

Dialogic® NaturalAccess™ TUP
Layer Developer’s Reference
Manual

July 2009 64-0463-01

 www.dialogic.com

 TUP Layer Developer's Reference Manual

Copyright and legal notices

Copyright © 1998-2009 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in
whole or in part without permission in writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice
and do not represent a commitment on the part of Dialogic Corporation or its subsidiaries (“Dialogic”).
Reasonable effort is made to ensure the accuracy of the information contained in the document. However,
Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors,
inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC
ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL
PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems,
or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual
property licenses with the sale of Dialogic products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a
signed agreement with Dialogic. More detailed information about such intellectual property is available from
Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic
encourages all users of its products to procure all necessary intellectual property licenses required to implement
any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to
country and it is the responsibility of those who develop the concepts or applications to be aware of and comply
with different national license requirements.

Any use case(s) shown and/or described herein represent one or more examples of the various ways, scenarios
or environments in which Dialogic® products can be used. Such use case(s) are non-limiting and do not
represent recommendations of Dialogic as to whether or how to use Dialogic products.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS
(stylized), Eiconcard, SIPcontrol, Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation Thrive,
Connecting to Growth, Video is the New Voice, Fusion, Vision, PacketMedia, NaturalAccess, NaturalCallControl,
NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either registered
trademarks or trademarks of Dialogic Corporation or its subsidiaries. Dialogic's trademarks may be used publicly
only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800
Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will
be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of
Dialogic’s trademarks requires proper acknowledgement.

The names of actual companies and product mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible
for your decision to use open source in connection with Dialogic products (including without limitation those
referred to herein), nor is Dialogic responsible for any present or future effects such usage might have, including
without limitation effects on your products, your business, or your intellectual property rights.

2 Dialogic Corporation

Revision history

Revision Release date Notes

9000-6473-20 January 1998 B.2.0 release

9000-6473-21 July 1998 GJG

9000-6473-22 September 1998 GJG

9000-6473-23 March 1999 GJG

9000-6473-24 January 2000 GJG

9000-6473-25 July 2000 GJG, SS7 3.5 feature pack

9000-6473-27 June 2001 GJG, SS7 3.8 beta

9000-6473-28 November 2003 SRG, SS7 4.0

9000-6473-29 April 2005 SRG, SS7 4.2

9000-6473-31 July 2006 LBZ, SS7 4.3

9000-6473-31 September 2008 LBG, SS7 5.0

64-0463-01 July 2009 LBG, SS7 5.1

Last modified: June 23, 2009
Refer to for product updates and for information about support policies, warranty
information, and service offerings.

www.dialogic.com

Table Of Contents

Chapter 1: Introduction ...9

Chapter 2: SS7 overview..11
SS7 architecture ..11
TUP task ...13

Chapter 3: TUP programming model ..15
Programming model overview ..15
TUP service users ...15
Entity and instance IDs ...15
NMS TUP functions ...16

Service functions ...16
Management functions ...16

Queues and contexts ..17
Single-context, single-queue model..17
Multiple-context, single-queue model ...18
Multiple-context, multiple-queue model ..19

Signaling parameters ..20
Operating system specific considerations ...21

Multiple-threaded considerations ...21
Unsolicited alarms ..22

Chapter 4: Using the TUP service...25
Setting up the Natural Access environment ..25

Initializing the Natural Access environment ...25
Creating queues and contexts ...25
Binding to the TUP service ..26

Establishing connections..28
Establishing outgoing connections..28
Establishing incoming connections ...29

Clearing connections...30
Application clearing far end connection ...30
Far end exchange clearing outgoing connection ...30
Application clearing incoming connection ..31
Far end exchange clearing incoming connection ...31

Sending subsequent address messages ...32
Handling failed connection requests ..32

Subscriber busy ..32
Circuit blocked ..33
Circuit reset..33
Unknown or missing response ...34

Resetting circuits..35
Application initiated circuit reset ..35
Far exchange initiated circuit reset...35

Resetting circuit groups...36
Application initiated circuit reset ..36
Far exchange initiated circuit reset...36

Blocking and unblocking circuits ...37
Application blocking a circuit ...37
Far exchange blocking a circuit..37

Dialogic Corporation 5

Table of Contents TUP Layer Developer's Reference Manual

Application unblocking a circuit..38
Far exchange unblocking a circuit ..38

Blocking and unblocking software-oriented circuit groups39
Application-initiated group blocking request ..39
Far exchange-initiated group blocking request ...39
Application initiated group unblocking request ...40
Far exchange initiated group unblocking request ..40

Controlling TUP congestion ..41
Setting up tracing ..41
Handling redundancy events ..42

Chapter 5: TUP service function reference...43
TUP service function summary ...43
Using the TUP service function reference ...43
TUPADDRtoASCII ...44
TUPASCIItoADDR ...45
TUPConnectReq ...46
TUPConnectResp ..47
TUPConnectStatusReq...48
TUPGetApiStats..50
TUPReleaseReq ..51
TUPReleaseResp...52
TUPRetrieveMessage...53
TUPStatusReq..57

Chapter 6: Managing TUP tasks on the board ..59
TUP management overview..59
Configuration...60

General configuration...60
USAP and NSAP configuration..60
Circuits and groups configuration...60

Managing circuits ...61
Retrieving statistics and status...61

Chapter 7: TUP management function reference..63
TUP management function summary ...63

Configuration functions...63
Control functions ...64
Statistics functions ..64
Status functions ..64

Using the TUP management function reference ...65
TUPAlarmControl..66
TUPBlockCircuit..67
TUPBlockGroup ..68
TUPDeleteCircuit ..69
TUPDeleteGroup...70
TUPGetCircCfg ...71
TUPGetCircStats...72
TUPGetCircStatus ...74
TUPGetGenCfg ...77
TUPGetGrpCfg ...78
TUPGetGrpStats ...79
TUPGetGrpStatus ...81

6 Dialogic Corporation

TUP Layer Developer's Reference Manual Table of Contents

TUPGetNSapCfg ...82
TUPGetNSapStats...83
TUPGetUSapCfg ...84
TUPInitCircCfg ...85
TUPInitGenCfg ...87
TUPInitGrpCfg..88
TUPInitMgmtAPI...90
TUPInitNSapCfg ...91
TUPInitUSapCfg ...92
TUPQuietReset...93
TUPResetCircuit ...94
TUPResetGroup..95
TUPSetCircCfg ...96
TUPSetGenCfg ...97
TUPSetNSapCfg ...98
TUPSetUSapCfg ...99
TUPTermMgmtAPI .. 100
TUPTraceControl .. 101
TUPUnblockCircuit .. 102
TUPUnblockGroup... 103

Chapter 8: Demonstration programs and utilities105
Summary of the demonstration programs and utilities 105
TUP configuration utility: tupcfg ... 106
TUP layer status: tupmgr... 107
Accepting incoming calls: tupterm .. 109
Generating outbound calls: tuporig ... 110

Chapter 9: Information elements and events reference.............................111
Usage information overview... 111

Data structures ... 111
Coding of presence indicators.. 111

Information elements (IEs).. 112
Element header... 112
Token string ... 112
Address signals ... 113
Answer type information... 113
Automatic congestion level ... 113
Calling party category .. 113
Charge information .. 114
Closed user group interlock code ... 115
Initial address indicator .. 115
LineID.. 116
Message indicator.. 117
Point code .. 118
Range information ... 118
Response indicator .. 119
Trunk ID .. 119

Events .. 121
Connect request .. 121
Connect response .. 121
Connect status .. 121
Status.. 121

Dialogic Corporation 7

Table of Contents TUP Layer Developer's Reference Manual

Release.. 121
All events ... 122

8 Dialogic Corporation

11 Introduction
The Dialogic® NaturalAccess™ TUP Layer Developer’s Reference Manual explains
how to implement the SS7 TUP (telephone user part) layer using NaturalAccess™
TUP. This manual explains how to create applications using NaturalAccess™ TUP and
presents a detailed specification of its signaling procedures and functions.

Note: The product(s) to which this document pertains is/are among those sold by
NMS Communications Corporation (“NMS”) to Dialogic Corporation (“Dialogic”) in
December 2008. Certain terminology relating to the product(s) has been changed,
whereas other terminology has been retained for consistency and ease of reference.
For the changed terminology relating to the product(s), below is a table indicating
the “New Terminology” and the “Former Terminology”. The respective terminologies
can be equated to each other to the extent that either/both appear within this
document.

Former terminology Current terminology

NMS SS7 Dialogic® NaturalAccess™ Signaling Software

Natural Access Dialogic® NaturalAccess™ Software

NMS TUP Dialogic® NaturalAccess™ TUP Layer

Dialogic Corporation 9

22 SS7 overview
SS7 architecture

The following illustration shows the SS7 architecture in a typical system with
separate host applications handling the data and control (TUP) interface, system
configuration, and system alarms:

Host TX driver

TX board

Host

SS7 MTP layers 2 & 3
task

SS7 layer 1 driver

Alarms
manager

task

SS7 SCCP
task SS7 ISUP/TUP task

Configuration
utility

TUP
management

Application

TUP service

txalarm utility Log
file

SS7 TCAP
task

Dialogic Corporation 11

SS7 overview TUP Layer Developer's Reference Manual

The TX board consists of the following components:

• TUP task that implements the SS7 TUP layer.

• TUP configuration text file that describes the circuit groups and routing
instructions employed by the TUP layer in establishing, supervising, and
maintaining circuit switched connections.

• MTP task that implements the SS7 MTP 2 (data link) layer and the SS7 MTP 3
(network) layer.

• Optional SCCP task that implements the SS7 SCCP layer.

• Optional ISUP task that implements the SS7 ISUP layer.

• Optional TCAP task that implements the SS7 TCAP layer.

• The TX alarms manager task that collects unsolicited alarms (status changes)
generated by the SS7 tasks and forwards them to the host for application-
specific alarm processing.

The host consists of the following components:

• A TX driver for the native host operating system that provides low-level
access to the TX board from the host.

• Functions that provide the application with a high-level interface to the TUP
layer services (tupapi.lib and tupapi.dll).

• Functions that provide the application with a high level interface for task and
circuit management and configuration (tupmgmt.lib and tupmgmt.dll).

• An alarm collector process for capturing alarms and saving them to a text file.
The alarm collector (txalarm) is provided in both executable and source form.
The source can be used as an example for developers who want to integrate
the TX alarms into their own alarm monitoring system.

• Configuration utilities (one for each SS7 layer) that read the SS7
configuration file(s) and load the configurations to the TX processor tasks at
system startup. The TUP configuration utility (tupcfg) is provided in both
executable and source form. The source code can be used as an example for
developers who want to integrate the TUP configuration into their own
configuration management system.

• Demonstration programs showing the use of the TUP service. The tuporig
demonstration program makes an outgoing phone call. The tupterm
demonstration program accepts incoming phone calls.

• The TUP manager utility (tupmgr) provides a command line interface from
which alarm levels can be set, buffers can be traced, and TUP statistics can be
viewed and reset.

12 Dialogic Corporation

TUP Layer Developer's Reference Manual SS7 overview

TUP task

The SS7 TUP task provides the interface for applications to establish, maintain, and
clear circuit switched connections through the SS7 network in accordance with the
ITU-T (CCITT) recommendations Q.721-Q.725 and GF 001-9001 (China). TUP is not
used in ANSI networks, so there is no applicable ANSI standard for TUP.

The TUP task maintains a database of circuits and circuit groups that are controlled
by the application and keeps track of the state of each circuit. The initial
characteristics of each circuit (group), such as the circuit identification code (CIC)
and destination point code are specified in the TUP configuration file. The TUP task
reads the TUP configuration file at startup time.

For outgoing call setup requests, the application specifies the circuit to be connected.
For incoming calls, the TUP task verifies that the circuit state and characteristics are
compatible with the incoming call request parameters before passing the incoming
call indication to the application. For both incoming and outgoing calls, the TUP task
provides all necessary connection timers, notifying both the application and the far
exchange with necessary indications such as connection clearing when critical timers
expire.

The TUP task:

• Provides circuit supervision for the duration of the connection.

• Adjusts the circuit state as needed based on requests from the application
and TUP messages received from the far exchange.

• Provides connect and disconnect timing.

• Handles circuit (group) blocking and unblocking, updating the state of the
affected circuits as needed.

• Detects protocol errors on behalf of the application.

Dialogic Corporation 13

33 TUP programming model
Programming model overview

NMS TUP is implemented as a Natural Access service. Natural Access is a
development environment for telephony and signaling applications that provides a
standard application programming interface for services, such as signaling protocol
stacks, independent of the underlying hardware. Understanding the basic Natural
Access programming concepts such as services, queues, contexts, and asynchronous
events is critical to developing applications that use the TUP service. Refer to the
Natural Access Developer's Reference Manual for more information.

TUP service users

NMS TUP supports applications with service access points, or SAPs. One user service
access point is defined for each application that uses the TUP service. At
initialization, applications bind to a particular user SAP by specifying the SAP ID.
Each user service access point in the TUP configuration file is associated with a
switch type (ITU-T or CHINA) that the TUP task uses to associate with its configured
network connections. A single user SAP, and hence a single application, for a
particular switch type can be defined for outgoing call requests. If an application
supports multiple TX boards, it must bind with each board separately.

The TUP task must bind with the MTP task through the use of network service access
points (NSAP). The MTP configuration must define the network service access points
(only ITU-T switch type) with which TUP can bind to communicate with the MTP task.
The TUP configuration file must specify the MTP network service access point to
which to bind to communicate with the MTP task. An ANSI TUP does not exist.

Note: The characteristics of each service access point are specified in the TUP
configuration file. Refer to the NMS SS7 Configuration Manual for more information.

Entity and instance IDs

Each application must have a unique entity and instance ID for routing messages
among the processes in the system. Entity IDs are single byte values in the range of
0x00 through 0xFF, assigned by the application developer. Entity IDs are allocated
as follows:

Range Usage

0x00 - 0x1F
0x80 - 0xFF

Reserved for use by system utilities, configuration utilities, and management utilities.

0x20 - 0x7F Available for use by applications.

Instance IDs identify the processor on which the entity executes. The host is always
processor 0 (zero). Therefore, all host-resident TUP applications must be coded to 0
(zero). All tasks on TX board number 1 receive an instance ID of 1. All tasks on TX
board number 2 receive an instance ID of 2, and so on.

Dialogic Corporation 15

TUP programming model TUP Layer Developer's Reference Manual

NMS TUP functions

NMS TUP provides two sets of functions:

• Service functions

• Management functions

Service functions

The TUP service functions provide the application access to the TUP layer services.
Applications invoke TUP services by calling TUP request functions that send a TUP
message to a remote exchange or endpoint. Request function parameters are
converted to messages for processing by the TUP task.

The TUP requests from the remote endpoints are presented to the application as
indications, using the same driver and mechanisms through which confirmations are
delivered. The application then issues a reply to the endpoint by invoking the
appropriate TUP service response function.

All TUP service functions are asynchronous. Completion of the function implies only
that the function was successfully initiated (a request message was queued to the
TUP task). Errors detected by the TUP task result in asynchronous status indications
being sent to the application. Successfully delivered requests generally result in no
notification to the application until the far end takes some corresponding action such
as returning a connect confirm message in response to a connection request.

Indication and confirmation messages, as well as status messages from the local TUP
layer, are passed to application processes as asynchronous events. All events for a
particular user service access point are delivered through the associated Natural
Access queue. For more information about queues, refer to the Natural Access
Developer's Reference Manual.

Applications detect that an event is pending through an operating system specific
mechanism such as poll in UNIX or WaitForMultipleObjects in Windows. The
application retrieves the event data (or message) through a function that also
translates the confirmation parameters from SS7 TUP raw format to API format.

For more information, refer to the Using the TUP service function reference on page
43.

Management functions

The TUP management functions manage the following TUP tasks on the board:

• Configuration

• Circuits

• Statistics and status retrieval

For more information, refer to TUP management overview on page 59 and the TUP
management function reference section.

