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About This Publication

The following topics provide information about this publication: 

• Purpose 

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This guide provides instructions for developing applications on Linux and Windows® operating 
systems using the Dialogic® Voice API that is supplied with the Dialogic® Host Media Processing 
(HMP) Software product. 

This document is a companion guide to the Dialogic® Voice API Library Reference, which 
describes the voice functions, data structures, events, and error codes.  

Applicability

This document version is published for Dialogic® Host Media Processing Software Release 
3.0WIN Service Update and Dialogic® Host Media Processing Software Release 4.1LIN Service 
Update.

This document also applies to Dialogic® Springware Architecture PCIe boards that are supported 
by Dialogic® HMP Software; for example, the D/80PCIE-LS board.

This document may also be applicable to other software releases (including service updates) on 
Linux or Windows® operating systems. Check the Release Guide for your software release to 
determine whether this document is supported.

Intended Audience

This guide is intended for software developers who choose to access the voice software. They may 
include distributors, system integrators, toolkit developers, independent software vendors (ISVs), 
value added resellers (VARs), and original equipment manufacturers (OEMs).
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About This Publication

How to Use This Publication

This publication assumes that you are familiar with the Linux or Windows® operating systems and 
the C programming language. 

The information in this guide is organized as follows: 

• Chapter 1, “Product Description” introduces the features of the voice library and provides a 
brief description of each feature. 

• Chapter 2, “Programming Models” provides a brief overview of supported programming 
models.

• Chapter 3, “Device Handling” discusses topics related to devices, such as device naming 
concepts. 

• Chapter 4, “Event Handling” provides information on functions used to handle events.

• Chapter 5, “Error Handling” provides information on handling errors in your application. 

• Chapter 6, “Application Development Guidelines” provides programming guidelines and 
techniques for developing an application using the voice library.

• Chapter 7, “Call Progress Analysis” describes components of call progress analysis and 
discusses how one can use call progress analysis.

• Chapter 8, “Recording and Playback” discusses playback and recording features, such as 
encoding algorithms, and play and record API functions.

• Chapter 9, “Speed and Volume Control” explains how to control the speed and volume of 
playback recordings through API functions and data structures.

• Chapter 10, “Send and Receive FSK Data” describes the two-way frequency shift keying 
(FSK) feature and the Analog Display Services Interface (ADSI).

• Chapter 11, “Caller ID” describes the caller ID feature.

• Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation” 
describes the tone detection and tone generation features.

• Chapter 13, “Global Dial Pulse Detection” discusses the Global DPD feature, the API 
functions provided for this feature, and programming guidelines.

• Chapter 14, “Building Applications” discusses compiling and linking requirements such as 
include files and library files.

Related Information

See the following for additional information:  

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/ 
http://www.dialogic.com/support/
http://www.dialogic.com
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11.Product Description

This chapter provides information on Dialogic® Voice API library features and capabilities. The 
following topics are covered: 

• Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

• Dialogic® R4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

• Dialogic® Host Media Processing (HMP) Software. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

• Call Progress Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

• Tone Generation and Detection Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

• Dial Pulse Detection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

• Play and Record Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

• Send and Receive FSK Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

• Caller ID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

• TDM Bus Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Overview

The Dialogic® Voice API provides a comprehensive set of features for building a wide range of 
computer telephony applications such as voice messaging, interactive voice response, 
telemarketing/call center, operator services, and more. Features include DTMF detection, tone 
signaling, global tone detection and generation, call progress analysis, and a variety of voice 
encoding algorithms selectable on a channel-by-channel basis.

The Dialogic® Voice API consists of a C language library of functions, device drivers, and 
firmware.

The Dialogic® Voice API library is well integrated with other technology libraries provided by 
Dialogic such as fax, conferencing, speech, and multimedia services. This architecture enables new 
capabilities to be added to your application as needed.

1.2 Dialogic® R4 API

The term R4 API (“System Software Release 4 Application Programming Interface”) describes the 
direct interface used for creating computer telephony application programs. The Dialogic® R4 API 
is a rich set of proprietary APIs for building computer telephony applications on Dialogic® 
products, including Dialogic® Host Media Processing (HMP) software. These APIs encompass 
technologies such as fax, conferencing, speech, and multimedia. This document describes the 
Dialogic® Voice API.
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The R4 API supports the original Dialogic® Springware architecture products (also referred to 
herein as “Dialogic® Springware boards” or “Springware boards”) and the later Dialogic® DM3 
mediastream architecture products (also referred to herein as “Dialogic® DM3 boards” or “DM3 
boards”). 

Feature differences between these two categories of products, as well as restrictions and 
limitations, are noted in this document as applicable.

1.3 Dialogic® Host Media Processing (HMP) Software

Dialogic® Host Media Processing (HMP) Software performs media processing tasks on general-
purpose servers without the need for specialized hardware. When installed on a system, Dialogic® 
HMP Software performs like a virtual Dialogic® DM3 board to the customer application, but all 
media processing takes place on the host processor. 

Note: In this document, the term “DM3 board” or “ board” represents the virtual Dialogic® DM3 board. 
The terms are used interchangeably with Dialogic® HMP Software.

1.4 Call Progress Analysis

Call progress analysis monitors the progress of an outbound call after it is dialed into the Public 
Switched Telephone Network (PSTN). 

There are two forms of call progress analysis: basic and Perfect Call. Perfect Call call progress 
analysis uses an improved method of signal identification and can detect fax machines and 
answering machines. Basic call progress analysis provides backward compatibility for older 
applications written before Perfect Call call progress analysis became available. 

Basic call progress analysis is supported on Dialogic® Springware boards only.

See Chapter 7, “Call Progress Analysis” for detailed information about this feature. 

1.5 Tone Generation and Detection Features

In addition to DTMF and MF tone detection and generation, the following signaling features are 
provided by the voice library: 

• Global Tone Detection (GTD)

• Global Tone Generation (GTG)

• Cadenced Tone Generation
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1.5.1 Global Tone Detection (GTD)

Global tone detection allows you to define single or dual-frequency tones for detection on a 
channel-by-channel basis. Global tone detection and GTD tones are also known as user-defined 
tone detection and user-defined tones.

Use global tone detection to detect single- or dual-frequency tones outside the standard DTMF 
range of 0-9, a-d, *, and #. The characteristics of a tone can be defined and tone detection can be 
enabled using GTD functions and data structures provided in the voice library. 

See Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation” for more 
information about global tone detection. 

1.5.2 Global Tone Generation (GTG)

Global tone generation allows you to define a single- or dual-frequency tone in a tone generation 
template and to play the tone on a specified channel. 

See Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation” for more 
information about global tone generation. 

1.5.3 Cadenced Tone Generation

Cadenced tone generation is an enhancement to global tone generation. It allows you to generate a 
tone with up to 4 single- or dual-tone elements, each with its own on/off duration, which creates the 
signal pattern or cadence. You can define your own custom cadenced tone or take advantage of the 
built-in set of standard PBX call progress signals, such as dial tone, ringback, and busy.

See Chapter 12, “Global Tone Detection and Generation, and Cadenced Tone Generation” for more 
information about cadenced tone generation. 

1.6 Dial Pulse Detection

Dial pulse detection (DPD) allows applications to detect dial pulses from rotary or pulse phones by 
detecting the audible clicks produced when a number is dialed, and to use these clicks as if they 
were DTMF digits. Global dial pulse detection, called global DPD, is a software-based dial pulse 
detection method that can use country-customized parameters for extremely accurate performance. 

Dial pulse detection is supported on Dialogic® Springware boards only.

See Chapter 13, “Global Dial Pulse Detection” for more information about this feature. 
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1.7 Play and Record Features

The play and record features that are supported by the Dialogic® Voice API library include the 
following:

• Play and Record Functions

• Speed and Volume Control

• Transaction Record

• Silence Compressed Record

• Streaming to Board

1.7.1 Play and Record Functions

The Dialogic® Voice API library includes several functions and data structures for recording and 
playing audio data. These allow you to digitize and store human voice; then retrieve, convert, and 
play this digital information. 

For more information about play and record features, see Chapter 8, “Recording and Playback”. 
For information about voice encoding methods supported, see Section 8.5, “Voice Encoding 
Methods”, on page 76. For information about play and record functions, see the Dialogic® Voice 
API Library Reference. 

1.7.2 Speed and Volume Control

The speed and volume control feature allows you to control the speed and volume of a message 
being played on a channel, for example, by entering a DTMF tone. 

Se Chapter 9, “Speed and Volume Control” for more information about this feature.

1.7.3 Transaction Record

The transaction record feature allows voice activity on two channels to be summed and stored in a 
single file, or in a combination of files, devices, and memory. This feature is useful in call center 
applications where it is necessary to archive a verbal transaction or record a live conversation.

See Chapter 8, “Recording and Playback” for more information on the transaction record feature. 

1.7.4 Silence Compressed Record

The silence compressed record (SCR) feature enables recording with silent pauses eliminated. This 
results in smaller recorded files with no loss of intelligibility. 

When the audio level is at or falls below the silence threshold for a minimum duration of time, 
silence compressed record begins. If a short burst of noise (glitch) is detected, the compression 
does not end unless the glitch is longer than a specified period of time. 
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See Chapter 8, “Recording and Playback” for more information. 

1.7.5 Streaming to Board

The streaming to board feature allows you to stream data to a network interface in real time. Unlike 
the standard voice play feature (store and forward), data can be streamed in real time with little 
delay as the amount of initial data required to start the stream is configurable. The streaming to 
board feature is essential for applications such as text-to-speech, distributed prompt servers, and IP 
gateways. 

Streaming to board is not supported on Dialogic® Springware boards.

For more information about this feature, see Chapter 8, “Recording and Playback”. 

1.8 Send and Receive FSK Data

The send and receive frequency shift keying (FSK) data interface is used for Analog Display 
Services Interface (ADSI) and fixed-line short message service, also called small message service, 
or SMS. Frequency shift keying is a frequency modulation technique to send digital data over 
voiced band telephone lines. ADSI allows information to be transmitted for display on a display-
based telephone connected to an analog loop start line, and to store and forward SMS messages in 
the Public Switched Telephone Network (PSTN). The telephone must be a true ADSI-compliant or 
fixed line SMS-compliant device. 

Send and receive FSK data is supported on Dialogic® Springware boards only.

See Chapter 10, “Send and Receive FSK Data” for more information on ADSI, FSK, and SMS.

1.9 Caller ID

An application can enable the caller ID feature on specific channels to process caller ID 
information as it is received with an incoming call. Caller ID information can include the calling 
party’s directory number (DN), the date and time of the call, and the calling party’s subscriber 
name. 

Caller ID as described here is applicable to Dialogic® Springware boards only.

See Chapter 11, “Caller ID” for more information about this feature. 

1.10 TDM Bus Routing

A time division multiplexing (TDM) bus is a technique for transmitting a number of separate 
digitized signals simultaneously over a communication medium. TDM bus includes the CT Bus. 
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The CT Bus is an implementation of the computer telephony bus standard developed by the 
Enterprise Computer Telephony Forum (ECTF) and accepted industry-wide. The H.100 hardware 
specification covers CT Bus implementation using the PCI form factor. The CT Bus has 4096 bi-
directional time slots.  

On Dialogic® HMP Software, no physical TDM bus exists but its functionality is implemented in 
the software. Starting with Dialogic® HMP Software Release 2.0 for Windows®, Dialogic® HMP 
Interface Boards are supported. These boards have a bridge device that is capable of streaming data 
between HMP Software and boards connected to the CT Bus. Additionally, the bridge device is 
capable of providing clocking to HMP Software. The clocking provided to HMP Software from an 
HMP Interface Board is derived from CT Bus clocking. For more information on clocking, see the 
Configuration Guide associated with your software release. 

For information on TDM bus routing functions, see the Dialogic® Voice API Library Reference.



Dialogic® Voice API Programming Guide 20
Dialogic Corporation

22.Programming Models

This chapter briefly discusses the Dialogic® Standard Runtime Library and supported 
programming models: 

• Dialogic® Standard Runtime Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

• Asynchronous Programming Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

• Synchronous Programming Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Dialogic® Standard Runtime Library

The Dialogic® Standard Runtime Library (SRL) provides a set of common system functions that 
are device independent and are applicable to all Dialogic® devices. The SRL consists of a data 
structure, event management functions, device management functions (called standard attribute 
functions), and device mapper functions. You can use the SRL to simplify application 
development, such as by writing common event handlers to be used by all devices.  

When developing voice processing applications, refer to the Standard Runtime Library 
documentation in tandem with the voice library documentation. For more information on the 
Standard Runtime Library, see the Dialogic® Standard Runtime Library API Library Reference and 
Dialogic® Standard Runtime Library API Programming Guide.

2.2 Asynchronous Programming Models

Asynchronous programming enables a single program to control multiple voice channels within a 
single process. This allows the development of complex applications where multiple tasks must be 
coordinated simultaneously. 

The asynchronous programming model uses functions that do not block thread execution; that is, 
the function continues processing under the hood. A Standard Runtime Library (SRL) event later 
indicates function completion. 

Generally, if you are building applications that use any significant density, you should use the 
asynchronous programming model to develop field solutions.

For complete information on asynchronous programming models, see the Dialogic® Standard 
Runtime Library API Programming Guide. 
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2.3 Synchronous Programming Model

The synchronous programming model uses functions that block application execution until the 
function completes. This model requires that each channel be controlled from a separate process. 
This allows you to assign distinct applications to different channels dynamically in real time.

Synchronous programming models allow you to scale an application by simply instantiating more 
threads or processes (one per channel). This programming model may be easy to encode and 
manage but it relies on the system to manage scalability. Applying the synchronous programming 
model can consume large amounts of system overhead, which reduces the achievable densities and 
negatively impacts timely servicing of both hardware and software interrupts. Using this model, a 
developer can only solve system performance issues by adding memory or increasing CPU speed 
or both. The synchronous programming models may be useful for testing or very low-density 
solutions.

For complete information on synchronous programming models, see the Dialogic® Standard 
Runtime Library API Programming Guide. 
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33.Device Handling

This chapter describes the concept of a voice device and how voice devices are named and used.

• Device Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

• Voice Device Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Device Concepts

The following concepts are important in understanding devices and device handling:

device
A device is a computer component controlled through a software device driver. A resource 
board, such as a voice resource, fax resource, and conferencing resource, and network 
interface board, contains one or more logical board devices. Each channel or time slot on the 
board is also considered a device.

device channel
A device channel refers to a data path that processes one incoming or outgoing call at a time 
(equivalent to the terminal equipment terminating a phone line). 

device name
A device name is a literal reference to a device, used to gain access to the device via an 
xx_open( ) function, where “xx” is the prefix defining the device to be opened. For example, 
“dx” is the prefix for voice device and “fx” for fax device. 

device handle
A device handle is a numerical reference to a device, obtained when a device is opened using 
xx_open( ), where “xx” is the prefix defining the device to be opened. The device handle is 
used for all operations on that device. 

virtual boards
The device driver views a single voice board with more than four channels as multiple 
emulated Dialogic® D/4x boards. These emulated boards are called virtual boards. For 
example, a system with 44 voice channels consists of 11 virtual boards.

3.2 Voice Device Names

The software assigns a device name to each device or each component on a board. A voice device is 
named dxxxBn, where n is the device number assigned in sequential order down the list of sorted 
voice boards. A device corresponds to a grouping of two or four voice channels. 

For example, a system running Dialogic® Host Media Processing (HMP) software with 44 voice 
channels has 11 virtual board devices, where each device consists of four channels. Examples of 
board device names for voice boards are dxxxB1 and dxxxB2.
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A device name can be appended with a channel or component identifier. A voice channel device is 
named dxxxBnCy, where y corresponds to one of the voice channels. Examples of channel device 
names for voice boards are dxxxB1C1 and dxxxB1C2.

Use the Dialogic® Standard Runtime Library device mapper functions to retrieve information on 
all devices in a system. 

For complete information on device handling, see the Dialogic® Standard Runtime Library API 
Programming Guide.
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44.Event Handling

This chapter provides information on functions used to retrieve and handle events. Topics include:

• Overview of Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

• Event Management Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Overview of Event Handling

An event indicates that a specific activity has occurred on a channel. The voice driver reports 
channel activity to the application program in the form of events, which allows the program to 
identify and respond to a specific occurrence on a channel. Events provide feedback on the 
progress and completion of functions and indicate the occurrence of other channel activities. 
Dialogic® Voice API library events are defined in the dxxxlib.h header file.

For a list of events that may be returned by the voice software, see the Dialogic® Voice API Library 
Reference.

4.2 Event Management Functions

Event management functions are used to retrieve and handle events being sent to the application 
from the firmware. These functions are contained in the Dialogic® Standard Runtime Library 
(SRL) and defined in srllib.h. The SRL provides a set of common system functions that are device 
independent and are applicable to all Dialogic®  devices. For more information on event 
management and event handling, see the Dialogic® Standard Runtime Library API Programming 
Guide.

Event management functions include:

• sr_enbhdlr( )  

• sr_dishdlr( ) 

• sr_getevtdev( ) 

• sr_getevttype( ) 

• sr_getevtlen( ) 

• sr_getevtdatap( ) 

For details on SRL functions, see the Dialogic® Standard Runtime Library API Library Reference. 

The event management functions retrieve and handle voice device termination events for functions 
that run in asynchronous mode, such as dx_dial( ) and dx_play( ). For complete function reference 
information, see the Dialogic® Voice API Library Reference.
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Each of the event management functions applicable to the voice boards are listed in the following 
tables. Table 1 lists values that are required by event management functions. Table 2 list values that 
are returned for event management functions that are used with voice devices.  

Table 1. Voice Device Inputs for Event Management Functions

Event Management 
Function

Voice Device 
Input

Valid Value Related Voice Functions 

sr_enbhdlr( )
Enable event handler 

evt_type TDX_PLAY dx_play( ) 

TDX_PLAYTONE dx_playtone( ) 

TDX_RECORD dx_rec( ) 

TDX_GETDIG dx_getdig( ) 

TDX_DIAL dx_dial( )

TDX_CALLP dx_dial( )

TDX_SETHOOK dx_sethook( ) 

TDX_ERROR All asynchronous functions

sr_dishdlr( )
Disable event handler

evt_type As above As above

Table 2. Voice Device Returns from Event Management Functions

Event Management 
Function

Return 
Description

Returned Value Related Voice Functions 

sr_getevtdev( )
Get device handle 

device voice device handle

sr_getevttype( )
Get event type 

event type TDX_PLAY dx_play( ) 

TDX_PLAYTONE dx_playtone( ) 

TDX_RECORD dx_rec( ) 

TDX_GETDIG dx_getdig( )

TDX_DIAL dx_dial( )

TDX_CALLP dx_dial( )

TDX_CST dx_setevtmsk( ) 

TDX_SETHOOK dx_sethook( ) 

TDX_ERROR All asynchronous functions

sr_getevtlen( )
Get event data length

event length sizeof (DX_CST)

sr_getevtdatap( )
Get pointer to event data 

event data pointer to DX_CST structure
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55.Error Handling

This chapter discusses how to handle errors that can occur when running an application. 

All Dialogic® Voice API library functions return a value to indicate success or failure of the 
function. A return value of zero or a non-negative number indicates success. A return value of -1 
indicates failure.

If a Dialogic® Voice API library function fails, call the standard attribute functions 
ATDV_LASTERR( ) and ATDV_ERRMSGP( ) to determine the reason for failure. For more 
information on these functions, see the Dialogic® Standard Runtime Library API Library 
Reference.

If an extended attribute function fails, two types of errors can be generated. An extended attribute 
function that returns a pointer will produce a pointer to the ASCIIZ string “Unknown device” if it 
fails. An extended attribute function that does not return a pointer will produce a value of 
AT_FAILURE if it fails. Extended attribute functions for the voice library are prefaced with 
“ATDX_”.

Notes: 1. The dx_open( ) and dx_close( ) functions are exceptions to the above error handling rules. On 
Linux, if these functions fail, the return code is -1, and the specific error is found in the errno 
variable contained in errno.h. On Windows®, if these functions fail, the return code is -1. Use 
dx_fileerrno( ) to obtain the system error value. 

2. If ATDV_LASTERR( ) returns the EDX_SYSTEM error code, an operating system error has 
occurred. On Linux, check the global variable errno contained in errno.h. On Windows®, use 
dx_fileerrno( ) to obtain the system error value. 

For a list of errors that can be returned by a Dialogic® Voice API library function, see the 
Dialogic® Voice API Library Reference. You can also look up the error codes in the dxxxlib.h file. 
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66.Application Development 
Guidelines

This chapter provides programming guidelines and techniques for developing an application using 
the Dialogic® Voice API library. The following topics are discussed: 

• General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

• Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 General Considerations

The following considerations apply to all applications written using the Dialogic® Voice API:

• Busy and Idle States

• Setting Termination Conditions for I/O Functions

• Setting Termination Conditions for Digits

• Clearing Structures Before Use

• Working with User-Defined I/O Functions

See feature chapters for programming guidelines specific to a feature, such as call progress 
analysis, recording and playback, and so on. 

6.1.1 Busy and Idle States

The operation of some library functions are dependent on the state of the device when the function 
call is made. A device is in an idle state when it is not being used, and in a busy state when it is 
dialing, stopped, being configured, or being used for other I/O functions. Idle represents a single 
state; busy represents the set of states that a device may be in when it is not idle. State-dependent 
functions do not make a distinction between the individual states represented by the term busy. 
They only distinguish between idle and busy states. 

For more information on categories of functions and their description, see the Dialogic® Voice API 
Library Reference. 

6.1.2 Setting Termination Conditions for I/O Functions

When an I/O function is issued, you must pass a set of termination conditions as one of the function 
parameters. Termination conditions are events monitored during the I/O process that will cause an 
I/O function to terminate. When the termination condition is met, a termination reason is returned 
by ATDX_TERMMSK( ). If the I/O function is running in synchronous mode, the 
ATDX_TERMMSK( ) function returns a termination reason after the I/O function has completed. 
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If the I/O function is running in asynchronous mode, the ATDX_TERMMSK( ) function returns a 
termination reason after the function termination event has arrived. I/O functions can terminate 
under several conditions as described later in this section. 

You can predict events that will occur during I/O (such as a digit being received or the call being 
disconnected) and set termination conditions accordingly. The flow of control in a voice 
application is based on the termination condition. Setting these conditions properly allows you to 
build voice applications that can anticipate a caller's actions.

To set termination conditions, values are placed in fields of a DV_TPT structure. If you set more 
than one termination condition, the first one that occurs will terminate the I/O function. The 
DV_TPT structures can be configured as a linked list or array, with each DV_TPT specifying a 
single terminating condition.

The termination conditions are described in the following paragraphs.

byte transfer count
Applies when playing or recording a file with dx_play( ) or dx_rec( ). The maximum number 
of bytes is set in the DX_IOTT structure. This condition will cause termination if the 
maximum number of bytes is used before one of the termination conditions specified in the 
DV_TPT occurs. 

dx_stopch( ) occurred
The dx_stopch( ) function will terminate any I/O function, except dx_dial( ) (with call 
progress analysis disabled), and stop the device. 

end of file reached
Applies when playing a file. This condition will cause termination if -1 has been specified in 
the io_length field of the DX_IOTT, and no other termination condition has occurred before 
the end of the file is reached. When this termination condition is met, a TM_EOD termination 
reason is returned from ATDX_TERMMSK( ).

loop current drop (DX_LCOFF)
Not supported on Dialogic® HMP Software using the voice library; however, support is 
available via call control API. For more information, see the Dialogic® Global Call Analog 
Technology User’s Guide.

In some central offices, switches, and PBXs, a drop in loop current indicates disconnect 
supervision. An I/O function can terminate if the loop current drops for a specified amount of 
time. The amount of time is specified in the tp_length field of a DV_TPT structure. The 
amount of time can be specified in 100 msec units (default) or 10 msec units. 10 msec can be 
specified in the tp_flags field of the DV_TPT. When this termination condition is met, a 
TM_LCOFF termination reason is returned from ATDX_TERMMSK( ).

maximum delay between digits (DX_IDDTIME)
Monitors the length of time between the digits being received. A specific length of time can be 
placed in the tp_length field of a DV_TPT. If the time between receiving digits is more than 
this period of time, the function terminates. The amount of time can be specified in 100 msec 
units (default) or 10 msec units. 10 msec units can be specified in the tp_flags field of the 
DV_TPT. When this termination condition is met, a TM_IDDTIME termination reason is 
returned from ATDX_TERMMSK( ).

On Dialogic® HMP Software, this termination condition is only supported by the dx_getdig( ) 
function. 
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maximum digits received (DX_MAXDTMF)
Counts the number of digits in the channel's digit buffer. If the buffer is not empty before the 
I/O function is called, the digits that are present in the buffer when the function is initiated are 
counted as well. The maximum number of digits to receive is set by placing a number from 1 
to 31 in the tp_length field of a DV_TPT. This value specifies the number of digits allowed in 
the buffer before termination. When this termination condition is met, a TM_MAXDTMF 
termination reason is returned from ATDX_TERMMSK( ).

maximum length of non-silence ((DX_MAXNOSIL)
Supported on Springware boards only.

Non-silence is the absence of silence: noise or meaningful sound, such as a person speaking. 
This condition is enabled by setting the tp_length field of a DV_TPT to a specific period of 
time. When non-silence is detected for this length of time, the I/O function will terminate. This 
termination condition is frequently used to detect dial tone, or the howler tone that is used by 
central offices to indicate that a phone has been off-hook for an extended period of time. The 
amount of time can be specified in 100 msec units (default) or 10 msec units. 10 msec units 
can be specified in the tp_flags field of the DV_TPT. When this termination condition is met, a 
TM_MAXNOSIL termination reason is returned from ATDX_TERMMSK( ).

maximum length of silence (DX_MAXSIL)
Enabled by setting the tp_length field of a DV_TPT. The specified value is the length of time 
that continuous silence will be detected before it terminates the I/O function. The amount of 
time can be specified in 100 msec units (default) or 10 msec units. 10 msec units can be 
specified in the tp_flags field of the DV_TPT. When this termination condition is met, a 
TM_MAXSIL termination reason is returned from ATDX_TERMMSK( ). 

pattern of silence and non-silence (DX_PMON and DX_PMOFF)
Supported on Springware boards only.

A known pattern of silence and non-silence can terminate a function. A pattern can be 
specified by using DX_PMON and DX_PMOFF in the tp_termno field in two separate 
DV_TPT structures, where one represents a period of silence and one represents a period of 
non-silence. When this termination condition is met, a TM_PATTERN termination reason is 
returned from ATDX_TERMMSK( ).

DX_PMOFF and DX_PMON termination conditions must be used together. The DX_PMON 
terminating condition must directly follow the DX_PMOFF terminating condition. A 
combination of both DV_TPT structures using these conditions is used to form a single 
termination condition. 

specific digit received (DX_DIGMASK)
Digits received during an I/O function are collected in a channel's digit buffer. If the buffer is 
not empty before an I/O function executes, the digits in the buffer are treated as being received 
during the I/O execution. This termination condition is enabled by specifying a digit bit mask 
in the tp_length field of a DV_TPT structure. If any digit specified in the bit mask appears in 
the digit buffer, the I/O function will terminate. When this termination condition is met, a 
TM_DIGIT termination reason is returned from ATDX_TERMMSK( ).

On HMP Software, using more than one DV_TPT structure for detecting different digits is not 
supported. Instead, use one DV_TPT structure, set DX_DIGMASK in the tp_termno field, and 
bitwise-OR "DM_1 | DM_2" in the tp_length field. For uniformity, it is also strongly 
recommended to use the same method to detect different digits on Springware boards.
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maximum function time (DX_MAXTIME)
A time limit may be placed on the execution of an I/O function. The tp_length field of a 
DV_TPT can be set to a specific length of time in 100 msec units. The I/O function will 
terminate when it executes longer than this period of time. The amount of time can be 
specified in 100 msec units (default) or 10 msec units. 10 msec units can be specified in the 
tp_flags field of the DV_TPT. When this termination condition is met, a TM_MAXTIME 
termination reason is returned from ATDX_TERMMSK( ).

