Dialzgic

Dialogic® Voice API

Library Reference

April 2009

05-2333-006

Copyright and Legal Notice

Copyright © 2004-2009, Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation at the address provided below.

All contents of this document are subject to change without notice and do not represent a commitment on the part of Dialogic Corporation or its
subsidiaries. Reasonable effort is made to ensure the accuracy of the information contained in the document. However, due to ongoing product
improvements and revisions, Dialogic Corporation and its subsidiaries do not warrant the accuracy of this information and cannot accept responsibility
for errors or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS EXPLICITLY SET
FORTH BELOW OR AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY
WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic Corporation or its subsidiaries may infringe one or more patents or other intellectual property
rights owned by third parties. Dialogic Corporation or its subsidiaries do not provide any intellectual property licenses with the sale of Dialogic products
other than a license to use such product in accordance with intellectual property owned or validly licensed by Dialogic Corporation or its subsidiaries.
More detailed information about such intellectual property is available from Dialogic Corporation's legal department at 9800 Cavendish Blvd., 5th
Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic Corporation encourages all users of its products to procure all necessary intellectual
property licenses required to implement any concepts or applications and does not condone or encourage any intellectual property
infringement and disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it
is the responsibility of those who develop the concepts or applications to be aware of and comply with different national license
requirements.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS (stylized), Eiconcard, SIPcontrol,
Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation Thrive, Connecting to Growth, Video is the New Voice, Fusion, Vision,
PacketMedia, NaturalAccess, NaturalCallControl, NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either
registered trademarks or trademarks of Dialogic. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may
only be granted by Dialogic's legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of
Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's
trademarks requires proper acknowledgement.

Microsoft, Visual C++, and Windows are registered trademarks of Microsoft Corporation in the United States and/or other countries. Other names of
actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your decision to use open
source in connection with Dialogic products (including without limitation those referred to herein), nor is Dialogic responsible for any present or future
effects such usage might have, including without limitation effects on your products, your business, or your intellectual property rights.

Publication Date: April 2009
Document Number: 05-2333-006

Dialogic® Voice API Library Reference
Dialogic Corporation

Contents

Revision History 9
About This Publication 13
PUIDOSE . . . 13
Applicability e 13
Intended AUudIiENCE. e 13

How to Use This Publication e 14
Related Information 14

1 Function Summary by Category e 15
1.1 Device Management FUNCLIONS e 15
1.2 Configuration FUNCHiONS. 16
1.3 WO FUNCHONS . . .o e e 16
1.4 /O Convenience FUNCLIONS i e e 18
1.5 StreamingtoBoard Functions. 18
1.6 Transaction Record FuNnCtion. e 19
1.7 Call Status Transition (CST) Event Functions. 19
1.8 TDM Routing FUNCLIONS e 19
1.9 Global Tone Detection (GTD) Functions i e 20
1.10 Global Tone Generation (GTG) Functions. i, 21
1.11 Speedand Volume FUNCtions e e 22
1.12 Call Progress Analysis Functions i 22
1.13 File Manipulation Functions. 23
1.14 Structure Clearance Functions i e 23
1.15 Extended Attribute Functions. 24
2 Function Information e 25
2.1 Function Syntax Conventions i e 25
ATDX_BDNAMEP() — return a pointer to the board devicename. 26
ATDX_BDTYPE() — return the board type forthedevice 28
ATDX_BUFDIGS() — return the number of uncollected digits 30
ATDX_CHNAMES() — retrieve all channel names foraboard 32
ATDX_CHNUM() —return the channelnumber. 34
ATDX_CONNTYPE() — return the connection type for a completedcall................... 36
ATDX_CPERROR() — return the call progress analysiserror., 39
ATDX_CPTERM() — return the last result of call progress analysis termination 42
ATDX_CRTNID() — return the last call progress analysis termination. 45
ATDX_DEVTYPE() —returnthe device type e 49
ATDX_STATE() —return the current state of thechannel 51
ATDX_TERMMSK() — return the reason for the last I/O function termination............... 53
ATDX_TONEID() - return user-defined tone ID that terminated I/O function 56
ATDX_TRCOUNT() — return the byte count forthe last I/O transfer. 59
dx_addspddig() —set a DTMF digitto adjustspeed 61
dx_addtone() —add a user-definedtone 64
Dialogic® Voice API Library Reference 3