16 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP programming model

Queues and contexts

Natural Access organizes services and their associated resources around a processing
object known as a context. Each instance of an application binding to a TUP service
access point is a unique Natural Access context. Contexts are created with
ctaCreateContext.

All events and messages from the TUP service are delivered to the application
through a Natural Access queue object. Queues are created with ctaCreateQueue.
Each context is associated with a single queue through which all events and
messages belonging to that context are distributed. More than one context can be
assigned to the same queue.

Different application programming models are possible depending on how many TUP
service access points (how many TUP subsystems) are implemented by the
application and how the application is organized.

Single-context, single-queue model

An application that uses a single TUP service access point uses a single-context,
single-queue model as shown in the following illustration:

Application

Natural
Access

Event
queue

TUP
service

Service manager

Context

SAP 1
SSN=8

TUP SAPs

SAP 0
SSN=7

SAP 2
SSN=254

Dialogic Corporation 17

TUP programming model TUP Layer Developer's Reference Manual

Multiple-context, single-queue model

For a single-threaded application that uses multiple TUP service access points
(implements multiple subsystems), a multiple-context, single-queue model is
recommended. In this case, the application has a single event loop with events from
all service access points delivered through the same queue. The application
determines which service access point a particular event is associated with from a
service user ID (suID) value returned with each event. The following illustration
shows an example of the multiple-context, single-queue model:

SAP 1
SSN=8

SAP 0
SSN=7

SAP 2
SSN=254

TUP SAPs

Application

Natural
Access

Context Context

Event
queue

TUP
service

Service manager
TUP

service

Service manager
TUP

service

Service manager

Context

18 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP programming model

Multiple-context, multiple-queue model

For multiple-threaded applications using multiple TUP service access points (one per
thread), a multiple-context, multiple-queue model is recommended. In this case,
each thread has its own event loop and receives only the events associated with a
service access point on its Natural Access queue.

Note: For this programming model, each thread or event queue must be assigned its
own entity ID. The entity ID must be unique among all applications on that host
accessing any of the SS7 services.

The following illustration shows a multiple-context, multiple-queue programming
model:

Application

Natural
Access

Context Context

Event
queue

TUP
service

Service manager
TUP

service

Service manager
TUP

service

Service manager

Context

SAP 1
SSN=8

SAP 0
SSN=7

SAP 2
SSN=254

Event
queue

Event
queue

Thread Thread Thread

TUP SAPs

Dialogic Corporation 19

TUP programming model TUP Layer Developer's Reference Manual

Signaling parameters

Signaling parameters are passed between the application and the TUP task in the
form of events. Events are fixed format structures consisting of one or more
information elements (IEs). Information elements are fixed format structures
consisting of a flag indicating their presence or absence from the corresponding TUP
message, and one or more tokens, or fields.

The following illustration shows how event structures simplify applications by
enabling them to operate on fixed format structures rather than the variable length
and variable formats employed by the TUP protocol:

TUP connect request event

Calling party category IE

Message indicator IE

Address signals IE

Calling party number IE

Called party number IE

Closed user group IE

Presence indicator

Address indicator

Addr
sign

Calling pa
informatio

ess
als

rty number
n element

20 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP programming model

Operating system specific considerations

Applications receive confirmations (responses) and indications of far-end initiated
requests by periodically calling TUPRetrieveMessage. This function checks for an
incoming message and returns an indication of whether or not a message is
available. When an incoming message is received, TUPRetrieveMessage:

• Copies the event structure to the buffer provided by the caller

• Performs any byte-order translation between network byte order and host
byte order

• Reports which event was received back to the calling application

The application must periodically call this function to receive messages from the TUP
layer.

To allow applications more flexibility in handling multiple devices, mechanisms are
provided to allow the calling application to be notified when a TUP message is
available for it without having to poll the TX board by periodically calling
TUPRetrieveMessage.

Multiple-threaded considerations

In a multiple-threaded application, any thread can generate a request. However, a
single receiver thread must receive all asynchronous events from the TUP layer
(incoming calls, status indications, and so on) and route them to the proper
transaction thread based on the circuit, service user instance ID, or other transaction
information.

For example, in an application consisting of a main thread that spawns a child call
thread whenever it wants to initiate a call, the call thread is responsible for initiating
TUPConnectReq, collecting the responses from the receiver thread, and taking the
appropriate action. The application can have many simultaneous calls and call
threads active at any given time.

Multiple call threads can generate the transaction requests in any order. The
requests are processed by the TUP layer in the order they are received. If each call
thread then calls TUPRetrieveMessage to retrieve the response to its transaction
request, there is no guarantee that the TUP message returned by
TUPRetrieveMessage would be associated with the calling thread's call. The first
thread to call TUPRetrieveMessage when a message is pending receives the first
pending message, regardless of the transaction with which it is associated. The
incoming message can be a new call request from a far service switching point or a
network status indication message.

Instead, the main thread itself or a separate child receiver thread is the only caller of
TUPRetrieveMessage. It can then analyze each incoming event and either route it
to the proper child call thread or, in the case of a new incoming call, create a new
child call thread to handle the incoming call request.

Dialogic Corporation 21

TUP programming model TUP Layer Developer's Reference Manual

Unsolicited alarms

Any of the tasks on the TX processor (including any of the SS7 layers) can generate
unsolicited alarms at any time to indicate abnormal events or changes in the status
of an entity. The txalarm utility is provided to receive alarms and write them to a
disk file on the host.

The following table displays the alarm text and the alarm number. The headings are
the code from the txalarm utility for these fields (ap is an alarm pointer).

Note: Inbound and outbound calls reuse certain alarm numbers. Any code looking
for these alarms must check the call state of the circuit, as well as the string of the
alarm.

22 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP programming model

If these messages are generated by a timer popping, it is noted in parentheses after
the alarm number.

ap->data.infalmstr[s1len+1] ap->data.infalarm

"Unknown/unreasonable packet received [cirIdx]" 3864

"Circuit Block remains in effect [cirIdx]" 3861 (Timer 11)

"Circuit Block ack not received [cirIdx]" 3862 (Timer 13)

"Circuit unblock ack not received [cirIdx]" 3863 (Timer 16)

"Ceasing transmission of call failures [cirIdx]" 3879 (Timer 5)

"Continuity Checks Failing [cirIdx]" 3874

"Connection Machine In reset circuit [cirIdx]" 3875

"Release Guard Not Received [cirIdx]" 3877 (Timer 7)

"Waiting for Continuity Check Result [cirIdx]" 3874 (Timer 1)

"Waiting for Continuity Re-Check Request [cirIdx]" 3875 (Timer 9 or 10)

"Connection Machine Out reset circuit [cirIdx]" 3876

"HGB request unacknowledged [dpc:cic:range]" 4009 (Timer 33)

"HGU request unacknowledged [dpc:cic:range]" 4010 (Timer 35)

"Remote MGB still in effect [dpc:cic:range]" 4007 (Timer 25)

"MGB request unacknowledged [dpc:cic:range]" 4005 (Timer 27)

"Local MGB still in effect [dpc:cic:range]" 4007 (Timer 25)

"MGU request unacknowledged [dpc:cic:range]" 4006 (Timer 29)

"GRS request unacknowledged [dpc:cic:range]" 4008 (Timer 22)

"SGB request unacknowledged [dpc:cic:range]" 4011 (Timer 39)

"SGU request unacknowledged [dpc:cic:range]" 4012 (Timer 41)

"Message received for unequipped circuit [CIC]" 3938

"Connection Machine In could not get spInstId [cirIdx]" 3876

"Connection Machine In could not get Sdu [cirIdx]" 3878

"Connection Machine started Continuity Check In[cirIdx]" 3877

"Connection Machine Out could not get spInstId [cirIdx]" 3879

"Connection Machine Out started continuity check [cirIdx]" 3878

"Second Continuity Check Failure [cirIdx]" 3888

"BACKUP: Data indications and Data requests rejected" 4063

Dialogic Corporation 23

44 Using the TUP service
Setting up the Natural Access environment

Before calling any TUP service functions, the application must:

• Initialize Natural Access

• Create queues and contexts

• Bind to the TUP service

Refer to the Natural Access Developer's Reference Manual for more information
about Natural Access.

Initializing the Natural Access environment

The Natural Access environment is initialized by calling ctaInitialize. Initialize
Natural Access only once per application, regardless of the number of queues and
contexts created.
CTA_INIT_PARMS tupInitparms = {0};
CTA_SERVICE_NAME tupServiceNames[] = {{"TUP", "TUPMGR"}};
...
tupInitparms.size = sizeof(CTA_INIT_PARMS);
tupInitparms.traceflags = CTA_TRACE_ENABLE;
tupInitparms.parmflags = CTA_PARM_MGMT_SHARED;
tupInitparms.ctacompatlevel = CTA_COMPATLEVEL;

Ret = ctaInitialize(tupServiceNames, 1, &tupInitparms);
if (Ret != SUCCESS) {
 printf("ERROR code 0x%08x initializing CT Access.", Ret);
 exit(1);
}

Creating queues and contexts

The application creates the required Natural Access queues and contexts. The queue
must always be created before any associated context is created.
CTAHD ctaHd; /* CTA context handle */
CTAQUEUEHD ctaQueue; /* Queue */
...

Ret = ctaCreateQueue(NULL, 0, &ctaQueue);
if (Ret != SUCCESS)
{
 ctaGetText(NULL_CTAHD, Ret, sErr, sizeof(sErr));
 printf("*ERROR : ctaCreateQueue failed(%s)\n", sErr);
 ...
}

sprintf(contextName, "TupSAP-%d", spId); /* context name is optional */

Ret = ctaCreateContext(ctaQueue, spId, contextName, &ctaHd);
if (Ret != SUCCESS)
{
 ctaGetText(NULL_CTAHD, Ret, sErr, sizeof(sErr));
 printf("ERROR : ctaCreateContext failed(%s)\n", sErr);
 ctaDestroyQueue(pSap->ctaQueue);
 ...
}

Dialogic Corporation 25

Using the TUP service TUP Layer Developer's Reference Manual

Binding to the TUP service

Once the queues and contexts are created, the application must bind to each desired
TUP user service access point by calling ctaOpenServices once for each binding.
The binding operation specifies the following parameters:

Field Description

board TX board number.

srcEnt Calling application entity ID.

srcInst Calling application instance ID.

suId Calling application service user ID.

spId TUP service access point ID on which to bind.

ssn TUP subsystem number associated with the service access point.

In Natural Access, these parameters are specified in the CTA_SERVICE_ARGS
structure, contained in the CTA_SERVICE_DESC structure. An example of the
parameter specification is provided:
CTA_SERVICE_DESC tupOpenSvcLst[] = {{{"TUP", "TUPMGR"}, {0}, {0}, {0}}};

tupOpenSvcLst[0].svcargs.args[0] = board; /* board number */
tupOpenSvcLst[0].svcargs.args[1] = INST_ID; /* srcInst */
tupOpenSvcLst[0].svcargs.args[2] = ENT_ID; /* srcEnt */
tupOpenSvcLst[0].svcargs.args[3] = 1; /* AutoBind? (yes=1,no= 0)*/
tupOpenSvcLst[0].svcargs.args[4] = SAP_ID; /* spId */
tupOpenSvcLst[0].svcargs.args[5] = SAP_ID; /* suId */
tupOpenSvcLst[0].svcargs.args[6] = poolsize /* poolsize */

ctaOpenServices is an asynchronous function. The return from the function
indicates that the bind operation initiated. Once ctaOpenServices completes, a
CTAEVN_OPEN_SERVICES_DONE event is returned to the application.

26 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

If multiple contexts are assigned to the same queue, all of the contexts must use the
same entity ID in the service arguments parameter. Conversely, contexts bound to
different queues must specify a unique entity ID.
CTA_EVENT event; /* Event structure to wait for TUP events */
...

Ret = ctaOpenServices(ctaHd, tupOpenSvcLst, 1);
if (Ret != SUCCESS)
{
 ctaGetText(NULL_CTAHD, Ret, sErr, sizeof(sErr));
 printf("ERROR : ctaOpenServices failed(%s)\n", sErr);
 ctaDestroyQueue(ctaQueue); /* destroys context too */
 return(...)
}

/* Wait for "open services" to complete; note: this loop
 * assumes no other contexts are already active on the queue
 * we're waiting on, so no other events will be received that
 * need handling
 */
event.id = CTAEVN_NULL_EVENT;
do
{
 ctaWaitEvent(ctaQueue, &event, 5000);
}
while((event.id != CTAEVN_OPEN_SERVICES_DONE) &&
 (event.id != CTAEVN_WAIT_TIMEOUT));

/* check if binding succeeded */
if((pSap->event.id != CTAEVN_OPEN_SERVICES_DONE) ||
 (pSap->event.value != CTA_REASON_FINISHED))
{
 ctaGetText(event.ctahd, event.value, sErr, sizeof(sErr));
 printf("ERROR opening TUP service [%s]\n", sErr);
 ctaDestroyQueue(pSap->ctaQueue); /* destroys context too */
 return(...);
}

Dialogic Corporation 27

Using the TUP service TUP Layer Developer's Reference Manual

Establishing connections

This topic describes how to establish outgoing and incoming connections.

Establishing outgoing connections

The application initiates a circuit switched connection by invoking TUPConnectReq
resulting in the generation of a TUP initial address message (IAM or IAI) to the far
exchange. The far exchange can initiate the connection by sending the IAM or IAI
message. The application receives a TUP connect indication (EVTTUPCONIND) event.
The following illustration shows the process for establishing outgoing connections
(where dashed lines indicate optional sequences):

Application TUP task Far exchange

TUPConnectStatusReq

indType=EVTTUPCONCFM

TUPConnectReq
Initial address (IAI or IAM)

Information request (GRQ)

Information (GSM)

Addr complete (ACM)

Answer (ANC or ANN)

indType=EVTTUPCNSTIND

indType=EVTTUPCNSTIND

evntType=TUPINFORMATION

evntType=TUPADDRCMPLT

evntType=TUPINFORMATREQ

28 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

Establishing incoming connections

During the connection establishment phase, the application exchanges call progress
and other status information with the far exchange by invoking
TUPConnectStatusReq with an event type and by receiving TUP connect status
indication (EVTTUPCNSTIND) events from the TUP task. The following illustration
shows the process for establishing incoming connections (where dashed lines
indicate optional sequences):

Application TUP task Far exchange

TUPConnectStatusReq

indType=EVTTUPCONIND
Initial address (IAI or IAM)

Information request (GRQ)

TUPConnectResp

Information (GSM)

Address complete (ACM)

Answer (ANC or ANN)

indType=EVTTUPCNSTIND

TUPConnectStatusReq

evntType=TUPINFORMATION

evntType=TUPADDRCMPLT

evntType=TUPINFORMATREQ

The connection establishment phase ends when the application:

• Receives the TUP connect confirmation (EVTTUPCONCFM) event (far exchange
sent answer or connect message).

• Invokes TUPConnectResp to signal to the far end that the connection is
established for an incoming call.