DX_MAXTIME is not supported by tone generation functions such as dx_playtone( ) and 
dx_playtoneEx( ).

user-defined digit received (DX_DIGTYPE)
User-defined digits received during an I/O function are collected in a channel's digit buffer. If 
the buffer is not empty before an I/O function executes, the digits in the buffer are treated as 
being received during the I/O execution. This termination condition is enabled by specifying 
the digit and digit type in the tp_length field of a DV_TPT structure. If any digit specified in 
the bit mask appears in the digit buffer, the I/O function will terminate. When this termination 
condition is met, a TM_DIGIT termination reason is returned from ATDX_TERMMSK( ).

user-defined tone on/off event detected (DX_TONE)
Used with global tone detection. Before specifying a user-defined tone as a termination 
condition, the tone must first be defined using the GTD dx_bld...( ) functions, and tone 
detection on the channel must be enabled using the dx_addtone( ) or dx_enbtone( ) function. 
To set tone on/off to be a termination condition, specify DX_TONE in the tp_termno field of 
the DV_TPT. You must also specify DX_TONEON or DX_TONEOFF in the tp_data field. 
When this termination condition is met, a TM_TONE termination reason is returned from 
ATDX_TERMMSK( ).

6.1.3 Setting Termination Conditions for Digits

To specify a timeout for dx_getdig( ) if the first digit is not received within a specified time period, 
use the DX_MAXTIME termination condition in the DV_TPT structure.

To specify an additional timeout if subsequent digits are not received, use the DX_IDDTIME 
(interdigit delay) termination condition and the TF_FIRST flag in the DV_TPT structure. The 
TF_FIRST flag specifies that the timer will start after the first digit is received; otherwise the timer 
starts when the dx_getdig( ) function is called.

6.1.4 Clearing Structures Before Use

Two library functions are provided to clear structures. dx_clrcap( ) clears DX_CAP structures and 
dx_clrtpt( ) clears DV_TPT structures. 

It is good practice to clear the field values of any structure before using the structure in a function 
call. Doing so will help prevent unintentional settings or terminations.

6.1.5 Working with User-Defined I/O Functions

Two library functions can be used to install user-defined I/O functions, also called user I/O 
functions or UIO: dx_setuio( ) and dx_setdevuio( ). 
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The following cautions apply when working with user I/O functions:

• Do not include sleeps, critical sections, or any other delays in the user I/O function. 

• Do not call any other Dialogic function inside the user I/O function. One exception is the 
ec_getblkinfo( ) function which is called from within a user I/O function. For more 
information on this function, see the Dialogic® Continuous Speech Processing API Library 
Reference.  

The reason for these cautions is as follows. On Springware boards, while the user I/O function is 
executing, the Dialogic® Standard Runtime Library (SRL) is blocked and cannot process further 
messages from the driver. Data will be lost if the driver cannot hand off messages to the SRL. On 
HMP Software, you may see chopped audio or underruns. In all cases, be aware that the risk of 
underruns increases as density rises. 

6.2 Additional Considerations

The following information provides programming guidelines and considerations for developing 
voice applications:

• Multithreading and Multiprocessing

• Device Discovery

• Device Initialization Hint

• Tone Detection Considerations

6.2.1 Multithreading and Multiprocessing

The Dialogic® Voice API supports multithreading and multiprocessing on the board level but not 
on the channel level on Dialogic® HMP Software. 

The following restrictions apply: 

• A channel can only be opened in one process at a time; the same channel cannot be used by 
more than one process concurrently. However, multiple processes can access different sets of 
channels. Ensure that each process is provided with a unique set of devices to manipulate.

• If a channel is opened in process A and then closed, process B is allowed to open the same 
channel. However, you should avoid this type of sequence. Since closing a channel is an 
asynchronous operation, there is a small gap between the time when the xx_close( ) function 
returns in process A and the time when process B is allowed to open the same channel. If 
process B opens the channel too early, unpredictable results may occur. 

• Multiple processes that define tones (GTD or GTG) do not share tone definitions in the 
firmware. For example, if you define tone A in process 1 for channel dxxxB1C1 and the same 
tone A in process 2 for channel dxxxB1C1 , two firmware tones are consumed. In other words, 
the same tone defined from different processes is not shared in the firmware; hence this limits 
the number of tones that can be created overall. For more information, see Chapter 12, “Global 
Tone Detection and Generation, and Cadenced Tone Generation”.
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It is recommended that you develop your application using a limited number of total threads rather 
than a single thread per channel. For more information on programming models and performance 
considerations, see the Dialogic® Standard Runtime Library API Programming Guide.

Note: The continuous speech processing architecture allows a voice channel to be shared between 
processes or applications on Dialogic® JCT (Springware) boards or on Dialogic® HMP Software 
(starting with Dialogic® Host Media Processing Software Release 1.3 for Windows®), providing 
one process does the play activity and the other process does the record/stream activity. Other CSP 
scenarios are not supported, such as playing or recording/streaming from both processes. 

6.2.2 Device Discovery

Applications that use both HMP Software devices and Springware devices must have a way of 
differentiating what type of device is to be opened. The TDM bus routing functions such as 
dx_getctinfo( ) provide a programming solution. HMP Software devices are identified by the 
CT_DFHMPDM3 value in the ct_devfamily field of the CT_DEVINFO structure. Springware 
devices are identified by CT_DFD41E in the ct_devfamily field. See the Dialogic® Voice API 
Library Reference for details on the CT_DEVINFO structure.

Note: Use SRL device mapper functions to return information about the structure of the system. For 
information on these functions, see the Dialogic® Standard Runtime Library API Library 
Reference.

The following procedure shows how to initialize an application and perform device discovery when 
the application supports both HMP Software devices and Springware boards.

1. Open the first voice channel device on the first voice board in the system with dx_open( ).

2. Call dx_getctinfo( ) and check the CT_DEVINFO.ct_devfamily value. 

3. If ct_devfamily is CT_DFHMPDM3, then flag all the voice channel devices associated with 
the board as HMP Software type. If ct_devfamily is CT_DFD41E, then flag all the voice 
channel devices associated with the board as Springware type. 

4. Close the voice channel with dx_close( ).

5. Repeat steps 1 to 4 for each voice board.

6.2.3 Device Initialization Hint

The xx_open( ) functions for the voice (dx), Global Call (gc), network (dt), and fax (fx) APIs are 
asynchronous for HMP Software devices (on Springware boards, these functions are synchronous). 
This should usually have no impact on an application, except in cases where a subsequent function 
calls on an HMP Software device that is still initializing, that is, is in the process of opening. In 
such cases, the initialization must be finished before the follow-up function can work. The function 
won’t return an error, but it is blocked until the device is initialized. 

For instance, if your application calls dx_open( ) on an HMP Software device followed by 
dx_getfeaturelist( ), the dx_getfeaturelist( ) function is blocked until the initialization of the 
device is completed internally, even though dx_open( ) has already returned success. In other 
words, the initialization (dx_open( )) may appear to be complete, but, in truth, it is still going on in 
parallel.
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With some applications, this may cause slow device-initialization performance. You can avoid this 
problem in one of several ways, depending on the type of application:

• In multithreaded applications, you can reorganize the way the application opens and then 
configures devices. The recommendation is to do as many xx_open( ) functions as possible 
(grouping the devices) in one thread arranging them in a loop before proceeding with the next 
function. For example, you would have one loop through the grouping of devices do all the 
xx_open( ) functions first, and then start a second loop through the devices to configure them, 
instead of doing one single loop where an xx_open( ) is immediately followed by other API 
functions on the same device. With this method, by the time all xx_open( ) commands are 
completed, the first channel will be initialized, so you won't experience any internal delays. 

This change is not necessary for all applications, but if you experience poor initialization 
performance, you can gain back speed by using this hint.

• Perform device initialization in a single thread. This way, device initialization can still be done 
in a loop, and by the time the subsequent function is called on the first device, initialization on 
that device has completed.

6.2.4 Tone Detection Considerations

The following consideration applies to tone detection on HMP Software:

• Digits will not always be cleared by the time the dx_clrdigbuf( ) function returns, because 
processing may continue on the board even after the function returns. For this reason, careful 
consideration should be given when using this function before or during a section where digit 
detection or digit termination is required; the digit may be cleared after the function has 
returned or possibly during the next function call.



Dialogic® Voice API Programming Guide 34
Dialogic Corporation

77.Call Progress Analysis

This chapter provides detailed information about the call progress analysis feature. The following 
topics are discussed: 

• Call Progress Analysis Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

• Call Progress and Call Analysis Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

• Call Progress Analysis Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

• Call Progress Analysis Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

• Using Call Progress Analysis on HMP Voice Devices . . . . . . . . . . . . . . . . . . . . . . . . . 37

• Call Progress Analysis Tone Detection on HMP Voice Devices . . . . . . . . . . . . . . . . . . 41

• Media Tone Detection on HMP Voice Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

• Default Call Progress Analysis Tone Definitions on HMP Voice Devices . . . . . . . . . . 46

• Modifying Default Call Progress Analysis Tone Definitions on HMP Voice Devices . 47

• Using Call Progress Analysis on Springware Boards . . . . . . . . . . . . . . . . . . . . . . . . . . 50

• Call Progress Analysis Tone Detection on Springware Boards. . . . . . . . . . . . . . . . . . . 54

• Media Tone Detection on Springware Boards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

• Default Call Progress Analysis Tone Definitions on Springware Boards . . . . . . . . . . . 60

• Modifying Default Call Progress Analysis Tone Definitions on Springware Boards . . 60

• SIT Frequency Detection on Springware Boards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

• Cadence Detection in Basic Call Progress Analysis on Springware Boards. . . . . . . . . 66

7.1 Call Progress Analysis Overview

Call progress analysis monitors the progress of an outbound call after it is dialed into the Public 
Switched Telephone Network (PSTN). 

By using call progress analysis (CPA) you can determine for example: 

• whether the line is answered and, in many cases, how the line is answered

• whether the line rings but is not answered

• whether the line is busy

• whether there is a problem in completing the call

The outcome of the call is returned to the application when call progress analysis has completed. 
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There are two forms of call progress analysis: 

 Perfect Call call progress analysis 
Also called enhanced call progress analysis. Uses an improved method of signal identification 
and can detect fax machines and answering machines. You should design all new applications 
using Perfect Call call progress analysis.

Note: In this document, the term call progress analysis refers to Perfect Call call progress 
analysis unless stated otherwise. 

Basic call progress analysis 
Supported on Springware boards for backward compatibility only. 

Provides backward compatibility for older applications written before Perfect Call call 
progress analysis became available. It is strongly recommended that you do not design new 
applications using basic call progress analysis.

If your application also uses the Dialogic® Global Call API, see the Global Call documentation set 
for call progress analysis special considerations. The Global Call API is a common signaling 
interface for network-enabled applications, regardless of the signaling protocol needed to connect 
to the local telephone network. Call progress analysis support varies with the protocol used.

7.2 Call Progress and Call Analysis Terminology

A distinction is made between activity that occurs before a call is connected and after a call is 
connected. The following terms are used: 

call progress (pre-connect) 
This term refers to activity to determine the status of a call connection, such as busy, no 
ringback, no dial tone, and can also include the frequency detection of Special Information 
Tones (SIT), such as operator intercept. This activity occurs before a call is connected.

call analysis (post-connect)
This term refers to activity to determine the destination party’s media type, such as voice 
detection, answering machine detection, fax tone detection, modem, and so on. This activity 
occurs after a call is connected.

call progress analysis
This term refers to the feature set that encompasses both call progress and call analysis. 

7.3 Call Progress Analysis Components

Call progress analysis uses the following techniques to determine the progress of a call as 
applicable: 

• cadence detection (pre-connect part of call progress analysis)

• frequency detection (pre-connect part of call progress analysis) 

• loop current detection (pre-connect part of call progress analysis) 

• positive voice detection (post-connect part of call progress analysis)

• positive answering machine detection (post-connect part of call progress analysis)
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• fax tone detection (post-connect part of call progress analysis)

Figure 1 illustrates the components of basic call progress analysis (supported on Springware boards 
only). In basic call progress analysis, cadence detection is the sole means of detecting a no 
ringback, busy, or no answer. 

Figure 1. Basic Call Progress Analysis Components (Springware only) 

Figure 2 illustrates the components of Perfect Call call progress analysis. These components can 
operate simultaneously. Perfect Call call progress analysis uses cadence detection plus frequency 
detection to identify these signals plus fax machine tones. A connect can be detected through the 
complementary methods of cadence detection, frequency detection, positive voice detection, and 
positive answering machine detection.

Note: Loop current detection shown in Figure 2 is not applicable to Dialogic® HMP voice devices.

Figure 2. Perfect Call Call Progress Analysis Components 
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7.4 Call Progress Analysis Errors

If ATDX_CPTERM( ) returns CR_ERROR, you can use ATDX_CPERROR( ) to determine the 
call progress analysis error that occurred. 

7.5 Using Call Progress Analysis on HMP Voice Devices

The following topics provide information on how to use call progress analysis on Dialogic® HMP 
voice devices:

• Call Progress Analysis Rules

• Initiating Call Progress Analysis

• Setting Up Call Progress Analysis Parameters

• Executing a Dial Function

• Determining the Outcome of a Call

• Obtaining Additional Call Outcome Information

7.5.1 Call Progress Analysis Rules

The following rules apply to the use of call progress analysis on Dialogic® HMP voice devices:

• For IP ports using IP protocols:

– Pre-connect is typically provided by the protocol via the Dialogic® Global Call API or via 
a native IP protocol API.

– In general the dx_dial( ) function does not need to be used for pre-connect call progress. 
However, the dx_dial( ) function may be used if inband pre-connect call progress is 
available. 

– The dx_dial( ) function may be used for post-connect call analysis.

Table 3 provides information on call progress analysis scenarios supported with the dx_dial( ) 
function on Dialogic® HMP voice devices. 

Table 3. Call Progress Analysis Support with dx_dial( ) (HMP Voice Devices)

CPA Feature dx_dial( ) support 

Busy Yes

No ringback Yes

SIT frequency detection Yes

No answer Yes

Cadence break Yes

Loop current detection No

Dial tone detection Yes

Fax tone detection Yes
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7.5.2 Initiating Call Progress Analysis

Review the information in Section 7.5.1, “Call Progress Analysis Rules”, on page 37. 

If you choose to use the voice API for call progress analysis on HMP voice devices, follow these 
steps to initiate an outbound call with call progress analysis: 

1. Set up the call analysis parameter structure (DX_CAP), which contains parameters to control 
the operation of call progress analysis, such as positive voice detection and positive answering 
machine detection.

2. Call dx_dial( ) to start call progress analysis during the desired phase of the call.

3. Use the ATDX_CPTERM( ) extended attribute function to determine the outcome of the call.

4. Obtain additional termination information as desired using extended attribute functions. 

Each of these steps is described in more detail next. For a full description of the functions and data 
structures described in this chapter, see the Dialogic® Voice API Library Reference. 

7.5.3 Setting Up Call Progress Analysis Parameters

The call progress analysis parameters structure, DX_CAP, is used by dx_dial( ). It contains 
parameters to control the operation of call progress analysis features, such as positive voice 
detection (PVD) and positive answering machine detection (PAMD). To customize the parameters 
for your environment, you must set up the DX_CAP structure before calling a dial function. 

To set up the DX_CAP structure for call progress analysis on HMP voice devices: 

1. Execute the dx_clrcap( ) function to clear the DX_CAP and initialize the parameters to 0. The 
value 0 indicates that the default value will be used for that particular parameter. dx_dial( ) can 
also be set to run with default call progress analysis parameter values, by specifying a NULL 
pointer to the DX_CAP structure. 

2. Set a DX_CAP parameter to another value if you do not want to use the default value. The 
ca_intflg field (intercept mode flag) of DX_CAP enables and disables the following call 
progress analysis components: SIT frequency detection, positive voice detection (PVD), and 
positive answering machine detection (PAMD). Use one of the following values for the 
ca_intflg field:   

• DX_OPTDIS. Disables Special Information Tone (SIT) frequency detection, PAMD, and 
PVD. This setting provides call progress without SIT frequency detection.

• DX_OPTNOCON. Enables SIT frequency detection and returns an “intercept” 
immediately after detecting a valid frequency. This setting provides call progress with SIT 
frequency detection.

Positive Voice Detection (PVD) Yes

Positive Answering Machine Detection 
(PAMD)

Yes

Table 3. Call Progress Analysis Support with dx_dial( ) (HMP Voice Devices) (Continued)

CPA Feature dx_dial( ) support 
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• DX_PVDENABLE. Enables PVD and fax tone detection. Provides PVD call analysis 
only (no call progress).

• DX_PVDOPTNOCON. Enables PVD, DX_OPTNOCON, and fax tone detection. This 
setting provides call progress with SIT frequency detection and PVD call analysis.

• DX_PAMDENABLE. Enables PAMD, PVD, and fax tone detection. This setting provides 
PAMD and PVD call analysis only (no call progress).

• DX_PAMDOPTEN. Enables PAMD, PVD, DX_OPTNOCON, and fax tone detection. 
This setting provides full call progress and call analysis.

Note: DX_OPTEN and DX_PVDOPTEN are obsolete. Use DX_OPTNOCON and 
DX_PVDOPTNOCON instead. 

7.5.4 Executing a Dial Function

To use call progress analysis on HMP voice devices, call dx_dial( ) with the mode function 
argument set to DX_CALLP. Termination of dialing with call progress analysis is indicated 
differently depending on whether the function is running asynchronously or synchronously. 

If running asynchronously, use Dialogic® Standard Runtime Library (SRL) event management 
functions to determine when dialing with call progress analysis is complete (TDX_CALLP 
termination event). 

If running synchronously, wait for the function to return a value greater than 0 to indicate 
successful completion. 

Notes: 1. On HMP voice devices, dx_dial( ) cannot be used to start an outbound call; instead use the 
Dialogic® Global Call API. 

2. To issue dx_dial( ) without dialing digits, specify “ ” in the dialstrp argument. 

7.5.5 Determining the Outcome of a Call

In asynchronous mode, once dx_dial( ) with call progress analysis has terminated, use the 
extended attribute function ATDX_CPTERM( ) to determine the outcome of the call. (In 
synchronous mode, dx_dial( ) returns the outcome of the call.) ATDX_CPTERM( ) will return 
one of the following call progress analysis termination results: 

CR_BUSY 
Called line was busy. 

CR_CEPT 
Called line received operator intercept (SIT).

CR_CNCT 
Called line was connected. Use ATDX_CONNTYPE( ) to return the connection type for a 
completed call.

CR_ERROR
Call progress analysis error occurred. Use ATDX_CPERROR( ) to return the type of error. 

CR_FAXTONE 
Called line was answered by fax machine or modem.
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CR_NOANS 
Called line did not answer.

CR_NORB 
No ringback on called line.

CR_STOPD
Call progress analysis stopped due to dx_stopch( ). 

Figure 3 illustrates the possible outcomes of call progress analysis on HMP voice devices. 

Figure 3. Call Outcomes for Call Progress Analysis (HMP Voice Devices) 
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7.6 Call Progress Analysis Tone Detection on HMP 
Voice Devices 

The following topics discuss tone detection used in call progress analysis on HMP voice devices:

• Tone Detection Overview

• Types of Tones

• Ringback Detection

• Busy Tone Detection

• Fax or Modem Tone Detection

• SIT Frequency Detection

7.6.1 Tone Detection Overview

On HMP voice devices, call progress analysis uses a combination of cadence detection and 
frequency detection to identify certain signals during the course of an outgoing call. Cadence 
detection identifies repeating patterns of sound and silence, and frequency detection determines the 
pitch of the signal. Together, the cadence and frequency of a signal make up its “tone definition”. 

7.6.2 Types of Tones

Tone definitions are used to identify several kinds of signals. 

The following defined tones and tone identifiers are provided by the voice library for HMP voice 
devices. Tone identifiers are returned by the ATDX_CRTNID( ) function.  

TID_BUSY1 
First signal busy

TID_BUSY2 
Second signal busy

TID_DIAL_INTL 
International dial tone

TID_DIAL_LCL 
Local dial tone

TID_DISCONNECT  
Disconnect tone (post-connect)

TID_FAX1 
First fax or modem tone

TID_FAX2 
Second fax or modem tone

TID_RNGBK1 
Ringback (detected as single tone)
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TID_RNGBK2 
Ringback (detected as dual tone)

TID_SIT_ANY 
Catch all (returned for a Special Information Tone sequence or SIT sequence that falls outside 
the range of known default SIT sequences)

TID_SIT_INEFFECTIVE_OTHER or
TID_SIT_IO  

Ineffective other SIT sequence

TID_SIT_NO_CIRCUIT or
TID_SIT_NC   

No circuit found SIT sequence

TID_SIT_NO_CIRCUIT_INTERLATA or 
TID_SIT_NC_INTERLATA  

InterLATA no circuit found SIT sequence

TID_SIT_OPERATOR_INTERCEPT or 
TID_SIT_IC  

Operator intercept SIT sequence

TID_SIT_REORDER_TONE or 
TID_SIT_RO  

Reorder (system busy) SIT sequence

TID_SIT_REORDER_TONE_INTERLATA or 
TID_SIT_RO_INTERLATA 

InterLATA reorder (system busy) SIT sequence

TID_SIT_VACANT_CIRCUIT or 
TID_SIT_VC  

Vacant circuit SIT sequence

Some of these tone identifiers may be used as input to function calls to change the tone definitions. 
For more information, see Section 7.9, “Modifying Default Call Progress Analysis Tone 
Definitions on HMP Voice Devices”, on page 47.

7.6.3 Ringback Detection

Call progress analysis uses the tone definition for ringback to identify the first ringback signal of an 
outgoing call. At the end of the first ringback (that is, normally, at the beginning of the second 
ringback), a timer goes into effect. The system continues to identify ringback signals (but does not 
count them). If a break occurs in the ringback cadence, the call is assumed to have been answered, 
and call progress analysis terminates with the reason CR_CNCT (connect); the connection type 
returned by the ATDX_CONNTYPE( ) function will be CON_CAD (cadence break). 

However, if the timer expires before a connect is detected, then the call is deemed unanswered, and 
call progress analysis terminates with the reason CR_NOANS. 

To enable ringback detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For 
details, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.
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The following DX_CAP fields govern ringback behavior for HMP voice devices: 

ca_cnosig  
Continuous No Signal: the maximum length of silence (no signal) allowed immediately after 
the ca_stdely period (in 10 msec units). If this duration is exceeded, call progress analysis is 
terminated with the reason CR_NORB (no ringback detected). Default value: 4000 (40 
seconds). 

ca_noanswer  
No Answer: the length of time to wait after the first ringback before deciding that the call is 
not answered (in 10 msec units). If this duration is exceeded, call progress analysis is 
terminated with the reason CR_NOANS (no answer). Default value: 3000 (30 seconds). 

7.6.4 Busy Tone Detection

Call progress analysis specifies two busy tones: TID_BUSY1 and TID_BUSY2. If either of them is 
detected while frequency detection and cadence detection are active, then call progress is 
terminated with the reason CR_BUSY. ATDX_CRTNID( ) identifies which busy tone was 
detected. 

To enable busy tone detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For 
details, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

7.6.5 Fax or Modem Tone Detection

Call progress analysis specifies two tones: TID_FAX1 and TID_FAX2. If either of these tones is 
detected while frequency detection and cadence detection are active, then call progress is 
terminated with the reason CR_FAXTONE. ATDX_CRTNID( ) identifies which fax or modem 
tone was detected. 

To enable fax or modem tone detection, use the ca_intflg field of the DX_CAP structure. For 
details, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38.

7.6.6 SIT Frequency Detection

Special Information Tone (SIT) frequency detection is a component of call progress analysis. On  
HMP voice devices, SIT sequences are defined as standard tone IDs.

To enable SIT frequency detection, use the ca_intflg field of the DX_CAP structure. For more 
information, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38. 

Table 4 shows default tone definitions for SIT sequences used on HMP voice devices. The values in 
the “Freq.” column represent minimum and maximum values in Hz. “Time” refers to minimum 
and maximum on time in 10 msec units; the maximum off time between each segment is 5 (or 50 
msec). The repeat count is 1 for all SIT segments. N/A means “not applicable.”  
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The following considerations apply to SIT sequences on HMP voice devices:

• A single tone proxy for the dual tone (also called twin tone) exists for each of the three 
segments in a SIT sequence. The default definition for the minimum value and maximum 
value (in Hz) is 0. For more information on this tone, see Section 7.9.4, “Rules for Using a 
Single Tone Proxy for a Dual Tone”, on page 49.

• These tone IDs have aliases: 

– TID_SIT_NO_CIRCUIT (TID_SIT_NC) 

– TID_SIT_OPERATOR_INTERCEPT (TID_SIT_IC)

– TID_SIT_VACANT_CIRCUIT (TID_SIT_VC)

– TID_SIT_REORDER_TONE (TID_SIT_RO)

– TID_SIT_NO_CIRCUIT_INTERLATA (TID_SIT_NC_INTERLATA)

– TID_SIT_REORDER_TONE_INTERLATA (TID_SIT_RO_INTERLATA)

– TID_SIT_INEFFECTIVE_OTHER (TID_SIT_IO)

• Default SIT definitions can be modified, except for the following SIT sequences: TID_SIT_ 
ANY, TID_SIT_IO, TID_SIT_NC_INTERLATA, and TID_SIT_RO_INTERLATA. For more 
information, see Section 7.9, “Modifying Default Call Progress Analysis Tone Definitions on 
HMP Voice Devices”, on page 47. 

• For TID_SIT_ANY, the frequency and time of the first and second segments are open; that is, 
they are ignored. Only the frequency of the third segment is relevant. This catch-all SIT 
sequence definition is intended to cover SIT sequences that fall outside the range of the 
defined SIT sequences.

Table 4. Special Information Tone Sequences (HMP Voice Devices)

SIT 1st Segment 2nd Segment 3rd Segment

Tone ID Description Freq. Time Freq. Time Freq. Time

TID_SIT_NC No Circuit Found 950/1020 32/45 1400/1450 32/45 1740/1850 N/A

TID_SIT_IC Operator 
Intercept

874/955 15/30 1310/1430 15/30 1740/1850 N/A

TID_SIT_VC Vacant Circuit 950/1020 32/45 1310/1430 15/30 1740/1850 N/A

TID_SIT_RO Reorder 
(system busy)

874/955 15/30 1400/1450 32/45 1740/1850 N/A

TID_SIT_NC_
INTERLATA

InterLATA No 
Circuit Found

874/955 32/45 1310/1430 32/45 1740/1850 N/A

TID_SIT_RO_
INTERLATA

InterLATA 
Reorder (system 
busy)

950/1020 15/30 1310/1430 32/45 1740/1850 N/A

TID_SIT_IO Ineffective Other 874/955 32/45 1400/1450 15/30 1740/1850 N/A

TID_SIT_ANY Catch all tone 
definition

Open Open Open Open 1725/1825 N/A



Dialogic® Voice API Programming Guide 45
Dialogic Corporation

Call Progress Analysis

7.7 Media Tone Detection on HMP Voice Devices

Media tone detection in call progress analysis on HMP voice devices is discussed in the following 
topics:

• Positive Voice Detection (PVD)

• Positive Answering Machine Detection (PAMD)

7.7.1 Positive Voice Detection (PVD)

Positive voice detection (PVD) can detect when a call has been answered by determining whether 
an audio signal is present that has the characteristics of a live or recorded human voice. This 
provides a very precise method for identifying when a connect occurs. 

The ca_intflg field in DX_CAP enables/disables PVD. For information on enabling PVD, see 
Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38. 

PVD is especially useful in those situations where no other method of answer supervision is 
available, and where the cadence is not clearly broken for cadence detection to identify a connect 
(for example, when the nonsilence of the cadence is immediately followed by the nonsilence of 
speech). 

If the ATDX_CONNTYPE( ) function returns CON_PVD, the connect was due to positive voice 
detection. 

7.7.2 Positive Answering Machine Detection (PAMD)

Whenever PAMD is enabled, positive voice detection (PVD) is also enabled. 

The ca_intflg field in DX_CAP enables/disables PAMD and PVD. For information on enabling 
PAMD, see Section 7.5.3, “Setting Up Call Progress Analysis Parameters”, on page 38. 

When enabled, detection of an answering machine will result in the termination of call analysis 
with the reason CR_CNCT (connected); the connection type returned by the 
ATDX_CONNTYPE( ) function will be CON_PAMD. 

The following DX_CAP fields govern positive answering machine detection on HMP voice 
devices: 

ca_pamd_spdval  
PAMD Speed Value: To distinguish between a greeting by a live human and one by an 
answering machine, use one of the following settings: 

• PAMD_FULL  – look at the greeting (long method). The long method looks at the full 
greeting to determine whether it came from a human or a machine. Using PAMD_FULL 
gives a very accurate determination; however, in situations where a fast decision is more 
important than accuracy, PAMD_QUICK might be preferred.  

• PAMD_QUICK  – look at connect only (quick method). The quick method examines only 
the events surrounding the connect time and makes a rapid judgment as to whether or not 
an answering machine is involved. 



