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About This Publication

The following topics provide information about this publication:

* Purpose

Applicability

Intended Audience

How to Use This Publication

Related Information

Purpose

This guide provides details about the Dialogic® Voice API that is supplied with the Dialogic® Host
Media Processing (HMP) software product, including function descriptions, data structures, and
error codes supported on the Linux and Windows® operating systems. This document is a
companion guide to the Dialogic® Voice API Programming Guide, which provides instructions for
developing applications using the Dialogic® Voice API.

Dialogic® Host Media Processing (HMP) Software performs media processing tasks on general-
purpose servers based on Dialogic® architecture without the need for specialized hardware. When
installed on a system, Dialogic® HMP Software performs like a virtual Dialogic® DM3 board to
the customer application, but all media processing takes place on the host processor. In this
document, the term “board” represents the virtual Dialogic® DM3 board.

Applicability

This document version (05-2333-006) is published for Dialogic® Host Media Processing Software
Release 3.0WIN and Dialogic® Host Media Processing Software Release 3.1LIN.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This guide is intended for software developers who choose to access the voice software. They may
include any of the following:

¢ Distributors

¢ System Integrators

Dialogic® Voice API Library Reference 13
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Toolkit Developers

Independent Software Vendors (ISVs)
Value Added Resellers (VARSs)

Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software which
includes the voice software. This publication assumes that you are familiar with the Linux or
Windows® operating systems and the C programming language.

The information in this guide is organized as follows:

Chapter 1, “Function Summary by Category” introduces the categories of voice functions and
provides a brief description of each function.

Chapter 2, “Function Information” provides an alphabetical reference to all voice functions
supported on Dialogic® HMP Software.

Chapter 3, “Events” provides an alphabetical reference to events that may be returned by the
voice software on Dialogic® HMP Software.

Chapter 4, “Data Structures” provides an alphabetical reference to all voice data structures
supported on Dialogic® HMP Software.

Chapter 5, “Error Codes” provides a listing of all error codes that may be returned by the voice
software on Dialogic® HMP Software.

Chapter 6, “Supplementary Reference Information” provides additional reference information
on topics such as DTMF and MF Tone Specifications.

A glossary and index are provided for your reference.

Related Information

See the following for additional information:

http://www.dialogic.com/manuals/ (for Dialogic® product documentation)
http://www.dialogic.com/support/ (for Dialogic technical support)
http://www.dialogic.com/ (for Dialogic® product information)

Dialogic® Voice API Library Reference
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Function Summary by Category

This chapter describes the categories into which the Dialogic® Voice API library functions can be

logically grouped.
* Device Management Functions . ... .......... .. i 15
e Configuration FUNCtions .. ...... ... ..t 16
® JJOFUNCHONS. . ..ot e e e e 16
¢ [/O Convenience FUNCHONS . .. .. ..ottt e 18
e Streaming to Board Functions. . ......... .. .. .. . 18
¢ Transaction Record Function. . ........ ... ... .. .. .. . i 19
e (all Status Transition (CST) Event Functions . .............................. 19
e TDM Routing FUNCtions . . . ...« e 19
e Global Tone Detection (GTD) Functions .. ........... ... ... ... i, 20
e Global Tone Generation (GTG) Functions . ................ ... i, 21
e Speed and Volume Functions. . . ..........o . i 22
e Call Progress Analysis Functions .. ........ ... .. .. .. 22
¢ File Manipulation Functions . ........... .. .. i 23
¢ Structure Clearance Functions. . .......... ... ... i 23
¢ Extended Attribute Functions . ........ ... ... ... ... . i 24
1.1 Device Management Functions

Device management functions open and close devices, which include boards and channels.

Before you can call any other library function on a device, that device must be opened using a

device management function. The dx_open( ) function returns a unique voice device handle. This
handle is the only way the device can be identified once it has been opened. The dx_close( )
function closes a device via its handle.

Device management functions do not cause a device to be busy. In addition, these functions will

work on a device whether the device is busy or idle.

For more information about opening and using voice devices, see the Dialogic® Voice API
Programming Guide. Also see this guide for more information about naming conventions for board
and channel devices.