Dialogic Corporation 29

Using the TUP service TUP Layer Developer's Reference Manual

Clearing connections

This topic describes how connections are cleared under the following circumstances:

• Application clearing outgoing connection

• Far end exchange clearing outgoing connection

• Application clearing incoming connection

• Far end exchange clearing incoming connection

Application clearing far end connection

Application TUP task Far exchange

TUPReleaseReq
Release (CLF)

Release complete (RLG)
indType=EVTTUPRELCFM

The application requests clearing the outgoing connection by invoking
TUPReleaseReq. The application is notified of the completion of the release
procedure (the receipt of a release complete message) when it receives a TUP
release confirm (EVTTUPRELCFM) event. The following illustration shows the process
by which the application performs outgoing connection release:

Far end exchange clearing outgoing connection

If the far exchange initiates the release of the outgoing connection, the application
receives a TUP release indication event from the TUP layer. The application then
completes the connection release by invoking TUPReleaseReq to send the release
message to the far exchange and wait for the TUP release confirm (EVTTUPRELCFM)
event. The following illustration shows the process by which far exchange connection
release for outgoing connections occurs:

Application TUP task Far exchange

TUPReleaseReq

Release (CBK)

Release (CLF)

indType=EVTTUPSTAIND

indType=EVTTUPRELCFM
Release complete (RLG)

evntType=TUPCLEARBKW

30 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

Application clearing incoming connection

If the far exchange initiates the release of its own outgoing connection, the
application receives a TUP release indication (EVTTUPRELIND) event from its
incoming connection of the TUP layer. The following illustration shows the process by
which the application performs far exchange connection release for incoming
connections:

Application TUP task Far exchange

Release (CLF)
indType=EVTTUPRELIND

Release complete (RLG)
TUPReleaseResp

Far end exchange clearing incoming connection

To clear an incoming connection, the application starts with TUPStatusReq and
waits for TUPReleaseInd to return. The application can then answer with
TUPReleaseResp. The following illustration shows the process by which the
application performs incoming connection release:

Application TUP task Far exchange

TUPStatusReq

Release (CBK)

Release (CLF)

evntType=TUPCLEARBKW

indType=EVTTUPRELIND

TUPReleaseResp Release complete (RLG)

Dialogic Corporation 31

Using the TUP service TUP Layer Developer's Reference Manual

Sending subsequent address messages

After calling TUPConnectReq, the application can send subsequent address
messages (SAM or SAO) with TUPConnectStatusReq. The far exchange generates
an address complete message when the address is complete. The application must
wait for a TUPStatusInd after sending the last SAM or SAO. The following illustration
shows the process by which the application performs subsequent address connection
establishment:

Application TUP task Far exchange

Initial address (IAI)

Subsequent address
(SAM or SAO)

TUPConnectReq

Address complete (ACM)

TUPConnectStatusReq
evntType=TUPSUBSADDR

indType=EVTTUPCNSTIND

evntType=TUPADDRCMPLT

Handling failed connection requests

This topic shows are events are generated and how cleanup occurs when
TUPConnectReq connection requests fail in the following situations:

• Circuit blocked

• Circuit reset

• Subscriber busy

• Unknown or missing response

Subscriber busy

Application TUP task Far exchange

indType=EVTTUPSTAIND
Release (unsuccessful setup)

TUPReleaseReq

Initial address (IAM)
TUPConnectReq

If the called number is busy, TUPConnectReq can fail. The following illustration
shows how events are generated and how cleanup occurs (before a reconnection is
attempted) when a connection fails because the subscriber is busy:

Release (CLF)

Release complete (RLG)
indType=EVTTUPRELCFM

evntType=Many values

32 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

Circuit blocked

If the far exchange blocked the circuit, TUPConnectReq can fail. The following
illustration shows how events are generated and how cleanup occurs (before a
reconnection is attempted) when a connection fails because the circuit is blocked:

Application TUP task Far exchange

Initial address (IAM)

Block (BLO)

TUPConnectReq

TUPReleaseReq

Block acknowledge (BLA)

indType=EVTTUPSTAIND

Release (CLF)

Release complete (RLG)
indType=EVTTUPRELCFM

evntType=TUPCIRBLKREQ

TUPConnectReq
Initial address (IAM)

Circuit reset

If the far end exchange resets the circuit, TUPConnectReq can fail. The following
illustration shows how events are generated and how cleanup occurs (before a
reconnection is attempted) when a connection fails because the circuit has been
reset:

Application TUP task Far exchange

Initial address (IAM)
TUPConnectReq

indType=EVTTUPSTAIND

Release (CLF)

Release complete (RLG)

TUPConnectReq
Initial address (IAM)

Reset (RSC)

evntType=TUPCIRRESREQ

Dialogic Corporation 33

Using the TUP service TUP Layer Developer's Reference Manual

Unknown or missing response

If an intelligible answer to the initial address message (IAM) is not received,
TUPConnectReq can fail. The following illustration shows how events are generated
and how cleanup occurs (before a reconnection is attempted) when a connection fails
because there is an unknown or missing response:

Application TUP task Far exchange

Initial address (IAM)
TUPConnectReq

Release (CLF)

Release complete (RLG)

IndType =EVTTUPRELCFM

TUPConnectReq
Initial address (IAM)

TUPReleaseReq

Lost message
IndType =EVTTUPCNSTIND

evntType =TUPCALLFAILURE

34 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

Resetting circuits

This topic describes the circuit reset process when initiated by the application and
the far exchange.

Application initiated circuit reset

The application requests the reset of a circuit by invoking TUPStatusReq with the
event type of TUPCIRRESREQ. The application can consider the circuit reset upon
issuing this request. The following illustration shows the application-initiated circuit
reset process:

Application TUP task Far exchange

TUPStatusReq
RSC

RLG
evntType=TUPCIRRESREQ

Far exchange initiated circuit reset

If the far exchange initiates the reset of the circuit, the application receives a status
indication (EVTTUPSTAIND) with the event type of TUPCIRRESREQ from the TUP
layer. The application can consider the circuit reset upon receiving this indication.
The TUP task acknowledges the reset request by sending a release complete
message (RLG). The following shows the far exchange-initiated circuit reset process:

Application TUP task Far exchange

RSC

RLG
indType=EVTTUPSTAIND

evntType=TUPCIRRESREQ

Dialogic Corporation 35

Using the TUP service TUP Layer Developer's Reference Manual

Resetting circuit groups

This topic describes the circuit group reset process when performed by the
application and the far exchange.

Application initiated circuit reset

The application requests the reset of a circuit group by invoking TUPStatusReq with
the event type of TUPCIRGRPRESREQ. In the call to TUPStatusReq, the application
must specify the starting circuit number and the range of circuits within a group. The
application can consider the circuit group reset upon issuing this request. The
following illustration shows how the application initiates a group rest request:

Application TUP task Far exchange

TUPStatusReq

GRS

GRA

evntType=TUPCIRGRPRESREQ

Far exchange initiated circuit reset

If the far exchange initiates the reset of the circuit group, the application receives a
status indication (EVTTUPSTAIND) with the event type of TUPCIRGRPRESREQ from
the TUP layer for the circuit group. The application can consider these circuits reset
upon receiving this indication. The TUP task acknowledges the group reset request
by sending a group reset acknowledgment message (GRA). The following illustration
shows the process by which a far exchange-initiated group reset request is
conducted:

Application TUP task Far exchange

GRS

GRA

evntType=TUPCIRGRPRESREQ

indType=EVTTUPSTAIND

36 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

Blocking and unblocking circuits

This topic describes the following processes for blocking and unblocking circuits:

• Application blocking a circuit

• Far exchange blocking a circuit

• Application unblocking a circuit

• Far exchange unblocking a circuit

Application blocking a circuit

The application requests blocking of a circuit by invoking TUPStatusReq with the
event type of TUPCIRBLKREQ. The application can consider the circuit blocked or
unblocked when issuing this request. The following illustration shows how the
application initiates a blocking request:

Application TUP task Far exchange

TUPStatusReq

BLO

BLA

evntType=TUPCIRBLKREQ

Far exchange blocking a circuit

If the far exchange initiates the blocking of the circuit, the application receives a
status indication (EVTTUPSTAIND) with the event type of TUPCIRBLKREQ from the
TUP layer. The TUP task acknowledges the block for the application. The following
illustration shows how a far exchange-initiated blocking request is conducted:

Application TUP task Far exchange

BLO

BLA

indType=EVTTUPSTAIND

evntType=TUPCIRBLKREQ

Dialogic Corporation 37

Using the TUP service TUP Layer Developer's Reference Manual

Application unblocking a circuit

The application requests unblocking of a circuit by invoking TUPStatusReq with the
event type of TUPCIRUNBLKREQ. The following illustration shows how the application
initiates an unblocking request:

Application TUP task Far exchange

TUPStatusReq

UBL

UBA

evntType=TUPCIRUNBLKREQ

Far exchange unblocking a circuit

Application TUP task Far exchange

UBL

If the far exchange initiates the unblocking of the circuit, the application receives a
status indication (EVTTUPSTAIND) with the event type of TUPCIRUNBLKREQ from the
TUP layer. The TUP task then acknowledges the circuit unblocking. The following
illustration shows how a far exchange-initiated unblocking request is conducted:

UBA

indType=EVTTUPSTAIND

evntType=TUPCIRUNBLKREQ

38 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

Blocking and unblocking software-oriented circuit groups

This topic describes the following processes for blocking and unblocking circuits:

• Application initiated group blocking request

• Far exchange initiated group blocking request

• Application initiated group unblocking request

• Far exchange initiated group unblocking request

Application-initiated group blocking request

The application requests blocking of a circuit group by invoking TUPStatusReq with
the event type of TUPCRSGRPBLKREQ. The application can consider the circuit group
blocked or unblocked when issuing this request. The following illustration shows how
the application initiates a group blocking request:

Application TUP task Far exchange

TUPStatusReq

SGB

SBA

evntType= TUPCRSGRPBLKREQ

Far exchange-initiated group blocking request

If the far exchange initiates the blocking of the circuit group, the application receives
a status indication (EVTTUPSTAIND) with the event type of TUPCRSGRPBLKREQ from
the TUP layer. The TUP task acknowledges the circuit group blocking. The following
illustration shows how a far exchange-initiated group blocking request is conducted:

Application TUP task Far exchange

SGB

SBA

indType=EVTTUPSTAIND

evntType= TUPCRSGRPBLKREQ

Dialogic Corporation 39

Using the TUP service TUP Layer Developer's Reference Manual

Application initiated group unblocking request

The application requests unblocking of a circuit group by invoking TUPStatusReq
with the event type of TUPCRSGRPUNBLKREQ. The following illustration shows how
the application initiates a group unblocking request:

Application TUP task Far exchange

TUPStatusReq

SGU

SUA

evntType=TUPCRSGRPUNBLKREQ

Far exchange initiated group unblocking request

If the far exchange initiates the unblocking of the circuit group, the application
receives a status indication (EVTTUPSTAIND) with the event type of
TUPCRSGRPUNBLKREQ from the TUP layer. The TUP task then acknowledges the
circuit group unblocking. The following illustration shows how a far exchange-
initiated group unblocking request is conducted:

Application TUP task Far exchange

SGU

SUA
indType=EVTTUPSTAIND

evntType= TUPCRSGRPUNBLKREQ

40 Dialogic Corporation

TUP Layer Developer's Reference Manual Using the TUP service

Controlling TUP congestion

The TUPEVN_CONGESTION event indicates one of the following congestion issues:

• Memory usage on the TX board has become very high.

• The queue in the TUP service is growing.

In either case, you get a congestion level of 0 through 3 in the value element of the
CTA_EVENT structure.

If your application receives a level 1 event, reduce the number of calls being
generated. At levels 2 and 3 , avoid all new calls and clear existing calls. As memory
usage lowers or the outbound queue shrinks, congestion events with lower
congestion levels are generated for the application to resume more normal traffic.

If your application requires additional information about the congestion, call
TUPGetApiStats for additional statistics.

Setting up tracing

TUP allows tracing of all packets passed between the TUP task and the MTP task. To
enable tracing, follow these steps:

Step Action

1 Enable packet tracing by starting the TUP manager program (tupmgr) and entering the
following command at the prompt:

TRACE DATA ON

2 Start the application.

3 In a separate window, enter the following command:

ss7trace -f filename

where filename is the trace log file to be opened.

Packets are dumped to the screen in the ss7trace window.

For more information about tracing, refer to the Natural Access Developer's
Reference Manual.

Dialogic Corporation 41

Using the TUP service TUP Layer Developer's Reference Manual

Handling redundancy events

After binding to a TUP user SAP, the application receives a status indication
indicating the MTP redundancy or run state on the board. The event type associated
with status indication (EVTSITSTAIND) indicates one of the following states:

State Description

TUPMTP3STANDALONE Application is in a non-redundant configuration. Normal operation can begin.

TUPMTP3PRIMARY The run state of MTP is primary on this board in a redundant board pair.
Normal operation is allowed as long as the board remains primary.

TUPMTP3BACKUP The run state of MTP is backup on this board in a redundant board pair,
monitoring the status of the primary board. No active traffic passes through
this SAP until the board becomes the primary member of the pair.

TUPMTP3RESUME MTP resume indication is delivered to the application when the TUP layer
receives a resume indication from the MTP3 layer.

TUPMTP3PAUSE MTP pause indication is delivered to the application when the TUP layer
receives a resume indication from the MTP3 layer.

42 Dialogic Corporation

55 TUP service function reference
TUP service function summary

The TUP service consists of the following functions:

Function Description

TUPADDRtoASCII Changes a packed string of digits (appropriate for the information elements
that require an address string) to an ASCII string of digits.

TUPASCIItoADDR Changes an ASCII string of digits (to dial) to a packed structure of digits
appropriate for the information elements that require an address string.

TUPConnectReq Requests the establishment of a circuit switched connection.

TUPConnectResp Signals the far exchange that an incoming call was answered.

TUPConnectStatusReq Sends connection status information to the far exchange during the
connection establishment phase.

TUPGetApiStats Retrieves congestion level activity statistics from the TUP service.

TUPReleaseReq Clears or denies the establishment of a circuit switched connection.

TUPReleaseResp Responds to a release indication from a far exchange.

TUPRetrieveMessage Retrieves (and optionally waits for if none is currently available) the next
message from the TUP layer.

TUPStatusReq Sends a global or circuit-specific message to the far exchange.

Using the TUP service function reference

This section provides an alphabetical reference to the TUP service functions. A
prototype of each function is shown with the function description and details of all
arguments and return values. A typical function includes:

Prototype The prototype is followed by a listing of the function arguments. NMS data types include:

• DWORD (8-bit unsigned)

• S16 (16-bit signed)

• U32 (32-bit unsigned)

• U8 (8-bit unsigned)

• Bool (8-bit unsigned)

If a function argument is a data structure, the complete data structure is defined.

Note: Not all parameters are applicable to both ANSI and ITU-T (CCITT) networks.

Return
values

The return value for a function is either TUP_SUCCESS or an error code. For
asynchronous functions, a return value of TUP_SUCCESS (zero) indicates the function
was initiated; subsequent events indicate the status of the operation.

Dialogic Corporation 43

TUP service function reference TUP Layer Developer's Reference Manual

TUPADDRtoASCII

Changes a packed string of digits (appropriate for the information elements that
require an address string) to an ASCII string of digits.

Prototype

U8 NMSAPI TUPADDRtoASCII (TupTknStr *addrSigs, char *ascii)

Argument Description

addrSigs Pointer to the packed list.

ascii Pointer to resulting ASCII string.

Return values

None.

44 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP service function reference

TUPASCIItoADDR

Changes an ASCII string of digits (to dial) to a packed structure of digits appropriate
for the information elements that require an address string.

Prototype

U8 NMSAPI TUPASCIItoADDR (char *ascii, TupTknStr *addrSigs, short length)

Argument Description

ascii Pointer to ASCII string of digits.

addrSigs Pointer to resulting packed list.

length Length of the ASCII parameter.

Return values

None.

Details

TUPASCIItoADDR can be used with the LineID information element fields (calling
address or original called address) and the AddrSigs information element.

Dialogic Corporation 45

TUP service function reference TUP Layer Developer's Reference Manual

TUPConnectReq

Requests the establishment of a circuit switched connection.

Prototype

DWORD NMSAPI TUPConnectReq (CTAHD ctahd, U8 board, TupSpId spId,
TupInstId suInstId, TupInstId spInstId, Bool cirSelFlg, CirIdx circuit,
TupConEvnt *conEvnt)

Argument Description

ctahd Natural Access handle.

board TX board number.

spId TUP service access point.

suInstId Service user instance ID.

spInstId Service provider instance ID.

cirSelFlg Circuit selection flag.

circuit Circuit index used for this connection if cirSelFlg is set to true.

conEvnt Pointer to the caller's connect event structure containing all parameters (IEs) relevant to
establishing this connection.

Return values

Return value Description

TUP_SUCCESS

TUP_INVBOARD board is out of range.

TUP_NOTBOUND Application failed to open the TUP service.