Dialogic Corporation

Contents

dx_addvoldig() —set a DTMF digitto adjustvolume 69
dx_adjsv() — adjust speed or volume immediately L. 72
dx_blddt() — define a user-defined dual-frequencytone............ 75
dx_blddtcad() — define a user-defined dual frequency cadencedtone..................... 78
dx_bldstcad() — define a user-defined single-frequency cadencedtone 81
dx_bldst() — define a user-defined single-frequencytone. 84
dx_bldtngen() — define a tone for generation 87
dx_close() —close a channel or board devicehandle 90
dx_CloseStreamBuffer() — delete a circular stream buffer. 92
dx_clrcap() —clear all fieldsina DX_CAP structure. i 94
dx_clrdigbuf() — clear all digits in the firmware digitbuffer 96
dx_clrsvcond() — clear all speed or volume adjustment conditions 98
dx_clrtpt() —clear all fields ina DV_TPT structure. i 100
dx_createtone() — create a new tone definition for a specific call progresstone 102
dx_deletetone() — delete a specific call progresstone. 106
dx_deltones() — delete all user-definedtones. i 109
dx_dial() —dial an ASCIZ string. oo e 111
dx_distone() — disable detection of a user-definedtone. 117
dx_enbtone() — enable detection of a user-definedtoneo L. 120
dx_fileclose() —close afile. e 123
dx_fileerrno() —return the systemerrorvaluet 125
dx_fileopen() —openafile e 128
dx_fileread() —readdatafromafile e 130
dx_fileseek() —move afile pointer 133
dx_filewrite() — write data from a bufferintoafile. L it 136
dx_getctinfo() — get information about a voice device i 139
dx_getcursv() — return the specified current speed and volume settings. 141
dx_getdig() — collect digits from a channel digitbuffer. 144
dx_getevt() — monitor channel events synchronously 150
dx_getfeaturelist() — retrieve feature support information for the device 153
dx_getparm() — get the current parametersettings 157
dx_GetStreaminfo() — retrieve information about the circular stream buffer 160
dx_getsvmt() — return the current speed or volume modificationtable. 162
dx_getxmitslot() — get TDM bus time slot number of voice transmit channel 165
dx_listen() — connect a voice listen channel to TDM bus time slot. 167
dx_listenEx() — connect a voice listen channel to TDM bus timeslot. 170
dx_mreciottdata() — record voice data from two TDM bustimeslots. 174
dx_open() — open a voice device and return a unique devicehandle 182
dx_OpenStreamBuffer() — create and initialize a circular stream buffer. 185
dx_play() —play recorded voice data e 187
dx_playiottdata() — play back recorded voice data from multiple sources 194
dx_playf() —synchronously play voice data i 198
dx_playtone() — play tone defined by TN_GEN structure. 202
dx_playtoneEx() — play the cadenced tone defined by TN_.GENCAD 206
dx_playvox() — play voice data stored in a single VOXfile. 210
dx_playwav() — play voice data stored in a single WAVEfile........................... 213
4 Dialogic® Voice API Library Reference

Dialogic Corporation

Contents

dx_PutStreamData() — place data into a circular stream buffer. 216
dx_querytone() — get tone information for a specific call progresstone 218
dx_rec() — record voice data froma singlechannel. 221
dx_recf() —record voice datatoasinglefile 228
dx_reciottdata() — record voice data to multiple destinations 232
dx_recvox() — record voice data to a single VOXfile. L. 237
dx_recwav() — record voice data to a single WAVE file......... 240
dx_resetch() —resetachannelthatishung 243
dx_ResetStreamBuffer() — reset internal data for a circular stream buffer 246
dx_setchxfercnt() — set the bulk queue buffersize 249
dx_setdevuio() — install and retrieve user-defined I/O functions 251
dx_setdigtyp() — control the types of digits detected by the voice channel 254
dx_setevtmsk() — enable detection of call status transition (CST)events................. 257
dx_setgtdamp() — set up the tone detection amplitudes 262
dx_setparm() — set physical parameters of a channel or board device. 264
dx_setsvcond() — set conditions that adjust speed or volume ofplay 267
dx_setsvmt() — change default values of the speed or volume modification table 271
dx_setuio() — install user-defined I/O functions i 275
dx_SetWaterMark() — set water mark for the circular stream buffer 278
dx_stopch() — force termination of currently active I1/O functions. 280
dx_unlisten() — disconnect voice receive channel from TDMbus 283
dx_unlistenEx() — disconnect voice receive channel from TDMbus..................... 285
nr_scroute() — make a full or half-duplex connection. 288
nr_scunroute() — break a full or half-duplex connection 290
3 EVents e 293
3.1 Overview of Events e 293
3.2 Termination Events 293
3.3 Unsolicited EVents e 295
3.4 Call Status Transition (CST)Events i i 295
4 Data Structures. e e 297
CT_DEVINFO - channel/time slot device information 298
DV_DIGIT —userdigit buffer e 300
DV_TPT — termination parametertable 301
DX_CAP — call progress analysis parameters 307
DX_CST - call status transition (CST) information 310
DX_EBLK — call status transition eventblock. 311
DX_IOTT —input/output transfertable 312
DX_STREAMSTAT —status of stream buffer. 315
DX_SVCB - speed and volume adjustment condition block 317
DX_SVMT - speed and volume modificationtables 321
DX_UIO — user-defined input/output 323
DX_XPB — input/output transfer parameter block. 324
FEATURE_TABLE —feature information i, 327
SC_TSINFO — TDM bus time slotinformation i 330
TN_GEN —tone generationtemplate 331
Dialogic® Voice API Library Reference 5