Use Dialogic® Standard Runtime Library device mapper functions to return information about the

structure of the system, such as a list of all boards. This device information is used as input to

Dialogic® Voice API Library Reference
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Note:

device management functions. For more information on device mapper functions, see the
Dialogic® Standard Runtime Library API Library Reference.

These device management functions are separate and distinct from the Dialogic® Device
Management API library, which provides run-time control and management of configurable system
devices.

The device management functions are:

dx_close( )
closes a board or channel device handle

dx_open( )
opens a board or channel device handle

Configuration Functions

Configuration functions allow you to alter, examine, and control the physical configuration of an
open device. In general, configuration functions operate on an idle device. Configuration functions
cause a device to be busy and return the device to an idle state when the configuration is complete.
See the Dialogic® Voice API Programming Guide for information about busy and idle states.

The configuration functions are:

dx_clrdigbuf( )
clears all digits in the firmware digit buffer

dx_getfeaturelist( )
returns information about the features supported on the device

dx_getparm( )
gets the current parameter settings for an open device

dx_setchxfercnt( )
sets the bulk queue buffer size for the channel

dx_setdigtyp( )
controls the types of digits detected by the device

dx_setparm( )
sets physical parameters for the device

I/O Functions

An I/O function transfers data to and from an open, idle channel. All I/O functions cause a channel
to be busy while data transfer is taking place and return the channel to an idle state when data
transfer is complete.

I/O functions can be run synchronously or asynchronously, with some exceptions (for example,
dx_setuio( ) can be run synchronously only). When running synchronously, they return after
completing successfully or after an error. When running asynchronously, they return immediately

Dialogic® Voice API Library Reference
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to indicate successful initiation (or an error), and continue processing until a termination condition
is satisfied. See the Dialogic® Standard Runtime Library API Programming Guide for more
information on asynchronous and synchronous operation.

A set of termination conditions can be specified for I/O functions, except for dx_stopch( ). These
conditions dictate what events will cause an I/O function to terminate. The termination conditions
are specified just before the I/O function call is made. Obtain termination reasons for I/O functions
by calling the extended attribute function ATDX_TERMMSK( ). See the Dialogic® Voice API
Programming Guide for information about I/O terminations.

The I/0 functions are:

dx_dial( )
dials an ASCIIZ string of digits

dx_getdig()
collects digits from a channel digit buffer

dx_play()
plays voice data from any combination of data files, memory, or custom devices

dx_playiottdata( )
plays voice data from any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_rec()
records voice data to any combination of data files, memory, or custom devices

dx_resetch( )
recovers a channel that is “stuck” (busy or hung) and in a recoverable state, and brings it to an
idle and usable state

dx_reciottdata( )
records voice data to any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_setdevuio( ) (Windows® only)
installs and retrieves user-defined I/O functions in your application

dx_setuio( )
installs user-defined I/O functions in your application

dx_stopch()
forces termination of currently active I/O functions

Notes: 1. The dx_playtone( ) function, which is grouped with global tone generation functions, can also
be classified as an I/O function and all I/O characteristics apply.

2. The dx_playvox( ) and dx_recvox( ) functions, which are grouped with I/O convenience
functions, can also be classified as I/O functions and all I/O characteristics apply.
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1.4

1.5

18

I/O Convenience Functions

Convenience functions enable you to easily implement certain basic functionality of the library
functions. I/O convenience functions simplify synchronous play and record.

The dx_playf( ) function performs a playback from a single file by specifying the filename. The
same operation can be done by using dx_play( ) and supplying a DX_IOTT structure with only one
entry for that file. Using dx_playf( ) is more convenient for a single file playback because you do
not have to set up a DX_IOTT structure for the one file and the application does not need to open
the file. dx_recf( ) provides the same single-file convenience for the dx_rec( ) function.

The dx_playvox( ) function also plays voice data stored in a single VOX file. This function
internally calls dx_playiottdata( ). Similarly, dx_recvox( ) records VOX files using
dx_reciottdata( ).