TUP_OSERROR Error occurred accessing the driver.

Details

When successful, TUPConnectReq results in an initial address message (IAM, IAI)
being sent to the far exchange. The TUP service generates an IAI message if any one
of the cgPtyNum, origCdNum, and clUsrGrp IEs are filled. Otherwise, an IAM is
generated.

If the TUP layer cannot successfully initiate the outgoing connection request (for
example, due to network congestion or the requested circuit not being idle), it
returns an asynchronous STATUS INDICATION event to the application with the
cause value coded with the reason for the failure.

For more information, refer to Establishing connections on page 28 and Handling
failed connection requests on page 32.

46 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP service function reference

TUPConnectResp

Signals the far exchange that an incoming call was answered.

Prototype

DWORD NMSAPI TUPConnectResp (CTAHD ctahd, U8 board, TupSpId spId,
TupInstId suInstId, TupInstId spInstId, CirIdx circuit, TupConRspEvnt
*conRspEvnt)

Argument Description

ctahd Natural Access handle.

board TX board number.

spId TUP service access point.

suInstId Service user instance ID.

spInstId Service provider instance ID.

circuit Circuit index with which this message is associated.

conRspEvnt Pointer to the caller's connect event structure containing all parameters (IEs) included
in the answer message.

Return values

Return value Description

TUP_SUCCESS

TUP_INVBOARD board is out of range.

TUP_NOTBOUND Application failed to open the TUP service.

TUP_OSERROR Error occurred accessing the driver.

Details

TUPConnectResp generates an answer (ANC, ANN, ANU) message to the far
exchange. The only field that needs to be filled for this call is answerType in the
conRspEvnt with ANU_NO_CHARGE, ANU_CHARGE, or ANU_UNQUALIFIED (not
supported in China).

Dialogic Corporation 47

TUP service function reference TUP Layer Developer's Reference Manual

TUPConnectStatusReq

Sends connection status information to the far exchange during the connection
establishment phase.

Prototype

DWORD NMSAPI TUPConnectStatusReq (CTAHD ctahd, U8 board, TupSpId
spId, TupInstId suInstId, TupInstId spInstId, CirIdx circuit, TupCnStEvnt
*conStEvnt, U8 evntType)

Argument Description

ctahd Natural Access handle.

board TX board number.

spId TUP service access point.

suInstId Service user instance ID.

spInstId Service provider instance ID.

circuit Circuit index with which this message is associated.

conStEvnt Pointer to the caller's connect status event structure containing all parameters (IEs)
included in the message to the far exchange.

evntType Identifies the type of message sent to the far exchange. Refer to the Details section for a
list of valid message types.

Return values

Return value Description

TUP_SUCCESS

TUP_INVBOARD board is out of range.

TUP_NOTBOUND Application failed to open the TUP service.

TUP_OSERROR Error occurred accessing the driver.

TUP_UNKEVENT Unrecognized event type requested.

Details

The connection status information can be address complete, progress, information
request, and so on. For more information, refer to Establishing connections on page
28.

48 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP service function reference

The following table lists the valid message types:

Message type Description

TUPADDRCMPLT Address complete (ACM)

TUPFRWDTRSFR Forward transfer (FOT)

TUPINFORMATION Information (GSM response to GRQ)

TUPINFORMATREQ Information request (GRQ)

TUPSUBSADDR Subsequent address message (SAM, SAO)

TUPMALICIOUS Malicious call signal (MAL)

TUPREANSWER Re-answer signal (RAN)

TUPCALLCLEAR Calling party clear (CCL)

TUPAUTOCONG Auto-congestion message (ACC)

TUPMETERPULSE Metering pulse message (MPM) - China only

TUPOPERATOR Operator signal (OPR) - China only

Dialogic Corporation 49

TUP service function reference TUP Layer Developer's Reference Manual

TUPGetApiStats

Retrieves congestion level activity statistics from the TUP service.

Prototype

DWORD NMSAPI TUPGetApiStats (CTAHD ctahd, TUPAPISTATS *pstats, U8
bReset)

Argument Description

ctahd Natural Access handle.

pstats Pointer to the buffer address where statistics are returned to the caller:

typedef struct
{
 U32 qCount; /* number of API messages currently
 * queued to TUP layer */
 U32 qPeak; /* max number of API messages ever
 * queued to TUP layer */
 U32 txPending; /* current number of outstanding transmit
 * rqsts to TUP layer */
 U32 txPendPeak; /* max number of transmit rqsts ever
 * outstanding to TUP layer */
 U32 txSuccess; /* number of successful transmit requests
 * completed */
 U32 txFailed; /* number of failed transmit requests */
 U32 txLastErr; /* error code from last failed
 * transmit request */
 U32 rxSuccess; /* number of events received from TUP
 * layer */
 U8 apiQCongLvl; /* current outbound queue congestion
 * level [0..3] */
 U8 tupCongLvl; /* current TUP layer congestion
 * level [0..3] */
 U8 tupCongSrc; /* reason for TUP layer congestion */
 U8 spare1; /* spare for alignment */
} TUPAPISTATS;

bReset If non-zero, statistics are reset after returning the statistics to the application.

Return values

Return value Description

TUP_SUCCESS

CTAERR_INVALID_CTAHD Invalid handle provided.

50 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP service function reference

TUPReleaseReq

Clears or denies the establishment of a circuit switched connection.

Prototype

DWORD NMSAPI TUPReleaseReq (CTAHD ctahd, U8 board, TupSpId spId,
TupInstId suInstId, TupInstId spInstId, CirIdx circuit, TupRelEvnt *relEvnt)

Argument Description

ctahd Natural Access handle.

board TX board number.

spId TUP service access point.

suInstId Service user instance ID.

spInstId Service provider instance ID.

circuit Circuit index with which this message is associated.

relEvnt Pointer to the caller's release event structure containing all parameters (IEs) included in
the RELEASE message to the far exchange.

Return values

Return value Description

TUP_SUCCESS

TUP_INVBOARD board is out of range.

TUP_NOTBOUND Application failed to open the TUP service.

TUP_OSERROR Error occurred accessing the driver.

Details

TUPReleaseReq generates a clear forward message to the far exchange. The
relEvnt parameter does not contain any relevant information for the TUP service.

For more information, refer to Clearing connections on page 30.

Dialogic Corporation 51

TUP service function reference TUP Layer Developer's Reference Manual

TUPReleaseResp

Responds to a release indication from a far exchange.

Prototype

DWORD NMSAPI TUPReleaseResp (CTAHD ctahd, U8 board, TupSpId spId,
TupInstId suInstId, TupInstId spInstId, CirIdx circuit, TupRelEvnt *relEvnt)

Argument Description

ctahd Natural Access handle.

board TX board number.

spId TUP service access point.

suInstId Service user instance ID.

spInstId Service provider instance ID.

circuit Circuit index with which this message is associated.

relEvnt Pointer to the caller's release event structure containing all parameters (IEs) included in
the release complete message to the far exchange.

Return values

Return value Description

TUP_SUCCESS

TUP_INVBOARD board is out of range.

TUP_NOTBOUND Application failed to open the TUP service.

TUP_OSERROR Error occurred accessing the driver.

Details

TUPReleaseResp sends a release guard (RLG) message to the far exchange and
makes the circuit available for a new connection in the TUP circuit database. The
relEvnt parameter does not contain any relevant information for the TUP service.

For more information, refer to Clearing connections on page 30.

52 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP service function reference

TUPRetrieveMessage

Retrieves the next message from the TUP layer or optionally waits for a message if
none is currently available.

Prototype

DWORD NMSAPI TUPRetrieveMessage (CTAHD ctahd, TupAllSdus *event,
TupRcvInfoBlk *infoBlk)

Argument Description

ctahd Natural Access handle.

event Pointer to the address of the caller's event buffer where the received event (if any) is
returned to the caller.

infoBlk Pointer to the address of the caller's receive information block where information
regarding the received event (if any) is returned to the caller:

typedef struct rcvInfoBlk
{
 U8 indType; /* indic/confirm type */
 U8 evntType; /* event type for release, status, and
 /* connection status indications */
 SuId suId; /* service user (SAP) id - all */
 TupInstId suInstId; /* caller's reference number - all */
 TupInstId spInstId; /* TUP's reference number - all */
 CirIdx circuit; /* circuit index - all */
} TupRcvInfoBlk;

Return values

Return value Description

TUP_SUCCESS

TUP_NOMSG No event messages waiting.

TUP_NOTBOUND Application failed to open the TUP service.

TUP_RESOURCES Could not allocate message buffer.

Details

Periodically call this function to receive events (messages) from the TUP layer.

When a message is received, TUPRetrieveMessage copies the event to the caller's
event buffer and performs any necessary byte order translation to convert to the
host's native byte ordering. Information about the event is returned to the caller in
the infoBlk parameter.

Dialogic Corporation 53

TUP service function reference TUP Layer Developer's Reference Manual

The caller's event buffer must be large enough to accommodate any of the events,
as defined by the TupAllSdus structure (union of all event structures). The actual
event structure returned (which is a member of the union) depends on the value of
the infoBlk.indType field returned, as shown in the following table:

Indication type Event structure employed

EVTTUPCONCFM TupConRspEvnt

EVTTUPCONIND TupConEvnt

EVTTUPCNSTIND TupCnStEvnt

EVTTUPRELIND TupRelEvnt

EVTTUPRELCFM TupRelEvnt

EVTTUPSTAIND TupStaEvnt

EVTTUPMGTSTAIND TupStaEvnt

The indication type (indType) identifies the event received and is coded to one of the
following values:

Indication type Hex Description

EVTTUPCONCFM 0x0D Connect confirm

EVTTUPCONIND 0x0E Connect indication

EVTTUPCNSTIND 0x5A Connect status indication

EVTTUPRELIND 0x5E Connect release indication

EVTTUPRELCFM 0x5D Connect release confirmation

EVTTUPSTAIND 0x7A Status indication

EVTTUPMGTSTAIND 0x7B Local management status indication

The event type (evntType) identifies the actual message received for status and
connection status indications. It is coded to one of the values in the following tables.

54 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP service function reference

For connection status indications:

Event type Description

TUPADDRCMPLT Address complete (ACM)

TUPFRWDTRSFR Forward transfer (FOT)

TUPINFORMATION Information (response to INFORMATREQ, GSM)

TUPINFORMATREQ Information request (GRQ)

TUPSUBSADDR Subsequent address message (SAM)

TUPSUBSADDRONE Single subsequent address (SAO)

TUPREANSWER Re-answer signal (RAN)

TUPCALLCLEAR Calling party clear (CCL)

TUPAUTOCONG Auto-congestion message (ACC)

TUPOPERATOR Operator signal (OPR) - China only

TUP METERPULSE Metering pulse message (MPM) - China only

TUPMALICIOUS Malicious call signal (MAL) - China only

For status indications (including local management indications):

Event type Description

TUPREATTEMPT Re-attempt indication

TUPERRORIND Error indication

TUPCONFUSION Confusion indication

TUPCONTCHK Continuity check (CCR)

TUPCONTREP Continuity report (COT)

TUPCONFAIL Continuity report (CCF)

TUPCIRBLKREQ Circuit block request (BLO)

TUPCIRUNBLKREQ Circuit unblock request (UBL)

TUPCIRRESREQ Circuit reset request (RSC)

TUPCRMGRPBLKREQ Maintenance circuit group block request (MGB)

TUPCRMGRPUNBLKREQ Maintenance circuit group unblock request (MGU)

TUPCRHGRPBLKREQ Hardware circuit group block request (HGB)

TUPCRHGRPUNBLKREQ Hardware circuit group unblock request (HGU)

TUPCRSGRPBLKREQ Software circuit group block request (SGB)

TUPCRSGRPUNBLKREQ Software circuit group unblock request (SGU)

TUPCIRGRPRESREQ Circuit group reset request (GRS)

Dialogic Corporation 55

TUP service function reference TUP Layer Developer's Reference Manual

Event type Description

TUPSWITCHCONG Switch equipment congestion (CNG)

TUPCIRCUITCONG Circuit group congestion (CGC)

TUPNATIONALCONG Nation network congestion (NNC)

TUPADDRESSINCOMP Address incomplete (ADI)

TUPCALLFAILURE Call failure (CFL)

TUPSUBBUSY Subscriber busy (SSB)

TUPUNALLOCATEDNUM Unallocated number (UNN)

TUPOUTOFSERVICE Line out of service (LOS)

TUPSENDSPECIAL Send a special tone (SST)

TUPACCESSBARRED Access barred (ACB)

TUPNODIGITAL Digital path not provided (DPN)

TUPEXTENDEDINFO Extended unsuccessful message (EUM)

TUPCLEARBKW Clear backwards (CBK)

TUPMISDIALEDPREFIX Misdialed trunk prefix (MPR) - not supported in China

TUPSUBLOCALBUSY Subscriber local busy (SLB) - China only

TUPSUBTOLLBUSY Subscriber toll busy (STB) - China only

TUPDUALSEIZURE Call failed due to incoming call

The application must save the service provider instance ID (spInstId) field from the
first event received from TUP for each connection and use it in subsequent requests
associated with that connection.

For more information, refer to Operating system specific considerations on page 21.

56 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP service function reference

TUPStatusReq

Sends a global or circuit-specific message to the far exchange.

Prototype

DWORD NMSAPI TUPStatusReq (CTAHD ctahd, U8 board, TupSpId spId,
TupInstId suInstId, TupInstId spInstId, CirIdx circuit, U8 evntType, TupStaEvnt
*staEvnt)

Argument Description

ctahd Natural Access handle.

board TX board number.

spId TUP service access point.

suInstId Service user instance ID.

spInstId Service provider instance ID.

circuit For circuit-specific requests, the circuit index with which this request is associated. For
circuit group specific requests, this argument must identify one member of the circuit
group.

evntType Type of status request. Refer to the Details section for a list of valid status request types.

staEvnt Pointer to the caller's status event structure containing all parameters (IEs) included in
the message to the far exchange.

Return values

Return value Description

TUP_SUCCESS

TUP_INVBOARD board is out of range.

TUP_NOTBOUND Application failed to open the TUP service.

TUP_OSERROR Error occurred accessing the driver.

TUP_UNKEVENT Unrecognized event type requested.

Details

The following table lists the valid status request types (evntType):

Status request type Description

TUPCONTCHK Continuity check (CCR)

TUPCONTREP Continuity report (COT)

TUPCONFAIL Continuity report (CCF)

TUPCIRBLKREQ Circuit block request (BLO)

TUPCIRUNBLKREQ Circuit unblock request (UBL)

TUPCIRRESREQ Circuit reset request (RSC)

Dialogic Corporation 57

TUP service function reference TUP Layer Developer's Reference Manual

Status request type Description

TUPCRMGRPBLKREQ Maintenance circuit group block request (MGB)*

TUPCRMGRPUNBLKREQ Maintenance circuit group unblock request (MGU)*

TUPCRHGRPBLKREQ Hardware circuit group block request (HGB)*

TUPCRHGRPUNBLKREQ Hardware circuit group unblock request (HGU)*

TUPCRSGRPBLKREQ Software circuit group block request (SGB)*

TUPCRSGRPUNBLKREQ Software circuit group unblock request (SGU)*

TUPCIRGRPRESREQ Circuit group reset request (GRS)

TUPSWITCHCONG Switch equipment congestion (SEC)

TUPCIRCUITCONG Circuit group congestion (CGC)

TUPNATIONALCONG Nation network congestion (NNC)

TUPADDRESSINCOMP Address incomplete (ADI)

TUPCALLFAILURE Call failure (CFL)

TUPSUBBUSY Subscriber busy (SSB)

TUPUNALLOCATEDNUM Unallocated number (UNN)

TUPOUTOFSERVICE Line out of service (LOS)

TUPSENDSPECIAL Send special tone (SST)

TUPACCESSBARRED Access barred (ACB)

TUPNODIGITAL Digital path not provided (DPN)

TUPEXTENDEDINFO Extended unsuccessful message (EUM)

TUPCLEARBKW Clear backwards (CBK)

TUPMISDIALEDPREFIX Misdialed trunk prefix (MPR) - not supported in China

TUPSUBLOCALBUSY Subscriber local busy (SLB) - China only

TUPSUBTOLLBUSY Subscriber toll busy (STB) - China only

When sending one of the status request events marked with an asterisk (*),
populate the range information element in staEvnt. If all circuits in the predefined
group should be acted upon, set the range field to zero (0) and ignore the
statusMap. If some of the circuits should not be acted upon or this is not a
predefined group, set range to the number of circuits that can be acted upon. Then
set the statusMap array as follows: set an element indexed into this array to one
(1) if this circuit should be acted upon, or set it to zero (0) if it should not be acted
upon. The first element in the array maps to the circuit parameter sent to
TUPStatusReq. The remainder of the array maps to the consecutive circuits in the
defined group. Refer to the TUP specifications for more information.