Dialogic Corporation

Contents

TN_GENCAD — cadenced tone generationtemplate 332
TONE_DATA —toneinformation. e 334
5 Error Codes e 337
6 Supplementary Reference Information. 341
6.1 DTMF and MF Tone Specifications i e 341
6.2 DTMF and MF Detection Errorso e e 342
GlOSSaY e 345
INdeX . . . e 353
6 Dialogic® Voice API Library Reference

Dialogic Corporation

Contents

Tables

1 Valid Dial String Characters. e e 113
2 SyStEM EIMOr Valuesot e e e 125
3 PlayMode Selections 188
4 Record Mode Selections i e e 223
1 Voice Board Parameters e 265
2 Voice Channel Parameters e e 265
3 DV_TPT Field Settings Summary e e e 305
4 G.711 Voice Coder Support Fields e e e e 325
5 Linear PCM Voice Coder SupportFields i 325
6 OKI ADPCM Voice Coder Support Fields e 325
7 G.726 Voice Coder Support Fields 325
8 GSM Voice Coder Support Fields 326
9 DTMF Tone Specifications i et e e e 341
10 MF Tone Specifications (CCITTR1 TonePlan) 342
11 Detecting MF DigitSot e 343
12 Detecting DTMF Digits.ot e e e 343
Dialogic® Voice API Library Reference 7

Dialogic Corporation

Contents

8 Dialogic® Voice API Library Reference
Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No.

Publication Date

Description of Revisions

05-2333-006 April 2009 Function Summary by Category chapter: Added dx_setchxfercnt() in Configuration
Functions and added ATDX_BUFDIGS() in Extended Attribute Functions.
ATDX_BUFDIGS() function: Added.
dx_OpenStreamBuffer() function: Added caution about calling dx_open() before
calling this function. [IPY00045172]
dx_setchxfercnt() function: Added.
dx_setparm() function: Added DXCH_XFERBUFSIZE.
DX_XPB structure: Added GSM 6.10 full-rate coder (Microsoft format and TIPHON
format).
05-2333-005 January 2008 Made global changes to reflect Dialogic brand and changed title to "Dialogic® Voice

API Library Reference”

Function Summary by Category chapter: Added dx_resetch() function to I/0O
Functions section.

dx_getdig() function: Corrected number of digits returned in Synchronous Operation
(IPY00038453)

dx_reciottdata() function: Added RM_VADNOTIFY and RM_ISCR modes.
dx_resetch() function: Added new function.

dx_setparm() function: Added DXCH_SCRFEATURE define.

Events chapter: Added TDX_VAD event.

Dialogic® Voice API Library Reference
Dialogic Corporation

Revision History

Document No.

Publication Date

Description of Revisions

05-2333-004

August 2006

Function Summary by Category chapter: Added support for speed control in Speed
and Volume Functions section. Added note about enabling speed control in
CONFIG file.

dx_addspddig() function: Added support for this function in HMP.
dx_adjsv() function: Added support for speed control.
dx_clrsvcond() function: Added support for speed control.
dx_getcursv() function: Added support for speed control.
dx_getsvmt() function: Added support for speed control.

dx_listenEx() function: Added caution about using this function and dx_unlistenEx()
rather than dx_unlisten() and dx_listen().

dx_mreciottdata() function: Updated values for mode parameter.
dx_setsvcond() function: Added support for speed control.
dx_setsvmt() function: Added support for speed control.

dx_unlistenEx() function: Added caution about using this function and dx_listenEx()
rather than dx_unlisten() and dx_listen().

Events chapter: Removed DE_DIGOFF event from Call Status Transition(CST)
Events section; not supported.

DX_CST data structure: Removed DE_DIGOFF value; not supported.
DX_SVCB data structure: Added support for speed control.
DX_SVMT data structure: Added support for speed control.

Error Codes chapter: Added “speed” to EDX_SPDVOL, EDX_SVADJBLKS,
EDX_SVMTRANGE error code descriptions.

05-2333-003

December 2005

ATDX_CRTNID() function: Added support for this function in HMP.

dx_createtone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section. Updated example code to show asynchronous mode.

dx_deletetone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section.

dx_querytone() function: Added note about SIT sequences not supported for toneid
in the parameter description table. Also added this information in the Cautions
section.

dx_reciottdata() function: Added support for MD_NOGAIN for mode parameter
(previously missing).

dx_setparm() function: Removed the following channel parameters:
DXCH_AGC_MAXGAIN, DXCH_AGC_MEMORY_MAXIMUMSIZE,
DXCH_AGC_MEMORY_SILENCERESET, DXCH_AGC_NOISE_THRESHOLD,
DXCH_AGC_SPEECH_THRESHOLD, and
DXCH_AGC_TARGET_OUTPUTLEVEL. These are not supported on HMP.
Added support for the DXCH_EC_ACTIVE channel parameter.