The I/0 convenience functions are:

dx_playf()
plays voice data from a single VOX file without the need to specify DX_IOTT

dx_playvox( )
plays voice data from a single VOX file using dx_playiottdata( )

dx_playwav( )
plays voice data stored in a single WAVE file

dx_recf()
records voice data from a channel to a single VOX file without the need to specify DX_IOTT

dx_recvox( )
records voice data from a channel to a single VOX file using dx_reciottdata( )

dx_recwav( )
records voice data to a single WAVE file

Streaming to Board Functions

The streaming to board feature enables real time data streaming to the board. Streaming to board
functions allow you to create, maintain, and delete a circular stream buffer within the library. These
functions also provide notification when high and low water marks are reached. See the Dialogic®
Voice API Programming Guide for more information about the streaming to board feature.

The streaming to board functions include:

dx_CloseStreamBuffer( )
deletes a circular stream buffer

dx_GetStreamlInfo( )
retrieves information about the circular stream buffer

dx_OpenStreamBuffer( )
creates and initializes a circular stream buffer
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dx_PutStreamData( )
places data into the circular stream buffer

dx_ResetStreamBuffer( )
resets internal data for a circular stream buffer

dx_SetWaterMark( )
sets high and low water marks for the circular stream buffer

1.6 Transaction Record Function

Transaction record enables the recording of a two-party conversation by allowing data from two
time division multiplexing (TDM) bus time slots from a single channel to be recorded.

dx_mreciottdata( )
records voice data from two TDM bus time slots to a data file, memory or custom device

1.7 Call Status Transition (CST) Event Functions

Call status transition (CST) event functions set and monitor CST events that can occur on a device.
CST events indicate changes in the status of the call, such as rings or a tone detected, or the line
going on-hook or off-hook. See the call status transition structure (DX_CST) description for a full
list of CST events.

The dx_getevt( ) function retrieves CST events in a synchronous environment. To retrieve CST
events in an asynchronous environment, use the Dialogic® Standard Runtime Library event
management functions.

dx_setevtmsk( ) enables detection of CST event(s). User-defined tones are CST events, but
detection for these events is enabled using dx_addtone( ) or dx_enbtone( ), which are global tone
detection functions.

The call status transition event functions are:

dx_getevt( )
gets a CST event in a synchronous environment

dx_setevtmsk( )
enables detection of CST events

1.8 TDM Routing Functions

TDM routing functions are used in time division multiplexing (TDM) bus configurations, which
include the CT Bus and SCbus. A TDM bus is a resource sharing bus that allows audio data to be
transmitted and received among resources over multiple time slots. On Dialogic® Host Media
Processing (HMP) Software, no physical TDM bus exists but its functionality is implemented in
the software.
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1.9

20

TDM routing functions enable the application to make or break a connection between voice,
telephone network interface, and other resource channels connected via TDM bus time slots. Each
device connected to the bus has a transmit component that can transmit on a time slot and a receive
component that can listen to a time slot.

The transmit component of each channel of a device is assigned to a time slot at system
initialization and download. To listen to other devices on the bus, the receive component of the
device channel is connected to any one time slot. Any number of device channels can listen to a
time slot.

TDM routing convenience functions, nr_scroute( ) and nr_scunroute( ), are provided to make or
break a half or full-duplex connection between any two channels transmitting on the bus. These
functions are not a part of any library but are provided in a separate C source file called sctools.c.
The functions are defined in sctools.h.

The TDM routing functions are:

dx_getctinfo( )
returns information about voice device connected to TDM bus

dx_getxmitslot( )
returns the number of the TDM bus time slot connected to the transmit component of a voice
channel

dx_listen( )
connects the listen (receive) component of a voice channel to a TDM bus time slot

dx_listenEx( )
connects the listen (receive) component of a voice channel to a TDM bus time slot. This
function extends and enhances the dx_listen( ) function.

dx_unlisten( )
disconnects the listen (receive) component of a voice channel from TDM bus time slot

dx_unlistenEx( )
disconnects the listen (receive) component of a voice channel from TDM bus time slot. This
function extends and enhances the dx_unlisten( ) function.

nr_scroute( )
makes a half or full-duplex connection between two channels transmitting on the TDM bus

nr_scunroute( )
breaks a half or full-duplex connection between two TDM bus devices

Global Tone Detection (GTD) Functions

The global tone detection (GTD) functions define and enable detection of single and dual
frequency tones that fall outside the range of those automatically provided with the voice driver.
They include tones outside the standard DTMF range of 0-9, a-d, *, and #.