58 Dialogic Corporation

66 Managing TUP tasks on the
board

TUP management overview

TUP management functions manage the following TUP tasks on the board:

• Configuration

• Managing circuits

• Retrieving statistics and status

Any application that uses TUP management must start with a call to
TUPInitMgmtAPI. TUPTermMgmtAPI properly closes the application.

All calls are blocking while waiting for a response from the board's TUP task. An error
code is returned when a call is unsuccessful.

Dialogic Corporation 59

Managing TUP tasks on the board TUP Layer Developer's Reference Manual

Configuration

TUP management consists of the following types of configuration functions:

Function type Description

Init Fills the configuration structure.

Set Sends a configuration to the board.

Get Retrieves the configuration from the board.

Refer to the TUP management function reference section for information about the
function calls and the default and possible values for configuration elements.

General configuration

The general configuration must be done before any other configurations. Parameters
set up in the general configuration include the number of service access points, the
maximum number of circuits and groups allowed, and alarm level. A call to
TUPInitGenCfg fills in all of the appropriate elements with default values for the
application in a TUPGenCfg structure. A call to TUPSetGenCfg then sends the
configuration to the board. TUPGetGenCfg retrieves this configuration from the
board.

USAP and NSAP configuration

After the general configuration, configure the service access points above and below
the TUP task on the board. Calls to TUPInitUSapCfg and TUPInitNSapCfg fill in
the fields in the appropriate structures with default values for the application, which
then can call TUPSetUSapCfg and TUPSetNSapCfg to send the configurations to
the board. These configurations must not be changed after initialization of the task.
The fields in the user service access point section define switch type (either ITU-T or
the China variant) and the user queue congestion onset and abatement levels. The
network service access point configuration also defines the MTP network service
access point with which to bind this NSAP, as well as the point code.
TUPGetUSapCfg and TUPGetNSapCfg retrieve these configurations from the
board.

Circuits and groups configuration

After the general configuration and the service access point configurations, configure
the circuits for the TUP task to manage. First, calls to TUPInitCircCfg fill in some of
the fields with default values for the application. After filling in and adjusting the
remaining fields, the application can call TUPSetCircCfg to send the configurations
to the board. These configurations can be changed after initialization of the task. The
most important fields in circuit and group configuration are:

• Destination point code for this circuit set

• Circuit index and the circuit identification code of the first circuit in the set

• Number of circuits in the set

• Switch type (ITU-T or China) and the circuit group ID

60 Dialogic Corporation

TUP Layer Developer's Reference Manual Managing TUP tasks on the board

The remaining circuit identification codes (CIC) are managed and used through the
circuit index that correlates to the CIC. For example, if the CIC field is 10 and the
first circuit index is 20 in a five circuit set, manage or make a call on CIC 13 by using
circuit index 23 in the function calls. If the group ID field in the configuration request
is non-zero, the circuit set is treated as a predefined group. TUPGetCircCfg
retrieves this configuration from the board.

Use alternate originating point code for this circuit set when configuring the board to
act as multiple originating point codes (OPCs). The OPC must be properly configured
in MTP for the new TUP OPC to work. By default, configuration uses the TUP general
configuration originating point code. For more information on configuring multiple
OPCs, see the NMS SS7 Configuration Manual.

Note: TUP supports pre-defined groups that allow applications to send actions to
well-known sets of circuits. Confirm that the carrier in which the application will be
installed supports pre-defined groups. Otherwise, the application needs to use
dynamic groups only.

Managing circuits

The TUP management functions allow circuits and circuit groups to be:

• Reset (TUPResetCircuit, TUPResetGroup)

• Blocked (TUPBlockCircuit, TUPBlockGroup)

• Unblocked (TUPUnblockCircuit, TUPUnblockGroup)

• Deleted (TUPDeleteCircuit, TUPDeleteGroup)

These actions generate a management status indication (EVTTUPMGTSTAIND) event
to the application instead of a regular status indication event (EVTTUPSTAIND).

Retrieving statistics and status

The TUP task keeps statistics and status for a management application to query. The
statistics are available by circuit (TUPGetCircStats), circuit group
(TUPGetGrpStats), and network service access point (TUPGetNSapStats). Status
is available by circuit (TUPGetCircStatus) and circuit group (TUPGetGrpStatus).

Dialogic Corporation 61

77 TUP management function
reference

TUP management function summary

NMS TUP consists of the following management functions:

• Configuration functions

• Control functions

• Statistics functions

• Status functions

Configuration functions

Function Description

TUPGetCircCfg Gets circuit configuration from the TX board.

TUPGetGenCfg Retrieves the basic configuration from the TX board.

TUPGetGrpCfg Retrieves the current, pre-defined circuit group configuration.

TUPGetNSapCfg Retrieves the basic network service access point configuration from the TX board.

TUPGetUSapCfg Retrieves the basic user service access point configuration from the TX board.

TUPInitCircCfg Initializes a buffer that can be passed to TUPSetCircCfg.

TUPInitGenCfg Builds a basic configuration buffer that can be passed to TUPSetGenCfg.

TUPInitGrpCfg Initializes a group configuration structure.

TUPInitNSapCfg Builds a basic configuration buffer that can be passed to TUPSetNSapCfg.

TUPInitUSapCfg Builds a basic configuration buffer that can be passed to TUPSetUSapCfg.

TUPSetCircCfg Sets circuit configurations to the TX board.

TUPSetGenCfg Sends a basic configuration buffer to the TX board.

TUPSetNSapCfg Sends a basic network service access point configuration buffer to the TX board.

TUPSetUSapCfg Sends a basic user service access point configuration buffer to the TX board.

Dialogic Corporation 63

TUP management function reference TUP Layer Developer's Reference Manual

Control functions

Function Description

TUPAlarmControl Sends a request to control alarms.

TUPBlockCircuit Sends a request to block the given circuit.

TUPBlockGroup Sends a request to block the given group of circuits.

TUPDeleteCircuit Sends a request to delete the given circuit.

TUPDeleteGroup Sends a request to delete the given group of circuits.

TUPInitMgmtAPI Initializes TUP management and opens a channel to the TX board.

TUPQuietReset Sends a request to the board to reset all circuits without generating TUP traffic.

TUPResetCircuit Sends a request to reset the given, pre-defined circuit.

TUPResetGroup Sends a request to reset the given group of circuits.

TUPTermMgmtAPI Closes TUP management and the channel to the TX board.

TUPTraceControl Sends a request to enable or disable tracing of TUP protocol messages.

TUPUnblockCircuit Sends a request to unblock the given circuit.

TUPUnblockGroup Sends a request to unblock the given group of circuits.

Statistics functions

Function Description

TUPGetCircStats Sends a request to retrieve the statistics for a given circuit.

TUPGetGrpStats Sends a request to retrieve the statistics for a given, pre-defined circuit group.

TUPGetNSapStats Sends a request to retrieve the statistics for a given network service access
point.

Status functions

Function Description

TUPGetCircStatus Sends a request to retrieve the status for a given circuit.

TUPGetGrpStatus Sends a request to retrieve the status for a given, pre-defined circuit group.

64 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

Using the TUP management function reference

This section provides an alphabetical reference to the TUP management functions. A
prototype of each function is shown with the function description and details of all
arguments and return values. A typical function includes:

Prototype The prototype is followed by a listing of the function arguments. NMS data types include:

• U8 (8-bit unsigned)

• S16 (16-bit signed)

• U16 (16-bit unsigned)

• U32 (32-bit unsigned)

• Bool (8-bit unsigned)

If a function argument is a data structure, the complete data structure is shown.

Return
values

The return value for a function is either TUP_SUCCESS or an error code. For
asynchronous functions, a return value of TUP_SUCCESS (zero) indicates the function
was initiated; subsequent events indicate the status of the operation.

Dialogic Corporation 65

TUP management function reference TUP Layer Developer's Reference Manual

TUPAlarmControl

Sends a request to control alarms.

Prototype

S16 TUPAlarmControl (U8 board, U32 flags)

Argument Description

board TX board number.

flags Bitmap of alarm control. Reserved for future use.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

66 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPBlockCircuit

Sends a request to block the given circuit.

Prototype

S16 TUPBlockCircuit (U8 board, CirIdx circID)

Argument Description

board TX board number.

circID Circuit index to block.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 67

TUP management function reference TUP Layer Developer's Reference Manual

TUPBlockGroup

Sends a request to block the given group of circuits.

Prototype

S16 TUPBlockGroup (U8 board, U16 groupID, U8 blockTyp)

Argument Description

board TX board number.

groupID Group ID to block.

blockTyp Type of block. Possible values are TUP_MBLOCK, TUP_HBLOCK, or TUP_SBLOCK.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

68 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPDeleteCircuit

Sends a request to delete the given circuit.

Prototype

S16 TUPDeleteCircuit (U8 board, CirIdx circID, U32 count)

Argument Description

board TX board number.

circID Circuit index at which to start deleting.

count Number of circuits to delete.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Details

Set circId and count to 0 to delete all circuits that are not part of a predefined
group. Call TUPDeleteGroup with groupId 0 before calling TUPDeleteCircuit to
delete all circuits.

Dialogic Corporation 69

TUP management function reference TUP Layer Developer's Reference Manual

TUPDeleteGroup

Sends a request to delete the given group of circuits.

Prototype

S16 TUPDeleteGroup (U8 board, U16 groupID)

Argument Description

board TX board number.

groupID Group ID to delete. Set to 0 to delete all groups.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

70 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPGetCircCfg

Gets circuit configuration from the TX board.

Prototype

S16 TUPGetCircCfg (U8 board, TUPCircCfg *cfg, CirIdx circID)

Argument Description

board TX board number.

cfg Pointer to the circuit configuration structure to fill. Refer to TUPInitUSapCfg.

circId Circuit index for which to retrieve configuration.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 71

TUP management function reference TUP Layer Developer's Reference Manual

TUPGetCircStats

Sends a request to retrieve the statistics for a given circuit.

Prototype

S16 TUPGetCircStats (U8 board, CirIdx circID, TUPCircStats *stats, U8 reset)

Argument Description

board TX board number.

circID Circuit index for which to retrieve statistics.

stats Pointer to structure to place retrieved statistics. Refer to the Details section for more
information.

reset Set this to non-zero to reset the current statistics.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

72 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

Details

The TupCircStats structure appears as follows:
typedef struct _TupCircStats
{
 DateTime dt; /* date and time (Not Used) */
 Duration dura; /* duration (Not Used) */
 S32 blockTx; /* Circuit Blocking Transmitted */
 S32 blockAckTx; /* Circuit Blocking Ack Transmitted */
 S32 unblockTx; /* Circuit Unblocking Transmitted */
 S32 unblockAckTx; /* Circuit Unblocking Ack Transmitted */
 S32 cirResTx; /* Circuit Reset Transmitted */
 S32 adrCmpltTx; /* Address complete transmitted */
 S32 answerTx; /* Answer transmitted */
 S32 contiTx; /* Continuity transmitted */
 S32 conChkReqTx; /* Continuity Check Request transmitted */
 S32 fotTx; /* Forward transmitted */
 S32 clfTx; /* Release transmitted */
 S32 cclTx; /* Caller clear transmitted */
 S32 rlgTx; /* Release Complete transmitted */
 S32 cbkTx; /* clear back transmitted */
 S32 ranTx; /* Reanswer transmitted */
 S32 oprTx; /* operator transmitted */
 S32 mpmTx; /* meter pulse transmitted */
 S32 accTx; /* auto cong level transmitted */
 S32 ubmTx; /* UBM txed, including SLB and STB */
 S32 initAdrTx; /* Initial Address transmitted */
 S32 infoTx; /* Info transmitted */
 S32 infoReqTx; /* Info Request transmitted */
 S32 subsAdrTx; /* Subsequent Address transmitted */
 S32 malTx; /* Malicious Call Print transmitted */
 S32 chargeTx; /* Charge transmitted */
 S32 blockRx; /* Circuit Blocking Received */
 S32 blockAckRx; /* Circuit Blocking Ack Received */
 S32 unblockRx; /* Circuit Unblocking Received */
 S32 unblockAckRx; /* Circuit Unblocking Ack Received */
 S32 cirResRx; /* Circuit Reset Received */
 S32 adrCmpltRx; /* Address complete received */
 S32 answerRx; /* Answer received */
 S32 contiRx; /* Continuity received */
 S32 conChkReqRx; /* Continuity Check Request received */
 S32 fotRx; /* Forward received */
 S32 clfRx; /* Release received */
 S32 cclRx; /* Caller clear received */
 S32 rlgRx; /* Release Complete received */
 S32 cbkRx; /* clear back received */
 S32 ranRx; /* Reanswer received */
 S32 oprRx; /* operator received */
 S32 mpmRx; /* meter pulse received */
 S32 accRx; /* auto cong level received */
 S32 ubmRx; /* UBM received, including SLB/STB */
 S32 initAdrRx; /* Initial Address received */
 S32 infoReqRx; /* Info Request received */
 S32 infoRx; /* Info received */
 S32 subsAdrRx; /* Subsequent Address received */
 S32 malRx; /* Malicious Call Print received */
 S32 chargeRx; /* Charge received */
} TupCircStats;

Dialogic Corporation 73

TUP management function reference TUP Layer Developer's Reference Manual

TUPGetCircStatus

Sends a request to retrieve the status for a given circuit.

Prototype

S16 TUPGetCircStatus (U8 board, CirIdx circID, TUPCircStatus *status)

Argument Description

board TX board number.

circID Circuit index for which to retrieve status.

status Pointer to structure where retrieved status is placed.

typedef struct _TupCircStatus /* TUP Circuit status */
{
 DateTime dt; /* date and time */
 U16 circuitState; /* circuit machine state */
 U16 callState; /* circuit call processing state */
} TupCircStatus;

Refer to the Details section for more information.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

74 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

Details

The circuitState element is coded as follows:

0x200 Initial

0x201 Idle

0x202 Idle, locally blocked

0x203 Idle, remotely blocked

0x204 Idle, remotely blocked, locally blocked

0x205 Busy incoming

0x206 Busy incoming, locally blocked

0x207 Busy incoming, remotely blocked

0x208 Busy incoming, remotely blocked, locally blocked

0x209 Busy outgoing

0x20A Busy outgoing, locally blocked

0x20B Busy outgoing, remotely blocked

0x20C Busy outgoing, remotely blocked, locally blocked

0x20D Out of service locally

0x20E Out of service locally, locally blocked

0x20F Out of service locally, remotely blocked

0x210 Out of service locally, remotely blocked, locally blocked

0x211 Out of service remotely

0x212 Out of service remotely, locally blocked

0x213 Out of service remotely, remotely blocked

0x214 Out of service remotely, remotely blocked, locally blocked

0x215 Out of service BOTH

0x216 Out of service BOTH, locally blocked

0x217 Out of service BOTH, remotely blocked

0x218 Out of service BOTH, remotely blocked, locally blocked

Dialogic Corporation 75

TUP management function reference TUP Layer Developer's Reference Manual

The callState element is coded as follows:

Inbound busy circuit:

0x300 Initial state

0x301 Wait CLF state, in call

0x302 Wait info state

0x303 Wait answer state

0x304 Wait ACM state

0x305 Wait local RLG state

0x306 Wait COT state

0x307 Wait CCR state

0x308 Wait CLF to end cont check state

0x309 Dead state

Outgoing busy circuit:

0x400 Initial state

0x401 Wait RLG state

0x402 Wait release state

0x403 Wait info state

0x404 Wait answer state

0x405 Wait ACM state

0x406 Wait local COT state

0x407 Wait local CONT CLF state

0x408 Wait next CCR state

0x409 Dead state

76 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPGetGenCfg

Retrieves the basic configuration from the TX board. Refer to Configuration on page
60 for more information.