46 Dialogic® Voice API Programming Guide
Dialogic Corporation

Call Progress Analysis

• PAMD_ACCU  – look at the greeting (long method) and use the most accuracy for 
detecting an answering machine. This setting provides the most accurate evaluation. It 
detects live voice as accurately as PAMD_FULL but is more accurate than PAMD_FULL 
(although slightly slower) in detecting an answering machine. Use the setting 
PAMD_ACCU when accuracy is more important than speed.  

Default value: PAMD_ACCU  

The recommended setting for the call analysis parameter structure (DX_CAP) 
ca_pamd_spdval field is PAMD_ACCU. 

ca_pamd_failtime  
maximum time to wait for positive answering machine detection or positive voice detection 
after a cadence break. Default Value: 400 (in 10 msec units). 

7.8 Default Call Progress Analysis Tone Definitions on 
HMP Voice Devices

Table 5 provides the range of values for default tone definitions on HMP voice devices. These 
default tone definitions are used in call progress analysis. Amplitudes are given in dBm, 
frequencies in Hz, and duration in 10 msec units. A dash in a table cell means not applicable.   

Notes: 1. On HMP voice devices, voice API functions are provided to manipulate the tone definitions in 
this table (see Section 7.9, “Modifying Default Call Progress Analysis Tone Definitions on HMP 
Voice Devices”, on page 47). However, not all the functionality provided by these tones is 
available through the Dialogic® Voice API. You may need to use the Dialogic® Global Call API 
to access the functionality, for example, in the case of disconnect tone detection.

2. An On Time maximum value of 0 indicates that this is a continuous tone. For example, 
TID_DIAL_LCL has an On Time range of 10 to 0. This means that the tone is on for 100 msecs. 
The minimum requirement for detecting a tone is that it must be continuous for at least 100 
msecs (10 in 10 msec units) after it is detected.

3. A single tone proxy for a dual tone (twin tone) can help improve the accuracy of dual tone 
detection in some cases. For more information, see Section 7.9.4, “Rules for Using a Single Tone 
Proxy for a Dual Tone”, on page 49. 

Table 5. Default Call Progress Analysis Tone Definitions (HMP Software)

Tone ID
Freq1 
(in Hz)

Freq2 
(in Hz)

On Time 
(in 10 msec)

Off Time
(in 10 msec)

Reps
Twin Tone 
Freq (Hz)

TID_BUSY1 450 - 510 590 - 650 30 - 100 30 - 100 2 0

TID_BUSY2 450 - 510 590 - 650 10 - 40 10 - 40 2 0

TID_FAX2 2000 - 2300  - 10 - 0  - 1  -

TID_RNGBK1 350 - 550 350 - 550 75 - 300 0 - 800 1 350 - 550

TID_RNGBK2
(segment 0)

350 - 550 350 - 550 20 - 100 20 - 100 1 350 - 550

TID_RNGBK2
(segment 1)

350 - 550 350 - 550 20 - 100 100 - 600 1 350 - 550
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7.9 Modifying Default Call Progress Analysis Tone 
Definitions on HMP Voice Devices

On HMP Software, call progress analysis tones are maintained in the software. More information 
on tone definitions is provided in the following topics:

• API Functions for Manipulating Tone Definitions

• TONE_DATA Data Structure

• Rules for Modifying a Tone Definition

• Rules for Using a Single Tone Proxy for a Dual Tone

• Steps to Modify a Tone Definition

7.9.1 API Functions for Manipulating Tone Definitions

The following Dialogic® Voice API functions are used to manipulate the default tone definitions 
shown in Table 5, “Default Call Progress Analysis Tone Definitions (HMP Software)”, on page 46 
and some, but not all, of the default tone definitions shown in Table 4, “Special Information Tone 
Sequences (HMP Voice Devices)”, on page 44.

Note: Default SIT definitions can be modified, except for the following SIT sequences: TID_SIT_ ANY, 
TID_SIT_IO, TID_SIT_NC_INTERLATA, and TID_SIT_RO_INTERLATA. 

dx_querytone( ) 
gets tone information for a specific call progress tone

dx_deletetone( ) 
deletes a specific call progress tone 

dx_createtone( ) 
creates a new tone definition for a specific call progress tone

TID_DIAL_INTL 300 - 380 400 - 480 100 - 0  - 1 300 - 480

TID_DIAL_LCL 300 - 380 400 - 480 10 - 0  - 1 0 

TID_DISCONNECT 360 - 410 430 - 440 30 - 60 30 - 60 1 360 - 440

TID_FAX1 1050 - 1150  - 10 - 60  - 1  -

Table 5. Default Call Progress Analysis Tone Definitions (HMP Software) (Continued)

Tone ID
Freq1 
(in Hz)

Freq2 
(in Hz)

On Time 
(in 10 msec)

Off Time
(in 10 msec)

Reps
Twin Tone 
Freq (Hz)

TID_FAX2 2000 - 2300  - 10 - 0  - 1  -

TID_RNGBK1 350 - 550 350 - 550 75 - 300 0 - 800 1 350 - 550

TID_RNGBK2
(segment 0)

350 - 550 350 - 550 20 - 100 20 - 100 1 350 - 550

TID_RNGBK2
(segment 1)

350 - 550 350 - 550 20 - 100 100 - 600 1 350 - 550
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7.9.2 TONE_DATA Data Structure

The TONE_DATA structure contains tone information for a specific call progress tone. This 
structure contains a nested array of TONE_SEG substructures. A maximum of six TONE_SEG 
substructures can be specified. The TONE_DATA structure specifies the following key 
information: 

TONE_SEG.structver 
Specifies the version of the TONE_SEG structure. Used to ensure that an application is binary 
compatible with future changes to this data structure.  

TONE_SEG.tn_dflag 
Specifies whether the tone is dual tone or single tone. Values are 1 for dual tone and 0 for 
single tone.

TONE_SEG.tn1_min 
Specifies the minimum frequency in Hz for tone 1.

TONE_SEG.tn1_max 
Specifies the maximum frequency in Hz for tone 1.

TONE_SEG.tn2_min 
Specifies the minimum frequency in Hz for tone 2.

TONE_SEG.tn2_max 
Specifies the maximum frequency in Hz for tone 2.

TONE_SEG.tn_twinmin
Specifies the minimum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tn_twinmax 
Specifies the maximum frequency in Hz of the single tone proxy for the dual tone.

TONE_SEG.tnon_min 
Specifies the debounce minimum ON time in 10 msec units. 

TONE_SEG.tnon_max 
Specifies the debounce maximum ON time in 10 msec units. 

TONE_SEG.tnoff_min 
Specifies the debounce minimum OFF time in 10 msec units. 

TONE_SEG.tnoff_max 
Specifies the debounce maximum OFF time in 10 msec units. 

TONE_DATA.structver 
Specifies the version of the TONE_DATA structure. Used to ensure that an application is 
binary compatible with future changes to this data structure. 

TONE_DATA.tn_rep_cnt 
Specifies the debounce rep count. 

TONE_DATA.numofseg 
Specifies the number of segments for a multi-segment tone. 
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7.9.3 Rules for Modifying a Tone Definition

Consider the following rules and guidelines for modifying default tone definitions on HMP voice 
devices, using the Dialogic® Voice API library:

• You must issue dx_querytone( ), dx_deletetone( ), and dx_createtone( ) in this order, one 
tone at a time, for each tone definition to be modified. 

• Attempting to create a new tone definition before deleting the current call progress tone will 
result in an EDX_TNQUERYDELETE error. 

• When dx_querytone( ), dx_deletetone( ), or dx_createtone( ) is issued in asynchronous 
mode and is immediately followed by another similar call prior to completion of the previous 
call on the same device, the subsequent call will fail with device busy.

• Only default call progress analysis tones and SIT sequences are supported for these three 
functions. For a list of these tones, see Table 4, “Special Information Tone Sequences (HMP 
Voice Devices)”, on page 44 and Table 5, “Default Call Progress Analysis Tone Definitions 
(HMP Software)”, on page 46.

• These three Dialogic® Voice API functions are provided to manipulate the call progress 
analysis tone definitions. However, not all the functionality provided by these tones is 
available through the Dialogic® Voice API. You may need to use the Dialogic® Global Call 
API to access the functionality, for example, in the case of disconnect tone detection.

• If the application deletes all the default call progress analysis tones in a particular set (where a 
set is defined as busy tones, dial tones, ringback tones, fax tones, disconnect tone, and special 
information tones), the set itself is deleted from the board and call progress analysis cannot be 
performed successfully. Therefore, you must have at least one tone defined in each tone set in 
order for call progress analysis to perform successfully.

7.9.4 Rules for Using a Single Tone Proxy for a Dual Tone

A single tone proxy (also called a twin tone) acts as a proxy for a dual tone. A single tone proxy 
can be defined when you run into difficulty detecting a dual tone. This situation can arise when the 
two frequencies of the dual tone are close together, are very short tones, or are even multiples of 
each other. In these cases, the dual tone might be detected as a single tone. A single tone proxy can 
help improve the detection of the dual tone by providing an additional tone definition.

The TONE_SEG.tn_twinmin field defines the minimum frequency of the tone and 
TONE_SEG.tn_twinmax field defines the maximum frequency of the tone.

Consider the following guidelines when creating a single tone proxy on HMP voice devices:

• It is recommended that you add at least 60 Hz to the top of the dual tone range and subtract at 
least 60 Hz from the bottom of the dual tone range. For example:

Freq1 (Hz): 400 - 500

Freq 2 (Hz): 600 - 700

Twin tone freq (Hz): 340 - 760

• Before using the TONE_DATA structure in a function call, set any unused fields in the 
structure to zero to prevent possible corruption of data in the allocated memory space. This 
guideline is applicable to unused fields in any data structure.
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7.9.5 Steps to Modify a Tone Definition

To modify a default tone definition on HMP voice devices using the voice API library, follow these 
steps:

Note: This procedure assumes that you have already opened the board device handle in your application. 
To get the board name in the form brdBn, use the SRLGetPhysicalBoardName( ) function. This 
function and other device mapper functions return information about the structure of the system. 
For more information, see the Dialogic® Standard Runtime Library API Library Reference.

1. Get the tone information for the call progress tone to be modified using dx_querytone( ). 
After the function completes successfully, the relevant tone information is contained in the 
TONE_DATA structure.

2. Delete the current call progress tone using dx_deletetone( ) before creating a new tone 
definition.

3. Create a new tone definition for the call progress tone using dx_createtone( ). Specify the new 
tone information in the TONE_DATA structure.

4. Repeat steps 1-3 in this order for each tone to be modified.

7.10 Using Call Progress Analysis on Springware Boards

The following topics provide information on how to use call progress analysis when making an 
outbound call on Springware boards:

• Initiating Call Progress Analysis

• Setting Up Call Progress Analysis Parameters

• Enabling Call Progress Analysis

• Executing a Dial Function

• Determining the Outcome of a Call

• Obtaining Additional Call Outcome Information

7.10.1 Initiating Call Progress Analysis

Perform the following procedure to initiate an outbound call with call progress analysis on 
Springware boards: 

1. Set up the call analysis parameter structure (DX_CAP), which contains parameters to control 
the operation of call progress analysis, such as frequency detection, cadence detection, loop 
current, positive voice detection, and positive answering machine detection.

2. On Springware boards, enable call progress analysis on a specified channel using 
dx_initcallp( ). Modify tone definitions as appropriate. 

3. Call dx_dial( ) to start an outbound call. 

4. Use the ATDX_CPTERM( ) extended attribute function to determine the outcome of the call.

5. Obtain additional termination, frequency, or cadence information (such as the length of the 
salutation) as desired using extended attribute functions. 
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Each of these steps is described in more detail next. For a full description of the functions and data 
structures described in this chapter, see the Dialogic® Voice API Library Reference. 

7.10.2 Setting Up Call Progress Analysis Parameters

The call progress analysis parameters structure, DX_CAP, is used by dx_dial( ). It contains 
parameters to control the operation of call progress analysis features, such as frequency detection, 
positive voice detection (PVD), and positive answering machine detection (PAMD). 

To customize the parameters for your environment, you must set up the call progress analysis 
parameter structure before calling a dial function. 

To set up the DX_CAP structure for call progress analysis on Springware boards: 

1. Execute the dx_clrcap( ) function to clear the DX_CAP and initialize the parameters to 0. The 
value 0 indicates that the default value will be used for that particular parameter. dx_dial( ) can 
also be set to run with default call progress analysis parameter values, by specifying a NULL 
pointer to the DX_CAP structure. 

2. Set a DX_CAP parameter to another value if you do not want to use the default value. The 
ca_intflg field (intercept mode flag) of DX_CAP enables and disables the following call 
progress analysis components: SIT frequency detection, positive voice detection (PVD), and 
positive answering machine detection (PAMD). Use one of the following values for the 
ca_intflg field:    

• DX_OPTDIS. Disables Special Information Tone (SIT) frequency detection, PAMD, and 
PVD. 

• DX_OPTNOCON. Enables SIT frequency detection and returns an “intercept” 
immediately after detecting a valid frequency.

• DX_PVDENABLE. Enables PVD and fax tone detection.

• DX_PVDOPTNOCON. Enables PVD, DX_OPTNOCON, and fax tone detection.

• DX_PAMDENABLE. Enables PAMD, PVD, and fax tone detection.

• DX_PAMDOPTEN. Enables PAMD, PVD, DX_OPTNOCON, and fax tone detection.

Note: DX_OPTEN and DX_PVDOPTEN are obsolete. Use DX_OPTNOCON and 
DX_PVDOPTNOCON instead. 

7.10.3 Enabling Call Progress Analysis

On Springware boards, call progress analysis is activated on a per-channel basis and is initiated 
using dx_initcallp( ). 

Perform the following steps to enable call progress analysis. This procedure needs to be followed 
only once per channel; thereafter, any outgoing calls made using a dial function will benefit from 
call progress analysis. 

1. Make any desired modifications to the default dial tone, busy tone, fax tone, and ringback 
signal definitions using the dx_chgfreq( ), dx_chgdur( ), and dx_chgrepcnt( ) functions.
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2. Call dx_deltones( ) to clear all tone templates remaining on the channel. Note that this 
function deletes all global tone definition (GTD) tones for the given channel, and not just those 
involved with call progress analysis.   

3. Execute the dx_initcallp( ) function to activate call progress analysis. Call progress analysis 
stays active until dx_deltones( ) is called. 

The dx_initcallp( ) function initializes call progress analysis on the specified channel using the 
current tone definitions. Once the channel is initialized with these tone definitions, this 
initialization cannot be altered. The only way to change the tone definitions in effect for a given 
channel is to issue a dx_deltones( ) call for that channel, then invoke another dx_initcallp( ) with 
different tone definitions. 

7.10.4 Executing a Dial Function

To use call progress analysis, call dx_dial( ) with the mode function argument set to DX_CALLP. 
Termination of dialing with call progress analysis is indicated differently depending on whether the 
function is running asynchronously or synchronously. 

If running asynchronously, use the Dialogic® Standard Runtime Library (SRL) Event Management 
functions to determine when dialing with call progress analysis is complete (TDX_CALLP 
termination event). 

If running synchronously, wait for the function to return a value greater than 0 to indicate 
successful completion. 

7.10.5 Determining the Outcome of a Call

In asynchronous mode, once dx_dial( ) with call progress analysis has terminated, use the 
extended attribute function ATDX_CPTERM( ) to determine the outcome of the call. (In 
synchronous mode, dx_dial( ) returns the outcome of the call.) ATDX_CPTERM( ) will return 
one of the following call progress analysis termination results: 

CR_BUSY 
Called line was busy. 

CR_CEPT 
Called line received operator intercept (SIT). Extended attribute functions provide information 
on detected frequencies and duration. 

CR_CNCT 
Called line was connected. Use ATDX_CONNTYPE( ) to return the connection type for a 
completed call.

CR_ERROR
Call progress analysis error occurred. Use ATDX_CPERROR( ) to return the type of error. 

CR_FAXTONE 
Called line was answered by fax machine or modem.

CR_NOANS 
Called line did not answer.
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CR_NODIALTONE 
Timeout occurred while waiting for dial tone.

CR_NORB 
No ringback on called line.

CR_STOPD 
Call progress analysis stopped due to dx_stopch( ). 

Figure 4 illustrates the possible outcomes of call progress analysis on Dialogic® Springware 
boards.

Figure 4. Call Outcomes for Call Progress Analysis (Springware)

7.10.6 Obtaining Additional Call Outcome Information

To obtain additional call progress analysis information, use the following extended attribute 
functions: 

ATDX_ANSRSIZ( ) 
Returns duration of answer. 

ATDX_CPERROR( ) 
Returns call analysis error.

ATDX_CPTERM( ) 
Returns last call analysis termination. 

ATDX_CONNTYPE( ) 
Returns connection type 
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ATDX_CRTNID( ) 
Returns the identifier of the tone that caused the most recent call progress analysis termination. 

ATDX_DTNFAIL( ) 
Returns the dial tone character that indicates which dial tone call progress analysis failed to 
detect. 

ATDX_FRQDUR( ) 
Returns duration of first frequency detected. 

ATDX_FRQDUR2( ) 
Returns duration of second frequency detected. 

ATDX_FRQDUR3( ) 
Returns duration of third frequency detected. 

ATDX_FRQHZ( ) 
Returns frequency detected in Hz of first detected tone. 

ATDX_FRQHZ2( ) 
Returns frequency of second detected tone.

ATDX_FRQHZ3( ) 
Returns frequency of third detected tone. 

ATDX_LONGLOW( ) 
Returns duration of longer silence. 

ATDX_FRQOUT( ) 
Returns percent of frequency out of bounds. 

ATDX_SHORTLO( ) 
Returns duration of shorter silence. 

ATDX_SIZEHI( ) 
Returns duration of non-silence.

7.11 Call Progress Analysis Tone Detection on 
Springware Boards

Tone detection in Perfect Call call progress analysis differs from the one in basic call progress 
analysis. The following topics discuss tone detection in Perfect Call call progress analysis on 
Dialogic® Springware boards:

• Tone Detection Overview

• Types of Tones

• Dial Tone Detection

• Ringback Detection

• Busy Tone Detection

• Fax or Modem Tone Detection

• Loop Current Detection
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7.11.1 Tone Detection Overview

Perfect Call call progress analysis uses a combination of cadence detection and frequency detection 
to identify certain signals during the course of an outgoing call. Cadence detection identifies 
repeating patterns of sound and silence, and frequency detection determines the pitch of the signal. 
Together, the cadence and frequency of a signal make up its “tone definition”. 

Unlike basic call progress analysis, which uses fields in the DX_CAP structure to store signal 
cadence information, Perfect Call call progress analysis uses tone definitions which are contained 
in the voice driver itself. Functions are available to modify these default tone definitions. 

7.11.2 Types of Tones

Tone definitions are used to identify several kinds of signals.

The following defined tones and tone identifiers are provided by the voice library on Springware 
boards. Tone identifiers are returned by the ATDX_CRTNID( ) function. 

TID_BUSY1
Busy signal 

TID_BUSY2
Alternate busy signal 

TID_DIAL_INTL
International dial tone

TID_DIAL_LCL
Local dial tone

TID_DIAL_XTRA
Special (extra) dial tone

TID_FAX1
CNG (calling) fax tone or modem tone 

TID_FAX2
CED (called station) fax tone or modem tone 

TID_RNGBK1
Ringback 

TID_RNGBK2
Ringback 

The tone identifiers are used as input to function calls to change the tone definitions. For more 
information, see Section 7.14, “Modifying Default Call Progress Analysis Tone Definitions on 
Springware Boards”, on page 60.
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7.11.3 Dial Tone Detection

Wherever call progress analysis is in effect, a dial string for an outgoing call may specify special 
ASCII characters that instruct the system to wait for a certain kind of dial tone. The following 
additional special characters may appear in a dial string: 

L
wait for a local dial tone 

I
wait for an international dial tone 

X
wait for a special (“extra”) dial tone 

The tone definitions for each of these dial tones is set for each channel at the time of the 
dx_initcallp( ) function. In addition, the following DX_CAP fields identify how long to wait for a 
dial tone, and how long the dial tone must remain stable. 

ca_dtn_pres  
Dial Tone Present: the length of time that the dial tone must be continuously present (in 10 
msec units). If a dial tone is present for this amount of time, dialing of the dial string proceeds. 
Default value: 100 (one second). 

ca_dtn_npres  
Dial Tone Not Present: the length of time to wait before declaring the dial tone not present (in 
10 msec units). If a dial tone of sufficient length (ca_dtn_pres) is not found within this period 
of time, call progress analysis terminates with the reason CR_NODIALTONE. The dial tone 
character (L, I, or X) for the missing dial tone can be obtained using ATDX_DTNFAIL( ). 
Default value: 300 (three seconds). 

ca_dtn_deboff  
Dial Tone Debounce: the maximum duration of a break in an otherwise continuous dial tone 
before it is considered invalid (in 10 msec units). This parameter is used for ignoring short 
drops in dial tone. If a drop longer than ca_dtn_deboff occurs, then dial tone is no longer 
considered present, and another dial tone must begin and be continuous for ca_dtn_pres. 
Default value: 10 (100 msec). 

7.11.4 Ringback Detection

Call progress analysis uses the tone definition for ringback to identify the first ringback signal of an 
outgoing call. At the end of the first ringback (that is, normally, at the beginning of the second 
ringback), a timer goes into effect. The system continues to identify ringback signals (but does not 
count them). If a break occurs in the ringback cadence, the call is assumed to have been answered, 
and call progress analysis terminates with the reason CR_CNCT (connect); the connection type 
returned by the ATDX_CONNTYPE( ) function will be CON_CAD (cadence break). 

However, if the timer expires before a connect is detected, then the call is deemed unanswered, and 
call progress analysis terminates with the reason CR_NOANS. 

To enable ringback detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For 
details, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.
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The following DX_CAP fields govern ringback behavior: 

ca_stdely  

Start Delay: the delay after dialing has been completed before starting cadence detection, 
frequency detection, and positive voice detection (in 10 msec units). Default: 25 (0.25 
seconds). 

ca_cnosig  
Continuous No Signal: the maximum length of silence (no signal) allowed immediately after 
the ca_stdely period (in 10 msec units). If this duration is exceeded, call progress analysis is 
terminated with the reason CR_NORB (no ringback detected). Default value: 4000 (40 
seconds). 

ca_noanswer  
No Answer: the length of time to wait after the first ringback before deciding that the call is 
not answered (in 10 msec units). If this duration is exceeded, call progress analysis is 
terminated with the reason CR_NOANS (no answer). Default value: 3000 (30 seconds). 

ca_maxintering  

Maximum Inter-ring: the maximum length of time to wait between consecutive ringback 
signals (in 10 msec units). If this duration is exceeded, call progress analysis is terminated with 
the reason CR_CNCT (connected). Default value: 800 (8 seconds). 

7.11.5 Busy Tone Detection

Call progress analysis specifies two busy tones: TID_BUSY1 and TID_BUSY2. If either of them is 
detected while frequency detection and cadence detection are active, then call progress is 
terminated with the reason CR_BUSY. ATDX_CRTNID( ) identifies which busy tone was 
detected. 

To enable busy tone detection, turn on SIT frequency detection in the DX_CAP ca_intflg field. For 
details, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.

7.11.6 Fax or Modem Tone Detection

Two tones are defined: TID_FAX1 and TID_FAX2. If either of these tones is detected while 
frequency detection and cadence detection are active, then call progress is terminated with the 
reason CR_FAXTONE. ATDX_CRTNID( ) identifies which fax or modem tone was detected. 

To enable fax or modem tone detection, turn on SIT frequency detection in the DX_CAP ca_intflg 
field. For details, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51.

7.11.7 Loop Current Detection

Loop current detection, available through the dx_dial( ) function, is supported on Springware 
boards only.
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Some telephone systems return a momentary drop in loop current when a connection has been 
established (answer supervision). Loop current detection returns a connect when a transient loop 
current drop is detected. 

In some environments, including most PBXs, answer supervision is not provided. In these 
environments, Loop current detection will not function. Check with your Central Office or PBX 
supplier to see if answer supervision based on loop current changes is available. 

In some cases, the application may receive one or more transient loop current drops before an 
actual connection occurs. This is particularly true when dialing long-distance numbers, when the 
call may be routed through several different switches. Any one of these switches may be capable of 
generating a momentary drop in loop current. 

To disable loop current detection, set DX_CAP ca_lcdly to -1. 

Note: For applications that use loop current reversal to signal a disconnect, it is recommended that 
DXBD_MINLCOFF be set to 2 to prevent Loop Current On and Loop Current Off from being 
reported instead of Loop Current Reversal.

7.11.7.1 Loop Current Detection Parameters Affecting a Connect

To prevent detecting a connect prematurely or falsely due to a spurious loop current drop, you can 
delay the start of loop current detection by using the parameter ca_lcdly. 

Loop current detection returns a connect after detecting a loop current drop. To allow the person 
who answered the phone to say “hello” before the application proceeds, you can delay the return of 
the connect by using the parameter ca_lcdly1. 

ca_lcdly  
Loop Current Delay: the delay after dialing has been completed and before beginning Loop 
Current Detection. To disable loop current detection, set to -1. Default: 400 (10 msec units). 

ca_lcdly1  
Loop Current Delay 1: the delay after loop current detection detects a transient drop in loop 
current and before call progress analysis returns a connect to the application. Default: 10 (10 
msec units). 

If the ATDX_CONNTYPE( ) function returns CON_LPC, the connect was due to loop current 
detection. 

Note: When a connect is detected through positive voice detection or loop current detection, the 
DX_CAP parameters ca_hedge, ca_ansrdgl, and ca_maxansr are ignored. 

7.12 Media Tone Detection on Springware Boards

Media tone detection in call progress analysis on Springware boards is discussed in the following 
topics:

• Positive Voice Detection (PVD)

• Positive Answering Machine Detection (PAMD)
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7.12.1 Positive Voice Detection (PVD) 

Positive voice detection (PVD) can detect when a call has been answered by determining whether 
an audio signal is present that has the characteristics of a live or recorded human voice. This 
provides a very precise method for identifying when a connect occurs. 

The ca_intflg field in DX_CAP enables/disables PVD. For information on enabling PVD, see 
Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51. 

PVD is especially useful in those situations where answer supervision is not available for loop 
current detection to identify a connect, and where the cadence is not clearly broken for cadence 
detection to identify a connect (for example, when the nonsilence of the cadence is immediately 
followed by the nonsilence of speech). 

If the ATDX_CONNTYPE( ) function returns CON_PVD, the connect was due to positive voice 
detection. 

7.12.2 Positive Answering Machine Detection (PAMD)

Whenever PAMD is enabled, positive voice detection (PVD) is also enabled. 

The ca_intflg field in DX_CAP enables/disables PAMD and PVD. For information on enabling 
PAMD, see Section 7.10.2, “Setting Up Call Progress Analysis Parameters”, on page 51. 

When enabled, detection of an answering machine will result in the termination of call analysis 
with the reason CR_CNCT (connected); the connection type returned by the 
ATDX_CONNTYPE( ) function will be CON_PAMD. 

The following DX_CAP fields govern positive answering machine detection on Springware 
boards: 

ca_pamd_spdval  
PAMD Speed Value: To distinguish between a greeting by a live human and one by an 
answering machine, use one of the following settings: 

• PAMD_FULL  – look at the greeting (long method). The long method looks at the full 
greeting to determine whether it came from a human or a machine. Using PAMD_FULL 
gives a very accurate determination; however, in situations where a fast decision is more 
important than accuracy, PAMD_QUICK might be preferred. 

• PAMD_QUICK  – look at connect only (quick method). The quick method examines only 
the events surrounding the connect time and makes a rapid judgment as to whether or not 
an answering machine is involved. 

• PAMD_ACCU  – look at the greeting (long method) and use the most accuracy for 
detecting an answering machine. This setting provides the most accurate evaluation. It 
detects live voice as accurately as PAMD_FULL but is more accurate than PAMD_FULL 
(although slightly slower) in detecting an answering machine. Use the setting 
PAMD_ACCU when accuracy is more important than speed. 

Default value: PAMD_FULL

The recommended setting for the call analysis parameter structure (DX_CAP) 
ca_pamd_spdval field is PAMD_ACCU. 
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ca_pamd_qtemp  
PAMD Qualification Template: the algorithm to use in PAMD. At present there is only one 
template: PAMD_QUAL1TMP. This parameter must be set to this value. 

ca_pamd_failtime 
maximum time to wait for positive answering machine detection or positive voice detection 
after a cadence break. Default Value: 400 (in 10 msec units). 

ca_pamd_minring  
minimum allowable ring duration for positive answering machine detection. Default Value: 
190 (in 10 msec units). 