The GTD dx_blddt( ), dx_blddtcad( ), dx_bldst( ), and dx_bldstcad( ) functions define tones
which can then be added to the channel using dx_addtone( ). This enables detection of the tone on
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that channel. See the Dialogic® Voice API Programming Guide for a full description of global tone
detection.

The global tone detection functions are:

dx_addtone( )
adds a user-defined tone

dx_blddt()
builds a user-defined dual frequency tone description

dx_blddtcad( )
builds a user-defined dual frequency tone cadence description

dx_bldst()
builds a user-defined single frequency tone description

dx_bldstcad( )
builds a user-defined single frequency tone cadence description

dx_deltones( )
deletes all user-defined tones

dx_distone( )
disables detection of user-defined tones

dx_enbtone( )
enables detection of user-defined tones

dx_setgtdamp( )
sets amplitudes used by global tone detection (GTD)

1.10 Global Tone Generation (GTG) Functions

Global tone generation (GTG) functions define and play single and dual tones that fall outside the
range of those automatically provided with the voice driver.

The dx_bldtngen( ) function defines a tone template structure, TN_GEN. The dx_playtone( )
function can then be used to generate the tone.

See the Dialogic® Voice API Programming Guide for a full description of global tone generation.

The global tone generation functions are:

dx_bldtngen( )
builds a user-defined tone template structure, TN_GEN

dx_playtone( )
plays a user-defined tone as defined in TN_GEN structure

dx_playtoneEx( )
plays the cadenced tone defined by TN_GENCAD structure

Note: The dx_playtone( ) and dx_playtoneEx( ) functions can also be classified as an I/O function and
all I/O characteristics apply.
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1.11

1.12
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Note:

Speed and Volume Functions

Speed and volume functions adjust the speed and volume of the play. A speed modification table
and volume modification table are associated with each channel, and can be used for increasing or
decreasing the speed or volume. These tables have default values which can be changed using the
dx_setsvmt( ) function.

The dx_addspddig( ) and dx_addvoldig( ) functions are convenience functions that specify a digit
and an adjustment to occur on that digit, without having to set any data structures. These functions
use the default settings of the speed and volume modification tables.

See the Dialogic® Voice API Programming Guide for more information about the speed and
volume feature, and speed and volume modification tables.

Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. The speed control feature is disabled by default to preserve MIPS usage. For more
information on enabling speed control, see the Configuration Guide associated with this release.

The speed and volume functions are:

dx_adjsv()
adjusts speed or volume immediately

dx_addspddig( )
sets a dual tone multi-frequency (DTMF) digit for speed adjustment

dx_addvoldig( )
adds a dual tone multi-frequency (DTMF) digit for volume adjustment

dx_clrsvcond( )
clears speed or volume conditions

dx_getcursv( )
returns current speed and volume settings

dx_getsvmt( )
returns current speed or volume modification table

dx_setsvcond( )
sets conditions (such as digit) for speed or volume adjustment; also sets conditions for play
(pause and resume)

dx_setsvmt( )
changes default values of speed or volume modification table

Call Progress Analysis Functions

Call progress analysis functions are used to change the default definition of call progress analysis
tones. See the Dialogic® Voice API Programming Guide for more information about call progress
analysis.
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The call progress analysis functions are:

dx_createtone( )
creates a new tone definition for a specific call progress tone

dx_deletetone( )
deletes a specific call progress tone

dx_querytone( )
returns tone information for a specific call progress tone

File Manipulation Functions

Supported on Windows® only. These file manipulation functions map to C run-time functions, and
can only be used if the file is opened with the function. The arguments for these Dialogic®
functions are identical to the equivalent Microsoft® Visual C++® run-time functions.

dx_fileclose( )
closes the file associated with the handle

dx_fileerrno( )
obtains the system error value

dx_fileopen( )
opens the file specified by filep

dx_fileread()
reads data from the file associated with the handle

dx_fileseek( )
moves a file pointer associated with the handle

dx_filewrite( )
writes data from a buffer into a file associated with the handle

Structure Clearance Functions

These functions do not affect a device. The dx_clrcap( ) and dx_clrtpt( ) functions provide a
convenient method for clearing the DX_CAP and DV_TPT data structures. These structures are
discussed in Chapter 4, “Data Structures”.

dx_clrcap()
clears all fields in a DX_CAP structure

dx_clrtpt()
clears all fields in a DV_TPT structure
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1.15 Extended Attribute Functions

Dialogic® Voice API library extended attribute functions return information specific to the voice
device specified in the function call.