Prototype

S16 TUPGetGenCfg (U8 board, TUPGenParms *cfg)

Argument Description

board TX board number from which to get the configuration.

cfg Pointer to configuration structure to fill. Refer to TUPInitGenCfg.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 77

TUP management function reference TUP Layer Developer's Reference Manual

TUPGetGrpCfg

Retrieves the current, pre-defined circuit group configuration.

Prototype

S16 TUPGetGrpCfg (U8 board, TupGrpCfg *cfg, U16 groupID)

Argument Description

board TX board number.

cfg Pointer to the configuration structure to fill. Refer to TUPInitGrpCfg.

groupID Group ID for which to get the configuration.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

78 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPGetGrpStats

Sends a request to retrieve the statistics for a given, pre-defined circuit group.

Prototype

S16 TUPGetGrpStats (U8 board, U16 groupID, TUPGrpStats *stats, U8 reset)

Argument Description

board TX board number.

groupID Group number from which to retrieve statistics.

stats Pointer to structure in which to place retrieved statistics. Refer to the Details section for
more information.

reset Set this to non-zero to reset the current statistics.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 79

TUP management function reference TUP Layer Developer's Reference Manual

Details

The TUPGrpStats structure appears as follows:
typedef struct _TupGrpStats
{
 DateTime dt; /* date and time (Not Used) */
 Duration dura; /* duration (Not Used) */
 S32 cirHwGrBlockRx; /* HW Circuit Group Blocking Received */
 S32 cirHwGrBlockAckRx;
 /* HW Circuit Group Blocking Ack Rx */
 S32 cirHwGrUnBlockRx;
 /* HW Circuit Grp Unblocking Received */
 S32 cirHwGrUnBlockAckRx;
 /* HW Circuit Group Unblocking Ack Rx */
 S32 cirSwGrBlockRx; /* SW Circuit Group Blocking Received */
 S32 cirSwGrBlockAckRx;
 /* SW Circuit Group Blocking Ack Rx */
 S32 cirSwGrUnBlockRx;
 /* SW Circuit Grp Unblocking Received */
 S32 cirSwGrUnBlockAckRx;
 /* SW Circuit Group Unblocking Ack Rx */
 S32 cirMGrBlockRx; /* Maint Circuit Group Blocking Rx */
 S32 cirMGrBlockAckRx; /* Maint Circuit Grp Blocking Ack Rx */
 S32 cirMGrUnBlockRx; /* Maint Circuit Grp Unblocking Rx */
 S32 cirMGrUnBlockAckRx;
 /* Maint Circuit Grp Unblocking Ack Rx */
 S32 cirGrResRx; /* Circuit Group Reset Received */
 S32 cirGrResAckRx; /* Circuit Group Reset Ack Received */
 S32 cirHwGrBlockTx; /* HW Circuit Group Blocking Tx */
 S32 cirHwGrBlockAckTx;
 /* HW Circuit Group Blocking Ack Tx */
 S32 cirHwGrUnBlockTx; /* HW Circuit Grp Unblocking Tx */
 S32 cirHwGrUnBlockAckTx;
 /* HW Circuit Group Unblocking Ack Tx */
 S32 cirSwGrBlockTx; /* SW Circuit Group Blocking Tx */
 S32 cirSwGrBlockAckTx;
 /* SW Circuit Group Blocking Ack Tx */
 S32 cirSwGrUnBlockTx; /* SW Circuit Grp Unblocking Tx */
 S32 cirSwGrUnBlockAckTx;
 /* SW Circuit Group Unblocking Ack Tx */
 S32 cirMGrBlockTx; /* Maint Circuit Group Blocking Tx */
 S32 cirMGrBlockAckTx; /* Maint Circuit Grp Blocking Ack Tx */
 S32 cirMGrUnBlockTx; /* Maint Circuit Grp Unblocking Tx */
 S32 cirMGrUnBlockAckTx;
 /* Maint Circuit Grp Unblocking Ack Tx */
 S32 cirGrResTx; /* Circuit Group Reset Tx */
 S32 cirGrResAckTx; /* Circuit Group Reset Ack Tx */
} TupGrpStats;

80 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPGetGrpStatus

Sends a request to retrieve the status for a given, pre-defined circuit group.

Prototype

S16 TUPGetGrpStatus (U8 board, U16 grpID, TUPGrpStatus *status)

Argument Description

board TX board number.

grpID Group from which to retrieve status.

status Pointer to the following structure in which to place the retrieved status:

typedef struct _TupGrpStatus
 /* TUP Group status */
{
 DateTime dt; /* date and time (Not Used) */
 U32 altOpc /* originating point code */
 U32 dpc; /* destination point code */
 U16 cic; /* starting CIC */
 U8 range; /* range value, 0 if predefined */
 U8 fill; /* unused */
 U16 count; /* number of circuits in group */
 U8 ocHMask[32]; /* status mask of local h/w block */
 U8 ocMMask[32]; /* status mask of local maintenance block */
 U8 ocSMask[32]; /* status mask of local s/w block */
 U8 remHMask[32]; /* status mask of local h/w block */
 U8 remMMask[32]; /* status mask of local maintenance block */
 U8 remSMask[32]; /* status mask of local s/w block */
} TupGrpStatus;

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 81

TUP management function reference TUP Layer Developer's Reference Manual

TUPGetNSapCfg

Retrieves the basic network service access point configuration from the TX board.
Refer to USAP and NSAP configuration on page 60 for more information.

Prototype

S16 TUPGetNSapCfg (U8 board, TUPNSapCfg *cfg, U16 sapID)

Argument Description

board TX board number.

cfg Pointer to the network service access point structure to fill. Refer to TUPInitNSapCfg.

sapID Service access point ID for which to retrieve configuration.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

82 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPGetNSapStats

Sends a request to retrieve the statistics for a given network service access point.

Prototype

S16 TUPGetNSapStats (U8 board, S16 sapID, TUPNSapStats *stats, U8 reset)

Argument Description

board TX board number.

sapID Network SAP for which to retrieve statistics.

stats Pointer to the structure to place the retrieved statistics:

typedef struct _TupNSapStats
{
 DateTime dt; /* date and time (Not Used) */
 Duration dura; /* duration (Not Used) */
 S32 pktTx; /* Number of transmitted packets */
 S32 pktRx; /* Number of received packets */
} TupNSapStats;

reset Set this to non-zero to reset the current statistics.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 83

TUP management function reference TUP Layer Developer's Reference Manual

TUPGetUSapCfg

Retrieves the basic user service access point configuration from the TX board. Refer
to USAP and NSAP configuration on page 60 for more information.

Prototype

S16 TUPGetUSapCfg (U8 board, TUPUSapCfg *cfg, U16 sapID)

Argument Description

board TX board number.

cfg Pointer to the user service access point structure to fill. Refer to TUPInitUSapCfg.

sapID User service access point ID for which to retrieve configuration.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

84 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPInitCircCfg

Initializes a buffer that can be passed to TUPSetCircCfg.

Prototype

void TUPInitCircCfg (TUPCircCfg *cfg, CirIdx circId, U32 opc, U32 dpc)

Argument Description

cfg Pointer to the configuration structure to fill. Refer to the Details section for more
information.

circId Circuit index from which to start.

opc Originating point code of this node for this circuit.

dpc Destination point code of the node at the destination end of these circuits.

Return values

None.

Dialogic Corporation 85

TUP management function reference TUP Layer Developer's Reference Manual

Details

The elements of the TUPCircCfg structure are initialized with the following:
typedef struct _TUPCircCfg
{
 circuitId circId argument
 /* First circuit index in group */
 cic 0 /* First Circuit ID code in group */
 altOrgPointCode opc argument
 /* Originating Point Code */
 dstPointCode dpc argument
 /* Destination point code */
 numCircs 1 /* Number of circuits in group */
 groupId 0 /* Non-zero defines a pre-defined
 /* group for group actions */
 nsapId 0 /* NSAP from TUP config to use */
 switchType TUP_SW_ITU
 /* Switch type for these circuits */
 t1.value 15 /* Time to wait for COT(10-15) */
 t1.enable TRUE
 t2.value 30 /* Time to wait for ACM (20-30) */
 t2.enable FALSE
 t3.value 15 /* Time to wait for CLF after UBM (4-15) */
 t3.enable TRUE
 t4.value 15 /* Time to wait for CLF after CFL (4-15) */
 t4.enable TRUE
 t5.value 60 /* Time to stop sending CFL (60) */
 t5.enable TRUE
 t6.value 15 /* Time to wait for RLG (4-15) */
 t6.enable TRUE
 t7.value 60 /* Time to stop sending CLF (60) */
 t7.enable TRUE
 t8.value 2 /* Time to wait for backward check tone
 /* (£ 2) */
 t8.enable TRUE
 t9.value 5 /* Time to delay 1st time continuity
 /* check (1-10) */
 t9.enable TRUE
 t10.value 180 /* Time to delay CCR (60-180) */
 t10.enable TRUE
 t11.value 60 /* Time to wait to alert after block
 /* signal (60) */
 t11.enable FALSE
 t12.value 15 /* Time to wait for response to block
 /* signal (4-15) */
 t12.enable TRUE
 t13.value 60 /* Time to wait to alert no response to
 /* initial blocking signal (60) */
 t13.enable TRUE
 t14.value 60 /* Time to wait to repeat BLO(60) */
 t14.enable TRUE
 t15.value 15 /* Time to wait for response to
 /* unblock (4-15) */
 t15.enable TRUE
 t16.value 60 /* Time to wait to alert no response to
 /* initial unblocking signal (60) */
 t16.enable TRUE
 t17.value 60 /* Time to wait to repeat UBL(60) */
 t17.enable TRUE
 t18.value 15 /* Time to wait for reset circuit
 /* response (4-15) */
 t18.enable TRUE
 t19.value 60 /* Time to wait to resend RSC(60) */
 t19.enable TRUE
} TUPCircCfg;

For more information, refer to Circuits and groups configuration on page 60.

86 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPInitGenCfg

Builds a basic configuration buffer that can be passed to TUPSetGenCfg.

Prototype

void TUPInitGenCfg (TUPGenParms *cfg)

Argument Description

cfg Pointer to the configuration structure to fill.

The TUPGenParms structure contains these elements and is filled as follows:

typedef struct _TUPGenParms
{
 maxSaps 1 /* Maximum number of user SAPs */
 maxNetSaps 1 /* Maximum # interfaces to MTP3 */
 maxCircuits 96 /* Maximum # of circuits to manage */
 maxCircGrp 32 /* Maximum # circuit groups to manage */
 alarmLevel 1 /* Alarm level to filter at (1-4) */
 maxOpcs 16 /* Maximum # of OPC's */
 maxDpcs 16 /* Maximum number of DPC's */
 dfltGrpCfg /* see TUPInitGrpCfg */
} TUPGenParms;

Return values

None.

Details

All unlisted elements in the TUPGenParms structure are set for the proper operation
of the TUP stack and must not be changed.

Refer to TUPInitGrpCfg for the dfltGrpCfg element settings. Refer to Configuration
on page 60 for more information about general configuration.

Dialogic Corporation 87

TUP management function reference TUP Layer Developer's Reference Manual

TUPInitGrpCfg

Initializes a group configuration structure.

Prototype

void TUPInitGrpCfg (TupGrpCfg *cfg, U16 count)

Argument Description

cfg Pointer to the configuration structure to fill.

count Number of circuits.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

88 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

Details

The dfltGrpCfg element settings are:
typedef struct _TUPGrpCfg
{
 count /* The count parameter
 range 0 /* Predefined groups can use 0 */
 t20.enable TRUE /* Time to wait to Tx second GRS (5) */
 t20.value 5
 t21.enable TRUE /* Time to wait for GRA (4-15) */
 t21.value 15
 t22.enable TRUE /* Time to wait to Tx another GRS (60) */
 t22.value 60
 t23.enable TRUE /* Time to wait to send 2nd MGB (5) */
 t23.value 5
 t24.enable TRUE /* Time to wait to Tx 2nd MGU (5) */
 t24.value 5
 t25.enable TRUE /* Time to wait to alert after MGB (300) */
 t25.value 300
 t26.enable TRUE /* Time to wait for MBA (4-15) */
 t26.value 15
 t27.enable TRUE /* Time to wait to resend MGB (60) */
 t27.value 60
 t28.enable TRUE /* Time to wait MUA (4-15) */
 t28.value 15
 t29.enable TRUE /* Time to send another MGU (60) */
 t29.value 60
 t30.enable TRUE /* Time to wait to send 2nd HGB (5) */
 t30.value 5
 t31.enable TRUE /* Time to wait to send 2nd HGU (5) */
 t31.value 5
 t32.enable TRUE /* Time to wait for HBA (4-15) */
 t32.value 15
 t33.enable TRUE /* Time to wait to send another HGB (60) */
 t33.value 60
 t34.enable TRUE /* Time to wait for HUA (4-15) */
 t34.value 15
 t35.enable TRUE /* Time to wait to send another HGU (60) */
 t35.value 60
 t36.enable TRUE /* Time to wait to send 2nd SGB (5) */
 t36.value 5
 t37.enable TRUE /* Time to wait to send 2nd SGU (5) */
 t37.value 5
 t38.enable TRUE /* Time to wait for SBA (4-15) */
 t38.value 15
 t39.enable TRUE /* Time to wait to send another SGB (60) */
 t39.value 60
 t40.enable TRUE /* Time to wait for SUA (4-15) */
 t40.value 15
 t41.enable TRUE /* Time to send another SGU (60) */
 t41.value 60
} TUPGrpCfg;

Dialogic Corporation 89

TUP management function reference TUP Layer Developer's Reference Manual

TUPInitMgmtAPI

Initializes TUP management and opens a channel to the TX board.

Prototype

S16 TUPInitMgmtAPI (U8 board, U8 srcent)

Argument Description

board TX board number.

srcent Calling application entity ID.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

Details

Call TUPInitMgmtAPI before any other actions are taken.

90 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPInitNSapCfg

Builds a basic configuration buffer that can be passed to TUPSetNSapCfg.

Prototype

void TUPInitNSapCfg (TUPNSapCfg *cfg, S16 spId, S16 mtpSpId, U32 opc)

Argument Description

cfg Pointer to the configuration structure to fill:

typedef struct _TUPNSapCfg
{
 spId spId argument
 switchType TUP_SW_ITU /* TUP_SW_ITU or TUP_SW_CHN */
 ssf SSF_NAT /* SIO high nibble; one of:
 SSF_INTL,
 SSF_SPARE,
 SSF_NAT,
 SSF_RES */
 origPointCode opc /* local point code */
 mtpSpId mtpSpId argument /* MTP Sap to use, should
 * match MTP3 configuration */
 traceInd 0 /* trace on when nonzero */
} TUPNSapCfg;

spId Network service access point to configure.

mtpSpId MTP NSAP to use that matches a network service access point in the MTP 3 configuration.

opc Point code of this node at this service access point.

Return values

None.

Details

All unlisted elements in the TUPNSapCfg structure are set for the proper operation of
the TUP stack and must not be changed.

Refer to USAP and NSAP configuration on page 60 for more information.

Dialogic Corporation 91

TUP management function reference TUP Layer Developer's Reference Manual

TUPInitUSapCfg

Builds a basic configuration buffer that can be passed to TUPSetUSapCfg.

