipment
requirements 127

programming models 20

R
recall dial tone 123

recording 75
with silence compression 79
with voice activity detector 81

reorder tone 123

ringback detection 42, 56

ringback tone 123

ringback tone (call waiting) 123

ringback tone (slow) 123

S
short message service (SMS) 18, 93, 97

142 Dialogic® Voice API Programming Guide
Dialogic Corporation

signals
cadenced, custom 118
predefined standard PBX call progress 121

silence compressed record (SCR) 17, 79
overview 79

silence compression
voice activity detector 82

SIT sequence
returning 42

SIT tones
call progress analysis parameter setup 62
detection

using call progress analysis 62
effect on GTD tones 65
frequency detection 43
frequency information 66
memory usage for detection 65
Springware 62
tone sequences 62
using extended attribute functions 64

slow busy 123

small message service (SMS) 93

Special Information Tone (SIT) sequence
returning 42

speed control
adjustment functions 88
convenience functions 88
explicitly adjusting 92
modification tables 88
on DM3 boards 90
setting adjustment conditions 92

Springware
tone definitions 60

sr_getevtdatap() 114

srllib.h 136

Standard Runtime Library
definition 20
device mapper functions 23
event management functions 24

Standard Runtime Library (SRL) 135

states 27

structures
clearing 30

stutter dial tone 123

SVMT table 88

synchronous programming model 21

T
talk-off rejection 130

TDM bus 18

TDX_CST events 114

TDX_VAD event 82

termination conditions 27
byte transfer count 28
dx_stopch() occurred 28
end of file reached 28
loop current drop 28
maximum delay between digits 28
maximum digits received 29
maximum function time 30
maximum length of non-silence 29
maximum length of silence 29
pattern of silence and non-silence 29
specific digit received 29
user-defined digit received 30
user-defined tone on/tone off event detected 30
user-defined tones 115

text messaging 93

TIA/EIA Standard 127

TID_BUSY1 41, 57

TID_BUSY2 41, 57

TID_DIAL_INTL 41

TID_DIAL_LCL 41

TID_DISCONNECT 41

TID_FAX1 41

TID_FAX2 41

TID_RINGBK1 41

TID_RINGBK2 42

TID_SIT_ANY 42

TID_SIT_IC 42

TID_SIT_INEFFECTIVE_OTHER 42

TID_SIT_IO 42

TID_SIT_NC 42

TID_SIT_NC_INTERLATA 42

TID_SIT_NO_CIRCUIT 42

TID_SIT_NO_CIRCUIT_INTERLATA 42

TID_SIT_OPERATOR_INTERCEPT 42

TID_SIT_REORDER_TONE 42

TID_SIT_REORDER_TONE_INTERLATA 42

TID_SIT_RO 42

TID_SIT_RO_INTERLATA 42

TID_SIT_VACANT_CIRCUIT 42

TID_SIT_VC 42

TN_GEN data structure 117

TN_GENCAD data structure 118, 121

Dialogic® Voice API Programming Guide 143

Dialogic Corporation

tone definitions
call progress analysis default 46
modifying for call progress analysis 47
modifying, Springware 60
Springware 60

tone detection
call progress analysis 41
call progress analysis, DM3 41
call progress analysis, Springware 55
global tone detection 110

tone generation
cadenced 118

tone template
Springware 60

tone templates
building 112, 113
call progress analysis default 46
functions used 113
global tone detection 111
modifying for call progress analysis 47

tone types
call progress analysis 41, 55

TONE_DATA data structure 48

TONE_SEG data structure 48

tones
cadenced, custom 118
maximum number for global tone detection 115
predefined standard PBX 121

transaction record 79

trunks busy 123

two-way ADSI 96
implementing 101, 102
technical overview 100

two-way FSK 96

U
user-defined I/O functions 30

user-defined tones
building tone templates 111
definition 110
maximum number for global tone detection 115
tp_data 115
tp_termno 115

V
VAD

see voice activity detector 81

variables
compiling and linking 137

virtual board
definition 22

voice activity detector (VAD) 81

voice coders 76

voice encoding methods 76

voice library 135

voice profile for internet messaging (VPIM) 78

voice.prm 80

volume control
adjustment digits 92
adjustment functions 88
convenience functions 88
explicitly adjusting 92
modification tables 88
setting adjustment conditions 92

VPIM 78

	Dialogic® Voice API
	Contents
	Figures
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Overview
	1.2 Dialogic® R4 API
	1.3 Dialogic® Host Media Processing (HMP) Software
	1.4 Call Progress Analysis
	1.5 Tone Generation and Detection Features
	1.5.1 Global Tone Detection (GTD)
	1.5.2 Global Tone Generation (GTG)
	1.5.3 Cadenced Tone Generation