CT_DEVINFO data structure: Added CT_NTT1 and CT_NTE1 as supported values
for ct_nettype field.

Corrected ct_busmode field values: CT_BMH100 (previously CT_H100) and
CT_BMH110 (previously CT_H110).
Added support for ct_ext_devinfo.ct_net_devinfo.ct_prottype field.

DX_XPB data structure: Updated to indicate support for linear PCM 8 kHz 16-bit
(128 Kbps) encoding method. In the Field Descriptions section, wDataFormat
field was updated. In the Examples section, Linear PCM Voice Coder Support
Fields table was updated.

10

Dialogic® Voice API Library Reference
Dialogic Corporation

Revision History

Document No.

Publication Date

Description of Revisions

05-2333-002

April 2005

Function Summary by Category chapter: Added Transaction Record Function
section. Removed dx_GetDIIVersion() and dx_libinit() functions from
Configuration Functions section. Added dx_listenEx() and dx_unlistenEx() to
TDM Routing Functions section.

dx_GetDIIVersion() function: Removed; not supported.
dx_libinit(') function: Removed; not supported.
dx_listen() function: Updated Description section and Example code section.

dx_listen() function: New TDM routing function that extends and enhances the
dx_listen() function.

dx_mreciottdata() function: Transaction record now supported in HMP.

dx_unlistenEx() function: New TDM routing function that extends and enhances the
dx_unlisten() function.

Events chapter: Added TDX_LISTEN, TDX_LISTEN_FAIL, TDX_UNLISTEN,
TDX_UNLISTEN_FAIL events to Termination Events section.

05-2333-001

September 2004

Initial version of document.

Dialogic® Voice API Library Reference 11
Dialogic Corporation

Revision History

12 Dialogic® Voice API Library Reference
Dialogic Corporation

About This Publication

The following topics provide information about this publication:

* Purpose

Applicability

Intended Audience

How to Use This Publication

Related Information

Purpose

This guide provides details about the Dialogic® Voice API that is supplied with the Dialogic® Host
Media Processing (HMP) software product, including function descriptions, data structures, and
error codes supported on the Linux and Windows® operating systems. This document is a
companion guide to the Dialogic® Voice API Programming Guide, which provides instructions for
developing applications using the Dialogic® Voice API.

Dialogic® Host Media Processing (HMP) Software performs media processing tasks on general-
purpose servers based on Dialogic® architecture without the need for specialized hardware. When
installed on a system, Dialogic® HMP Software performs like a virtual Dialogic® DM3 board to
the customer application, but all media processing takes place on the host processor. In this
document, the term “board” represents the virtual Dialogic® DM3 board.

Applicability

This document version (05-2333-006) is published for Dialogic® Host Media Processing Software
Release 3.0WIN and Dialogic® Host Media Processing Software Release 3.1LIN.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This guide is intended for software developers who choose to access the voice software. They may
include any of the following:

¢ Distributors

¢ System Integrators

Dialogic® Voice API Library Reference 13
Dialogic Corporation

About This Publication

14

Toolkit Developers

Independent Software Vendors (ISVs)
Value Added Resellers (VARSs)

Original Equipment Manufacturers (OEMs)

How to Use This Publication

Refer to this publication after you have installed the hardware and the system software which
includes the voice software. This publication assumes that you are familiar with the Linux or
Windows® operating systems and the C programming language.

The information in this guide is organized as follows:

Chapter 1, “Function Summary by Category” introduces the categories of voice functions and
provides a brief description of each function.

Chapter 2, “Function Information” provides an alphabetical reference to all voice functions
supported on Dialogic® HMP Software.

Chapter 3, “Events” provides an alphabetical reference to events that may be returned by the
voice software on Dialogic® HMP Software.

Chapter 4, “Data Structures” provides an alphabetical reference to all voice data structures
supported on Dialogic® HMP Software.

Chapter 5, “Error Codes” provides a listing of all error codes that may be returned by the voice
software on Dialogic® HMP Software.

Chapter 6, “Supplementary Reference Information” provides additional reference information
on topics such as DTMF and MF Tone Specifications.

A glossary and index are provided for your reference.