7.13 Default Call Progress Analysis Tone Definitions on 
Springware Boards

Table 6 provides call progress analysis default tone definitions for Springware boards. Frequencies 
are specified in Hz, durations in 10 msec units, and repetitions in integers. For information on 
manipulating these tone definitions, see Section 7.14, “Modifying Default Call Progress Analysis 
Tone Definitions on Springware Boards”, on page 60.  

7.14 Modifying Default Call Progress Analysis Tone 
Definitions on Springware Boards

On Dialogic® Springware boards, call progress analysis makes use of global tone detection (GTD) 
tone definitions for three different types of dial tones, two busy tones, one ringback tone, and two 
fax tones. The tone definitions specify the frequencies, durations, and repetition counts necessary 
to identify each of these signals. Each signal may consist of a single tone or a dual tone. 

Table 6. Default Call Progress Analysis Tone Definitions (Springware)

Tone ID
Freq1
(in Hz)

Freq2
(in Hz)

On Time
(in 10 msec)

Off Time
(in 10 msec)

Reps

TID_BUSY1 500 ± 200 55 ± 40 55 ± 40 4

TID_BUSY2 500 ± 200 500 ± 200 55 ± 40 55 ± 40 4

TID_DIAL_LCL 400 ± 125

TID_DIAL_INTL 402 ± 125

TID_DIAL_XTRA 401 ± 125

TID_DISCONNECT 500 ± 200 500 ± 200 55 ± 40 55 ± 40 4

TID_FAX1 1650 ± 100 20 ± 20

TID_FAX2 1100 ± 50 25 ± 25

TID_RNGBK1 450 ± 150 130 ± 105 580 ± 415

TID_RNGBK2 450 ± 150 450 ± 150 130 ± 105 580 ± 415
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The voice driver contains default definitions for each of these tones. The default definitions will 
allow applications to identify the tones correctly in most countries and for most switching 
equipment. However, if a situation arises in which the default tone definitions are not adequate, 
three functions are provided to modify the standard tone definitions:

dx_chgfreq( ) 
specifies frequencies and tolerances for one or both frequencies of a single- or dual-frequency 
tone 

dx_chgdur( ) 
specifies the cadence (on time, off time, and acceptable deviations) for a tone 

dx_chgrepcnt( ) 
specifies the repetition count required to identify a tone 

These functions can be used to modify the tone definitions shown in Table 6, “Default Call 
Progress Analysis Tone Definitions (Springware)”, on page 60. These functions only change the 
tone definitions; they do not alter the behavior of call progress analysis itself. When the 
dx_initcallp( ) function is invoked to activate call progress analysis on a particular channel, it uses 
the current tone definitions to initialize that channel. Multiple calls to dx_initcallp( ) may therefore 
use varying tone definitions, and several channels can operate simultaneously with different tone 
definitions. 

For more information on tones and tone detection, see Section 7.11, “Call Progress Analysis Tone 
Detection on Springware Boards”, on page 54.

Note: The Learn Mode API and Tone Set File (TSF) API provide a more comprehensive way to manage 
call progress tones, in particular the unique call progress tones produced by PBXs, key systems, 
and PSTNs. Applications can learn tone characteristics using the Learn Mode API. Information on 
several different tones forms one tone set. Tone sets can be written to a tone set file using the Tone 
Set File API. For more information, see the Learn Mode and Tone Set File API Software Reference 
for Linux and Windows Operating Systems.

7.15 SIT Frequency Detection on Springware Boards

Special Information Tone (SIT) frequency detection is a component of call progress analysis on 
Springware boards. The following topics provide more information on this component:

• Tri-Tone SIT Sequences

• Setting Tri-Tone SIT Frequency Detection Parameters

• Obtaining Tri-Tone SIT Frequency Information

• Global Tone Detection Tone Memory Usage

• Frequency Detection Errors

• Setting Single Tone Frequency Detection Parameters

• Obtaining Single Tone Frequency Information
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7.15.1 Tri-Tone SIT Sequences

SIT frequency detection operates simultaneously with all other call progress analysis detection 
methods. The purpose of frequency detection is to detect the tri-tone special information tone (SIT) 
sequences and other single-frequency tones. Detection of a SIT sequence indicates an operator 
intercept or other problem in completing the call. 

SIT frequency detection can detect virtually any single-frequency tone below 2100 Hz and above 
300 Hz. 

Table 7 provides tone information for the four SIT sequences on Springware boards. The 
frequencies are represented in Hz and the length of the signal is in 10 msec units. The length of the 
first segment is not dependable; often it is shortened or cut. 

7.15.2 Setting Tri-Tone SIT Frequency Detection Parameters

Frequency detection on Springware voice boards is designed to detect all three tones in a tri-tone 
SIT sequence. To detect all three tones in a SIT sequence, you must specify the frequency detection 
parameters in the DX_CAP for all three tones in the sequence. 

To detect all four tri-tone SIT sequences: 

1. Set an appropriate frequency detection range in the DX_CAP to detect each tone across all 
four SIT sequences. Set the first frequency detection range to detect the first tone for all four 
SIT sequences (approximately 900 to 1000 Hz). Set the second frequency detection range to 
detect the second tone for all four SIT sequences (approximately 1350 to 1450 Hz). Set the 
third frequency detection range to detect the third tone for all four SIT sequences 
(approximately 1725 to 1825 Hz). 

2. Set an appropriate detection time using the ca_timefrq and ca_mxtimefrq parameters to detect 
each tone across all four SIT sequences. For each tone, set ca_timefrq to 5 and ca_mxtimefrq 
to 50 to detect all SIT tones. The tones range in length from 27 to 38 (in 10 msec units), with 
some tones occasionally cut short by the Central Office. 

Note: Occasionally, the first tone can also be truncated by a delay in the onset of call 
progress analysis due to the setting of ca_stdely. 

3. After a SIT sequence is detected, ATDX_CPTERM( ) will return CR_CEPT to indicate an 
operator intercept, and you can determine which SIT sequence was detected by obtaining the 

Table 7. Special Information Tone Sequences (Springware)

SIT 1st Segment 2nd Segment 3rd Segment

Name Description Freq. Len. Freq. Len. Freq. Len.

NC No Circuit Found 985 38 1429 38 1777 38

IC Operator 
Intercept

914 27 1371 27 1777 38

VC Vacant Circuit 985 38 1370 27 1777 38

RO Reorder 
(system busy)

914 27 1429 38 1777 38
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actual detected frequency and duration for the tri-tone sequence using extended attribute 
functions. These functions are described in detail in the Voice API Library Reference.

The following fields in the DX_CAP are used for frequency detection on voice boards. Frequencies 
are specified in Hertz, and time is specified in 10 msec units. To enable detection of the second and 
third tones, you must set the frequency detection range and time for each tone.

General

The following field in the DX_CAP is used for frequency detection on voice boards. 

ca_stdely  
Start Delay. The delay after dialing has been completed and before starting frequency 
detection. This parameter also determines the start of cadence detection and positive voice 
detection. Note that this can affect detection of the first element of an operator intercept tone.

Default: 25 (10 msec units). 

First Tone

The following fields in the DX_CAP are used for frequency detection for the first tone. 
Frequencies are specified in Hertz, and time is specified in 10 msec units. 

ca_lowerfrq  
Lower bound for first tone in Hz. 

Default: 900. 

ca_upperfrq  
Upper bound for first tone in Hz. Adjust higher for additional operator intercept tones. 

Default: 1000.

ca_timefrq  
Minimum time for first tone to remain in bounds. The minimum amount of time required for 
the audio signal to remain within the frequency detection range for it to be detected. The audio 
signal must not be greater than ca_upperfrq or lower than ca_lowerfrq for at least the time 
interval specified in ca_timefrq. 

Default: 5 (10 msec units). 

ca_mxtimefrq  
Maximum allowable time for first tone to be present. 

Default: 0 (10 msec units). 

Second Tone

The following fields in the DX_CAP are used for frequency detection for the second tone. 
Frequencies are specified in Hertz, and time is specified in 10 msec units. To enable detection of 
the second and third tones, you must set the frequency detection range and time for each tone.

Note: This tone is disabled initially and must be activated by the application using these variables. 

ca_lower2frq 
Lower bound for second tone in Hz. Default: 0. 
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ca_upper2frq 
Upper bound for second tone in Hz. Default: 0. 

ca_time2frq 
Minimum time for second tone to remain in bounds. Default: 0 (10 msec units). 

ca_mxtime2frq 
Maximum allowable time for second tone to be present. Default: 0 (10 msec units). 

Third Tone

The following fields in the DX_CAP are used for frequency detection for the third tone. 
Frequencies are specified in Hertz, and time is specified in 10 msec units. To enable detection of 
the second and third tones, you must set the frequency detection range and time for each tone.

Note: This tone is disabled initially and must be activated by the application using these variables. 

ca_lower3frq 
Lower bound for third tone in Hz. Default: 0. 

ca_upper3frq 
Upper bound for third tone in Hz. Default: 0. 

ca_time3frq 
Minimum time for third tone to remain in bounds. Default: 0 (10 msec units). 

ca_mxtime3frq 
Maximum allowable time for third tone to be present. Default: 0 (10 msec units). 

7.15.3 Obtaining Tri-Tone SIT Frequency Information

Upon detection of the specified sequence of frequencies, you can use extended attribute functions 
to provide the exact frequency and duration of each tone in the sequence. The frequency and 
duration information will allow exact determination of all four SIT sequences. 

On Springware boards, the following extended attribute functions are used to provide information 
on the frequencies detected by call progress analysis. 

ATDX_FRQHZ( ) 
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP 
ca_lowerfrq and ca_upperfrq parameters; usually the first tone of an SIT sequence. This 
function can be called on non-DSP boards. 

ATDX_FRQDUR( ) 
Duration of the tone detected in the tone detection range specified by the DX_CAP 
ca_lowerfrq and ca_upperfrq parameters; usually the first tone of an SIT sequence (10 msec 
units). 

ATDX_FRQHZ2( ) 
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP 
ca_lower2frq and ca_upper2frq parameters; usually the second tone of an SIT sequence. 
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ATDX_FRQDUR2( ) 
Duration of the tone detected in the tone detection range specified by the DX_CAP 
ca_lower2frq and ca_upper2frq parameters; usually the second tone of an SIT sequence (10 
msec units). 

ATDX_FRQHZ3( ) 
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP 
ca_lower3frq and ca_upper3frq parameters; usually the third tone of an SIT sequence. 

ATDX_FRQDUR3( ) 
Duration of the tone detected in the tone detection range specified by the DX_CAP 
ca_lower3frq and ca_upper3frq parameters; usually the third tone of an SIT sequence (10 
msec units). 

7.15.4 Global Tone Detection Tone Memory Usage

On Dialogic® Springware boards, if you use call progress analysis to identify the tri-tone SIT 
sequences, call progress analysis will create tone detection templates internally, and this will 
reduce the number of tone templates that can be created using Global Tone Detection functions.

Call progress analysis will create one tone detection template for each single-frequency tone with a 
100 Hz detection range. For example, if detecting the set of tri-tone SIT sequences (three 
frequencies) on each of four channels, the number of allowable user-defined tones will be reduced 
by three per channel. 

If you initiate call progress analysis and there is not enough memory to create the SIT tone 
detection templates internally, you will get a CR_MEMERR error. This indicates that you are 
trying to exceed the maximum number of tone detection templates. The tone detection range 
should be limited to a maximum of 100 Hz per tone to reduce the chance of exceeding the available 
memory. 

7.15.5 Frequency Detection Errors

On Dialogic® Springware boards, the frequency detection range specified by the lower and upper 
bounds for each tone cannot overlap; otherwise, an error will be produced when the driver attempts 
to create the internal tone detection templates. For example, if ca_upperfrq is 1000 and 
ca_lower2frq is also 1000, an overlap occurs and will result in an error. Also, the lower bound of 
each frequency detection range must be less than the upper bound (for example, ca_lower2frq must 
be less than ca_upper2frq). 

7.15.6 Setting Single Tone Frequency Detection Parameters

The following paragraphs describe how to set single tone frequency detection on Dialogic® 
Springware boards.

Setting single tone frequency detection parameters allows you to identify that a SIT sequence was 
encountered because one of the tri-tones in the SIT sequence was detected. But frequency detection 
cannot determine exactly which SIT sequence was encountered, because it is necessary to identify 
two tones in the SIT sequence to distinguish among the four possible SIT sequences. 
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The default frequency detection range is 900-1000 Hz, which is set to detect the first tone in any 
SIT sequence. Because the first tone is often truncated, you may want to increase ca_upperfrq to 
1800 Hz so that it includes the third tone. If this results in too many false detections, you can set 
frequency detection to detect only the third tone by setting ca_lowerfrq to 1750 and ca_upperfrq to 
1800. 

The following fields in the DX_CAP are used for frequency detection. Frequencies are specified in 
Hertz, and time is specified in 10 msec units. 

ca_stdely  
Start Delay: the delay after dialing has been completed and before starting frequency 
detection. This parameter also determines the start of cadence detection. Default: 25 (10 msec 
units). 

ca_lowerfrq  
lower bound for tone in Hz. Default: 900. 

ca_upperfrq  
upper bound for tone in Hz. Default: 1000. 

ca_timefrq  
time frequency. Minimum time for 1st tone in an SIT to remain in bounds. The minimum 
amount of time required for the audio signal to remain within the frequency detection range 
specified by ca_upperfrq and ca_lowerfrq for it to be considered valid. Default: 5 (10 msec 
units)

7.15.7 Obtaining Single Tone Frequency Information

On Dialogic® Springware boards, upon detection of a frequency in the specified range, you can use 
the ATDX_FRQHZ( ) extended attribute function to return the frequency in Hz of the tone 
detected in the range specified by the DX_CAP ca_lowerfrq and ca_upperfrq parameters. The 
frequency returned is usually the first tone of an SIT sequence.

7.16 Cadence Detection in Basic Call Progress Analysis 
on Springware Boards

Cadence detection is a component of basic call progress analysis. The following topics discuss 
cadence detection and some of the most commonly adjusted cadence detection parameters in basic 
call progress analysis on Springware boards:

• Overview

• Typical Cadence Patterns

• Elements of a Cadence

• Outcomes of Cadence Detection

• Setting Selected Cadence Detection Parameters

• Obtaining Cadence Information
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7.16.1 Overview

Caution: Cadence detection in basic call progress analysis is supported on Springware boards and is 
provided for backward compatibility purposes only. You should not develop new applications 
based on basic call progress analysis. Instead you should use Perfect Call call progress analysis. 
For information on cadence detection in Perfect Call call progress analysis, see Section 7.11, “Call 
Progress Analysis Tone Detection on Springware Boards”, on page 54.

The cadence detection algorithm has been optimized for use in the United States standard network 
environment. 

If your system is operating in another type of environment (such as behind a PBX), you can 
customize the cadence detection algorithm to suit your system through the adjustment of the 
cadence detection parameters. 

Cadence detection analyzes the audio signal on the line to detect a repeating pattern of sound and 
silence, such as the pattern produced by a ringback or a busy signal. These patterns are called audio 
cadences. Once a cadence has been established, it can be classified as a single ring, a double ring, 
or a busy signal by comparing the periods of sound and silence to established parameters. 

Note: Sound is referred to as nonsilence. 

The algorithm used for cadence detection is disclosed and protected under U.S. patent 4,477,698 of 
Melissa Electronic Labs, and other patents pending. 

7.16.2 Typical Cadence Patterns

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is 
provided for backward compatibility purposes only. 

Figure 5, Figure 6, and Figure 7 show some typical cadence patterns for a standard busy signal, a 
standard single ring, and a double ring. 

Figure 5. A Standard Busy Signal

The timings are given in units of 10ms.
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Figure 6. A Standard Single Ring

Figure 7. A Type of Double Ring

7.16.3 Elements of a Cadence

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is 
provided for backward compatibility purposes only. 

From the preceding cadence examples, you can see that a given cadence may contain two silence 
periods with different durations, such as for a double ring; but in general, the nonsilence periods 
have the same duration. To identify and distinguish between the different types of cadences, the 
voice driver must detect two silence and two nonsilence periods in the audio signal. Figure 8 
illustrates cadence detection. 

Figure 8. Cadence Detection
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Once the cadence is established, the cadence values can be retrieved using the following extended 
attribute functions: 

ATDX_SIZEHI( ) 
length of the nonsilence period (in 10 msec units) for the detected cadence 

ATDX_SHORTLOW( ) 
length of the shortest silence period for the detected cadence (in 10 msec units) 

ATDX_LONGLOW( ) 
length of the longest silence period for the detected cadence (in 10 msec units). 

Only one nonsilence period is used to define the cadence because the nonsilence periods have the 
same duration. Figure 9 shows the elements of an established cadence. 

Figure 9. Elements of Established Cadence

 

The durations of subsequent states are compared with these fields to see if the cadence has been 
broken. 

7.16.4 Outcomes of Cadence Detection

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is 
provided for backward compatibility purposes only. 

Cadence detection can identify the following conditions during the period used to establish the 
cadence or after the cadence has been established: 

• No Ringback 

• Connect 

• Busy 

• No Answer 

Although loop current detection and positive voice detection provide complementary means of 
detecting a connect, cadence detection provides the only way in basic call progress analysis to 
detect a no ringback, busy, or no answer. 

The timings are given in units of 10ms.
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Cadence detection can identify the following conditions during the period used to establish the 
cadence: 

No Ringback 
While the cadence is being established, cadence detection determines whether the signal is 
continuous silence or nonsilence. In this case, cadence detection returns a no ringback, 
indicating there is a problem in completing the call. 

Connect 
While the cadence is being established, cadence detection determines whether the audio signal 
departs from acceptable network standards for busy or ring signals. In this case, cadence 
detection returns a connect, indicating that there was a “break” from general cadence 
standards. 

Cadence detection can identify the following conditions after the cadence has been established: 

Connect 
After the cadence has been established, cadence detection determines whether the audio signal 
departs from the established cadence. In this case, cadence detection returns a connect, 
indicating that there was a break in the established cadence. 

No Answer 
After the cadence has been established, cadence detection determines whether the cadence 
belongs to a single or double ring. In this case, cadence detection can return a no answer, 
indicating there was no break in the ring cadence for a specified number of times. 

Busy 
After the cadence has been established, cadence detection determines whether the cadence 
belongs to a slow busy signal. In this case, cadence detection can return a busy, indicating that 
the busy cadence was repeated for a specified number of times. 

To determine whether the ring cadence is a double or single ring, compare the value returned by the 
ATDX_SHORTLOW( ) function to the DX_CAP field ca_lo2rmin. If the 
ATDX_SHORTLOW( ) value is less than ca_lo2rmin, the cadence is a double ring; otherwise, it 
is a single ring. 

7.16.5 Setting Selected Cadence Detection Parameters

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is 
provided for backward compatibility purposes only. 

Only the most commonly adjusted cadence detection parameters are discussed here. For a complete 
listing and description of the DX_CAP data structure, see the Dialogic® Voice API Library 
Reference. 

You should only need to adjust cadence detection parameters for network environments that do not 
conform to the U.S. standard network environment (such as behind a PBX). 
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7.16.5.1 General Cadence Detection Parameters 

The following are general cadence detection parameters in DX_CAP:

ca_stdely  
Start Delay: the delay after dialing has been completed and before starting cadence detection. 
This parameter also determines the start of frequency detection and positive voice detection. 
Default: 25 (10 msec units) = 0.25 seconds.

Be careful with this variable. Setting this variable too small may allow switching transients or, 
if too long, miss critical signaling. 

ca_higltch  
High Glitch: the maximum nonsilence period to ignore. Used to help eliminate spurious 
nonsilence intervals. Default: 19 (in 10 msec units). 

To eliminate audio signal glitches over the telephone line, the parameters ca_logltch and 
ca_higltch are used to determine the minimum acceptable length of a valid silence or 
nonsilence duration. Any silence interval shorter than ca_logltch is ignored, and any 
nonsilence interval shorter than ca_higltch is ignored. 

ca_logltch  
Low Glitch: the maximum silence period to ignore. Used to help eliminate spurious silence 
intervals. Default: 15 (in 10 msec units). 

7.16.5.2 Cadence Detection Parameters Affecting a No Ringback

After cadence detection begins, it waits for an audio signal of nonsilence. The maximum waiting 
time is determined by the parameter ca_cnosig (continuous no signal). If the length of this period of 
silence exceeds the value of ca_cnosig, a no ringback is returned. Figure 10 illustrates this. This 
usually indicates a dead or disconnected telephone line or some other system malfunction. 

ca_cnosig  
Continuous No Signal: the maximum time of silence (no signal) allowed immediately after 
cadence detection begins. If exceeded, a no ringback is returned. Default: 4000 (in 10 msec 
units), or 40 seconds. 

Figure 10. No Ringback Due to Continuous No Signal
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If the length of any period of nonsilence exceeds the value of ca_cnosil (continuous nonsilence), a 
no ringback is returned, shown in Figure 11. 

ca_cnosil  
Continuous Nonsilence: the maximum length of nonsilence allowed. If exceeded, a no 
ringback is returned. Default: 650 (in 10 msec units), or 6.5 seconds. 

Figure 11. No Ringback Due to Continuous Nonsilence

7.16.5.3 Cadence Detection Parameters Affecting a No Answer or Busy

By using the ca_nbrdna parameter, you can set the maximum number of ring cadence repetitions 
that will be detected before returning a no answer. 

By using the ca_nbrdna and ca_nsbusy parameters, you can set the maximum number of busy 
cadence repetitions. 

ca_nbrdna
Number of Rings Before Detecting No Answer: the number of single or double rings to wait 
before returning a no answer. Default: 4. 

ca_nsbusy
Nonsilence Busy: the number of nonsilence periods in addition to ca_nbrdna to wait before 
returning a busy. Default: 0. ca_nsbusy is added to ca_nbrdna to give the actual number of 
busy cadences at which to return busy. Note that even though ca_nsbusy is declared as an 
unsigned variable, it can be a small negative number.
Do not allow ca_nbrdna + ca_nsbusy to equal 2. This is a foible of the 2’s complement bit 
mapping of a small negative number to an unsigned variable. 

7.16.5.4 Cadence Detection Parameters Affecting a Connect

You can cause cadence detection to measure the length of the salutation when the phone is 
answered. The salutation is the greeting when a person answers the phone, or an announcement 
when an answering machine or computer answers the phone. 

By examining the length of the greeting or salutation you receive when the phone is answered, you 
may be able to distinguish between an answer at home, at a business, or by an answering machine. 

The length of the salutation is returned by the ATDX_ANSRSIZ( ) function. By examining the 
value returned, you can estimate the kind of answer that was received. 

The timings are given in units of 10ms.

nonsilence

silence

CA_CNOSIL
650

No Ringback
Returned



Dialogic® Voice API Programming Guide 73
Dialogic Corporation

Call Progress Analysis

Normally, a person at home will answer the phone with a brief salutation that lasts about 1 second, 
such as “Hello” or “Smith Residence.” A business will usually answer the phone with a longer 
greeting that lasts from 1.5 to 3 seconds, such as “Good afternoon, Dialogic Corporation.” An 
answering machine or computer will usually play an extended message that lasts more than 3 or 4 
seconds. 

This method is not 100% accurate, for the following reasons: 

• The length of the salutation can vary greatly. 

• A pause in the middle of the salutation can cause a premature connect event. 

• If the phone is picked up in the middle of a ringback, the ringback tone may be considered part 
of the salutation, making the ATDX_ANSRSIZ( ) return value inaccurate. 

In the last case, if someone answers the phone in the middle of a ring and quickly says “Hello”, the 
nonsilence of the ring will be indistinguishable from the nonsilence of voice that immediately 
follows, and the resulting ATDX_ANSRSIZ( ) return value may include both the partial ring and 
the voice. In this case, the return value may deviate from the actual salutation by 0 to +1.8 seconds. 
The salutation would appear to be the same as when someone answers the phone after a full ring 
and says two words. 

Note: A return value of 180 to 480 may deviate from the actual length of the salutation by 0 to +1.8 
seconds. 

Cadence detection will measure the length of the salutation when the ca_hedge (hello edge) 
parameter is set to 2 (the default). 

ca_hedge  
Hello Edge: the point at which a connect will be returned to the application, either the rising 
edge (immediately when a connect is detected) or the falling edge (after the end of the 
salutation). 

1 = rising edge. 2 = falling edge. Default: 2 (connect returned on falling edge of salutation). 
Try changing this if the called party has to say “Hello” twice to trigger the answer event. 

Because a greeting might consist of several words, call progress analysis waits for a specified 
period of silence before assuming the salutation is finished. The ca_ansrdgl (answer deglitcher) 
parameter determines when the end of the salutation occurs. This parameter specifies the maximum 
amount of silence allowed in a salutation before it is determined to be the end of the salutation. To 
use ca_ansrdgl, set it to approximately 50 (in 10 msec units). 

ca_ansrdgl 
Answer Deglitcher: the maximum silence period (in 10 msec units) allowed between words in 
a salutation. This parameter should be enabled only when you are interested in measuring the 
length of the salutation. Default: -1 (disabled). 

The ca_maxansr (maximum answer) parameter determines the maximum allowable answer size 
before returning a connect. 

ca_maxansr 
Maximum Answer: the maximum allowable length of ansrsize. When ansrsize exceeds 
ca_maxansr, a connect is returned to the application. Default: 1000 (in 10 msec units), or 10 
seconds. 
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Figure 12 shows how the ca_ansrdgl parameter works. 

Figure 12. Cadence Detection Salutation Processing

When ca_hedge = 2, cadence detection waits for the end of the salutation before returning a 
connect. The end of the salutation occurs when the salutation contains a period of silence that 
exceeds ca_ansrdgl or the total length of the salutation exceeds ca_maxansr. When the connect 
event is returned, the length of the salutation can be retrieved using the ATDX_ANSRSIZ( ) 
function. 

After call progress analysis is complete, call ATDX_ANSRSIZ( ). If the return value is less than 
180 (1.8 seconds), you have probably contacted a residence. A return value of 180 to 300 is 
probably a business. If the return value is larger than 480, you have probably contacted an 
answering machine. A return value of 0 means that a connect was returned because excessive 
silence was detected. This can vary greatly in practice. 

Note: When a connect is detected through positive voice detection or loop current detection, the 
DX_CAP parameters ca_hedge, ca_ansrdgl, and ca_maxansr are ignored. 

7.16.6 Obtaining Cadence Information

Note: Cadence detection in basic call progress analysis is supported on Springware boards and is 
provided for backward compatibility purposes only. 

To return cadence information, you can use the following extended attribute functions:

ATDX_SIZEHI( ) 
duration of the cadence non-silence period (in 10 msec units) 

ATDX_SHORTLOW( ) 
duration of the cadence shorter silence period (in 10 msec units) 

ATDX_LONGLOW( ) 
duration of the cadence longer silence period (in 10 msec units) 

ATDX_ANSRSIZ( ) 
duration of answer if a connect occurred (in 10 msec units) 

ATDX_CONNTYPE( ) 
connection type. If ATDX_CONNTYPE( ) returns CON_CAD, the connect was due to 
cadence detection. 
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88.Recording and Playback

This chapter discusses playback and recording features supported by the Dialogic® Voice API 
library. The following topics are discussed:

• Overview of Recording and Playback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

• Digital Recording and Playback  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

• Play and Record Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

• Play and Record Convenience Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

• Voice Encoding Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

• G.726 Voice Coder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

• Transaction Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

• Silence Compressed Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

• Recording with the Voice Activity Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

• Streaming to Board  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.1 Overview of Recording and Playback

The primary voice processing operations provided by a Dialogic® voice board include:

• recording: digitizing and storing human voice

• playback: retrieving, converting, and playing the stored, digital information to reconstruct the 
human voice.

The following features related to voice recording and playback operation are documented in other 
chapters in this document:

• Controlling when a playback or recording terminates using I/O termination conditions is 
documented in Section 6.1.2, “Setting Termination Conditions for I/O Functions”, on page 27. 

• Controlling the speed and volume when messages are played back is documented in Chapter 9, 
“Speed and Volume Control”.

8.2 Digital Recording and Playback

In digital speech recording, the voice board converts the human voice from a continuous sound 
wave, or analog signal, into a digital representation. The Dialogic® voice board does this by 
frequently sampling the amplitude of the sound wave at individual points in the speech signal.
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The accuracy, and thus the quality, of the digital recording is affected by:

• the sampling rate (number of samples per second), also called digitization rate

• the precision, or resolution, of each sample (the amount of data that is used to represent 1 
sample).

If the samples are taken at a greater frequency, the digital representation will be more accurate and 
the voice quality will be greater. Likewise, if more bits are used to represent the sample (higher 
resolution), the sample will be more accurate and the voice quality will be greater.