ATDX_BDNAMEP()
returns a pointer to the board device name string

ATDX_BDTYPE()
returns the board type for the device

ATDX_BUFDIGS()
returns the number of digits in the firmware since the last dx_getdig( ) for a given channel

ATDX_CHNAMES()
returns a pointer to an array of channel name strings

ATDX_CHNUM( )
returns the channel number on board associated with the channel device handle

ATDX_CONNTYPE()
returns the connection type for a completed call

ATDX_CPERROR()
returns call progress analysis error

ATDX_CPTERM()
returns last call progress analysis termination

ATDX_DEVTYPE()
returns device type (board or channel)

ATDX_STATE()
returns the current state of the device

ATDX_TERMMSK( )
returns the reason for last I/O function termination in a bitmap

ATDX_TONEID()
returns the tone ID (used in global tone detection)

ATDX_TRCOUNT()
returns the last record or play transfer count
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Function Information

2

2.1

This chapter provides an alphabetical reference to the functions in the Dialogic® Voice API library.

A general description of the function syntax convention is provided before the detailed function
information.

Function Syntax Conventions

The voice functions use the following syntax:

data_type voice_function(device handle, parameterl, ... parameterN)

where:

data type
refers to the data type, such as integer, long or void

voice_function
represents the function name. Typically, voice functions begin with “dx” although there are
exceptions. Extended attribute functions begin with “ATDX.”

device handle
represents the device handle, which is a numerical reference to a device, obtained when a
device is opened. The device handle is used for all operations on that device.

parameterl
represents the first parameter

parameterN
represents the last parameter
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ATDX_BDNAMEP( ) — return a pointer to the board device name

ATDX_BDNAMEP( )

26

Name: char * ATDX BDNAMEP(chdev)
Inputs: int chdev e valid channel device handle
Returns: pointer to board device name string if successful
pointer to ASCIIZ string “Unknown device” if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description

The ATDX_BDNAMEP( ) function returns a pointer to the board device name on which the
channel accessed by chdev resides.

As illustrated in the example, this may be used to open the board device that corresponds to a
particular channel device prior to setting board parameters.

Parameter  Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open( )

Cautions
None.
Errors

This function will fail and return a pointer to “Unknown device” if an invalid channel device handle
is specified in chdeyv.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev, bddev;
char *bdnamep;

/* Open the channel device */
if ((chdev = dx_open("dxxxB1Cl", NULL)) == -1) {
/* Process error */

}
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return a pointer to the board device name — ATDX_BDNAMEP( )

/* Display board name */
bdnamep = ATDX_BDNAMEP (chdev) ;
printf ("The board device is: %s\n", bdnamep) ;

/* Open the board device */
if ((bddev = dx_open (bdnamep, NULL)) == -1) {

/* Process error */

}

B See Also

None.
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ATDX_BDTYPE( ) — return the board type for the device

ATDX_BDTYPE()

Name: long ATDX_BDTYPE(dev)
Inputs: int dev e valid board or channel device handle

Returns: board or channel device type if successful
AT _FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description
The ATDX_BDTYPE( ) function returns the board type for the device specified in dev.

A typical use would be to determine whether or not the device can support particular features, such
as call progress analysis.

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open( )

Possible return values are the following:

DI_D41BD
D/41 Board Device. This value represents the “dxxxBn type” devices (virtual boards).

DI_D41CH
D/41 Channel Device. This value represents the “dxxxBnCm” type devices (channel device).

The values DI_D41BD and DI_D41CH will be returned for any Dialogic® D/41 board, and any
board which emulates the voice resources of multiple Dialogic® D/41 boards.

B Cautions
None.
H Errors

This function will fail and return AT_FAILURE if an invalid board or channel device handle is
specified in dev.
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B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define ON 1

main ()
{
int bddev;
long bdtype;
int call analysis=0;

/* Open the board device */

return the board type for the device — ATDX_BDTYPE( )

if ((bddev = dx