Related Information

See the following for additional information:

http://www.dialogic.com/manuals/ (for Dialogic® product documentation)
http://www.dialogic.com/support/ (for Dialogic technical support)
http://www.dialogic.com/ (for Dialogic® product information)

Dialogic® Voice API Library Reference
Dialogic Corporation

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Function Summary by Category

This chapter describes the categories into which the Dialogic® Voice API library functions can be

logically grouped.
* Device Management Functions i 15
e Configuration FUNCtionst 16
® JJOFUNCHONS. . ..ot e e e e 16
¢ [/O Convenience FUNCHONSottt e 18
e Streaming to Board Functions. 18
¢ Transaction Record Function. i 19
e (all Status Transition (CST) Event Functions 19
e TDM Routing FUNCtions« e 19
e Global Tone Detection (GTD) Functions i, 20
e Global Tone Generation (GTG) Functions i, 21
e Speed and Volume Functions.o . i 22
e Call Progress Analysis Functions 22
¢ File Manipulation Functions i 23
¢ Structure Clearance Functions. i 23
¢ Extended Attribute Functions i 24
1.1 Device Management Functions

Device management functions open and close devices, which include boards and channels.

Before you can call any other library function on a device, that device must be opened using a

device management function. The dx_open() function returns a unique voice device handle. This
handle is the only way the device can be identified once it has been opened. The dx_close()
function closes a device via its handle.

Device management functions do not cause a device to be busy. In addition, these functions will

work on a device whether the device is busy or idle.

For more information about opening and using voice devices, see the Dialogic® Voice API
Programming Guide. Also see this guide for more information about naming conventions for board
and channel devices.

Use Dialogic® Standard Runtime Library device mapper functions to return information about the

structure of the system, such as a list of all boards. This device information is used as input to

Dialogic® Voice API Library Reference

Dialogic Corporation

15

Function Summary by Category

1.2

1.3

16

Note:

device management functions. For more information on device mapper functions, see the
Dialogic® Standard Runtime Library API Library Reference.

These device management functions are separate and distinct from the Dialogic® Device
Management API library, which provides run-time control and management of configurable system
devices.

The device management functions are:

dx_close()
closes a board or channel device handle

dx_open()
opens a board or channel device handle

Configuration Functions

Configuration functions allow you to alter, examine, and control the physical configuration of an
open device. In general, configuration functions operate on an idle device. Configuration functions
cause a device to be busy and return the device to an idle state when the configuration is complete.
See the Dialogic® Voice API Programming Guide for information about busy and idle states.

The configuration functions are:

dx_clrdigbuf()
clears all digits in the firmware digit buffer

dx_getfeaturelist()
returns information about the features supported on the device

dx_getparm()
gets the current parameter settings for an open device

dx_setchxfercnt()
sets the bulk queue buffer size for the channel

dx_setdigtyp()
controls the types of digits detected by the device

dx_setparm()
sets physical parameters for the device

I/O Functions

An I/O function transfers data to and from an open, idle channel. All I/O functions cause a channel
to be busy while data transfer is taking place and return the channel to an idle state when data
transfer is complete.

I/O functions can be run synchronously or asynchronously, with some exceptions (for example,
dx_setuio() can be run synchronously only). When running synchronously, they return after
completing successfully or after an error. When running asynchronously, they return immediately

Dialogic® Voice API Library Reference
Dialogic Corporation

Function Summary by Category

to indicate successful initiation (or an error), and continue processing until a termination condition
is satisfied. See the Dialogic® Standard Runtime Library API Programming Guide for more
information on asynchronous and synchronous operation.

A set of termination conditions can be specified for I/O functions, except for dx_stopch(). These
conditions dictate what events will cause an I/O function to terminate. The termination conditions
are specified just before the I/O function call is made. Obtain termination reasons for I/O functions
by calling the extended attribute function ATDX_TERMMSK(). See the Dialogic® Voice API
Programming Guide for information about I/O terminations.

The I/0 functions are:

dx_dial()
dials an ASCIIZ string of digits

dx_getdig()
collects digits from a channel digit buffer

dx_play()
plays voice data from any combination of data files, memory, or custom devices

dx_playiottdata()
plays voice data from any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_rec()
records voice data to any combination of data files, memory, or custom devices

dx_resetch()
recovers a channel that is “stuck” (busy or hung) and in a recoverable state, and brings it to an
idle and usable state

dx_reciottdata()
records voice data to any combination of data files, memory, or custom devices, and lets the
user specify format information

dx_setdevuio() (Windows® only)
installs and retrieves user-defined I/O functions in your application

dx_setuio()
installs user-defined I/O functions in your application

dx_stopch()
forces termination of currently active I/O functions

Notes: 1. The dx_playtone() function, which is grouped with global tone generation functions, can also
be classified as an I/O function and all I/O characteristics apply.

2. The dx_playvox() and dx_recvox() functions, which are grouped with I/O convenience
functions, can also be classified as I/O functions and all I/O characteristics apply.

Dialogic® Voice API Library Reference 17
Dialogic Corporation

Function Summary by Category

1.4

1.5

18

I/O Convenience Functions

Convenience functions enable you to easily implement certain basic functionality of the library
functions. I/O convenience functions simplify synchronous play and record.