Prototype

void TUPInitUSapCfg (TUPUSapCfg *cfg)

Argument Description

cfg Pointer to the configuration structure to fill:

typedef struct _TUPUSapCfg
{
 S16 switchType TUP_SW_ITU /* TUP_SW_ITU or TUP_SW_CHN */
 S16 QCongOnsetLvl1 32 /* cfg onset value for level 0 */
 S16 QCongAbateLvl1 16 /* cfg abatement value for level 1 */
 S16 QCongOnsetLvl2 64 /* cfg onset value for level 1 */
 S16 QCongAbateLvl2 48 /* cfg abatement value for level 2 */
 S16 QCongOnsetLvl3 96 /* cfg onset value for level 2 */
 S16 QCongAbateLvl3 80 /* cfg abatement value for level 3 */
} TUPUSapCfg;

Return values

None.

Details

All unlisted elements in the structure are set for the proper operation of the TUP
stack and must not be changed.

Refer to USAP and NSAP configuration on page 60 for more information.

92 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPQuietReset

Sends a request to the board to reset all circuits without generating TUP traffic.

Prototype

S16 TUPQuietReset (U8 board)

Argument Description

board TX board number to configure.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Details

Predefined groups are also reset. Any transitory groups are deleted.

Note: Use this call with extreme caution due to the possibility that the state of the
circuits may not be identical between the network and NMS TUP after execution.

Dialogic Corporation 93

TUP management function reference TUP Layer Developer's Reference Manual

TUPResetCircuit

Sends a request to reset the given, pre-defined circuit.

Prototype

S16 TUPResetCircuit (U8 board, CirIdx circID)

Argument Description

board TX board number.

circID Circuit index to reset.

Return values

Return value Description

TUP_SUCCESS

board is out of range.

TUP_DRIVER

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

TUP_BOARD

Error occurred accessing the driver.

94 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPResetGroup

Sends a request to reset the given group of circuits.

Prototype

Argument Description

TX board number.

groupID

Return values

Return value

TUP_SUCCESS

TUP_BOARD board is out of range.

Error occurred accessing the driver.

TUP_FAILED

S16 TUPResetGroup (U8 board, U16 groupID)

board

Group ID to reset.

Description

TUP_DRIVER

Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 95

TUP management function reference TUP Layer Developer's Reference Manual

TUPSetCircCfg

Sets circuit configurations to the TX board. For more information, refer to Circuits
and groups configuration on page 60.

Prototype

S16 TUPSetCircCfg (U8 board, TUPCircCfg *cfg, S16 spId)

Argument Description

board TX board number.

cfg Pointer to the circuit configuration structure to fill. Refer to TUPInitCircCfg.

spId NSAP for which to configure this circuit set.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

96 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPSetGenCfg

Sends a basic configuration buffer to the TX board. Refer to Configuration on page
60 for more information.

Prototype

S16 TUPSetGenCfg (U8 board, TUPGenParms *cfg)

Argument Description

board TX board number.

cfg Pointer to the configuration structure to fill. Refer to TUPInitGenCfg.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 97

TUP management function reference TUP Layer Developer's Reference Manual

TUPSetNSapCfg

Sends a basic network service access point configuration buffer to the TX board.
Refer to USAP and NSAP configuration on page 60 for more information.

Prototype

S16 TUPSetNSapCfg (U8 board, TUPNSapCfg *cfg)

Argument Description

board TX board number.

cfg Pointer to the network service access point structure. Refer to TUPInitNSapCfg.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

98 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPSetUSapCfg

Sends a basic user service access point configuration buffer to the TX board. Refer to
USAP and NSAP configuration on page 60 for more information.

Prototype

S16 TUPSetUSapCfg (U8 board, TUPUSapCfg *cfg, U16 sapID)

Argument Description

board TX board number.

cfg Pointer to the USAP structure. Refer to TUPInitUSapCfg.

sapID User service access point to configure.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 99

TUP management function reference TUP Layer Developer's Reference Manual

TUPTermMgmtAPI

Closes TUP management and the channel to the TX board.

Prototype

S16 TUPTermMgmtAPI (U8 board)

Argument Description

board TX board number.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Details

Call TUPTermMgmtAPI to close TUP management when the application has finished
using it.

100 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPTraceControl

Sends a request to enable or disable tracing of TUP protocol messages.

Prototype

S16 TUPTraceControl (U8 board, Bool onOff, U32 flags)

Argument Description

board TX board number.

onOff Enable or disable tracing based on bitmap set by flags.

flags Bitmap of a particular trace that needs to be enabled or disabled.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Details

The following TUP traces are available through the tupmgr command line option:
EVENT, DATA, ERROR, WARNING, ELEMENT, and TIMER.

Dialogic Corporation 101

TUP management function reference TUP Layer Developer's Reference Manual

TUPUnblockCircuit

Sends a request to unblock the given circuit.

Prototype

S16 TUPUnblockCircuit (U8 board, CirIdx circID)

Argument Description

board TX board number.

circID Circuit index to unblock.

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

102 Dialogic Corporation

TUP Layer Developer's Reference Manual TUP management function reference

TUPUnblockGroup

Sends a request to unblock the given group of circuits.

Prototype

S16 TUPUnblockGroup (U8 board, U16 groupID, U8 unblockTyp)

Argument Description

board TX board number.

groupID Group ID to unblock.

unblockTyp Type of unblock. Possible values are:

TUP_MUNBLOCK
TUP_HUNBLOCK
TUP_SUNBLOCK

Return values

Return value Description

TUP_SUCCESS

TUP_BOARD board is out of range.

TUP_DRIVER Error occurred accessing the driver.

TUP_FAILED Task on the TX board reported a failure.

TUP_UNBOUND Application failed to call TUPInitMgmtAPI prior to this call.

Dialogic Corporation 103

88 Demonstration programs and
utilities

Summary of the demonstration programs and utilities

NMS TUP provides the following demonstration programs and utilities:

Program Description

tupcfg Downloads the TUP configuration to the TX board at boot time.

tupmgr Monitors and manages the status of the TUP layer.

tupterm Demonstrates how the TUP service accepts an incoming call from the specified TX board.

tuporig Demonstrates how the TUP service generates an outbound call to the specified TX board.

Dialogic Corporation 105

Demonstration programs and utilities TUP Layer Developer's Reference Manual

TUP configuration utility: tupcfg

Scans the TUP configuration text file and downloads the configuration to the TUP task
on the TX board at boot time.

Requirements

• A computer with a TX board installed

• Windows or UNIX

• Natural Access

• NMS SS7

Procedure

Follow this procedure to run tupcfg:

Step Action

1 From the command line prompt, navigate to the \nms\tx\samples\tup\tupcfg\ directory under
Windows or the /usr/bin/ directory under UNIX.

2 Enter the following command:

tupcfg options

where options include:

Options Description

-b board TX board number to which the TUP configuration is downloaded.
Default = 1.

-f filename Name and location of the TUP configuration file to be downloaded.

The TUP configuration program scans the information in the ASCII file (specified with the -f
option) and downloads this information to the task on the TX board.

Details

The TUP configuration utility is available in both source code and executable formats.
Use tupcfg if you want the application to load the TUP configuration to the TX board.

106 Dialogic Corporation

TUP Layer Developer's Reference Manual Demonstration programs and utilities

TUP layer status: tupmgr

Monitors the status of the TUP layer after the TUP configuration is downloaded to the
TX board with tupcfg. The TUP manager (tupmgr) provides a command line interface
that enables an application to set alarm levels, trace buffers, and view TUP statistics.

Requirements

• A computer with a TX board installed

• Windows or UNIX

• Natural Access

• NMS SS7

Procedure

Follow this procedure to run tupmgr:

Step Action

1 From the command line prompt, navigate to the \nms\tx\samples\tup\tupmgr\ directory under
Windows or the /usr/bin/ directory under UNIX.

2 Enter the following command:

tupmgr -b board

where board is the TX board on which the TUP layer is loaded.

Dialogic Corporation 107

Demonstration programs and utilities TUP Layer Developer's Reference Manual

The tupmgr program supports the following commands:

Command Description

VALIDATE circuit Validates the specified circuit.

BLOCK circuit Blocks TUP circuit.

UNBLOCK circuit Unblocks TUP circuit.

RESET entity
number

Resets the specified entity (CIRCUIT or GROUP) number.

MBLOCK circuit Maintenance blocks the specified circuit group.

HBLOCK circuit Hardware blocks the specified circuit group.

SBLOCK circuit Software blocks the specified circuit group.

MUNBLOCK
circuit

Maintenance unblocks the specified circuit group.

HUNBLOCK circuit Hardware unblocks the specified circuit group.

SUNBLOCK circuit Software unblocks the specified circuit group.

DELETE entity
number

Deletes the specified entity (CIRCUIT or GROUP) number. If CIRCUIT is selected,
the count of circuits to delete must also be specified.

STATUS entity
number

Retrieves status of current entity (CIRCUIT or GROUP) number.

STATS entity
number

Retrieves statistics for the specified entity (NSAP, GROUP, or CIRCUIT) number.

GET entity
number

Retrieves configuration for the specified entity (GEN, USAP, NSAP, GROUP,
CIRCUIT) number.

TRACE entity ON
| OFF

Turns buffer tracing ON or OFF for the specified entity (EVENT, DATA, ERROR,
WARNING, ELEMENT, or TIMER).

BOARD board Switches to a new target board.

Q Quits the application.

Details

The TUP manager program is available in both source code and executable formats.
The source code demonstrates how to use TUP management to integrate SS7 TUP
layer management into custom configuration management systems.

108 Dialogic Corporation

TUP Layer Developer's Reference Manual Demonstration programs and utilities

Accepting incoming calls: tupterm

Demonstrates how the TUP service accepts an incoming phone call from the specified
TX board.

Requirements

• A computer with a TX board installed

• Windows or UNIX

• Natural Access

• NMS SS7

Procedure

Follow this procedure to run tupterm:

Step Action

1 From the command line prompt, navigate to the \nms\tx\samples\tup\ directory under Windows
or the /usr/bin/ directory under UNIX.

2 Enter the following command:

tupterm options

where options include:

Option Description

-b board TX board number on which to bind. Default = 1.

3 Press any key to exit the program.

Dialogic Corporation 109

Demonstration programs and utilities TUP Layer Developer's Reference Manual

Generating outbound calls: tuporig

Demonstrates how the TUP service generates an outbound call to the specified TX
board.

Requirements

• A computer with a TX board installed

• Windows or UNIX

• Natural Access

• NMS SS7

Procedure

To run tuporig:

Step Action

1 From the command line prompt, navigate to the \nms\tx\samples\tup\ directory under Windows
or the /usr/bin/ directory under UNIX.

2 Enter the following command:

tuporig options

where options include:

Option Description

-b board TX board number on which to bind. Default = 1.

called number Phone number to which the call is placed.

circuit index Circuit index on which the call is placed.

calling number Phone number from which the call is placed.

Refer to the source code for more options.

3 Press r to release the call.

4 Press q to quit the program.

110 Dialogic Corporation

99 Information elements and
events reference

Usage information overview

This section provides information on the NMS TUP:

• Information elements (IEs)

• Events

Data structures

C language definitions for all information element structures, event structures, and
associated constants are provided in the tupmsgs.h file.

Applications must code information elements not relevant to their application as
NOT_PRESENT.

Coding of presence indicators

Each information element within an event contains a presence indicator to specify
whether or not to include it in an outgoing event, or whether or not it was received
in an incoming event.

Presence indicators are coded with the following values (definitions included in
tupmsgs.h):
#define NOT_PRESENT 0 /* field not present in incoming msg
 * or not to be populated in outgoing msg */
#define PRESENT 1 /* field is present in incoming msg or
 * should be included in outgoing msg */

Dialogic Corporation 111

Information elements and events reference TUP Layer Developer's Reference Manual

Information elements (IEs)

This topic specifies the layout of the following information elements (IEs) that are
contained in the events passed between the application and NMS TUP:

• Element header

• Token string

• Address signals

• Answer type information

• Automatic congestion level

• Calling party category

• Charge information

• Closed user group interlock code

• Initial address indicator

• LineID

• Message indicator

• Point code

• Range information

• Response indicator

• Trunk ID

Element header

Each information element contains an element header as the first field in the
structure. The element header consists of the presence indicator for the entire
information element.
typedef struct tupelmtHdr /* element header */
{
 Bool pres; /* present */
 U8 spare1; /* for alignment */
 U16 spare2; /* for alignment */
} TupElmtHdr;

Token string

Consists of the presence indicator for the entire token string, a length field, and the
string itself.
typedef struct tuptknStr /* token string */
{
 U8 spare0; /* present flag */
 U8 len; /* length */
 U16 spare1; /* for alignment */
 U8 val[(TUP_MF_SIZE_TKNSTR + 4) & 0xffc];
 /* string */
} TupTknStr;

112 Dialogic Corporation

TUP Layer Developer's Reference Manual Information elements and events reference

Address signals

Contains the address signals of a called number.
typedef struct addrSignals
{
 TupElmtHdr eh; /* element header */
 TupTknStr addrSigs;
} AddrSigs;

The addrSigs field is coded the same as in the LineID information element.

Answer type information

Contains the type of answer message to send or the type received.
typedef struct ansType
{
 TupElmtHdr eh; /* element header */
 U8 answerType;
 U8 spare2;
 U16 spare1;
} AnswerType;

answerType is coded to one of the following:

Hex Message

0x0 ANU_NO_CHARGE

0x1 ANU_CHARGE

0x2 ANU_UNQUALIFIED

Automatic congestion level

Indicates that a particular level of congestion exists at the sending exchange.
typedef struct autoCongLvl
{
 TupElmtHdr eh; /* element header */
 U8 auCongLvl; /* congestion level */
 U8 spare2;
 U16 spare1;
}TupAutoCongLvl;

The auCongLvl field is coded to one of the following values:

Hex Message

0x0 TUPACLVL_LVL1

0x1 TUPACLVL_LVL2

Calling party category

Contains the category of the calling party.
typedef struct callPartyCategory
{
 TupElmtHdr eh; /* element header */
 U8 callPartyCat;
 U8 spare2;
 U16 spare1;
} CallPartyCat;

Dialogic Corporation 113

Information elements and events reference TUP Layer Developer's Reference Manual

The callPartyCat field is coded to one of the following values:

Hex Message

0x0 UNKNOWN_SOURCE

0x1 OPERATOR_FRENCH

0x2 OPERATOR_ENGLISH

0x3 OPERATOR_GERMAN

0x4 OPERATOR_RUSSIAN

0x5 OPERATOR_SPANISH

0x6 MUT_AGREE_CHINESE

0x7 MUT_AGREEMENT

0x8 MUT_AGREE_JAPANESE

0x9 NATIONAL_OPERATOR

0x0a ORDINARY_TOLL_CALLER

0x0b PRIORITY_TOLL_CALLER

0x0c DATA_CALL

0x1d TEST_CALL

0xf PAY_PHONE (not supported in China)

0x10 ORDINARY_NO_CHG (China only)

0x11 ORDINARY_PERIODIC (China only)

0x12 ORDINARY_METER_IMMED (China only)

0x13 ORDINARY_PRINTER_IMMED (China only)

0x14 PRIORITY_NO_CHG (China only)

0x15 PRIORITY_PERIODIC (China only)

0x18 ORDINARY_LOCAL (China only)

Charge information

Contains a raw 16-bit piece of charging information.
typedef struct chgInfo
{
 TupElmtHdr eh; /* element header */
 U16 info;
 U16 spare1;
} ChargeInfo;

114 Dialogic Corporation

TUP Layer Developer's Reference Manual Information elements and events reference

Closed user group interlock code

Identifies a closed user group within a network.
typedef struct clsedUserGrp
{
 TupElmtHdr eh; /* element header */
 U8 grpInd; /* group indicator */
 U8 spare2;
 U16 spare1;
 U32 interlockCode; /* interlock Code */
} ClosedUserGroup;

The fields are encoded as follows:

Field Description

interlockCode 32-bit binary code assigned by the network administrator.

grpInd Set to one of the following values:

0x00 = CUG_ORDINARY_CALL
0x01 = CUG_SUCCESSFUL_CHECK
0x02 = CUG_ACCESS_ALLOWED
0x03 = CUG_ACCESS_NOT_ALLOWED

Initial address indicator

Contains an indicator of the caller:
typedef struct iamMessageInd
{
 TupElmtHdr eh; /* element header */
 U16 msgInd; /* indicator */
 U16 spare1;
} IAMMessageInd;

Dialogic Corporation 115

Information elements and events reference TUP Layer Developer's Reference Manual

The msgInd field is coded by using OR to combine one or more of the following
values:

Hex Message

0x000 IAM_MI_LOCAL_SUBSCRIBER

0x002 IAM_MI_NATIONAL

0x003 IAM_MI_INTERNATIONAL

0x000 IAM_NO_SATELLITE

0x004 IAM_ONE_SATELLITE

0x000 IAM_MI_CONT_CHECK_NOT_REQ

0x010 IAM_MI_CONT_CHECK_REQ

0x020 IAM_MI_CONT_CHECK_PERFORMED_PREVIOUS

0x040 IAM_MI_OUT_ECHO_SUPP_INCLUDED

0x080 IAM_MI_IN_CALL_INTERNATIONAL

0x100 IAM_MI_REDIRECTED_CALL

0x200 IAM_MI_DIGITAL_PATH_REQUIRED

0x400 IAM_MI_ALL_SS7_PATH

LineID

Contains the information necessary to identify the calling or called party.
typedef struct lineID /* Called Party Number */
{
 TupElmtHdr eh; /* element header */
 U8 addrInd; /* nature of indicator */
 U8 spare2;
 U16 spare1;
 TknStr addrSigs; /* Address Signal */
} LineID;

The fields in the LineID structure are encoded as follows:

Field Description

addrInd 0x00 = TUPSUBSNUM Subscriber number
0x02 = TUPNATNUM Nationally significant number
0x03 = TUPINTNATNUM International number

0x00 = TUPNOTRES Number not restricted
0x04 = TUPRESTRICTED Number is restricted
0x00 = TUPNOTINC No indic incomplete number
0x08 = TUPINCOMPLETE Number incomplete

addrSigs Actual address digits.