In digital speech playback, the voice board reconstructs the speech signal by converting the 
digitized voice back into analog voltages. If the voice data is played back at the same rate at which 
it was recorded, an approximation of the original speech will result.

8.3 Play and Record Functions

The C language function library includes several functions for recording and playing audio data, 
such as dx_rec( ), dx_reciottdata( ), dx_play( ), and dx_playiottdata( ). Recording takes audio 
data from a specified channel and encodes it for storage in memory, in a file on disk, or on a custom 
device. Playing decodes the stored audio data and plays it on the specified channel. The storage 
location is one factor in determining which record and play functions should be used. The storage 
location affects the access speed for retrieving and storing audio data.

One or more of the following data structures are used in conjunction with certain play and record 
functions: DV_TPT to specify a termination condition for the function, DX_IOTT to identify a 
source or destination for the data, and DX_XPB to specify the file format, data format, sampling 
rate, and resolution. 

8.4 Play and Record Convenience Functions

Several convenience functions are provided to make it easier to implement play and record 
functionality in an application. Some examples are: dx_playf( ), dx_playvox( ), dx_playwav( ), 
dx_recf( ), and dx_recvox( ). These functions are specific cases of the dx_play( ) and dx_rec( ) 
functions and run in synchronous mode.

For example, dx_playf( ) performs a playback from a single file by specifying the filename. The 
same operation can be done using dx_play( ) and specifying a DX_IOTT structure with only one 
entry for that file. Using dx_playf( ) is more convenient for a single file playback because you do 
not have to set up a DX_IOTT structure for the one file and the application does not need to open 
the file. dx_recf( ) provides the same single file convenience for the dx_rec( ) function.

8.5 Voice Encoding Methods

A digitized audio recording is characterized by several parameters as follows:

• the number of samples per second, or sampling rate 
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• the number of bits used to store a sample, or resolution 

• the rate at which data is recorded or played 

There are many encoding and storage schemes available for digitized voice. 

Note: Not all voice coders are supported in all scenarios, such as for silence compressed record or for 
speed control. Whenever a restriction exists, it is noted.

The voice encoding methods or data formats supported on Dialogic® HMP Software are listed in 
Table 8.  

The voice encoding methods supported on Dialogic® Springware boards are listed in Table 9.

Table 8. Voice Encoding Methods (HMP Software)

Digitizing Method
Sampling Rate 

(kHz)
Resolution (Bits) Bit Rate (Kbps) File Format

OKI ADPCM  6 4 24 VOX, WAVE

OKI ADPCM 8 4 32 VOX, WAVE

G.711 PCM
A-law and mu-law   

6 8 48 VOX, WAVE

G.711 PCM
A-law and mu-law

8 8 64 VOX, WAVE

Linear PCM  8 8 64 VOX, WAVE

Linear PCM 8 16 128 VOX, WAVE

Linear PCM  11 8 88 VOX, WAVE

GSM 6.10 full rate 
(Microsoft format) 

8 (value ignored) 13 WAVE

G.726 bit exact 8 2 16 VOX, WAVE 

G.726 bit exact 8 3 24 VOX, WAVE 

G.726 bit exact 8 4 32 VOX, WAVE 

G.726 bit exact 8 5 40 VOX, WAVE 

G.729A 8 8 64 WAVE

Table 9. Voice Encoding Methods (Springware)

Digitizing Method
Sampling Rate 

(kHz)
Resolution (Bits) Bit Rate (Kbps) File Format

OKI ADPCM 6 4 24 VOX, WAVE

OKI ADPCM 8 4 32 VOX, WAVE

G.711 PCM 
A-law and mu-law  

6 8 48 VOX, WAVE

G.711 PCM
A-law and mu-law

8 8 64 VOX, WAVE

Linear PCM  8 8 64 VOX, WAVE
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8.6 G.726 Voice Coder

G.726 is an ITU-T recommendation that specifies an adaptive differential pulse code modulation 
(ADPCM) technique for recording and playing back audio files. It is useful for applications that 
require speech compression, encoding for noise immunity, and uniformity in transmitting voice and 
data signals. 

The voice library provides support for a G.726 bit exact voice coder that is compliant with the 
ITU-T G.726 recommendation. 

Audio encoded in the G.726 bit exact format complies with Voice Profile for Internet Mail (VPIM), 
a communications protocol that makes it possible to send and receive messages from disparate 
messaging systems over the Internet. G.726 bit exact is the audio encoding and decoding standard 
supported by VPIM. 

VPIM follows the little endian ordering. The 4-bit code words of the G.726 encoding must be 
packed into octets/bytes as follows: 

• The first code word (A) is placed in the four least significant bits of the first octet, with the 
least significant bit (LSB) of the code word (A0) in the least significant bit of the octet. 

• The second code word (B) is placed in the four most significant bits of the first octet, with the 
most significant bit (MSB) of the code word (B3) in the most significant bit of the octet.

• Subsequent pairs of the code words are packed in the same way into successive octets, with the 
first code word of each pair placed in the least significant four bits of the octet. It is preferable 
to extend the voice sample with silence such that the encoded value consists of an even number 
of code words. However, if the voice sample consists of an odd number of code words, then the 
last code word will be discarded. 

The G.726 encoding for VPIM is illustrated here:

              +--+--+--+--+--+--+--+--+
              |B3|B2|B1|B0|A3|A2|A1|A0|
               +--+--+--+--+--+--+--+--+
MSB -> | 7| 6| 5| 4| 3| 2| 1| 0|  <- LSB
               +--+--+--+--+--+--+--+--+
       32K ADPCM / Octet Mapping 

For more information on G.726 and VPIM, see RFC 3802 on the Internet Engineering Task Force 
(IETF) website at http://www.ietf.org.

Linear PCM  11 8 88 VOX, WAVE

GSM 6.10 full rate 
(Microsoft format)  

8 (value ignored) 13 WAVE

G.726 bit exact  8 4 32 VOX, WAVE 

Table 9. Voice Encoding Methods (Springware)

Digitizing Method
Sampling Rate 

(kHz)
Resolution (Bits) Bit Rate (Kbps) File Format

http://www.ietf.org
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To use the G.726 voice coder, specify the coder in the DX_XPB structure. Then use 
dx_playiottdata( ) and dx_reciottdata( ) functions to play and record with this coder. 
Alternatively, you can also use dx_playvox( ) and dx_recvox( ) convenience functions. 

To determine the voice resource handles used with the play and record functions, use SRL device 
mapper functions to return information about the structure of the system.  

8.7 Transaction Record

Transaction record enables the recording of a two-party conversation by allowing two time-division 
multiplexing (TDM) bus time slots from a single channel to be recorded. This feature is useful for 
call center applications where it is necessary to archive a verbal transaction or record a live 
conversation. A live conversation requires two time slots on the TDM bus, but Dialogic® voice 
boards today can only record one time slot at a time. No loss of channel density is realized with this 
feature. Voice activity on two channels can be summed and stored in a single file, or in a 
combination of files, devices, and/or memory. 

Use the following function for transaction record on Windows®:

dx_mreciottdata( ) 
records voice data from two channels to a data file, memory, or custom device 

On Dialogic® Springware boards on Linux, use the following functions for transaction record:

dx_recm( ) 
records voice data from two channels to a data file, memory, or custom device 

dx_recmf( ) 
records voice data from two channels to a single file 

8.8 Silence Compressed Record

The silence compressed record (SCR) feature is discussed in more detail in the following topics:

• Overview

• Enabling

• Encoding Methods Supported

8.8.1 Overview

The silence compressed record feature (SCR) enables recording with silent pauses eliminated. This 
results in smaller recorded files with no loss of intelligibility. 

On Dialogic® Springware boards, when the audio level is at or falls below the silence threshold for 
a minimum duration of time, SCR begins. When a short burst of noise (glitch) is detected, the 
compression does not end unless the glitch is longer than a specified period of time. 
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On Dialogic® HMP Software, the SCR algorithm is based on energy detection and zero crossing.

The SCR algorithm operates on one msec blocks of speech and uses a two-fold approach to 
determine whether a sample is speech or silence. Two probability of speech values are calculated 
using a zero crossing algorithm and an energy detection algorithm. These values are put together to 
calculate a combined probability of speech.

The energy detection algorithm allows you to modify the background noise threshold range. 
Signals above the high threshold are declared speech, and signals below the low threshold are 
declared silence.

Speech or silence is declared based on the previous sample, the current combined probability of 
speech in relation to the speech probability threshold and silence probability threshold parameters, 
and the trailing silence parameter. 

8.8.2 Enabling

On Dialogic® HMP Software, use dx_setparm( ) and the DXCH_SCRFEATURE define to turn 
silence compressed record (SCR) on and off. Once enabled, voice record functions automatically 
record with SCR. For information on modifying SCR parameters, see the Configuration Guide.

On Dialogic® Springware boards, you enable SCR in the voice.prm file which is downloaded to the 
board during initialization. You must edit this file and set appropriate values for the SCR 
parameters for use in your working environment before initializing the board. You cannot enable 
this feature through the voice API. After SCR is enabled in the voice.prm file, it is automatically 
activated by the use of voice record functions such as dx_rec( ). 

On Dialogic® Springware boards, the SCR parameters specify the silence threshold, the duration of 
silence at the end of speech before silence compression begins, the duration of a glitch in the line 
which does not stop silence compression, and more. Figure 13 illustrates how these parameters 
work. See the Springware Architecture Products Configuration Guide for details of the parameters 
and information on how to enable and configure this feature. 
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Figure 13. Silence Compressed Record Parameters Illustrated 

8.8.3 Encoding Methods Supported

On Dialogic® HMP Software, the following encoding algorithms and sampling rates are supported 
in silence compressed record (SCR):

• OKI ADPCM, 6 kHz and 8 kHz

• linear PCM,  8 kHz and 11 kHz

• G.711 PCM, 6 kHz and 8 kHz 

• G.726, 8 kHz 

On Dialogic® Springware boards, the following encoding algorithms and sampling rates are 
supported in SCR:

• OKI ADPCM, 6 kHz and 8 kHz

• linear PCM, 8 kHz and 11 kHz

• G.711 PCM, 6 kHz and 8 kHz

8.9 Recording with the Voice Activity Detector

Recording with the voice activity detector is discussed in the following topics:

• Overview

• Enabling

• Encoding Methods Supported
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8.9.1 Overview

The voice activity detector (VAD) is not supported on Dialogic® Springware boards.

The dx_reciottdata( ) function, used to record voice data, has two modes that work with the voice 
activity detector. One mode enables voice activity detection with event notification upon detection. 
The second mode adds initial silence compression on the line before voice energy is detected; if 
initial silence is greater than the default allowable amount of silence, the amount in excess is 
eliminated. This mode uses the same algorithm as the silence compressed record (SCR) feature 
described in Section 8.8, “Silence Compressed Record”, on page 79.

The voice activity detector is a component in the voice software that examines the incoming signal 
and determines if the signal contains significant energy and is likely to be voice. 

8.9.2 Enabling

The modes related to the voice activity detector are specified in the mode parameter of the 
dx_reciottdata( ) function. They are:

RM_VADNOTIFY
Generates an event, TDX_VAD, on detection of voice energy during the recording operation.

Note: TDX_VAD does not indicate function termination; it is an unsolicited event. Do not 
confuse this event with the TEC_VAD event which is used in the continuous speech 
processing (CSP) library. 

RM_ISCR
Adds initial silence compression to the VAD capability. Initial silence here refers to the 
amount of silence on the line before voice activity is detected. When using RM_ISCR, the 
default value for the amount of initial silence allowable is 3 seconds. Any initial silence longer 
than that will be eliminated to the default allowable amount. This default value can be changed 
by modifying a parameter in the .config file for the board and then generating a new .fcd file. 
The 0x416 parameter must be added in the [encoder] section of the .config file. For details on 
using this parameter, see the Configuration Guide.

Note: The RM_ISCR mode can only be used in conjunction with RM_VADNOTIFY.

When these two modes are used together, no data is recorded as output until voice activity is 
detected on the line. The TDX_VAD event indicates the initiation of voice. The output file will be 
empty before voice activity is detected, although some initial silence may be included as specified 
in the .fcd file.

To enable these modes, OR them to the mode parameter. For example:

t_Return=dx_reciottdata(DevHandle, Iott, Tpt, &t_Xpb, EV_ASYNC|RM_VADNOTIFY);

t_Return=dx_reciottdata(DevHandle, Iott, Tpt, &t_Xpb, EV_ASYNC|RM_VADNOTIFY|RM_ISCR);

Note: The dx_reciottdata( ) function does not perform echo-cancelled streaming. For automatic speech 
recognition applications, use record or streaming functions in the Dialogic® Continuous Speech 
Processing (CSP) API library. For more information, see the Dialogic® Continuous Speech 
Processing API Programming Guide and Dialogic® Continuous Speech Processing API 
Programming Guide. 
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8.9.3 Encoding Methods Supported

The following encoding algorithms and sampling rates are supported for recording with the voice 
activity detector: 

• OKI ADPCM, 6 kHz and 8 kHz 

• linear PCM, 8 kHz and 8 kHz  

• G.711 PCM, 6 kHz and 8 kHz  

• G.726, 8 kHz 

8.10 Streaming to Board

The streaming to board feature is discussed in the following topics:

• Streaming to Board Overview

• Streaming to Board Functions

• Implementing Streaming to Board

• Streaming to Board Guidelines

8.10.1 Streaming to Board Overview

The streaming to board feature is not supported on Dialogic® Springware boards.

The streaming to board feature provides a way to stream data in real time to a network interface. 
Unlike the standard voice play feature (store and forward method), data can be streamed with little 
delay as the amount of initial data required to start the stream is configurable. The streaming to 
board feature is essential for applications such as text-to-speech, distributed prompt servers, and IP 
gateways. 

The streaming to board feature uses a circular stream buffer to hold data, provides configurable 
high and low water mark parameters, and generates events when those water marks are reached.

8.10.2 Streaming to Board Functions

The following functions are used by the streaming to board feature:

dx_OpenStreamBuffer( ) 
creates and initializes a circular stream buffer

dx_SetWaterMark( ) 
sets high and low water marks for the circular stream buffer

dx_PutStreamData( ) 
places data into the circular stream buffer

dx_GetStreamInfo( ) 
retrieves information about the circular stream buffer



84 Dialogic® Voice API Programming Guide
Dialogic Corporation

Recording and Playback

dx_ResetStreamBuffer( ) 
resets internal data for a circular stream buffer

dx_CloseStreamBuffer( ) 
deletes a circular stream buffer

8.10.3 Implementing Streaming to Board

Perform the following steps to implement streaming to board in your application:

Note: These steps do not represent every task that must be performed to create a working application but 
are intended as general guidelines for implementing streaming to board. 

1. Before calling the dx_OpenStreamBuffer( ) function, you must call dx_Open( ) on a board, 
channel, or physical board. Otherwise, the DM3 library will not load, and 
dx_OpenStreamBuffer( ) will fail. 

2. Decide on the size of the circular stream buffer. This value is used as input to the 
dx_OpenStreamBuffer( ) function. To determine the circular stream buffer size, see 
Section 8.10.4, “Streaming to Board Guidelines”, on page 84.

3. Based on the circular stream buffer and the bulk queue buffer size, decide on values for the 
high and low water marks for the circular stream buffer. To determine high and low water mark 
values, see Section 8.10.4, “Streaming to Board Guidelines”, on page 84.

4. Initialize and create a circular stream buffer using dx_OpenStreamBuffer( ). 

5. Set the high and low water marks using dx_SetWaterMark( ). 

6. Start the play using dx_playiottdata( ) or dx_play( ) in asynchronous mode with the io_type 
field in DX_IOTT data structure set to IO_STREAM. 

7. Put data in the circular stream buffer using dx_PutStreamData( ). 

8. Wait for events.

The TDX_LOWWATER event is generated every time data in the buffer falls below the low 
water mark. The TDX_HIGHWATER event is generated every time data in the buffer is above 
the high water mark. The application receives TDX_LOWWATER and TDX_HIGHWATER 
events regardless of whether or not dx_SetWaterMark( ) is used in your application. These 
events are generated when there is a play operation with this buffer and are reported on the 
device that is performing the play. If there is no active play, the application will not receive any 
of these events.

TDX_PLAY indicates that play has completed.

9. When all files are played, issue dx_CloseStreamBuffer( ).

8.10.4 Streaming to Board Guidelines

On Windows®

Consider the following usage guidelines when implementing streaming to board in your 
application on a Windows® system:

• You can create as many circular stream buffers as needed on a channel. You can use more than 
one circular stream buffer per play via the DX_IOTT structure. In this case, specify that the 
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data ends in one buffer using the STREAM_EOD flag so that the play can process the next 
DX_IOTT structure in the chain.

• In general, the larger you define the circular stream buffer size, the better. Factors to take into 
consideration include the average input file size, the amount of memory on your system, the 
total number of channels in your system, and so on. Having an optimal circular stream buffer 
size results in the high and low water marks being reached less often. In a well-tuned system, 
the high and low water marks should rarely be reached. 

• When adjusting circular stream buffer sizes, be aware that you must also adjust the high and 
low water marks accordingly.

• Recommendation for the high water mark: it should be based on the following:

size of the circular stream buffer minus two times the size of the bulk queue buffer

For example, if the circular stream buffer is 100 kbytes, and the bulk queue buffer size is 
8 kbytes, set the high water mark to 84 kbytes. The bulk queue buffer size is set through the 
dx_setchxfercnt( ) function.

• Recommendation for the low water mark: 

– If the bulk queue buffer size is less than 8 kbytes, the low water mark should be four times 
the size of the bulk queue buffer size.

– If the bulk queue buffer size is greater than 8 kbytes and less than 16 kbytes, the low water 
mark should be three times the size of the bulk queue buffer size.

– If the bulk queue buffer size is greater than 16 kbytes, the low water mark should be two 
times the size of the bulk queue buffer size.

• When a TDX_LOWWATER event is received, continue putting data in the circular stream 
buffer. Remember to set STREAM_EOD flag to EOD on the last piece of data.

• When a TDX_HIGHWATER event is received, stop putting data in the circular stream buffer. 
If using a text-to-speech (TTS) engine, you will have to stop the engine from sending more 
data. If you cannot control the output of the TTS engine, you will need to control the input to 
the engine. 

• It is recommended that you enable the TDX_UNDERRUN event to notify the application of 
firmware underrun conditions on the board. Specify DM_UNDERRUN in dx_setevtmsk( ). 

On Linux

Consider the following usage guidelines when implementing streaming to board in your 
application on a Linux system:

• You can create as many circular stream buffers as needed on a channel. You can use more than 
one circular stream buffer per play via the DX_IOTT structure. In this case, specify that the 
data ends in one buffer using the STREAM_EOD flag so that the play can process the next 
DX_IOTT structure in the chain.

• The bulk queue buffer specifies the size of the buffer used to transfer voice data between the 
application and the driver. This buffer is set to 16 kbytes and cannot be modified; the 
dx_setchxfercnt( ) function, which is used to modify the bulk queue buffer size, is not 
currently supported. 

• In general, the larger you define the circular stream buffer size, the better. Factors to take into 
consideration include the average input file size, the amount of memory on your system, the 
total number of channels in your system, and so on. Having an optimal circular stream buffer 
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size results in the high and low water marks being reached less often. In a well-tuned system, 
the high and low water marks should rarely be reached. 

• When adjusting circular stream buffer sizes, be aware that you must also adjust the high and 
low water marks accordingly.

• Recommendation for the high water mark: it should be based on the following:

size of the circular stream buffer minus two times the size of the bulk queue buffer

For example, if the circular stream buffer is 500 kbytes, and the bulk queue buffer size is 
16 kbytes, set the high water mark to 468 kbytes (500-32=468).

• Recommendation for the low water mark: it should be two times the size of the bulk queue 
buffer size.

Based on the previous example, since the bulk queue buffer size is 16 kbytes, set the low water 
mark to 32 kbytes.

• When a TDX_LOWWATER event is received, continue putting data in the circular stream 
buffer. Remember to set STREAM_EOD flag to EOD on the last piece of data.

• When a TDX_HIGHWATER event is received, stop putting data in the circular stream buffer. 
If using a text-to-speech (TTS) engine, you will have to stop the engine from sending more 
data. If you cannot control the output of the TTS engine, you will need to control the input to 
the engine. 

• It is recommended that you enable the TDX_UNDERRUN event to notify the application of 
firmware underrun conditions on the board. Specify DM_UNDERRUN in dx_setevtmsk( ). 
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This chapter describes how to control the speed and volume of play on a channel. The following 
topics are discussed:

• Speed and Volume Control Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

• Speed and Volume Convenience Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

• Speed and Volume Adjustment Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

• Speed and Volume Modification Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

• Play Adjustment Digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

• Setting Play Adjustment Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

• Explicitly Adjusting Speed and Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.1 Speed and Volume Control Overview

The voice software contains functions and data structures to control the speed and volume of play 
on a channel. This allows an end user to control the speed or volume of a message by entering a 
DTMF tone, for example. 

Note: On Dialogic® HMP Software, before using the speed control feature, you must enable this feature 
in the [decoder] section of the CONFIG file. The speed control feature is disabled by default to 
preserve MIPS usage. For more information on enabling speed control, see the Configuration 
Guide. 

On Dialogic® HMP Software, speed can be controlled on playbacks using the following encoding 
methods:

• OKI ADPCM 24 kbps and 32 kbps

• G.711 PCM A-law or mu-law encoding 48 kbps and 64 kbps

• linear PCM 128 kbps

On Dialogic® Springware boards, speed can be controlled on playbacks using 24 kbps or 32 kbps 
OKI ADPCM only. 

If an attempt is made to adjust speed on an unsupported board, the firmware will ignore the request 
and play will continue at normal speed.

Volume can be controlled on all playbacks regardless of the encoding algorithm. For a list of 
supported encoding methods, see Section 8.5, “Voice Encoding Methods”, on page 76.
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9.2 Speed and Volume Convenience Functions

The convenience functions set a digit that will adjust speed or volume, but do not use any data 
structures. These convenience functions will only function properly if you use the default settings 
of the speed or volume modification tables. These functions assume that the modification tables 
have not been modified. The convenience functions are: 

dx_addspddig( ) 
adds a digit that will modify speed by a specified amount

dx_addvoldig( ) 
adds a digit that will modify volume by a specified amount

9.3 Speed and Volume Adjustment Functions

Speed or volume can be adjusted explicitly or can be set to adjust in response to a preset condition, 
such as a specific digit. For example, speed could be set to increase a certain amount when “1” is 
pressed on the telephone keypad. The functions used for speed and volume adjustment are: 

dx_setsvcond( ) 
Sets conditions that adjust speed or volume. Use this function to adjust speed or volume in 
response to a DTMF digit or start of play. 

dx_adjsv( ) 
Adjusts speed or volume explicitly. Use this function if your adjustment condition is not a digit 
or start of play. For example, the application could call this function after detecting a spoken 
word (voice recognition) or a certain key on the keyboard. 

9.4 Speed and Volume Modification Tables

Each channel has a speed or volume modification table for play speed or play volume adjustments. 
Except for the value of the settings, the table is the same for speed and volume. 

Each speed or volume modification table (SVMT) table has 21 entries, 20 that allow for a 
maximum of 10 increases and decreases in speed or volume. The entry in the middle of the table is 
referred to as the “origin” entry that represents normal speed or volume. The normal speed or 
volume is how playback occurs when the speed and volume control feature is not used. See 
Table 10, “Default Speed Modification Table”, on page 90 and Table 11, “Default Volume 
Modification Table”, on page 91.

The origin, or normal speed or volume, is the basis for all settings in the table. Typically, the origin 
is set to 0. Speed and volume increases or decreases by moving up or down the tables. Other entries 
in the table specify a speed or volume setting in terms of a deviation from normal. For example, if a 
speed modification table (SMT) entry is -10, this value represents a 10% decrease from the normal 
speed. 



Dialogic® Voice API Programming Guide 89
Dialogic Corporation

Speed and Volume Control

Although the origin is typically set to normal speed/volume, changing the setting of the origin does 
not affect the other settings, because all values in the SVMT are based on a deviation from normal 
speed/volume. 

Speed and volume control adjustments are specified by moving the current speed/volume pointer in 
the table to another SVMT table entry; this translates to increasing or decreasing the current 
speed/volume to the value specified in the table entry. 

A speed/volume adjustment stays in effect until the next adjustment on that channel or until a 
system reset. 

The SVMT is like a 21-speed bicycle. You can select the gear ratio for each of the 21 speeds before 
you go for a ride (by changing the values in the SVMT). And you can select any gear once you are 
on the bike, like adjusting the current speed/volume to any setting in the SVMT. 

To change the default values of the speed or volume modification table, use the dx_setsvmt( ) 
function, which in turn uses the DX_SVMT data structure. To return the current values of a table to 
the DX_SVMT structure, use dx_getsvmt( ). The DX_SVCB data structure uses this table when 
setting adjustment conditions. 

Adjustments to speed or volume are made by dx_adjsv( ) and dx_setsvcond( ) according to the 
speed or volume modification table settings. These functions adjust speed or volume to one of the 
following: 

• a specified level (that is, to a specified absolute position in the speed table or volume table) 

• a change in level (that is, by a specified number of steps up or down in the speed table or 
volume table) 

For example, by default, each entry in the volume modification table is equivalent to 2 dB from the 
origin. Volume could be decreased by 2 dB by specifying position 1 in the table, or by moving one 
step down from the origin. 
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The default speed modification table is shown in Table 10. 

Consider the following usage information on the speed modification table:

• Each entry in the table is a percentage deviation from the default play speed (“origin”). For 
example, the decrease[6] position reduces speed by 40%. This is four steps from the origin. 

• The total speed modification range is from -50% to +50%. In this table, the lowest position 
used is the decrease[5] position. The remaining decrease fields are set to -128 (80h). If these 
“nonadjustment” positions are selected, the default action is to play at the decrease[5] speed. 

• These fields can be reset, as long as no values lower than -50 are used. For example, you could 
spread the 50% speed decrease over 10 steps rather than 5. Similarly, you could spread the 
50% speed increase over 10 steps rather than 5.

• The default entries for index values -10 to -6 and +6 to +10 are -128 which represent a null-
entry. To customize the table entries, you must use the dx_setsvmt( ) function.

• On Dialogic® HMP Software, when adjustment is associated with a DTMF digit, speed can be 
increased or decreased in increments of 1 (10%) only. To achieve an increase in speed of 30% 
for example, the user would press the DTMF digit three times.  

Table 10. Default Speed Modification Table

Table Entry Default Value (%) Absolute Position

decrease[0] -128 (80h) -10

decrease[1] -128 (80h) -9

decrease[2] -128 (80h) -8

decrease[3] -128 (80h) -7

decrease[4] -128 (80h) -6

decrease[5] -50 -5

decrease[6] -40 -4

decrease[7] -30 -3

decrease[8] -20 -2

decrease[9] -10 -1

origin     0 0

increase[0] +10 1

increase[1] +20 2

increase[2] +30 3

increase[3] +40 4

increase[4] +50 5

increase[5] -128 (80h) 6

increase[6] -128 (80h) 7

increase[7] -128 (80h) 8

increase[8] -128 (80h) 9

increase[9] -128 (80h) 10
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The default volume modification table is shown in Table 11. 

Consider the following usage information on the volume modification table:

• Each entry in the table is a deviation in decibels from the starting point or volume (“origin”). 
Each entry in the table is equivalent to 2 dB from the origin. Volume can be decreased 2 dB by 
specifying position 1 in the table, or by moving one step down. For example, the increase[1] 
position (two steps from the origin) increases volume by 4 dB. 

• The total volume modification range is from -20 dB to +10 dB. In this table, the highest 
position utilized is the increase[4] position. The remaining increase fields are set to -128 (80h). 
If these “non-adjustment” positions are selected, the default action is to play at the increase[4] 
volume. These fields can be reset, as long as no values higher than +10 are used; for example, 
you could spread the 10 dB volume increase over 10 steps rather than 5.

• In the volume modification table, the default entries for index values +6 to +10 are -128 which 
represent a null-entry. To customize the table entries, you must use the dx_setsvmt( ) function. 

• On Dialogic® HMP Software, when adjustment is associated with a DTMF digit, volume can 
be increased or decreased in increments of 1 (2 dB) only. To achieve an increase in volume of 
6 dB for example, the user would press the DTMF digit three times. 