The dx_playf() function performs a playback from a single file by specifying the filename. The
same operation can be done by using dx_play() and supplying a DX_IOTT structure with only one
entry for that file. Using dx_playf() is more convenient for a single file playback because you do
not have to set up a DX_IOTT structure for the one file and the application does not need to open
the file. dx_recf() provides the same single-file convenience for the dx_rec() function.

The dx_playvox() function also plays voice data stored in a single VOX file. This function
internally calls dx_playiottdata(). Similarly, dx_recvox() records VOX files using
dx_reciottdata().

The I/0 convenience functions are:

dx_playf()
plays voice data from a single VOX file without the need to specify DX_IOTT

dx_playvox()
plays voice data from a single VOX file using dx_playiottdata()

dx_playwav()
plays voice data stored in a single WAVE file

dx_recf()
records voice data from a channel to a single VOX file without the need to specify DX_IOTT

dx_recvox()
records voice data from a channel to a single VOX file using dx_reciottdata()

dx_recwav()
records voice data to a single WAVE file

Streaming to Board Functions

The streaming to board feature enables real time data streaming to the board. Streaming to board
functions allow you to create, maintain, and delete a circular stream buffer within the library. These
functions also provide notification when high and low water marks are reached. See the Dialogic®
Voice API Programming Guide for more information about the streaming to board feature.

The streaming to board functions include:

dx_CloseStreamBuffer()
deletes a circular stream buffer

dx_GetStreamlInfo()
retrieves information about the circular stream buffer

dx_OpenStreamBuffer()
creates and initializes a circular stream buffer

Dialogic® Voice API Library Reference
Dialogic Corporation

Function Summary by Category

dx_PutStreamData()
places data into the circular stream buffer

dx_ResetStreamBuffer()
resets internal data for a circular stream buffer

dx_SetWaterMark()
sets high and low water marks for the circular stream buffer

1.6 Transaction Record Function

Transaction record enables the recording of a two-party conversation by allowing data from two
time division multiplexing (TDM) bus time slots from a single channel to be recorded.

dx_mreciottdata()
records voice data from two TDM bus time slots to a data file, memory or custom device

1.7 Call Status Transition (CST) Event Functions

Call status transition (CST) event functions set and monitor CST events that can occur on a device.
CST events indicate changes in the status of the call, such as rings or a tone detected, or the line
going on-hook or off-hook. See the call status transition structure (DX_CST) description for a full
list of CST events.

The dx_getevt() function retrieves CST events in a synchronous environment. To retrieve CST
events in an asynchronous environment, use the Dialogic® Standard Runtime Library event
management functions.

dx_setevtmsk() enables detection of CST event(s). User-defined tones are CST events, but
detection for these events is enabled using dx_addtone() or dx_enbtone(), which are global tone
detection functions.

The call status transition event functions are:

dx_getevt()
gets a CST event in a synchronous environment

dx_setevtmsk()
enables detection of CST events

1.8 TDM Routing Functions

TDM routing functions are used in time division multiplexing (TDM) bus configurations, which
include the CT Bus and SCbus. A TDM bus is a resource sharing bus that allows audio data to be
transmitted and received among resources over multiple time slots. On Dialogic® Host Media
Processing (HMP) Software, no physical TDM bus exists but its functionality is implemented in
the software.

Dialogic® Voice API Library Reference 19
Dialogic Corporation

Function Summary by Category

1.9

20

TDM routing functions enable the application to make or break a connection between voice,
telephone network interface, and other resource channels connected via TDM bus time slots. Each
device connected to the bus has a transmit component that can transmit on a time slot and a receive
component that can listen to a time slot.

The transmit component of each channel of a device is assigned to a time slot at system
initialization and download. To listen to other devices on the bus, the receive component of the
device channel is connected to any one time slot. Any number of device channels can listen to a
time slot.

TDM routing convenience functions, nr_scroute() and nr_scunroute(), are provided to make or
break a half or full-duplex connection between any two channels transmitting on the bus. These
functions are not a part of any library but are provided in a separate C source file called sctools.c.
The functions are defined in sctools.h.

The TDM routing functions are:

dx_getctinfo()
returns information about voice device connected to TDM bus

dx_getxmitslot()
returns the number of the TDM bus time slot connected to the transmit component of a voice
channel

dx_listen()
connects the listen (receive) component of a voice channel to a TDM bus time slot

dx_listenEx()
connects the listen (receive) component of a voice channel to a TDM bus time slot. This
function extends and enhances the dx_listen() function.

dx_unlisten()
disconnects the listen (receive) component of a voice channel from TDM bus time slot

dx_unlistenEx()
disconnects the listen (receive) component of a voice channel from TDM bus time slot. This
function extends and enhances the dx_unlisten() function.

nr_scroute()
makes a half or full-duplex connection between two channels transmitting on the TDM bus

nr_scunroute()
breaks a half or full-duplex connection between two TDM bus devices

Global Tone Detection (GTD) Functions

The global tone detection (GTD) functions define and enable detection of single and dual
frequency tones that fall outside the range of those automatically provided with the voice driver.
They include tones outside the standard DTMF range of 0-9, a-d, *, and #.