	1.6 Dial Pulse Detection
	1.7 Play and Record Features
	1.7.1 Play and Record Functions
	1.7.2 Speed and Volume Control
	1.7.3 Transaction Record
	1.7.4 Silence Compressed Record
	1.7.5 Streaming to Board

	1.8 Send and Receive FSK Data
	1.9 Caller ID
	1.10 TDM Bus Routing

	2. Programming Models
	2.1 Dialogic® Standard Runtime Library
	2.2 Asynchronous Programming Models
	2.3 Synchronous Programming Model

	3. Device Handling
	3.1 Device Concepts
	3.2 Voice Device Names

	4. Event Handling
	4.1 Overview of Event Handling
	4.2 Event Management Functions

	5. Error Handling
	6. Application Development Guidelines
	6.1 General Considerations
	6.1.1 Busy and Idle States
	6.1.2 Setting Termination Conditions for I/O Functions
	6.1.3 Setting Termination Conditions for Digits
	6.1.4 Clearing Structures Before Use
	6.1.5 Working with User-Defined I/O Functions

	6.2 Additional Considerations
	6.2.1 Multithreading and Multiprocessing
	6.2.2 Device Discovery
	6.2.3 Device Initialization Hint
	6.2.4 Tone Detection Considerations

	7. Call Progress Analysis
	7.1 Call Progress Analysis Overview
	7.2 Call Progress and Call Analysis Terminology
	7.3 Call Progress Analysis Components
	7.4 Call Progress Analysis Errors
	7.5 Using Call Progress Analysis on HMP Voice Devices
	7.5.1 Call Progress Analysis Rules
	7.5.2 Initiating Call Progress Analysis
	7.5.3 Setting Up Call Progress Analysis Parameters
	7.5.4 Executing a Dial Function
	7.5.5 Determining the Outcome of a Call
	7.5.6 Obtaining Additional Call Outcome Information

	7.6 Call Progress Analysis Tone Detection on HMP Voice Devices
	7.6.1 Tone Detection Overview
	7.6.2 Types of Tones
	7.6.3 Ringback Detection
	7.6.4 Busy Tone Detection
	7.6.5 Fax or Modem Tone Detection
	7.6.6 SIT Frequency Detection

	7.7 Media Tone Detection on HMP Voice Devices
	7.7.1 Positive Voice Detection (PVD)
	7.7.2 Positive Answering Machine Detection (PAMD)

	7.8 Default Call Progress Analysis Tone Definitions on HMP Voice Devices
	7.9 Modifying Default Call Progress Analysis Tone Definitions on HMP Voice Devices
	7.9.1 API Functions for Manipulating Tone Definitions
	7.9.2 TONE_DATA Data Structure
	7.9.3 Rules for Modifying a Tone Definition
	7.9.4 Rules for Using a Single Tone Proxy for a Dual Tone
	7.9.5 Steps to Modify a Tone Definition

	7.10 Using Call Progress Analysis on Springware Boards
	7.10.1 Initiating Call Progress Analysis
	7.10.2 Setting Up Call Progress Analysis Parameters
	7.10.3 Enabling Call Progress Analysis
	7.10.4 Executing a Dial Function
	7.10.5 Determining the Outcome of a Call
	7.10.6 Obtaining Additional Call Outcome Information

	7.11 Call Progress Analysis Tone Detection on Springware Boards
	7.11.1 Tone Detection Overview
	7.11.2 Types of Tones
	7.11.3 Dial Tone Detection
	7.11.4 Ringback Detection
	7.11.5 Busy Tone Detection
	7.11.6 Fax or Modem Tone Detection
	7.11.7 Loop Current Detection

	7.12 Media Tone Detection on Springware Boards
	7.12.1 Positive Voice Detection (PVD)
	7.12.2 Positive Answering Machine Detection (PAMD)

	7.13 Default Call Progress Analysis Tone Definitions on Springware Boards
	7.14 Modifying Default Call Progress Analysis Tone Definitions on Springware Boards
	7.15 SIT Frequency Detection on Springware Boards
	7.15.1 Tri-Tone SIT Sequences
	7.15.2 Setting Tri-Tone SIT Frequency Detection Parameters
	7.15.3 Obtaining Tri-Tone SIT Frequency Information
	7.15.4 Global Tone Detection Tone Memory Usage
	7.15.5 Frequency Detection Errors
	7.15.6 Setting Single Tone Frequency Detection Parameters
	7.15.7 Obtaining Single Tone Frequency Information