Table 11. Default Volume Modification Table

Table Entry Default Value (dB) Absolute Position 

decrease[0] -20 -10

decrease[1] -18 -9

decrease[2] -16 -8

decrease[3] -14 -7

decrease[4] -12 -6

decrease[5] -10 -5

decrease[6] -08 -4

decrease[7] -06 -3

decrease[8] -04 -2

decrease[9] -02 -1

origin 0 0

increase[0] +02 1

increase[1] +04 2

increase[2] +06 3

increase[3] +08 4

increase[4] +10 5

increase[5] -128 (80h) 6

increase[6] -128 (80h) 7

increase[7] -128 (80h) 8

increase[8] -128 (80h) 9

increase[9] -128 (80h) 10
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9.5 Play Adjustment Digits

The voice software processes play adjustment digits differently from normal digits: 

• If a play adjustment digit is entered during playback, it causes a play adjustment only and has 
no other effect. This means that the digit is not added to the digit queue; it cannot be retrieved 
with the dx_getdig( ) function. 

• On Dialogic® HMP Software, digits that are used for play adjustment may also be used as a 
terminating condition. If a digit is defined as both, then both actions are applied upon detection 
of that digit.

• On Dialogic® Springware boards, digits that are used for play adjustment will not be used as a 
terminating condition. If a digit is defined as both, then the play adjustment will take priority.

• If the digit queue contains adjustment digits when a play begins and play adjustment is set to 
be level sensitive, the digits will affect the speed or volume and then be removed from the 
queue. 

9.6 Setting Play Adjustment Conditions

Adjustment conditions are set in the same way for speed or volume. The following steps describe 
how to set conditions upon which volume should be adjusted: 

1. Set up the volume modification table (if you do not want to use the defaults): 

• Set up the DX_SVMT structure to specify the size and number of the steps in the table. 

• Call the dx_setsvmt( ) function, which points to the DX_SVMT structure, to modify the 
volume modification table (dx_setsvmt( ) can also be used to reset the table to its default 
values). 

2. Set up the DX_SVCB structure to specify the condition, the size, and the type of adjustment. 

3. Call dx_setsvcond( ), which points to an array of DX_SVCB structures. All subsequent plays 
will adjust volume as required whenever one of the conditions specified in the array occurs. 

9.7 Explicitly Adjusting Speed and Volume

Speed and volume adjustments are made in the same way. The following steps describe how to 
adjust speed, but you can use exactly the same procedure for volume: 

1. Set up the speed modification table (if you do not want to use the defaults): 

• Set up the DX_SVMT structure to specify the size and number of the steps in the table. 

• Call the dx_setsvmt( ) function, which points to the DX_SVMT structure, to modify the 
speed modification table (dx_setsvmt( ) can also be used to reset the table to its default 
values). 

2. When required, call dx_adjsv( ) to adjust the speed modification table by specifying the size 
and type of the adjustment. 
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This chapter describes the Analog Display Services Interface (ADSI) protocol, two-way frequency 
shift keying (FSK), and guidelines for implementing ADSI and two-way FSK support using voice 
library functions.

• Overview of ADSI and Two-Way FSK Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

• ADSI Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

• ADSI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

• One-Way ADSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

• Two-Way ADSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

• Fixed-Line Short Message Service (SMS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

• ADSI and Two-Way FSK Voice Library Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

• Developing ADSI Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

• Modifying Older One-Way ADSI Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.1 Overview of ADSI and Two-Way FSK Support

The features and functionality described in this chapter apply to Dialogic® Springware boards only. 

The Analog Display Services Interface (ADSI) is a Telcordia Technologies (formerly Bellcore) 
standard that defines a protocol used to transmit data to a display-based, ADSI-compliant 
telephone. ADSI enables data to be sent across an analog telephone line, providing asynchronous 
data communications with 8 data bits, 1 start and 1 stop bit, and no parity.

For many years, one-way ADSI support was provided through the dx_play( ) and dx_playf( ) 
functions. This ADSI support enabled developers to use Dialogic® telecom boards to make ADSI 
servers that work with ADSI phones and to support ADSI features such as visual voice mail. This 
is referred to as the “older” implementation of one-way ADSI.

Dialogic has expanded the capabilities of basic ADSI with the introduction of two-way frequency 
shift keying (FSK) capabilities. Two-way FSK is a convenient and robust mechanism to exchange 
small amounts of data between the telephone and the server using FSK as the transport layer. The 
two-way FSK functionality allows products to transmit and receive half-duplex FSK Bell 202 1200 
bps data over the Public Switched Telephone Network (PSTN). 

One of the applications of two-way FSK is fixed-line short message service, also called small 
message service, or SMS. (This service is also known as text messaging.) This service allows the 
server and display-based telephone to exchange short text messages via the PSTN. 

As with basic ADSI, the transmission and reception of two-way FSK data is initiated after a call 
between the server and the display-based telephone (or CPE) has been established, by one of the 
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devices sending a special alerting signal (typically a CAS tone). The other device will then 
acknowledge and the data transmission (and/or reception) will then be initiated. Once the data 
transmission/reception is complete, the devices switch back to voice mode.

This newer implementation of ADSI is supported through the dx_RxIottData( ), 
dx_TxIottData( ), and dx_TxRxIottData( ) functions. This implementation is referred to simply 
as “ADSI Support” or “Two-Way ADSI.” This newer ADSI support provides for both one-way and 
two-way ADSI transmission and is the recommended method for implementing either one-way or 
two-way ADSI in an application program. The older one-way ADSI support can be used but is not 
recommended. Future enhancements to ADSI feature and functionality will not be made to the 
dx_play( ) and dx_playf( ) functions. See Section 10.9, “Modifying Older One-Way ADSI 
Applications”, on page 103 for information on converting from the older to the newer method for 
using ADSI.

10.2 ADSI Protocol

ADSI is a superset of the caller ID and call waiting functions. ADSI is built on the same protocol as 
caller ID and shares the same ADSI Data Message Format (ADMF). The ADSI protocol requires a 
Bell 202/V.23 1200 bps FSK-based modem for data transmission.

The ADSI protocol supports a variable display size on a display-based telephone. An ADSI 
telephone can work in either voice mode or data mode. Voice mode is for normal telephone audio 
communication, and data mode is for transmitting ADSI commands and controlling the telephone 
display (voice is muted in data mode). An ADSI alert tone is used to verify that the hardware is 
connected to an ADSI telephone and to alert the telephone that ADSI data will be transferred. 

The ADSI protocol consists of three defined layers, as follows:

message assembly layer
assembles the body of the ADMF message

data link layer
generates the checksum, which is used for error detection, and sends it to the driver

physical layer
transports the composite message via the modem to the CPE on a transparent (bit-for-bit) basis

Dialogic provides only the physical layer and a portion of the data link layer of the ADSI protocol. 
The user is responsible for creating the ADSI messages and the corresponding checksums.

The ADSI data must conform to interface requirements described in Telcordia Technologies 
Generic Requirements GR-30-CORE, Voiceband Data Transmission Interface Generic 
Requirements. For information about message requirements (how the data should be displayed on 
the CPE), see Generic Requirements GR-1273, Generic Requirements for and SPCS to Customer 
Premises Equipment Data Interface for Analog Display Services. To obtain a copy of these 
technical references, visit http://www.telcordia.com.
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10.3 ADSI Operation

ADSI data is encoded using a standard 1200 baud modem specification and transmitted to the 
telephone on the voice channel. The voice is muted for the data transfer to occur. Responses from 
the ADSI telephone are mapped into DTMF sequences. 

ADSI data is sent to the ADSI telephone in a message burst corresponding to a single transmission. 
Each message burst or transmission can contain up to 5 messages, with each message consisting of 
one or more ADSI commands. 

The ADSI alert tone causes the ADSI telephone to switch to data mode for 1 message burst or 
transmission. When the transmission is complete, the ADSI phone will revert to voice mode unless 
the transmission contained a message with the “Switch to Data” command. 

After the data is transmitted, the ADSI telephone sends an acknowledgment consisting of a DTMF 
“d” plus a digit from 1 to 5 indicating the number of messages in the transmission that the ADSI 
telephone received and understood. By obtaining this message count and comparing it with the 
number of messages transmitted, you can check for errors and retransmit any messages not 
received. (If you send 4 messages and the telephone receives 2, you must resend messages 3 and 4.) 

You can send more than one transmission during a call. After the initial transmission of a call, you 
do not have to re-establish the handshaking (sending the alert tone or receiving the 
acknowledgment digit) as long as you have left the ADSI telephone in data mode using the ADSI 
“Switch to Data” command. This is useful for performing additional data transmissions during the 
same call without needing to send the alert tone or receive the acknowledgment digit for each 
transmission. 

10.4 One-Way ADSI

One-way ADSI support enables Dialogic® telecom boards to be used as ADSI servers and to 
support ADSI features such as visual voice mail. One-way ADSI allows for the one-way 
transmission of data from a server to a customer premises equipment (CPE) device, such as a 
display-based telephone. The phone (CPE) sends dual tone multi-frequency (DTMF) messages to 
the server, indicating whether the data was received successfully.

For a more detailed description of the one-way ADSI data transfer process, see Section 10.8, 
“Developing ADSI Applications”, on page 98. 

ADSI data can be transferred only to display-based telephones that are ADSI compliant. Check 
with your telephone manufacturer to find out if your telephone is a true ADSI-compliant device. 
An ADSI alert tone, referred to as a CAS (CPE Alerting Signal), is sent by the server to query a 
CPE device, such as an ADSI display phone. The device responds appropriately and, if the device 
is ADSI-compliant, the ADSI data transfer is initiated. 

Note: ADSI-compliant phones are also referred to as "Type 3 CPE Devices" by Telcordia Technologies 
and by the Electronic Industry Association/Telecommunications Industry Association (EIA/TIA).



96 Dialogic® Voice API Programming Guide
Dialogic Corporation

Send and Receive FSK Data

10.5 Two-Way ADSI

Two-way ADSI includes several enhancements to one-way ADSI, including two-way frequency 
shift keying (FSK). The following topics discuss two-way ADSI:

• Transmit to On-Hook CPE

• Two-Way FSK

10.5.1 Transmit to On-Hook CPE

The transmit to on-hook customer premises equipment (CPE) feature allows messages to be sent to 
an ADSI phone when the phone is either on-hook or off-hook.

This feature supports the transmission of FSK data burst messages to CPE devices that are kept in 
the on-hook state by either the Central Office (CO) or the PBX/KTS. This allows an ADSI/Caller 
ID phone to receive and potentially display messages while it is in the on-hook state. For example, 
ADSI phones can be configured, accessed, and downloaded with features, outside of regular 
business hours while the phone is on-hook, without ringing and without subscriber intervention. 

Note: The transmit to on-hook CPE feature works only if the CO supports this feature. 

10.5.2 Two-Way FSK

The two-way frequency shift keying (FSK) feature allows users to send and receive character or 
binary data at 1200 bits/second between the server and compatible devices, such as certain ADSI 
phones with keyboards. The two-way FSK feature supports applications such as off-line e-mail 
editing and sending FSK Caller ID data to a customer premises equipment (CPE) device.

FSK (frequency shift keying) is a modulation technique used to transfer data over voice lines. The 
basic ADSI capability supports only FSK Transmit (one-way FSK), in which an FSK message is 
sent from the server to an ADSI display phone, with the phone in the off-hook state. The phone 
(CPE) sends dual tone multi-frequency (DTMF) messages to the server. As DTMF messages are 
sent to the server, the effective data rate is very slow, approximately 6 characters per second 
maximum. This speed is satisfactory for ACK/NAK signaling but it is not usable for any bulk data 
transport in the inbound direction from the CPE.

FSK data reception uses a DSP-based Bell 202/V.23 low speed (1200 baud) modem receiver. A 
1200 baud modem does not need to train for data transmission, and therefore is faster than a high-
speed modem for short data bursts. 

Two-way FSK for ADSI supports the transmission and the reception of FSK data between the 
server and the CPE. The server initiates the reception of data from the CPE by sending a CAS to 
tell the CPE to switch to data mode, followed by a message that tells the CPE to switch to 
peripheral mode. Once it is in peripheral mode, the CPE can send FSK messages to the server using 
the ADSI Data Message Format (ADMF), instead of the slower DTMF-based scheme.

See Section 10.8, “Developing ADSI Applications”, on page 98 for a more detailed description of 
how to use library functions to develop two-way ADSI data transfer applications. For more 
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information about two-way FSK transmission, see Telcordia Technologies Special Report SR-
3462, A Two-Way Frequency Shift Keying Communication for the ADSI. 

In addition to features provided by basic ADSI, two-way FSK for ADSI can be used in the 
following applications:

• sending and receiving e-mail between display-based ADSI phones and the server

• sending FSK caller ID data to a CPE device  

10.6 Fixed-Line Short Message Service (SMS)

Fixed-line short message service or SMS is a service that allows text messages to be sent and 
received in the PSTN network. SMS is also known as small message service or text messaging.

The voice library supports the creation of fixed-line SMS applications through the 
dx_RxIottData( ), dx_TxIottData( ), and dx_TxRxIottData( ) functions.

Fixed-line SMS solutions can be created using the standard Telcordia Technologies (formerly 
Bellcore) ADSI specification or using the ETSI-FSK specification ETSI ES 201 912. 

The ETSI-FSK specification differs from the ADSI FSK specification in these ways:

• It uses a different physical layer. Settings for channel seizure and mark length differ. For more 
information on FSK transmission requirements, see ITU-T EN 300 659-2 specification. 

• It uses different handshaking and timing specifications.

To set the voice channel to ETSI compatibility, specify the two-way FSK transmit framing 
parameters in the voice.prm file. For more information on these parameters, see the Configuration 
Guide for Springware boards.

10.7 ADSI and Two-Way FSK Voice Library Support

The following voice library functions and data structures support this functionality: 

dx_RxIottData( ) function
Receives ADSI data on a specified channel.

dx_TxIottData( ) function
Transmits ADSI data on a specified channel.

dx_TxRxIottData( ) function
Starts a transmit-initiated reception of data (two-way ADSI) on a specified channel.

ADSI_XFERSTRUC data structure
Stores information for the transmission and reception of ADSI data. It is used by the 
dx_RxIottData( ), dx_TxIottData( ), and dx_TxRxIottData( ) functions. 

DV_TPT data structure
Specifies a termination condition for an I/O function; in this case, dx_RxIottData( ), 
dx_TxIottData( ), or dx_TxRxIottData( ). 
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ATDX_TERMMSK( ) function 
Returns the reason for the last I/O function termination. 

To determine whether your board supports FSK, use dx_getfeaturelist( ) to return information 
about the features supported in the FEATURE_TABLE structure; the ft_play field, FT_ADSI bit, is 
used to indicate FSK support.

Two-way FSK transmit framing parameters for ETSI compatibility are set in the voice.prm file. For 
more information on these parameters, see the Configuration Guide for Springware boards.

10.8 Developing ADSI Applications

This section provides the following information on developing applications for one-way and two-
way ADSI FSK:

• Technical Overview of One-Way ADSI Data Transfer

• Implementing One-Way ADSI Using dx_TxIottData( )

• Technical Overview of Two-Way ADSI Data Transfer

• Implementing Two-Way ADSI Using dx_TxIottData( )

• Implementing Two-Way ADSI Using dx_TxRxIottData( )

10.8.1 Technical Overview of One-Way ADSI Data Transfer

In one-way ADSI data transfer, the ADSI server sends ADSI messages to a CPE device, such as an 
ADSI-compliant telephone. The transactions that occur between the server and the CPE during 
one-way ADSI data transfer are as follows:

1. The server initiates the data transfer by sending a CPE Alerting Signal (CAS) to the CPE. 

2. When the CPE receives the CAS, the device generates an ACK (DTMF ‘A’ signal) to the 
server. At this point the CPE device has switched from voice mode to data mode. (If the CPE 
device remains in data mode, subsequent transmissions do not require the CAS.)

Note: Only ADSI-compliant CPE devices will respond to the CAS sent by the server. Check 
with your manufacturer to verify that your CPE device is a true ADSI-compliant 
device. ADSI-compliant devices are also referred to as "Type 3 CPE Devices" by 
Telcordia Technologies and the EIA/TIA.

3. Upon receipt of the ACK signal, the server initiates the FSK transmission sequence. Each FSK 
transmission sequence can contain anywhere from 1 to 5 messages. 

4. The CPE receives the FSK data and uses the checksum included within the sequence to 
determine the number of messages successfully received. 

5. The CPE device then responds to the server with an acknowledgment digit (DTMF ‘D’) 
followed by a DTMF of ‘0’ through ‘5,’ which indicates the number of messages successfully 
received. 

6. The server interprets the DTMF as follows:

• ACK = ‘D’ followed by a DTMF in the range of 1 – 5 

• NAK = ‘D’ followed by a DTMF ‘0’ 
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10.8.2 Implementing One-Way ADSI Using dx_TxIottData( )

The dx_TxIottData( ) function is used to send the CAS to the CPE and implement one-way ADSI 
data transfer. To transfer ADSI FSK data, configure the function parameters and structures as 
follows: 

• Set the wType parameter DT_ADSI.

• Configure the DX_IOTT structure with the appropriate ADSI FSK data file(s). The application 
is responsible for constructing the messages and checksums for each transmission.

• Set the termination conditions with the DV_TPT structure.

• Set dwTxDataMode within the ADSI_XFERSTRUC referenced by lpParams to 
ADSI_ALERT to generate the CAS.

The following scenario illustrates the function calls that are required to generate an initial CAS to 
the CPE and begin one-way ADSI data transfer. 

1. Prior to executing dx_TxIottData( ), clear the digit buffer for the desired voice channel using 
dx_clrdigbuf( ).

2. Issue dx_TxIottData( ). To generate an initial CAS to the CPE device, dwTxDataMode within 
ADSI_XFERSTRUC must be set to ADSI_ALERT.

3. The CAS is received by the CPE and the CPE sends an acknowledgment digit (DTMF ‘A’) to 
the voice device.

Note: If the DTMF acknowledgment digit is not received from the CPE device within 500 
ms following the end of the CAS, the function will return a 0 but the termination 
mask returned by ATDX_TERMMSK( ) will be TM_MAXTIME to indicate an 
ADSI protocol error. (The function will return a -1 if a failure is due to a general 
transmission error.)

4. Upon receipt of the DTMF ‘A’ ACK, the voice device automatically transmits the data file 
referenced in the DX_IOTT structure. 

5. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the 
number of messages successfully received. (The application is responsible for determining 
whether the message count acknowledgment matches the number of messages that were 
transmitted and for re-transmitting any messages.) 

Note: Upon successful completion, the function terminates with a TM_EOD (end of data) 
termination mask returned by ATDX_TERMMSK( ).

6. After completion of dx_TxIottData( ), the dx_getdig( ) function retrieves the DTMF ACK 
sequence from the CPE device. Set the DV_TPT tp_termno field to DX_DIGTYPE to receive 
the DTMF string "adx," where "x" is the message count acknowledgment digit (1-5).

After the CAS is sent to the CPE, as described in the preceding scenario, the CPE is in data mode. 
Provided that the ADSI messages sent to the CPE instruct the CPE to remain in data mode, 
subsequent ADSI transmissions to the CPE do not require the CAS. To send ADSI data without the 
CAS, set the dwTxDataMode within the ADSI_XFERSTRUC referenced by lpParams to 
ADSI_NOALERT. All other settings are the same as above.
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The following scenario illustrates the function calls that are required to transfer ADSI data when 
the CPE is already in data mode (without sending a CAS). 

1. Prior to executing dx_TxIottData( ), issue dx_clrdigbuf( ) to ensure that the voice channel 
digit buffer is empty.

2. Issue dx_TxIottData( ) and set dwTxDataMode within the ADSI_XFERSTRUC data 
structure to ADSI_NOALERT. This initiates the immediate transfer of the data file(s) 
referenced in the DX_IOTT structure to the CPE device.

3. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the 
number of messages successfully received. (The application is responsible for determining 
whether the message count acknowledgment matches the number of messages that were 
transmitted and for re-transmitting any messages.) 

4. After completion of dx_TxIottData( ), the dx_getdig( ) function retrieves the DTMF ACK 
sequence from the CPE device. Set the DV_TPT tp_termno field to DX_DIGTYPE to receive 
the DTMF string "adx," where "x" is the message count acknowledgment digit (1-5).

10.8.3 Technical Overview of Two-Way ADSI Data Transfer

In two-way ADSI data transfer, both the ADSI server and CPE device can transmit and receive 
ADSI data messages. The CAS is used to initiate the transfer of ADSI FSK data and to return the 
CPE to voice mode after the data exchange is completed. 

The transactions that occur between the server and the CPE in two-way ADSI data transfer are as 
follows:

1. The server initiates the data transfer by sending a CPE Alerting Signal (CAS) to the CPE 
equipment. 

2. Upon receipt of the CAS, the CPE device generates an ACK (DTMF ‘A’ signal) to the server. 
At this point the CPE device has switched from voice mode to data mode. (Once the CPE 
device is in data mode, subsequent FSK data transmissions do not require the CAS.)

Note: Only ADSI-compliant CPE devices will respond to the CAS sent by the server. Check 
with your manufacturer to verify that your CPE device is a true ADSI-compliant 
device. ADSI-compliant devices are also referred to as "Type 3 CPE Devices" by 
Telcordia Technologies. 

3. When the ACK signal is received, the server initiates the FSK transmission sequence. Each 
FSK transmission sequence can contain anywhere from 1 to 5 messages. A "Switch to 
Peripheral Mode" message (using 0x0A as a ‘requested peripheral’ code) must be included 
within the FSK transmission sequence.

4. The CPE receives the FSK data and uses the checksum included within the sequence to 
determine the number of messages successfully received.  

5. The CPE device then responds to the server with a DTMF ‘D’ followed by a DTMF ‘0’ 
through ‘5’ to indicate the number of messages successfully received. In addition, the CPE 
device acknowledges the "Switch to Peripheral Mode" message by responding with either

• DTMF ‘B,’ indicating that the requested peripheral is available and on line

• DTMF ‘A,’ indicating that the requested peripheral is not available

6. The server interprets the DTMF signals as follows:

• ‘D’ followed by a DTMF in the range of 1 – 5 = ACK
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• ‘D’ followed by a DTMF ‘0’ = NAK

• DTMF ‘B’ = requested peripheral available (ready to receive and transmit ADSI data)

• DTMF ‘A’ = requested peripheral unavailable (unable to transmit or receive ADSI data) 

Once the CPE device has acknowledged the "Switch to Peripheral Mode" message, the CPE may 
transmit data to the server at any time. The server must be prepared to receive data at any time until 
the CPE peripheral is switched back to voice mode. To return the CPE peripheral to voice mode, 
the server sends a CAS to the CPE. Upon receipt of the CAS, the CPE responds with a DTMF ‘A’ 
signal. Receipt of DTMF ‘A’ at the server completes the return to voice mode transition.

10.8.4 Implementing Two-Way ADSI Using dx_TxIottData( )

The dx_TxIottData( ) function is used to implement two-way ADSI data transfer. The 
dx_TxIottData( ) function transmits the CAS and the subsequent "Switch to Peripheral Mode 
Message" to the CPE. To transfer ADSI FSK data, set the parameters and configure the structures 
as described below:

• Set the wType parameter DT_ADSI.

• Configure the DX_IOTT structure with the appropriate ADSI FSK data file(s), including the 
"Switch to Peripheral Mode" message. The application is responsible for constructing the 
messages and checksums for each transmission.

• Set the termination conditions with the DV_TPT structure.

• Set dwTxDataMode within the ADSI_XFERSTRUC referenced by lpParams to 
ADSI_ALERT to generate the CAS.

The following scenario illustrates the function calls that are required to generate an initial CAS to 
the CPE and begin two-way ADSI data transfer. 

1. Prior to executing dx_TxIottData( ), clear the digit buffer for the desired voice channel using 
dx_clrdigbuf( ).

2. Issue dx_TxIottData( ). To generate an initial CAS to the CPE device, set dwTxDataMode 
within ADSI_XFERSTRUC data structure to ADSI_ALERT.

3. The CAS is received by the CPE and the CPE sends an acknowledgment digit (DTMF ‘A’) to 
the voice device.

Note: If the DTMF acknowledgment digit is not received from the CPE device within 500 
ms following the end of the CAS, the function will return a 0 but the termination 
mask returned by ATDX_TERMMSK( ) will be TM_MAXTIME to indicate an 
ADSI protocol error. (The function will return a -1 if a failure is due to a general 
transmission error.)

4. Upon receipt of the DTMF ‘A’ ACK, the voice device automatically transmits the data file 
referenced in the DX_IOTT structure, which must include the "Switch to Peripheral Mode"  
message. 

5. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the 
number of messages successfully received. (The application is responsible for determining 
whether the message count acknowledgment matches the number of messages that were 
transmitted and for re-transmitting any messages.) 
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Note: Upon successful completion, the function terminates with a TM_EOD (end of data) 
termination mask returned by ATDX_TERMMSK( ).

6. The CPE responds to the "Switch to Peripheral Mode" message with either DTMF ‘B’ if the 
peripheral is available or DTMF ‘A’ if the peripheral is unavailable.

7. After completion of dx_TxIottData( ), the dx_getdig( ) function retrieves the DTMF ACK 
sequence from the CPE device. Set the DV_TPT tp_termno parameter to DX_DIGTYPE to 
receive the DTMF string "adxb," where "x" is the message count acknowledgment digit (1-5). 
When the DTMF string is received, additional messages can be sent and received between the 
server and the CPE peripheral.

10.8.5 Implementing Two-Way ADSI Using dx_TxRxIottData( )

After the two-way ADSI transmission is implemented using the dx_TxIottData( ) function, 
additional ADSI FSK messages are typically sent to the CPE peripheral to configure the display 
and soft keys. Since at this point the CPE peripheral has been configured to send data to the server, 
the dx_TxRxIottData( ) function should be used to send the data to the CPE and then quickly turn 
around and be ready to receive data from the CPE.

To transfer ADSI FSK data using dx_TxRxIottData( ), set the function parameters and configure 
the structures as described below:

• Set wType to DT_ADSI.

• Configure DX_IOTT structures referenced by lpTxIott and lpRxIott with the appropriate 
ADSI FSK data files. The application is responsible for constructing the messages and 
checksums for each transmission.

• Set the termination conditions for the transmit and receive portions of the function with the 
DV_TPT structures referenced by lpTxTerminations and lpRxTerminations, respectively.

• Set dwTxDataMode and dwRxDataMode within the ADSI_XFERSTRUC referenced by 
lpParams to ADSI_NOALERT to transmit and receive FSK ADSI data without generation of 
a CAS.

The following scenario illustrates the function calls that are required to send and receive FSK 
ADSI data between the server and the CPE. 

1. Prior to executing dx_TxIottData( ), clear the digit buffer for the desired voice channel using 
dx_clrdigbuf( ).

2. Issue dx_TxRxIottData( ) with dwTxDataMode and dwRxDataMode within 
ADSI_XFERSTRUC set to ADSI_NOALERT. This initiates the transmission of the data file 
referenced in the DX_IOTT structure to the CPE. The server voice channel is placed 
automatically in FSK ADSI data receive mode to receive data from the CPE.

3. After receiving the data file(s), the CPE responds with a DTMF ACK or NAK, indicating the 
number of messages successfully received. (The application is responsible for determining 
whether the message count acknowledgment matches the number of messages that were 
transmitted and for re-transmitting any messages.) 

4. The server voice channel is ready and waiting for data from the CPE.
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5. The CPE sends FSK ADSI data to the server. When an ADSI FSK message is successfully 
received or when the termination conditions set in lpRxTerminations are met, the 
dx_TxRxIottData( ) function completes.

6. After completion of dx_TxRxIottData( ), the dx_getdig( ) function retrieves the DTMF ACK 
sequence for the transmit portion of the function. When the DTMF string is received, 
additional messages can be sent and received between the server and the CPE peripheral.

7. In another thread of execution at the server, the received message(s) are processed by the 
application to determine the number of messages received and the integrity of the information.

8. Issue dx_RxIottData( ) to receive messages from the CPE. This function should be issued as 
soon as possible because the CPE peripheral can send data to the server after a minimum of 
100 msec following the completion of its transmission.

If data needs to be transmitted to the CPE when the server is waiting to receive data, issue 
dx_stopch( ) to terminate the current dx_RxIottData( ) function. Upon confirmation of 
termination of dx_RxIottData( ), issue dx_clrdigbuf( ) to clear the voice device channel 
buffer, and then issue dx_TxIottData( ) to send the data to the CPE.

10.9 Modifying Older One-Way ADSI Applications

Prior to the release of the two-way ADSI, including two-way FSK, applications used the 
dx_play( ) function to implement one-way ADSI applications. With two-way ADSI, transmit and 
receive data functions are introduced for data transfer. To take advantage of on-hook ADSI transfer 
in a one-way ADSI application, and/or to introduce two-way FSK concepts into applications, older 
applications need to be modified.