The GTD dx_blddt(), dx_blddtcad(), dx_bldst(), and dx_bldstcad() functions define tones
which can then be added to the channel using dx_addtone(). This enables detection of the tone on

Dialogic® Voice API Library Reference
Dialogic Corporation

Function Summary by Category

that channel. See the Dialogic® Voice API Programming Guide for a full description of global tone
detection.

The global tone detection functions are:

dx_addtone()
adds a user-defined tone

dx_blddt()
builds a user-defined dual frequency tone description

dx_blddtcad()
builds a user-defined dual frequency tone cadence description

dx_bldst()
builds a user-defined single frequency tone description

dx_bldstcad()
builds a user-defined single frequency tone cadence description

dx_deltones()
deletes all user-defined tones

dx_distone()
disables detection of user-defined tones

dx_enbtone()
enables detection of user-defined tones

dx_setgtdamp()
sets amplitudes used by global tone detection (GTD)

1.10 Global Tone Generation (GTG) Functions

Global tone generation (GTG) functions define and play single and dual tones that fall outside the
range of those automatically provided with the voice driver.

The dx_bldtngen() function defines a tone template structure, TN_GEN. The dx_playtone()
function can then be used to generate the tone.

See the Dialogic® Voice API Programming Guide for a full description of global tone generation.

The global tone generation functions are:

dx_bldtngen()
builds a user-defined tone template structure, TN_GEN

dx_playtone()
plays a user-defined tone as defined in TN_GEN structure

dx_playtoneEx()
plays the cadenced tone defined by TN_GENCAD structure

Note: The dx_playtone() and dx_playtoneEx() functions can also be classified as an I/O function and
all I/O characteristics apply.

Dialogic® Voice API Library Reference 21
Dialogic Corporation

Function Summary by Category

1.11

1.12

22

Note:

Speed and Volume Functions

Speed and volume functions adjust the speed and volume of the play. A speed modification table
and volume modification table are associated with each channel, and can be used for increasing or
decreasing the speed or volume. These tables have default values which can be changed using the
dx_setsvmt() function.

The dx_addspddig() and dx_addvoldig() functions are convenience functions that specify a digit
and an adjustment to occur on that digit, without having to set any data structures. These functions
use the default settings of the speed and volume modification tables.

See the Dialogic® Voice API Programming Guide for more information about the speed and
volume feature, and speed and volume modification tables.

Before using the speed control feature, you must enable this feature in the [decoder] section of the
CONFIG file. The speed control feature is disabled by default to preserve MIPS usage. For more
information on enabling speed control, see the Configuration Guide associated with this release.

The speed and volume functions are:

dx_adjsv()
adjusts speed or volume immediately

dx_addspddig()
sets a dual tone multi-frequency (DTMF) digit for speed adjustment

dx_addvoldig()
adds a dual tone multi-frequency (DTMF) digit for volume adjustment

dx_clrsvcond()
clears speed or volume conditions

dx_getcursv()
returns current speed and volume settings

dx_getsvmt()
returns current speed or volume modification table

dx_setsvcond()
sets conditions (such as digit) for speed or volume adjustment; also sets conditions for play
(pause and resume)

dx_setsvmt()
changes default values of speed or volume modification table

Call Progress Analysis Functions

Call progress analysis functions are used to change the default definition of call progress analysis
tones. See the Dialogic® Voice API Programming Guide for more information about call progress
analysis.

Dialogic® Voice API Library Reference
Dialogic Corporation

1.13

1.14

Function Summary by Category

The call progress analysis functions are:

dx_createtone()
creates a new tone definition for a specific call progress tone

dx_deletetone()
deletes a specific call progress tone

dx_querytone()
returns tone information for a specific call progress tone

File Manipulation Functions

Supported on Windows® only. These file manipulation functions map to C run-time functions, and
can only be used if the file is opened with the function. The arguments for these Dialogic®
functions are identical to the equivalent Microsoft® Visual C++® run-time functions.

dx_fileclose()
closes the file associated with the handle

dx_fileerrno()
obtains the system error value

dx_fileopen()
opens the file specified by filep

dx_fileread()
reads data from the file associated with the handle

dx_fileseek()
moves a file pointer associated with the handle

dx_filewrite()
writes data from a buffer into a file associated with the handle

Structure Clearance Functions

These functions do not affect a device. The dx_clrcap() and dx_clrtpt() functions provide a
convenient method for clearing the DX_CAP and DV_TPT data structures. These structures are
discussed in Chapter 4, “Data Structures”.

dx_clrcap()
clears all fields in a DX_CAP structure

dx_clrtpt()
clears all fields in a DV_TPT structure

Dialogic® Voice API Library Reference 23
Dialogic Corporation

Function Summary by Category

1.15 Extended Attribute Functions

Dialogic® Voice API library extended attribute functions return information specific to the voice
device specified in the function call.