	7.16 Cadence Detection in Basic Call Progress Analysis on Springware Boards
	7.16.1 Overview
	7.16.2 Typical Cadence Patterns
	7.16.3 Elements of a Cadence
	7.16.4 Outcomes of Cadence Detection
	7.16.5 Setting Selected Cadence Detection Parameters
	7.16.6 Obtaining Cadence Information

	8. Recording and Playback
	8.1 Overview of Recording and Playback
	8.2 Digital Recording and Playback
	8.3 Play and Record Functions
	8.4 Play and Record Convenience Functions
	8.5 Voice Encoding Methods
	8.6 G.726 Voice Coder
	8.7 Transaction Record
	8.8 Silence Compressed Record
	8.8.1 Overview
	8.8.2 Enabling
	8.8.3 Encoding Methods Supported

	8.9 Recording with the Voice Activity Detector
	8.9.1 Overview
	8.9.2 Enabling
	8.9.3 Encoding Methods Supported

	8.10 Streaming to Board
	8.10.1 Streaming to Board Overview
	8.10.2 Streaming to Board Functions
	8.10.3 Implementing Streaming to Board
	8.10.4 Streaming to Board Guidelines

	9. Speed and Volume Control
	9.1 Speed and Volume Control Overview
	9.2 Speed and Volume Convenience Functions
	9.3 Speed and Volume Adjustment Functions
	9.4 Speed and Volume Modification Tables
	9.5 Play Adjustment Digits
	9.6 Setting Play Adjustment Conditions
	9.7 Explicitly Adjusting Speed and Volume

	10. Send and Receive FSK Data
	10.1 Overview of ADSI and Two-Way FSK Support
	10.2 ADSI Protocol
	10.3 ADSI Operation
	10.4 One-Way ADSI
	10.5 Two-Way ADSI
	10.5.1 Transmit to On-Hook CPE
	10.5.2 Two-Way FSK

	10.6 Fixed-Line Short Message Service (SMS)
	10.7 ADSI and Two-Way FSK Voice Library Support
	10.8 Developing ADSI Applications
	10.8.1 Technical Overview of One-Way ADSI Data Transfer
	10.8.2 Implementing One-Way ADSI Using dx_TxIottData()
	10.8.3 Technical Overview of Two-Way ADSI Data Transfer
	10.8.4 Implementing Two-Way ADSI Using dx_TxIottData()
	10.8.5 Implementing Two-Way ADSI Using dx_TxRxIottData()

	10.9 Modifying Older One-Way ADSI Applications

	11. Caller ID
	11.1 Overview of Caller ID
	11.2 Caller ID Formats
	11.3 Accessing Caller ID Information
	11.4 Enabling Channels to Use the Caller ID Feature
	11.5 Error Handling
	11.6 Caller ID Technical Specifications

	12. Global Tone Detection and Generation, and Cadenced Tone Generation
	12.1 Global Tone Detection (GTD)
	12.1.1 Overview of Global Tone Detection
	12.1.2 Global Tone Detection on HMP Software versus Springware Boards
	12.1.3 Defining Global Tone Detection Tones
	12.1.4 Building Tone Templates
	12.1.5 Working with Tone Templates
	12.1.6 Retrieving Tone Events
	12.1.7 Setting GTD Tones as Termination Conditions
	12.1.8 Guidelines for Creating User-Defined Tones
	12.1.9 Global Tone Detection Application

	12.2 Global Tone Generation (GTG)
	12.2.1 Using GTG
	12.2.2 GTG Functions
	12.2.3 Building and Implementing a Tone Generation Template

	12.3 Cadenced Tone Generation
	12.3.1 Using Cadenced Tone Generation
	12.3.2 How To Generate a Custom Cadenced Tone
	12.3.3 How To Generate a Non-Cadenced Tone
	12.3.4 TN_GENCAD Data Structure - Cadenced Tone Generation
	12.3.5 How To Generate a Standard PBX Call Progress Signal
	12.3.6 Predefined Set of Standard PBX Call Progress Signals
	12.3.7 Important Considerations for Using Predefined Call Progress Signals

	13. Global Dial Pulse Detection
	13.1 Overview
	13.2 Global DPD Parameters
	13.3 Enabling Global DPD
	13.4 Global DPD Programming Considerations
	13.5 Retrieving Digits from the Digit Buffer
	13.6 Retrieving Digits as Events
	13.7 Dial Pulse Detection Digit Type Reporting
	13.8 Defines for Digit Type Reporting
	13.9 Implementing Global DPD
	13.10 Global DPD Example Code

	14. Building Applications
	14.1 Dialogic® Voice and SRL API Libraries
	14.2 Compiling and Linking
	14.2.1 Include Files
	14.2.2 Required Libraries for Linux
	14.2.3 Required Libraries for Windows®
	14.2.4 Variables for Compiling and Linking

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