Applications developed prior to the release of the two-way ADSI use the following sequence of 
commands to generate a CAS tone followed by transmission of an ADSI file:

   /* Setup DX_IOTT to play from disk */
   /* Setup DV_TPT for termination conditions */

   /* Initiate ADSI play when DTMF ‘A’ is received from CPE */
   parmval = DM_A;
   if (dx_setparm(Voice_Device, DXCH_DTINITSET, (void *)&parmval) == -1) {
      /* Process error */   
   }

   /* Clear digit buffer for impending ADSI protocol DTMFs */
   if (dx_clrdigbuf(Voice_Device) == -1) {
      /* Process error */
   }

     /* Send CAS followed by ADSI data when DTMF ‘A’ is received */
   if (dx_play(Voice_Device, &Iott_struct, &Tpt_struct, EV_SYNC | PM_ADSIALERT) == -1) {
      /* Process error */
   }
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In older applications, the use of dx_play( ) for ADSI transmission can be replaced with the 
specialized dx_TxIottData( ) data transfer function. The same DV_TPT and DX_IOTT are used 
by dx_TxIottData( ) as for dx_play( ), however, the following additional parameters need to be 
configured:

wType 
specifies the data type transferred. To transfer ADSI FSK data, wType is set to DT_ADSI

lpParams 
specifies the data type specific information. To transmit CAS followed by the ADSI FSK 
message, dwTxDataMode within the ADSI_XFERSTRUC data structure pointed to by 
lpParams is set to ADSI_ALERT. 

Using these parameters, the CAS will be transmitted and, upon receipt of DTMF ‘A,’ the ADSI 
FSK data will be sent to the CPE device. 

The following sample code illustrates the use of the dx_TxIottData( ) function to generate a CAS 
tone and transmit an ADSI file:

   /* Setup DX_IOTT to play from disk */
   /* Setup DV_TPT for termination conditions */

   /* Setup ADSI_XFERSTRUC to send CAS followed by ADSI FSK upon receipt of DTMF ‘A’ */
   adsimode.cbSize = sizeof(adsimode);
   adsimode.dwTxDataMode = ADSI_ALERT;

   /* Clear digit buffer for impending ADSI protocol DTMFs */
   if (dx_clrdigbuf(Voice_Device) == -1) {
      /* Process error */
   }

   /* Send CAS followed by ADSI data when DTMF ‘A’ is received */
   if (dx_TxIottData(Voice_Device, &IOTT, &TPT, DT_ADSI, &adsimode, EV_SYNC) == -1) {
      /* Process error */
   }
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This chapter provides information on caller ID. The following topics are covered: 

• Overview of Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

• Caller ID Formats  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

• Accessing Caller ID Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

• Enabling Channels to Use the Caller ID Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

• Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

• Caller ID Technical Specifications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

11.1 Overview of Caller ID

The caller ID feature described in this chapter applies to Dialogic® Springware boards only.

Caller Identification (caller ID) is a service provided by local telephone companies to enable the 
subscriber to receive information about the caller. Caller ID information can include the calling 
party’s directory number (DN), the date and time of the call, and the calling party’s subscriber 
name. An application can enable the caller ID feature on specific channels to process caller ID 
information as it is received with an incoming call. The caller ID information is transmitted using 
FSK (frequency shift keying) to the subscriber from the service provider (telephone company 
Central Office) at 1200 baud. 

If caller ID is enabled, on-hook detection (DTMF, MF, and global tone detection) will not function.

Caller ID is also available via the Global Call API. For more information, see the Global Call 
Analog Technology User’s Guide.

11.2 Caller ID Formats

The following caller ID formats are supported:

CLASS (Custom Local Area Signaling Services)
a set of standards published by Bellcore (now known as Telcordia Technologies) and supported 
on boards with loop-start capabilities in the following formats: 

• Single Data Message (SDM) format

• Mltiple Data Message (MDM) format

ACLIP (Analog Calling Line Identity Presentation)
a standard used in Singapore published by the Telecommunications Authority of Singapore 
and supported in the following formats:

• Single Data Message (SDM) format
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• Multiple Data Message (MDM) format

CLIP (Calling Line Identity Presentation)
a standard used in the United Kingdom published by British Telecommunications (BT)

JCLIP (Japanese Calling Line Identity Presentation)
a standard for “Number Display” used in Japan published by Nippon Telegraph and Telephone 
Corporation (NTT).

Note: JCLIP operation requires that the Japanese country-specific parameter file be 
installed and configured (select Japan in the Dialogic country configuration). 

Caller ID information is received from the Central Office (CO) between the first and second ring 
for CLASS and ACLIP, and before the first ring for CLIP. This information is supported as sent by 
the service provider in the format types described in Table 12. 

Note: One or more of the caller ID features listed above may not be available from your service provider. 
Contact your service provider to determine the caller ID options available from your CO. 

Table 12. Supported CLASS Caller ID Information

Caller ID Information

CLASS and 
ACLIP

CLIP JCLIP

SDM * MDM ** MDM **

Frame header (indicating SDM or MDM format type) X X X

Calling line’s Directory Number (DN) X X X X

Date X X X

Time X X X

Calling line’s subscriber name X X

Calling line’s DN (digits only) X X

Dialed directory number (digits only) X X X

Reason why caller DN is not available X X X

Reason why calling subscriber name is not available X X X

Indicate if the call is forwarded X

Indicate if the call is “long distance” X

Type of call (such as voice, ringback when free, 
message waiting call)

X

Network Message System status (number of 
messages waiting)

X

* Single Data Message
** Multiple Data Message
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11.3 Accessing Caller ID Information

You can process caller ID information in your application in the following ways:

• For CLASS or ACLIP, the caller ID information is received from the service provider between 
the first and second ring. Set the ring event in the application to occur on or after the second 
ring. The ring event indicates reception of the CLASS or ACLIP caller ID information from 
the CO.

• For CLIP or JCLIP, the caller ID information is received from the service provider before the 
first ring. Set the ring event in the application to occur on or after the first ring. The ring event 
indicates reception of the CLIP caller ID information from the CO.

The caller ID information is available for the call from the moment the ring event is generated (if 
the ring event is set in your application as stated above) until one of the following occurs: 

• If the call is answered (application channel goes off-hook), the caller ID information is 
available until the call is disconnected (application channel goes on-hook).

• If the call is unanswered (application channel remains on-hook), caller ID information is 
available until rings are no longer received from the CO (signaled by ring event, if enabled).

Notes: 1. If the call is answered before the caller ID information has been received from the CO, caller ID 
information will not be available to the application. 

2. If the application remains on-hook and the ring event is received before the caller ID information 
has been received from the CO, caller ID information will not be available until the beginning of 
the second ring. 

The following voice API functions are used to access caller ID information received from the CO. 
These functions are not supported on Dialogic® HMP Software: 

dx_gtcallid( ) 
Returns the calling line Directory Number (DN). Issue this function for applications that 
require only the calling line DN. 

dx_gtextcallid( )  
Returns the requested caller ID message. Issue this function for each type of caller ID message 
required. 

dx_wtcallid( ) 
Waits for a specified number of rings and returns the calling station’s DN. This convenience 
function combines the functionality of the dx_setevtmsk( ), dx_getevt( ), and dx_gtcallid( ) 
functions. 

Contact your service provider to determine the caller ID options available from your CO. Based on 
the options provided, you can determine which caller ID function best meets the application’s 
needs. 

To determine if caller ID information has been received from the CO, before issuing a 
dx_gtcallid( ) or dx_gtextcallid( ), check the event data in the DX_EBLK event block structure. 
When the ring event is received (set by the application as stated above), the event data field in the 
event block is bit mapped and indicates that caller ID information is available when bit 0 (LSB) is 
set to 1 (see the function code examples in the Voice API Library Reference). 
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11.4 Enabling Channels to Use the Caller ID Feature

During Dialogic System Service startup, before the initial use of caller ID functions, the 
application must enable the caller ID feature on the channels requiring caller ID. 

On Springware boards, caller ID is enabled by setting the DXCH_CALLID channel-based 
parameter to DX_CALLIDENABLE using dx_setparm( ). The default setting is caller ID 
disabled, DX_CALLIDDISABLE.

11.5 Error Handling

When the caller ID function completes, check the return code: 

• If the caller ID function completes successfully, the buffer will contain the caller ID 
information. 

• If the caller ID function fails, an error code will be returned that indicates the reason for the 
error. The call is still active when the error is returned. 

When using the dx_gtextcallid( ) function, error codes depend upon the Message Type ID 
argument (infotype) passed to the function. All Message Types can produce an EDX_CLIDINFO 
error. Message Type CLIDINFO_CALLID can also produce EDX_CLIDOOA and 
EDX_CLIDBLK errors. 

When using the dx_gtcallid( ) caller ID function, if an error is returned indicating that the caller’s 
phone number (DN) is blocked or out of area, other information (for example, date or time) may be 
available by issuing the dx_gtextcallid( ) caller ID function. The information that is available, 
other than the caller’s phone number, is determined by the CO. 

11.6 Caller ID Technical Specifications

For information about caller ID technical specifications, contact the appropriate authority and 
request the technical references you require: 

CLASS 
CLASS documents are published by Telcordia Technologies (previously Bellcore). To obtain a 
copy of these technical references, visit http://www.telcordia.com.

• TR-NWT-000031 (issue 4) CLASS Feature Calling Number Delivery

• TR-NWT-001188 CLASS Feature Calling Name Delivery Generic Requirements

• TR-NWT-000030 (issue 2) Voice Data Transmission Interface Generic Requirement

ACLIP
Contact the Telecommunications Authority of Singapore and Telcordia Technologies.

• TAS TS PSTN1 A-CLIP: 1994

• Bellcore specification TR-NWT-000030 (see Telcordia Technologies contact info 
provided in CLASS)
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CLIP
Contact British Telecommunications.

• SIN (Supplier Information Note) 242 (issue 01)

• SIN (Supplier Information Note) 227 (issue 01)

JCLIP
Contact Nippon Telegraph and Telephone Corporation.

• Telephone Service Interfaces, Edition 5, Technical Reference
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1212.Global Tone Detection and 
Generation, and Cadenced Tone 
Generation

This chapter discusses global tone detection (GTD), global tone generation (GTG), and cadenced 
tone generation:

• Global Tone Detection (GTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

• Global Tone Generation (GTG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

• Cadenced Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12.1 Global Tone Detection (GTD)

Global tone detection (GTD) is described in the following sections:

• Overview of Global Tone Detection

• Global Tone Detection on HMP Software versus Springware Boards

• Defining Global Tone Detection Tones

• Building Tone Templates

• Working with Tone Templates

• Retrieving Tone Events

• Setting GTD Tones as Termination Conditions

• Guidelines for Creating User-Defined Tones

• Global Tone Detection Application

12.1.1 Overview of Global Tone Detection

Global tone detection (GTD) allows you to define single or dual frequency tones for detection. The 
characteristics of a tone are defined in a GTD tone template. A tone template contains parameters 
that allow you to assign frequency bounds and cadence components. GTD can detect single and 
dual frequency tones by comparing all incoming sounds to the GTD tone templates. Global tone 
detection and GTD tones are also known as user-defined tone detection and user-defined tones.

The typical use of global tone detection is to detect single and dual frequency tones other than 
those automatically provided with the voice software. This includes tones outside the standard 
DTMF set (0-9, a-d, *, and #), and the standard MF set (0-9, a-c, and *). GTD works 
simultaneously with DTMF and MF tone detection. 
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When GTD detects a tone, it responds by producing either a tone event on the event queue or a 
digit on the digit queue. The particular response depends on the GTD tone configuration. 

12.1.2 Global Tone Detection on HMP Software versus Springware 
Boards

On Dialogic® HMP Software, tone templates are managed internally on a board basis, while on 
Springware boards, tone templates are managed internally on a channel basis.

On Dialogic® HMP Software, once a tone template is defined, it can be added to any number of 
channels for global tone detection on a board. The tone template is stored only once on the board. 
A counter in the tone template tracks the number of channels that are using this template; the 
template remains active until the very last channel of the board deletes the template. 

On Dialogic® HMP Software, the memory available for all tone templates (including call progress 
analysis tones and user-defined tones) is pre-allocated and fixed. Each tone template takes up the 
same amount of memory. However, a limitation exists on the number of tone templates that can be 
active at one time on a channel, due to the number of events that are generated. See Section 12.1.8, 
“Guidelines for Creating User-Defined Tones”, on page 115 for more information.

On Dialogic® Springware boards, once a tone template is defined, it can be added to any number of 
channels for global tone detection as well. However, the tone template is stored for each channel 
that uses it. 

12.1.3 Defining Global Tone Detection Tones

GTD tones can have an associated ASCII digit (and digit type) specified using the digit and 
digtype parameters in the dx_addtone( ) function. When the tone is detected, the digit is placed in 
the DV_DIGIT buffer and can be retrieved using the dx_getdig( ) function. When the tone is 
detected, either the tone event or the digit associated with the tone can be used as a termination 
condition to terminate I/O functions. 

Termination conditions are set using the DV_TPT data structure. To terminate on multiple tones (or 
digits), you must specify the terminating conditions for each tone in a separate DV_TPT data 
structure. 

12.1.4 Building Tone Templates

When creating a tone template, you can define the following: 

• single frequency or dual frequency (300 - 3500 Hz) 

• optional ASCII digit associated with the tone template 

• cadence components 

Adding a tone template to a channel enables detection of a tone on that channel. Although only one 
tone template can be created at a time, multiple tone templates can be added to a channel. Each 
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channel can have a different set of tone templates. Once created, tone templates can be selectively 
enabled or disabled. 

API Library Functions

The following functions are used to build and define tone templates: 

dx_bldst( )  
Defines a single frequency tone. Subsequent calls to dx_addtone( ) will use this tone until 
another tone is defined.

dx_blddt( ) 
Defines a simple dual frequency tone. Subsequent calls to dx_addtone( ) will use this tone 
until another tone is defined. 

Note that the boards cannot detect dual tones with frequency components closer than 
approximately 63 Hz. Use a single tone description to detect dual tones that are closer together 
than the ranges specified above. 

dx_bldstcad( ) 
Defines a simple single frequency cadence tone. Subsequent calls to dx_addtone( ) will use 
this tone until another tone is defined. A single frequency cadence tone has single frequency 
signals with specific on/off characteristics. 

dx_blddtcad( )  
Defines a simple dual frequency cadence tone. Subsequent calls to dx_addtone( ) will use this 
tone until another tone is defined. A dual frequency cadence tone has dual frequency signals 
with specific on/off characteristics. The minimum on- and off-time for cadence detection is 40 
msec on and 40 msec off. 

dx_setgtdamp( )  
Sets the amplitudes used by GTD. The amplitudes set using dx_setgtdamp( ) are the default 
amplitudes that apply to all tones built using the build-tone functions. The amplitudes remain 
valid for all tones built until dx_setgtdamp( ) is called again and amplitudes are changed. 

Instructions for Building Tone Templates

Follow these steps to build a tone template for global tone detection: 

1. Determine the characteristics of the tone you wish to detect: single frequency or dual 
frequency tone, frequency range, cadence components, and so on. 

2. Use the appropriate build-tone function, such as dx_bldst( ), dx_blddt( ) and so on, to build 
and define the tone template. The functions require that you specify a unique tone ID for each 
tone template.

3. Use the dx_addtone( ) function to add the tone template to a channel. Subsequent calls to 
dx_addtone( ) will add this tone template until another tone is defined. Adding a tone 
template to a channel enables detection of a tone on that channel.   

4. Repeat steps 1 - 3 as needed.
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Tips and Hints for Building Tone Templates

The following are tips and hints when building a tone template for global tone detection:

• After using a build-tone function to define a new tone template, you must call dx_addtone( ) 
to add the tone template to a channel and enable detection of that tone on a channel.

• After using a build-tone function to define a tone template, if the template is not added to a 
channel, the next call to a build-tone function will overwrite the tone definition contained in 
the previous template. 

• Only one tone template can be created at a time; however, multiple tone templates can be 
added to a channel. Each channel can have a different set of tone templates. Once created, tone 
templates can be selectively disabled or enabled by using dx_distone( ) and dx_enbtone( ). 
See Section 12.1.5, “Working with Tone Templates”, on page 113 for more information.

• Each tone template must have a unique tone ID. 

• On Windows®, do not use tone IDs 261, 262 and 263; they are reserved for library use.

• A particular tone template that has been added to a channel cannot be changed or deleted. A 
tone template can be disabled on a channel, but to delete a tone template, all tone templates on 
that channel must be deleted. See Section 12.1.5, “Working with Tone Templates”, on 
page 113 for more information. 

Table 13 lists some standard Bell System Network call progress tones. The frequencies are useful 
to know when creating tone templates. 

12.1.5 Working with Tone Templates

After building a tone template, use the following functions to add/delete tone templates or to 
enable/disable tone detection: 

dx_addtone( ) 
Adds a tone template that was defined by the most recent build-tone function call to the 
specified channel. Adding a tone template to a channel downloads it to the board and enables 
detection of tone-on and tone-off events for that tone template. 

Table 13. Standard Bell System Network Call Progress Tones

Tone Frequency (Hz) On Time (msec) Off Time (msec)

Dial 350 + 440 Continuous

Busy 480 + 620 500 500

Congestion (Toll) 480 + 620 200 300

Reorder (Local) 480 + 620 300 200

Ringback 440 + 480 2000 4000
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dx_deltones( ) 
Removes all tone templates previously added to a channel with dx_addtone( ). If no tone 
templates were previously enabled for this channel, the function has no effect.

dx_deltones( ) does not affect tones defined by build-tone template functions and tone 
templates not yet defined. If you have added tones for call progress analysis, these tones are 
also deleted.

dx_distone( ) 
Disables detection of a user-defined tone on a channel as well as the DE_TONEON and/or 
DE_TONEOFF events for that tone. Detection capability for user-defined tones is enabled on a 
channel by default when dx_addtone( ) is called.

dx_enbtone( ) 
Enables detection of a user-defined tone that was previously disabled by dx_distone( ). Also 
enables detection of DE_TONEON and/or DE_TONEOFF events for that tone. Detection 
capability for user-defined tones is enabled on a channel by default when dx_addtone( ) is 
called. 

12.1.6 Retrieving Tone Events

Tone-on events (DE_TONEON) and tone-off events (DE_TONEOFF) are call status transition 
(CST) events. Retrieval of these events is handled differently for asynchronous and synchronous 
applications. Table 14 outlines the different processes for retrieving tone events. 

You can optionally specify an associated ASCII digit (and digit type) with the tone template. In this 
case, the tone template is treated like DTMF tones. When the digit is detected, it is placed in the 
digit buffer and can be used for termination. When an associated ASCII digit is specified, tone 
events will not be generated for that tone. 

Cadence tone on events are reported differently on Dialogic® HMP Software versus on Springware 
boards. On Dialogic® HMP Software, if a cadence tone occurs continuously, a DE_TONEON 
event is reported for each on/off cycle. On Springware boards, a DE_TONEON event is reported 
for the first on/off cycle only. On Dialogic® HMP Software and on Dialogic® Springware boards, a 
DE_TONEOFF event is reported when the tone is no longer present.

Table 14. Asynchronous/Synchronous Tone Event Handling

Synchronous Asynchronous

Call dx_addtone( ) or dx_enbtone( ) to 
enable tone-on/off detection.

Call dx_addtone( ) or dx_enbtone( ) to 
enable tone-on/off detection.

Call dx_getevt( ) to wait for CST event(s). 
Events are returned in the DX_EBLK data 
structure. 

Use Dialogic® Standard Runtime Library 
(SRL) to asynchronously wait for TDX_CST 
event(s).

N/A Use sr_getevtdatap( ) to retrieve DX_CST 
data structure.

Note: These procedures are the same as the retrieval of any other CST event, except that 
dx_addtone( ) or dx_enbtone( ) are used to enable event detection instead of 
dx_setevtmsk( ).
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12.1.7 Setting GTD Tones as Termination Conditions

To detect a GTD (user-defined) tone, you can specify it as a termination condition for I/O 
functions. Set the tp_termno field in the DV_TPT structure to DX_TONE, and specify 
DX_TONEON or DX_TONEOFF in the tp_data field.

12.1.8 Guidelines for Creating User-Defined Tones

The following guidelines apply when creating user-defined tones: 

Note: The terms “user-defined tones” and “tone templates” are used interchangeably. Each tone template 
specifies the characteristics of one user-defined tone.   

• The maximum number of user-defined tone templates is based on tone templates that define a 
dual tone with a frequency range (bandwidth) of 63 Hz. (The detection range is the difference 
between the minimum and maximum defined frequencies for the tone.) 

• On Dialogic® HMP Software, the maximum number of user-defined tone templates is 40. 

Note: In the case where the number of of tone templates is exhausted, no error is returned 
on dx_addtone( ) and subsequent tone detection may fail.  

• On Dialogic® HMP Software, the number of user-defined tone templates that are active and 
enabled on a channel is limited due to the number of events that a channel can report. The 
default maximum number of events for a channel is 20. (A tone-on event and a tone-off event 
in the same tone template count as two events.)  

• On Dialogic® HMP Software, the default call progress analysis tones (which include tri-tone 
special information tone sequences or SIT sequences) are created at board initialization time 
and are available for use. If you create new call progress analysis tone templates using 
dx_querytone( ), dx_deletetone( ) and dx_createtone( ), each tone template counts as a user-
defined tone template, which reduces the number of user-defined tones you can create. 

• On Dialogic® HMP Software, building and adding tones of zero frequency values to a tone 
template can cause firmware failures.  

• On Dialogic® Springware boards, if you use call progress analysis to detect the different call 
progress signals (dial tone, busy tone, ringback tone, fax or modem tone), call progress 
analysis creates GTD tones. This reduces the number of user-defined tones you can create.  

• On Springware boards, if you use call progress analysis to identify tri-tone special information 
tone (SIT) sequences, call progress analysis creates GTD tones, which reduces the number of 
user-defined tones you can create. Call progress analysis creates one GTD tone template for 
each single frequency tone that you define in the DX_CAP structure.  

• On Springware boards, if you initiate call progress analysis and there is not enough memory to 
create the GTD tones, you will get an EDX_MAXTMPLT error. This indicates that you are 
trying to exceed the maximum number of GTD tones. 

• On Springware boards, if you use a build tone function (such as dx_blddt( )) to define a user-
defined tone that alone or with existing user-defined tones exceeds the available memory, you 
will get an EDX_MAXTMPLT error.

• On Springware boards on Linux, call progress analysis SIT detection releases GTD memory 
when call progress analysis has completed. The other features do not release GTD memory 
until a dx_deltones( ) is performed. 
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• On Springware boards on Linux, if you initiate call progress analysis and there is not enough 
memory to create the SIT sequences internally, you will get a T_CAERROR event and the 
evtdata field will contain MEMERR. 

• On Springware boards on Windows, if you initiate call progress analysis and there is not 
enough memory to create the SIT sequences internally, you will get a CR_MEMERR.

• The dx_deltones( ) function deletes all user-defined tones from a specified channel and 
releases the memory that was used for those user-defined tones. When an associated ASCII 
digit is specified, tone events will not be generated for that tone. 

12.1.9 Global Tone Detection Application

A sample application for global tone detection (GTD) is detecting leading edge debounce time. 

Rather than detecting a signal immediately, an application may want to wait for a period of time 
(debounce time) before the DE_TONEON event is generated indicating the detection of the signal. 
The dx_bldstcad( ) and dx_blddtcad( ) functions can detect leading edge debounce on-time. A 
tone must be present at a given frequency and for a period of time (debounce time) before a 
DE_TONEON event is generated. The debounce time is specified using the tone-on time, tone-on 
time deviation, tone-off time, tone-off time deviation, and repetition count parameters in the 
dx_bldstcad( ) or dx_blddtcad( ) functions. 

On Dialogic® HMP Software, to detect leading edge debounce time, specify the following values 
for the dx_bldstcad( ) or dx_blddtcad( ) function parameters listed below: 

• For ontime, specify 1/2 of the desired debounce time 

• For ontdev, specify -1/2 of the desired debounce time 

• For offtime, specify 0

• For offtdev, specify 0

• For repcnt, specify 0

On Dialogic® Springware boards, to detect leading edge debounce time, specify the following 
values for the dx_bldstcad( ) or dx_blddtcad( ) function parameters listed below: 

• For ontime, specify the desired debounce time 

• For ontdev, specify 3

• For offtime, specify 0

• For offtdev, specify 0

• For repcnt, specify 1

Note: The dx_blddt( ) and dx_bldst( ) functions cannot be used to detect leading edge debounce time 
because they do not have timing field parameters.
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12.2 Global Tone Generation (GTG)

The following topics provide information on using global tone generation:

• Using GTG

• GTG Functions

• Building and Implementing a Tone Generation Template

12.2.1 Using GTG

Global tone generation enables the creation of user-defined tones. The tone generation template, 
TN_GEN, is used to define the tones with the following information: 

• Single or dual tone 

• Frequency fields 

• Amplitude for each frequency 

• Duration of tone 

12.2.2 GTG Functions

The following functions are used to generate tones: 

dx_bldtngen( )  
Builds a tone generation template. This convenience function sets up the tone generation 
template data structure (TN_GEN) by allowing the assignment of specified values to the 
appropriate fields. The tone generation template is placed in the user’s return buffer and can 
then be used by the dx_playtone( ) function to generate the tone. 

dx_playtone( )  
Plays a tone specified by the tone generation template (pointed to by tngenp). Termination 
conditions are set using the DV_TPT structure. The reason for termination is returned by the 
ATDX_TERMMSK( ) function. dx_playtone( ) returns a 0 to indicate that it has completed 
successfully. 

12.2.3 Building and Implementing a Tone Generation Template

The tone generation template defines the frequency, amplitude, and duration of a single or dual 
frequency tone to be played. You can use the convenience function dx_bldtngen( ) to set up the 
structure. Use dx_playtone( ) to play the tone. 

The TN_GEN data structure is defined as: 

typedef struct {
   unsigned short tg_dflag;        /* dual tone = 1, single tone = 0 */
   unsigned short tg_freq1;        /* frequency of tone 1 (in Hz) */
   unsigned short tg_freq2;        /* frequency of tone 2 (in Hz) */
   short int      tg_ampl1;        /* amplitude of tone 1 (in dB) */
   short int      tg_ampl2;        /* amplitude of tone 2 (in dB) */
   short int      tg_dur;          /* duration (in 10 msec units) */
} TN_GEN; 
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After you build the TN_GEN data structure, there are two ways to define each tone template. You 
may either: 

• Include the values in the structure

• Pass the values to TN_GEN using the dx_bldtngen( ) function

If you include the values in the structure, you must create a structure for each tone template. If you 
pass the values using the dx_playtone( ) function, then you can reuse the structure. If you are only 
changing one value in a template with many variables, it may be more convenient to use several 
structures in the code instead of reusing just one. 

After defining the template by either of these methods, pass TN_GEN to dx_playtone( ) to play the 
tone. 

12.3 Cadenced Tone Generation

The following topics provide information on enabling and using cadenced tone generation:

• Using Cadenced Tone Generation

• How To Generate a Custom Cadenced Tone

• How To Generate a Non-Cadenced Tone

• TN_GENCAD Data Structure - Cadenced Tone Generation

• How To Generate a Standard PBX Call Progress Signal

• Predefined Set of Standard PBX Call Progress Signals

• Important Considerations for Using Predefined Call Progress Signals

12.3.1 Using Cadenced Tone Generation

Cadenced tone generation is an enhancement to global tone generation that enables you to generate 
a signal with up to four single or dual tone elements, each with its own on/off duration creating the 
signal pattern or cadence. 

Cadenced tone generation is accomplished with the dx_playtoneEx( ) function and the 
TN_GENCAD data structure. 

You can define your own custom cadenced tone or take advantage of the built-in set of standard 
PBX call progress signals. 

12.3.2 How To Generate a Custom Cadenced Tone

A custom cadenced tone is defined by specifying in a TN_GENCAD data structure the repeating 
elements of the signal (the cycle) and the number of desired repetitions. 

The cycle can consist of up to 4 segments, each with its own tone definition and cadence. A 
segment consists of a TN_GEN single or dual tone definition (frequency, amplitude, & duration) 
followed by a corresponding off-time (silence duration) that is optional. The dx_bldtngen( ) 
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function can be used to set up the TN_GEN components of the TN_GENCAD structure. The tone 
duration, or on-time, from TN_GEN (tg_dur) and the offtime from TN_GENCAD are combined to 
produce the cadence for the segment. The segments are seamlessly concatenated in ascending order 
to generate the signal cycle. 