ATDX_BDNAMEP()
returns a pointer to the board device name string

ATDX_BDTYPE()
returns the board type for the device

ATDX_BUFDIGS()
returns the number of digits in the firmware since the last dx_getdig() for a given channel

ATDX_CHNAMES()
returns a pointer to an array of channel name strings

ATDX_CHNUM()
returns the channel number on board associated with the channel device handle

ATDX_CONNTYPE()
returns the connection type for a completed call

ATDX_CPERROR()
returns call progress analysis error

ATDX_CPTERM()
returns last call progress analysis termination

ATDX_DEVTYPE()
returns device type (board or channel)

ATDX_STATE()
returns the current state of the device

ATDX_TERMMSK()
returns the reason for last I/O function termination in a bitmap

ATDX_TONEID()
returns the tone ID (used in global tone detection)

ATDX_TRCOUNT()
returns the last record or play transfer count

24 Dialogic® Voice API Library Reference
Dialogic Corporation

Function Information

2

2.1

This chapter provides an alphabetical reference to the functions in the Dialogic® Voice API library.

A general description of the function syntax convention is provided before the detailed function
information.

Function Syntax Conventions

The voice functions use the following syntax:

data_type voice_function(device handle, parameterl, ... parameterN)

where:

data type
refers to the data type, such as integer, long or void

voice_function
represents the function name. Typically, voice functions begin with “dx” although there are
exceptions. Extended attribute functions begin with “ATDX.”

device handle
represents the device handle, which is a numerical reference to a device, obtained when a
device is opened. The device handle is used for all operations on that device.

parameterl
represents the first parameter

parameterN
represents the last parameter

Dialogic® Voice API Library Reference
Dialogic Corporation

25

ATDX_BDNAMEP() — return a pointer to the board device name

ATDX_BDNAMEP()

26

Name: char * ATDX BDNAMEP(chdev)
Inputs: int chdev e valid channel device handle
Returns: pointer to board device name string if successful
pointer to ASCIIZ string “Unknown device” if error
Includes: srllib.h
dxxxlib.h
Category: Extended Attribute
Mode: synchronous
B Description

The ATDX_BDNAMEP() function returns a pointer to the board device name on which the
channel accessed by chdev resides.

As illustrated in the example, this may be used to open the board device that corresponds to a
particular channel device prior to setting board parameters.

Parameter Description

chdev specifies the valid channel device handle obtained when the channel was opened
using dx_open()

Cautions
None.
Errors

This function will fail and return a pointer to “Unknown device” if an invalid channel device handle
is specified in chdeyv.

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

main ()

{
int chdev, bddev;
char *bdnamep;

/* Open the channel device */
if ((chdev = dx_open("dxxxB1Cl", NULL)) == -1) {
/* Process error */

}

Dialogic® Voice API Library Reference
Dialogic Corporation

return a pointer to the board device name — ATDX_BDNAMEP()

/* Display board name */
bdnamep = ATDX_BDNAMEP (chdev) ;
printf ("The board device is: %s\n", bdnamep) ;

/* Open the board device */
if ((bddev = dx_open (bdnamep, NULL)) == -1) {

/* Process error */

}

B See Also

None.

Dialogic® Voice API Library Reference 27
Dialogic Corporation

ATDX_BDTYPE() — return the board type for the device

ATDX_BDTYPE()

Name: long ATDX_BDTYPE(dev)
Inputs: int dev e valid board or channel device handle

Returns: board or channel device type if successful
AT _FAILURE if error

Includes: srllib.h
dxxxlib.h

Category: Extended Attribute
Mode: synchronous

B Description
The ATDX_BDTYPE() function returns the board type for the device specified in dev.

A typical use would be to determine whether or not the device can support particular features, such
as call progress analysis.

Parameter Description

dev specifies the valid device handle obtained when a board or channel was opened
using dx_open()

Possible return values are the following:

DI_D41BD
D/41 Board Device. This value represents the “dxxxBn type” devices (virtual boards).

DI_D41CH
D/41 Channel Device. This value represents the “dxxxBnCm” type devices (channel device).

The values DI_D41BD and DI_D41CH will be returned for any Dialogic® D/41 board, and any
board which emulates the voice resources of multiple Dialogic® D/41 boards.

B Cautions
None.
H Errors

This function will fail and return AT_FAILURE if an invalid board or channel device handle is
specified in dev.

28 Dialogic® Voice API Library Reference
Dialogic Corporation

B Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>

#define ON 1

main ()
{
int bddev;
long bdtype;
int call analysis=0;

/* Open the board device */

return the board type for the device — ATDX_BDTYPE()

if ((bddev = dx