Use the following procedure to generate a custom cadenced tone: 

1. Identify the repeating elements of the signal (the cycle). 

2. Use a TN_GENCAD structure to define the segments in the cycle: 

a. Start with the first tone element in the cycle and identify the single or dual tone 
frequencies, amplitudes, and duration (on-time). 

b. Use the dx_bldtngen( ) function to specify this tone definition in tone[0] (the first 
TN_GEN tone array element) of the TN_GENCAD structure. 

c. Identify the off-time for the first tone element and specify it in offtime[0]. If the first tone 
element is followed immediately by a second tone element, set offtime[0] = 0. 

d. Define the next segment of the cycle in tone[1] and offtime[1] the same way as above, and 
so on, up to the maximum of 4 segments or until you reach the end of the cycle. 

3. Use the TN_GENCAD to define the parameters of the cycle: 

a. Specify the number of segments in the cycle (numsegs). 

b. Specify the number of cycle repetitions (cycles). 

4. Set the termination conditions in a DV_TPT structure. 

5. Call the dx_playtoneEx( ) function and use the tngencadp parameter to specify the custom 
cadenced tone that you defined in the TN_GENCAD. 

For an illustration of this procedure, see Figure 14.
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Figure 14. Example of Custom Cadenced Tone Generation

Signal Description:
Repetition of combined tones 
(440 = 480 Hz) ON for 0.8 to 
1.2 seconds, followed by 440 
Hz tone ON for 0.2 seconds, 
and tone OFF for 2.7 to 3.3 
seconds applied within a power 
range of -14.5 to 17.5 dBm.

Note:
Dialogic provides a predefined 
set of standard call progress 
signals that can be generated 
by dx_playtoneEx(). This 
example shows how you would 
define the Special Audible Ring 
Tone 1 as a custom cadence 
tone if it were not already in the 
standard set as 
CP_RINGBACK1_CALLWAIT. 

Description of the Cadence 
Tome Used in this Example

Define the Signal as a 
Dialogic Custom Cadence Tome

Set the TN_GENCAD Parameters 
tngencad.cycles = 255;
tngencad.numsegs = 2;
tngencad.offtime (0) = 0;
tngencad.offtime (1) = 300;
dx_bidtngen(&tgencad.tone(0),440, 480, -16, -16, 
100)

Call thhe dx_playtoneEx( ) 
dx_playtoneEx (dxxxdev, &tngencad, tpt, EV_SYNC)

TN_GENCAD tngencad
cycles = 255
numsegs = 2
offtime(0) = 0
offtime(1) = 300
offtime(2) = 0
offtime(3) = 0

TN_GEN tone (0)
dflag(0) = 0
tgfreq1(0) = 440
tgfreq2(0) = 480
tg_amp11(0) = -16
tg_amp12(0) = -16
tg_dur(0) = 100

TN_GEN tone (1)
dflag(1) = 0
tgfreq1(1) = 440
tgfreq2(1) = 0
tg_amp11(1) = -16
tg_amp12(1) = 0
tg_dur(1) = 20

TN_GEN tone (2)
dflag(2) = 0
tgfreq1(2) = 0
tgfreq2(2) = 0
tg_amp11(2) = 0
tg_amp12(2) = 0
tg_dur(2) = 0

TN_GEN tone (3)
dflag(3) = 0
tgfreq1(3) = 0
tgfreq2(3) = 0
tg_amp11(3) = 0
tg_amp12(3) = 0
tg_dur(3) = 0

The TN_GENCAD Definition and 
Resulting Signal

Segment 1
440 = 480 Hz
dual tone at -16
dB with on-time
of 100 (10ms
units) and no
off time.

Segment 2
SIngle tone of 440 Hz at 
-16 dB with on-time of 
20 (10ms units) and off-
time of 300 (or 3 

Cycle:
2 segments repeating indefinitely, or until a tpt termination 
occurs.

440+480
Hz

100 20

440
Hz

-16
dB 300
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12.3.3 How To Generate a Non-Cadenced Tone

Both dx_playtoneEx( ) and dx_playtone( ) can generate a non-cadenced tone.  

Non-cadenced call progress signals can be generated by the dx_playtone( ) function if you define 
them in a TN_GEN: Dial Tone, Executive Override Tone, and Busy Verification Tone Part A. 

The dx_playtoneEx( ) function can also generate a non-cadenced tone by using a TN_GENCAD 
data structure that defines a single segment. 

If you want to generate a continuous, non-cadenced signal, use a single segment and zero off-time, 
and specify 1) an infinite number of cycles, 2) an infinite on-time, or 3) both. (You must also 
specify the appropriate termination conditions in a DV_TPT structure or else the tone will never 
end). For example: 

cycles = 255;
numsegs = 1;
offtime[0] = 0;
tone[0].tg_dur = -1

12.3.4 TN_GENCAD Data Structure - Cadenced Tone Generation

TN_GENCAD is a voice library data structure (dxxxlib.h) that defines a cadenced tone that can be 
generated by using the dx_playtoneEx( ) function.  

The TN_GENCAD data structure contains a tone array with four elements that are TN_GEN data 
structures (Tone Generation Templates). 

For examples of TN_GENCAD, see the definitions of standard call progress signals in Table 16, 
“TN_GENCAD Definitions for Standard PBX Call Progress Signals”, on page 126.

12.3.5 How To Generate a Standard PBX Call Progress Signal

Use the following procedure to generate a standard PBX call progress signal from the predefined 
set of standard PBX call progress signals: 

1. Select a call progress signal from Table 15, “Standard PBX Call Progress Signals”, on 
page 123 and note the signal ID (see also Figure 15, “Standard PBX Call Progress Signals 
(Part 1)”, on page 124). 

2. Set the termination conditions in a DV_TPT structure. 

3. Call the dx_playtoneEx( ) function and specify the signal ID for the tngencadp parameter. 
For example: 
dx_playtoneEx(dxxxdev, CP_BUSY, tpt, EV_SYNC) 
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12.3.6 Predefined Set of Standard PBX Call Progress Signals

The following information describes the predefined set of standard PBX call progress signals that 
are provided by Dialogic: 

• Table 15, “Standard PBX Call Progress Signals”, on page 123 lists the predefined, standard, 
call progress signals and their signal IDs. The signal IDs can be used with the 
dx_playtoneEx( ) function to generate the signal. (The #defines for the signal IDs are located 
in the dxxxlib.h file.) 

• Figure 15, “Standard PBX Call Progress Signals (Part 1)”, on page 124 illustrates the signals 
along with their tone specifications and cadences. The signals were divided into two parts so 
they could be illustrated to scale while providing sufficient detail. Part 1 uses a smaller scale 
than Part 2. (For this reason, the order of the signals is different than in the tables.) 

• Table 16, “TN_GENCAD Definitions for Standard PBX Call Progress Signals”, on page 126 
lists the TN_GENCAD definitions of the signal cycle and segment definitions for each 
predefined call progress signal. These definitions are located in the dxgtd.c file. 

• Section 12.3.7, “Important Considerations for Using Predefined Call Progress Signals”, on 
page 127 describes what standard was used, how the standard was implemented, information 
regarding the signal power levels, usage and other considerations. 
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Table 15. Standard PBX Call Progress Signals

Name Meaning Signal ID (tngencadp)

Dial Tone Ready for dialing CP_DIAL

Reorder Tone (Paths-Busy, All-Trunks-
Busy, Fast Busy) 

Call blocked: resources 
unavailable

CP_REORDER 

Busy Tone (Slow Busy)  Called line is busy CP_BUSY

Audible Ring Tone 1 (Ringback Tone)  Called party is being alerted CP_RINGBACK1

Audible Ring Tone 2 1 (Slow Ringback 
Tone) 

Called party is being alerted CP_RINGBACK2

Special Audible Ring Tone 1 1 Called party has Call Waiting 
feature and is being alerted

CP_RINGBACK1_CALLWAIT

Special Audible Ring Tone 2 1 Called party has Call Waiting 
feature and is being alerted

CP_RINGBACK2_CALLWAIT

Recall Dial Tone Ready for additional dialing on 
established connection 

CP_RECALL_DIAL

Intercept Tone Call blocked: invalid CP_INTERCEPT

Call Waiting Tone 1 2 Call is waiting: single burst C_CALLWAIT1

Call Waiting Tone 2 2 Call is waiting: double burst CP_CALLWAIT2

Busy Verification Tone (Part A)  Alerts parties that attendant is 
about to enter connection

CP_BUSY_VERIFY_A

Busy Verification Tone (Part B)  Attendant remains connected CP_BUSY_VERIFY_B

Executive Override Tone Overriding party about to be 
bridged onto connection

CP_EXEC_OVERRIDE

Confirmation Tone Feature has been activated or 
deactivated

CP_FEATURE_CONFIRM

Stutter Dial Tone (Message Waiting 
Dial Tone)   

Message waiting; ready for dialing CP_STUTTER_DIAL   or 
CP_MSG_WAIT_DIAL 

1 Either of the two Audible Ring Tones can be used but are not intended to be intermixed in a system. When using the 
Special Audible Ring Tone (1 or 2), it should correspond to the Audible Ring Tone (1 or 2) that is used.
2 The two Call Waiting Tones (1 & 2) can be used to differentiate between internally and externally originated calls. Call 
Waiting Tone 2 is defined as a double burst in this implementation, although “multiple” bursts are permissible.
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Figure 15. Standard PBX Call Progress Signals (Part 1)
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Figure 16. Standard PBX Call Progress Signals (Part 2)
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Table 16. TN_GENCAD Definitions for Standard PBX Call Progress Signals

SIGNAL_ID

Cycle Definition Segment Definitions

Number
of

Cycles1

Number of
Segments
in Cycle

Frequency
#1 (Hz)

Frequency
#2 (Hz)

Amplitude
#1 (dB)

Amplitude
#2 (dB)

On-
Time2

(10 
msec)

Off-
Time
(10 

msec)

cycles numsegs tg_freq1 tg_freq2 tg_ampl1 tg_ampl2 tg_dur offtime

CP_DIAL

1 1 350 440 -17 -17 -1 0

CP_REORDER 

255 1 480 620 -21 -21 25 25

CP_BUSY

255 1 480 620 -21 -21 50 50

CP_RINGBACK1

255 1 440 480 -16 -16 100 300

CP_RINGBACK2

255 1 440 480 -16 -16 200 400

CP_RINGBACK1_CALLWAIT

255 2 440
440

480
0

-16
-16

-16
0

100
20

0
300

CP_RINGBACK2_CALLWAIT

255 2 440
440

480
0

-16
-16

-16
0

200
20

0
400

CP_RECALL_DIAL

1 4 350
350
350
350

440
440
440
440

-17
-17
-17
-17

-17
-17
-17
-17

10
10
10
-1

10
10
10
0

CP_INTERCEPT

255 2 440
620

0
0

-14
-14

0
0

25
25

0
0

CP_CALLWAIT1

1 2 440
440

0
0

-23
-23

0
0

20
20

1000
0

CP_CALLWAIT2

1 4 440
440
440
440

0
0
0
0

-23
-23
-23
-23

0
0
0
0

20
20
20
20

20
1000

20
0

1 255 specifies an infinite number of cycles (cycles)
2 -1 specifies an infinite tone duration (tg_dur)
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12.3.7 Important Considerations for Using Predefined Call 
Progress Signals

Take into account the following considerations when using the predefined call progress signals: 

• Signal definitions are based on the TIA/EIA Standard: Requirements for Private Branch 
Exchange (PBX) Switching Equipment, TIA/EIA-464-B, April 1996 (Telecommunications 
Industry Association in association with the Electronic Industries Association, Standards and 
Technology Department, 2500 Wilson Blvd., Arlington, VA 22201). To order copies, contact 
Global Engineering Documents in the USA at 1-800-854-7179 or 1-303-397-7956. 

• A separate Line Lockout Warning Tone, which indicates that the station line has been locked 
out because dialing took too long or the station failed to disconnect at the end of a call, is not 
necessary and is not recommended. You can use the Reorder tone over trunks; or the Intercept, 
Reorder, or Busy tone over stations. 

• For signals that specify an infinite repetition of the signal cycle (cycles = 255 on Dialogic® 
Springware board or 40 on Dialogic® DM3 board) or an infinite duration of a tone 
(tg_dur = -1), you must specify the appropriate termination conditions in the DV_TPT 
structure used by dx_playtoneEx( ). 

• There may be more than one way to use TN_GENCAD to generate a given signal. For 
example, the three bursts of the Confirmation Tone can be created through one cycle 

CP_BUSY_VERIFY_A

1 1 440 0 -14 0 175 0

CP_BUSY_VERIFY_B

255 1 440 0 -14 0 60 900

CP_EXEC_OVERRIDE

1 1 440 0 -14 0 300 0

CP_FEATURE_CONFIRM

1 3 350
350
350

440
440
440

-17
-17
-17

-17
-17
-17

10
10
10

10
10
0

CP_STUTTER_DIAL or CP_MSG_WAIT_DIAL

255 1 350 440 -17 -17 125 25

Table 16. TN_GENCAD Definitions for Standard PBX Call Progress Signals (Continued)

SIGNAL_ID

Cycle Definition Segment Definitions

Number
of

Cycles1

Number of
Segments
in Cycle

Frequency
#1 (Hz)

Frequency
#2 (Hz)

Amplitude
#1 (dB)

Amplitude
#2 (dB)

On-
Time2

(10 
msec)

Off-
Time
(10 

msec)

cycles numsegs tg_freq1 tg_freq2 tg_ampl1 tg_ampl2 tg_dur offtime

1 255 specifies an infinite number of cycles (cycles)
2 -1 specifies an infinite tone duration (tg_dur)
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containing three segments (as in the Dialogic implementation) or through a single segment that 
is repeated in three cycles. 

• To generate a continuous, non-cadenced signal, you can use dx_playtoneEx( ) and 
TN_GENCAD to specify a single segment with zero off-time and with an infinite number of 
cycles and/or an infinite on-time. 

Alternatively, you could use dx_playtone( ) and TN_GEN to generate a non-cadenced signal. 
The following non-cadenced call progress signals could be generated by the dx_playtone( ) 
function if you defined them in a TN_GEN: 1) Dial Tone, 2) Executive Override Tone, and 3) 
Busy Verification Tone Part A. 

• Note that the Intercept Tone consists of alternating single tones. 

• Although the TIA/EIA Standard describes the Busy Verification Tone as one signal, the two 
segments are separate tones/events: Part A is a single burst almost three times longer than Part 
B and it alerts the parties before the attendant intrudes; Part B is a short burst every 9 seconds 
continuing as long as the interruption lasts. The TIA/EIA Standard does not define an off-time 
between Part A and B. Therefore, the application developer is responsible for implementing 
the timing between the two parts of this signal. 

• The TIA/EIA Standard specifies the range of permissible power levels per frequency for 1) the 
Central Office trunk interface and 2) all other interfaces (including off-premise stations and tie 
trunks). The Dialogic implementation adopted the approximate middle value in the acceptable 
range of power levels for applying the signals to the CO trunk interface. These power levels 
were more restrictive than those for the other interfaces. According to the following statement 
in the TIA/EIA Standard, additional requirements and considerations may apply: 

“Studies have shown that the lower level tones that are transmitted over trunks should be 6 dB 
hotter at the trunk interface (than at the line interface) to compensate for increased loss on the 
end-to-end connection. In the case of tones used at higher levels, the 6 dB difference is not 
used since power at trunk interfaces must be limited to -13 dBm0 total when averaged over any 
3-second interval to prevent carrier overload. Maximum permissible powers listed are 
consistent with this requirement taking into account the allowable interruption rates for the 
various tones. Uninterrupted tones, such as Dial Tone and Intercept Tone, shall be 
continuously limited to -13 dBm.” 

For related power level information, see also Note 1 for Tables 29 and 30, Section 5.9, and 
Section 6.3.5.
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1313.Global Dial Pulse Detection

Global dial pulse detection (global DPD) is a signaling component of the voice library. The 
following topics provide more information on global DPD:

• Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

• Global DPD Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

• Enabling Global DPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

• Global DPD Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

• Retrieving Digits from the Digit Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

• Retrieving Digits as Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

• Dial Pulse Detection Digit Type Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

• Defines for Digit Type Reporting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

• Implementing Global DPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

• Global DPD Example Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

13.1 Overview

Global dial pulse detection is supported on Dialogic® Springware boards only.

Dial Pulse Detection (DPD) allows applications to detect dial pulses from rotary or pulse phones by 
detecting the audible clicks produced when a number is dialed, and to use these clicks as if they 
were DTMF digits. Dialogic global dial pulse detection, called global DPD, is a software-based 
dial pulse detection method that can use country-customized parameters for accurate performance.

Global DPD provides the following features and benefits: 

• The algorithm is adaptive and can train on a DPD digit encountered, with the greatest accuracy 
produced from training on a digit that has 5 or more pulses. Global DPD does not require a 
leading “0” to train the global DPD algorithm. 

• Can be performed simultaneously with DTMF detection. The application can determine 
whether the digit detected is a DTMF or DPD digit. 

• Can be performed simultaneously with Global Tone Detection (GTD). For example, the 
application can use GTD to monitor for dial tone or busy tones simultaneously with DPD. 

• Supports pulse-digit cut-through during a voice playback, with the correct digit returned in the 
digit buffer. Global DPD uses echo cancellation, which provides more accurate reporting of 
digits during voice playback. 

• The application can enable global DPD and volume control. (Previously, there was a 
restriction that DPD digits had to be sent to the event queue instead of the digit queue if 
volume control was enabled.) 
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The following applications are supported by the global DPD feature: 

• Analog applications using the loop-start telephone interface on a supported voice board 

• Digital applications using a supported voice board 

13.2 Global DPD Parameters

This feature is referred to as global DPD because its detection algorithm supports a wide range of 
dial pulses from 8 pulse-per-second (PPS) to 22 PPS telephones. 

Customized global DPD download parameters are provided for several countries such as 
Argentina, Brazil, Colombia, India, Japan, Mexico and Venezuela. 

On Linux, these parameters are contained in the voice.prm file. To download the global DPD 
parameters, select a specific country when the boards are configured.

On Windows®, configure DPD and select a specific country on the Country Property Sheet using 
the Dialogic® Configuration Manager (DCM).

13.3 Enabling Global DPD

Global Dial Pulse Detection (DPD) is available by default via software; separate GDPD 
enablement packages are no longer required. 

Global DPD must be implemented on a call-by-call basis. Use dx_setdigtyp( ) to enable DPD.

For any digit detected, you can determine the digit type such as DTMF or DPD by using the 
DV_DIGIT data structure in the application. When a dx_getdig( ) or dx_getdigEx( ) function call 
is performed, the digits are collected from the firmware and transferred to the user’s digit buffer. 
The digits are stored as an array inside the DV_DIGIT structure. 

You then use a pointer to the structure that contains a digit buffer. For an example, see 
Section 13.10, “Global DPD Example Code”, on page 133. This method allows you to determine 
very quickly whether a pulse or DTMF telephone is being used. 

13.4 Global DPD Programming Considerations

The global DPD algorithm will accurately detect digits in the supported regions without requesting 
a special training digit from the caller or requiring any other restrictions on the application. 
However, consider the following programming guidelines when designing the application:

• Talk-off rejection (the ability of the algorithm to distinguish between dial pulses and the 
human voice) will improve after the first digit is detected. 

• Digit detection will be slightly more accurate (about 2%) after detecting a digit of 5 or greater. 
It is not necessary to dial a special training digit to do this. The application may simply restrict 
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the first menu to digits 5, 6, 7, 8, 9, and 0, and the training will be complete. Subsequent menus 
may be unrestricted. 

• In general, detection accuracy is greater for higher digits than for lower. While detection 
accuracy is very high, it may be further improved by restricting menu selections, whenever 
convenient, to digits greater than 3. 

13.5 Retrieving Digits from the Digit Buffer

To get the digits from the digit buffer, use the following synchronous programming model:  

1. Define a data structure of type DV_DIGIT (the DV_DIGIT structure is defined by including 
the dxxxlib.h header file). 

2. Enable DPD on the desired channels using the dx_setdigtyp( ) function. 

3. For each new connection, use dx_setdigtyp( ) with the D_DPDZ mask, which initializes the 
DPD algorithm. After collecting the first DPD digit string, the mask can be set to D_DPD for 
the remainder of that connection. Each subsequent invocation of dx_setdigtyp( ) must use the 
D_DPD mask. 

4. Execute the dx_getdig( ) function to collect and transfer the digits to the user’s digit buffer. 
The digits are stored in the dg_value field of the DV_DIGIT structure. The corresponding digit 
types (dial pulse, DTMF, and so on) are stored in the dg_type field of the DV_DIGIT structure. 
For more information, see the DV_DIGIT structure in the Voice API Library Reference. 

13.6 Retrieving Digits as Events

To get the digits as events, use the following asynchronous programming model using the 
dx_setevtmsk( ), sr_waitevt( ), and sr_getevtdatap( ) functions and the DX_CST data structure. 

1. Since the supported voice boards come with channels capable of global DPD, you must enable 
DPD on the desired channels using the dx_setdigtyp( ) function. 

2. For each new connection, use dx_setdigtyp( ) with the D_DPDZ mask, which initializes the 
DPD algorithm. After collecting the first DPD digit string, the mask can be set to D_DPD for 
the remainder of that connection. Each subsequent invocation of dx_setdigtyp( ) must use the 
D_DPD mask. 

3. Use dx_setevtmsk( ) to enable digit detection. 

4. Use sr_waitevt( ) to wait for events. 

5. When a CST event occurs, use sr_getevtdatap( ) to retrieve the pointer to the DX_CST 
structure. 

6. The cst_data field (DX_CST structure) for a DE_DIGITS event contains an ASCII digit (low 
byte) and the digit type (high byte). 
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13.7 Dial Pulse Detection Digit Type Reporting

Two defines are provided for identifying the dial pulse detection digit type, depending upon how 
the digit type is retrieved:

DG_DPD
Dial pulse detection digit from the DX_EBLK event queue data (cst_data) through a 
DE_DIGITS Call Status Transition event

DG_DPD_ASCII
Dial pulse detection digit from the DV_DIGIT dg_type digit buffer using dx_getdig( )

Obtaining the digit type for DPD digits is valid only in the case when the voice and DPD 
capabilities are both present on the same board. In the case where a voice board does not support 
DPD, you cannot detect DPD digits or obtain the DPD digit type even though you can enable DPD 
and digit type reporting without an error.

13.8 Defines for Digit Type Reporting

Use the defines as shown here to determine the digit type from the value returned in the dg_type 
(digit type) field from the DV_DIGIT digit buffer. If you get the digit from the DV_DIGIT dg_type 
digit buffer using dx_getdig( ), you should use the digit type define that has the “_ASCII” suffix. 
Otherwise, if you get the digit from the DX_EBLK event queue data (cst_data) through a 
DE_DIGITS Call Status Transition event, you should use the digit type define without the 
“_ASCII” suffix. 

13.9 Implementing Global DPD

Use the following procedure to implement global DPD:

1. Define a data structure of type DV_DIGIT (this structure is specified in the DXDIGIT.H file).

2. Enable DPD on the desired channels using the dx_setdigtyp( ) function. For new calls you 
must use the D_DPDZ mask that initializes the DPD detector for new calls.

Defines for dg_type from

Digit Type Digit Buffer Event Queue

DTMF DG_DTMF_ASCII DG_DTMF

DPD DG_DPD_ASCII DG_DPD

MF DG_MF_ASCII DG_MF

GTD DG_USER1_ASCII DG_USER1

(user-defined) DG_USER2_ASCII DG_USER2

DG_USER3_ASCII DG_USER3

DG_USER4_ASCII DG_USER4

DG_USER5_ASCII DG_USER5
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3. Execute the dx_getdig( ) function to collect and transfer the digits to the user’s digit buffer. 
The digits are stored in the dg_value field of the DV_DIGIT structure with the corresponding 
digit types stored in the dg_type field of the DV_DIGIT structure. 

13.10 Global DPD Example Code

The following example illustrates how to set up and use global DPD. The code uses the 
synchronous model.  

/*$ dx_setdigtyp( )and dx_getdig( ) example for global dial pulse detection $*/

#include        <stdio.h>
#include        "srllib.h"
#include        "dxxxlib.h"

void main(int argc, char **argv)
{
   
   int     dev;                    /* Dialogic device handle */
   DV_DIGIT        dig;    
   DV_TPT tpt;  

   /*
    * Open device, make or accept call 
    */

   /* set up TPT to wait for 3 digits and terminate */
   dx_clrtpt(&tpt, 1);
   tpt.tp_type =   IO_EOT;
   tpt.tp_termno = DX_MAXDTMF;
   tpt.tp_length = 3;
   tpt.tp_flags =  TF_MAXDTMF;
   
   /* enable DPD and DTMF digits */
   dx_setdigtyp(dev, D_DPDZ|D_DTMF);

   /* clear the digit buffer */
   dx_clrdigbuf(dev);                      

   /* collect 3 digits from the user */
   if (dx_getdig(dev, &tpt, &dig, EV_SYNC) == -1) {
      /* error, display error message */
      printf("dx_getdig error %d, %s\n", ATDV_LASTERR(dev), ATDV_ERRMSGP(dev));
   } else {
      /* display digits received and digit type */
      printf("Received \"%s\"\n", dig.dg_value);
      printf("Digit type is ");
      /* 
       * digit types have 0x30 ORed with them strip it off
       * so that we can use the DG_xxx equates from the header files
       */
      switch ((dig.dg_type[0] & 0x000f)) {
         case DG_DTMF:
            printf("DTMF\n");
            break;
         case DG_DPD:
            printf("DPD\n");
            break;
         default:
            printf("Unknown, %d\n", (dig.dg_type[0] &0x000f));
      }
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   }

   /*
    * continue processing call
    */
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1414.Building Applications

This chapter provides information on building applications using the Dialogic® Voice API library. 
The following topics are discussed:

• Dialogic® Voice and SRL API Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

• Compiling and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

14.1 Dialogic® Voice and SRL API Libraries

The C-language application programming interface (API) included with the voice software 
provides a library of functions used to create voice processing applications. 

The Dialogic® Voice API library and the Dialogic® Standard Runtime Library (SRL) files are part 
of the voice software. These libraries provide the interface to the voice driver. For detailed 
information on the SRL, see the Dialogic® Standard Runtime Library API Programming Guide 
and Dialogic® Standard Runtime Library API Programming Guide.

Figure 17 illustrates how the Dialogic® Voice and SRL API libraries interface with the driver.

Figure 17. Dialogic® Voice and SRL API Libraries

APPLICATION

STANDARD
RUNTIME
LIBRARY

VOICE
LIBRARY

DRIVER



136 Dialogic® Voice API Programming Guide
Dialogic Corporation

Building Applications

14.2 Compiling and Linking

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries for Linux

• Required Libraries for Windows®

• Variables for Compiling and Linking

14.2.1 Include Files

Function prototypes and equates are defined in include files, also known as header files. 
Applications that use the Dialogic® Voice API library functions must contain statements for 
include files in this form, where filename represents the include file name:

#include <filename.h>

The following header files must be included in application code in the order shown prior to 
calling Dialogic® Voice API library functions:

srllib.h 
Contains function prototypes and equates for the Dialogic® Standard Runtime Library (SRL). 
Used for all application development.

dxxxlib.h 
Contains function prototypes and equates for the Dialogic® Voice API library. Used for voice 
processing applications.

Note: srllib.h must be included in code before all other Dialogic header files.

14.2.2 Required Libraries for Linux

By default, the library files are located in the directory given by the INTEL_DIALOGIC_LIB 
environment variable.

You must link the following shared object library files in the order shown when building your 
voice processing application:

libdxxx.so 
Main voice library file. Specify -ldxxx in makefile.  

libsrl.so 
Standard Runtime Library file. Specify -lsrl in makefile. 

If you use curses, you must ensure that it is the last library to be linked.

Note: When building an application, list Dialogic® libraries before all other libraries.
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14.2.3 Required Libraries for Windows®

By default, the library files are located in the directory given by the INTEL_DIALOGIC_LIB 
environment variable.

You must link the following library files in the order shown when building your voice processing 
application:

libdxxmt.lib 
Main voice library file. 

libsrlmt.lib 
Standard Runtime Library file. 

14.2.4 Variables for Compiling and Linking

The following variables provide a standardized way of referencing the directories that contain 
header files and shared objects:

INTEL_DIALOGIC_DIR
Variable that points to the directory in which the release software is installed.

INTEL_DIALOGIC_INC
Variable that points to the directory in which header files are stored.

INTEL_DIALOGIC_LIB
Variable that points to the directory in which shared library files are stored.

These variables are automatically set at login and should be used in compiling and linking 
commands.
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