116 Dialogic Corporation

TUP Layer Developer's Reference Manual Information elements and events reference

addrSigs is encoded as follows:

Octet 1 2nd address digit 1st (most significant) address digit

...

Octet n m + 1th address digit or filler mth address digit

Each digit is encoded with the following bit pattern:

Bit pattern Digit

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 spare

1011 code 11

1100 code 12

1101 spare

1110 spare

1111 ST

TUPASCIItoADDR and TUPADDRtoASCII convert between ASCII format and this
format.

Message indicator

Contains an address complete indicator or extended unsuccessful backward message
(EUM) subscriber busy.
typedef struct messageInd
{
 TupElmtHdr eh; /* element header */
 U8 indicator;
 U8 spare2;
 U16 spare1;
} msgInd;

Dialogic Corporation 117

Information elements and events reference TUP Layer Developer's Reference Manual

The indicator field for an ACM is coded by using OR to combine one or more of the
following:

Hex Message

0x00 ACM_COMPLETE

0x01 ACM_COMPLETE_CHARGE

0x02 ACM_COMPLETE_NO_CHARGE

0x03 ACM_COMPLETE_COINBOX

0x04 ACM_SUBSCRIBER_FREE

0x08 ACM_INCOMING_ECHO_SUPPRESSED

0x10 ACM_CALL_FORWARDED (not used)

0x20 ACM_ALL_SS7_PATH (not used)

The indicator field for an EUM is coded with the following:

Hex Message

0x01 EUM_SUBSCRIBER_BUSY

Point code

Identifies a point code.
typedef struct pntCode
{
 TupElmtHdr eh; /* element header */
 U32 pointCode; /* Point Code */
} PointCode;

Format of the pointCode field is in hexadecimal notation.

For 24-bit point codes, 0xABCDEF properly sets the 3 LSB of the field.

For 14-bit point codes, only the LSB and the six least significant bits of the next LSB
are used.

Range information

Pertains to the number of circuits for which a group message has relevant
information held in an 8-bit raw value:
typedef struct grmRange
{
 TupElmtHdr eh; /* element header */
 U8 range;
 U8 spare2;
 U16 spare1;
 U8 statusMap[256]; /* set if range != 0 */
} Range;

The range field is defined to be 0 (zero) for predefined groups. If the group is
dynamic, the value must be one less than the number of circuits in the group. For
example, if the group is 10 circuits, the range is 9. The statusMap bytes must be set
to 0 (zero) or 1, depending on whether or not the action is taken on that circuit in
the group. For 10 circuits, if you do not want to reset the eighth one, set all bytes to
1 except for the statusMap[7].

118 Dialogic Corporation

TUP Layer Developer's Reference Manual Information elements and events reference

Response indicator

Contains a request or response indicator.
typedef struct respInd
{
 TupElmtHdr eh; /* element header */
 U8 indicator;
 U8 spare2;
 U16 spare1;
} RespInd;

The indicator field is calculated using OR to combine one or more of the following
values. There are separate values for the information request (GRQ) and information
response (GSM):

Hex Message

0x01 GSM_CALLING_PARTY_CATEGORY

0x02 GSM_CALLING_LINE_ID

0x04 GSM_INCOMING_EXCH_ID

0x08 GSM_ORIG_CALLED_ADDRESS

0x10 GSM_OUTGOING_ECHO_SUPPRESSOR

0x20 GSM_MALICIOUS_CALL_ID

0x40 GSM_HOLD_INDICATOR

0x01 GRQ_CALLING_PARTY_CATEGORY

0x02 GRQ_CALLING_LINE_ID

0x04 GRQ_ORIG_CALLED_ADDRESS

0x08 GRQ_MALICIOUS_CALL_ID

0x10 GRQ_HOLD_INDICATOR

0x20 GRQ_OUTGOING_ECHO_SUPPRESSOR

Trunk ID

Contains the trunk ID for a call.
typedef struct trunkid
{
 TupElmtHdr eh; /* element header */
 U8 idType; /* type of exch ID */
 U8 spare2;
 U16 spare1;
 TknStr exchID; /* exch ID */
 TknStr trunkID; /* trunk ID-not used */
} TrunkID;

Set idType to one of the following:

Hex Value

0x01 GSM_ID_TYPE_IND_POINT_CODE

0x02 GSM_ID_TYPE_IND_AVAIL_LINE_ID

Dialogic Corporation 119

Information elements and events reference TUP Layer Developer's Reference Manual

The exchID field is coded with the digit values listed in the LineID information
element or a point code, depending on the value of idType.

The trunkID field is not used.

120 Dialogic Corporation

TUP Layer Developer's Reference Manual Information elements and events reference

Events

This topic specifies the layout of the events passed between the application and NMS
TUP:

• Connect request

• Connect response

• Connect status

• Status

• Release

• All events

Connect request

typedef struct tupConEvnt /* TUP Connect Event */
{
 CallPartyCat cgPtyCat; /* IAM, IAI */
 IAMMessageInd msgInd; /* IAM, IAI */
 AddrSigs addrSigs; /* IAM, IAI */
 LineID cgPtyNum; /* IAI */
 LineID origCdNum; /* IAI */
 ClosedUserGroup clUsrGrp; /* IAI */
} TupConEvnt;

Connect response

typedef struct tupConRspEvnt
{
 AnswerType answerType; /* ANC, ANN, ANU */
} TupConRspEvnt;

Connect status

typedef struct tupCnStEvnt
{
 RespInd respInd; /* GRQ, GSM */
 MsgInd msgInd /* ACM, ACC */
 TupAutoCongLvl congLvl; /* ACC */
 AddrSigs addrSigs; /* SAM, SAO */
 CallPartyCat cgPtyCat; /* GSM */
 LineID cgPtyNum; /* GSM */
 LineID origCdNum; /* GSM */
 TrunkID trunkID; /* GSM */
 ChargeInfo chargeInfo; /* MPM */
} TupCnStEvnt;

Status

typedef struct tupStaEvnt /* Status Event */
{
 MsgInd msgInd; /* EUM */
 PointCode pointCode; /* EUM */
 Range range; /* all GRM's */
} TupStaEvnt;

Release

typedef struct tupRelEvnt /* Release Event */
{
 Cause cause; /* NOT USED */
} TupRelEvnt;

Dialogic Corporation 121

Information elements and events reference TUP Layer Developer's Reference Manual

All events

This structure is filled if there is an error to report. It is included in the TupAllSdus
structure. The evntType field of the information block is filled with ERRORIND in the
error report case. Refer to TUPRetrieveMessage.
typedef struct tupErrInfo
{
 U8 origIndType; /* original indicator */
 U8 origEvntType; /* original event type */
 U32 errorCode; /* error code - see below */
} TupErrInfo;

errorCode is filled with one of the following values:

Inex Value Description

1 TUP_NOMEM No memory

2 TUP_INVNSAP Invalid NSAP

3 TUP_INVUSAP Invalid USAP

4 TUP_INVGRP Invalid group number

5 TUP_INVCIRC Invalid circuit index

6 TUP_SAPEXIST SAP exists already

7 TUP_CIRCEXIST Circuit exists already

8 TUP_MTPERR Error received from MTP

9 TUP_INVSTATE Circuit is in invalid state for this action

10 TUP_UNKEVT Unknown event

11 TUP_INVENT Invalid entity

12 TUP_INVPKT Invalid packet received

13 TUP_INVINST Invalid instance

14 TUP_BLOCKED Circuit is blocked

15 TUP_INVSWITCH Invalid switch type

This union is the returned structure from TUPRetrieveMessage in the event
parameter:
typedef struct tupAllSdus /* all SDU messages */
{
 union
 {
 TupConEvnt conEvnt;
 TupConRspEvnt conRspEvnt;
 TupCnStEvnt conStEvnt;
 TupRelEvnt relEvnt;
 TupStaEvnt staEvnt;
 } m;
 TupErrInfo errInfo;
} TupAllSdus;

122 Dialogic Corporation

Index

A connections 28, 30, 32, 32

accepting incoming calls 109 contexts and queues 17

D address messages 32

Address signals information element
113

demonstration programs 105

E
AddrSigs 113 Element header information element

112 alarms 22

All events event 122 entity 15

Answer type information element 113 events 42, 121

F AnswerType 113

application programming models 17 failed connections 32

Automatic congestion level information
element 113

functions 43, 43, 63, 65

G
B generating outbound calls 110
blocking circuit groups 39 I
blocking circuits 37 IAMMessageInd 115
C incoming calls 109
Calling party category information

element 113
information elements 112

Initial address indicator information
element 115 CallPartyCat 113

Charge information information
element 114

instance ID 15

L
ChargeInfo 114

LineID 116
circuit configuration 60

LineID information element 116
circuit groups 36, 37, 39

M
circuits with TUP management 60, 61

management functions 16, 59, 63, 65
circuits with TUP service 35, 37

Message indicator information element
117 Closed user group interlock code

information element 115
msgInd 117

ClosedUserGroup 115
multiple originating point codes 61

configuration 60, 106, 107
multiple-threads 21

congestion 41
N

Connect request event 121
Natural Access 17, 25

Connect response event 121
NSAP configuration 60

Connect status event 121

Dialogic Corporation 123

Index NMS TUP Developer's Reference Manual

O TUPAPISTATS 50

operating system considerations 21 TUPASCIItoADDR 45

outbound calls 110 TUPAutoCongLvl 113

P TUPBlockCircuit 67

Point code information element 118 TUPBlockGroup 68

PointCode 118 tupcfg 106

presence indicators 111 TUPCircCfg 85

programming model 15 TupCircStats 72

Q TupCircStatus 74

queues and contexts 17 TupCnStEvnt 121

R TupConEvnt 121

range 118 TUPConnectReq 46

Range information element 118 TUPConnectResp 47

redundancy events 42 TUPConnectStatusReq 48

Release event 121 TupConRspEvnt 121

RespInd 119 TUPDeleteCircuit 69

Response indicator information
element 119

TUPDeleteGroup 70

TupElmtHdr 112
S TupErrInfo 121
SAP 15 TUPGenParms 87
service access points (SAP) 15 TUPGetApiStats 50
service functions 16, 43, 43 TUPGetCircCfg 71
signaling parameters 20 TUPGetCircStats 72
software-oriented circuit groups 39 TUPGetCircStatus 74
SS7 architecture 11 TUPGetGenCfg 77
statistics retrieval 61 TUPGetGrpCfg 78
Status event 121 TUPGetGrpStats 79
status retrieval 61 TUPGetGrpStatus 81
subsequent address messages 32 TUPGetNSapCfg 82
T TUPGetNSapStats 83
Token string information element 112 TUPGetUSapCfg 84
tracing 41 TUPGrpCfg 88
Trunk ID information element 119 TupGrpStats 79
TrunkID 119 TupGrpStatus 81
TUP task 13 TUPInitCircCfg 85
TUPADDRtoASCII 44 TUPInitGenCfg 87
TUPAlarmControl 66 TUPInitGrpCfg 88
TupAllSdus 122 TUPInitMgmtAPI 90

124 Dialogic Corporation

NMS TUP Developer's Reference Manual Index

TUPInitNSapCfg 91 TUPSetUSapCfg 99

TUPInitUSapCfg 92 TupStaEvnt 121

tupmgr 107 TUPStatusReq 57

tupmsgs.h 111 tupterm 109

TUPNSapCfg 91 TUPTermMgmtAPI 100

TupNSapStats 83 TupTknStr 112

tuporig 110 TUPTraceControl 101

TUPQuietReset 93 TUPUnblockCircuit 102

TupRcvInfoBlk 53 TUPUnblockGroup 103

TUPReleaseReq 51 TUPUSapCfg 92

TUPReleaseResp 52 txalarm 22

U TupRelEvnt 121

TUPResetCircuit 94 unblocking circuit groups 39

TUPResetGroup 95 unblocking circuits 37

TUPRetrieveMessage 53 unsolicited alarms 22

TUPSetCircCfg 96 USAP configuration 60

TUPSetGenCfg 97 utilities 105

TUPSetNSapCfg 98

Dialogic Corporation 125

	Copyright and legal notices
	Introduction
	SS7 overview
	SS7 architecture
	TUP task

	TUP programming model
	Programming model overview
	TUP service users
	Entity and instance IDs
	NMS TUP functions
	Service functions
	Management functions

	Queues and contexts
	Single-context, single-queue model
	Multiple-context, single-queue model
	Multiple-context, multiple-queue model

	Signaling parameters
	Operating system specific considerations
	Multiple-threaded considerations

	Unsolicited alarms

	Using the TUP service
	Setting up the Natural Access environment
	Initializing the Natural Access environment
	Creating queues and contexts
	Binding to the TUP service

	Establishing connections
	Establishing outgoing connections
	Establishing incoming connections

	Clearing connections
	Application clearing far end connection
	Far end exchange clearing outgoing connection
	Application clearing incoming connection
	Far end exchange clearing incoming connection

	Sending subsequent address messages
	Handling failed connection requests
	Subscriber busy
	Circuit blocked
	Circuit reset
	Unknown or missing response

	Resetting circuits
	Application initiated circuit reset
	Far exchange initiated circuit reset

	Resetting circuit groups
	Application initiated circuit reset
	Far exchange initiated circuit reset

	Blocking and unblocking circuits
	Application blocking a circuit
	Far exchange blocking a circuit
	Application unblocking a circuit
	Far exchange unblocking a circuit

	Blocking and unblocking software-oriented circuit groups
	Application-initiated group blocking request
	Far exchange-initiated group blocking request
	Application initiated group unblocking request
	Far exchange initiated group unblocking request

	Controlling TUP congestion
	Setting up tracing
	Handling redundancy events

	TUP service function reference
	TUP service function summary
	Using the TUP service function reference
	TUPADDRtoASCII
	
	
	Prototype
	Return values

	TUPASCIItoADDR
	
	
	Prototype
	Return values
	Details

	TUPConnectReq
	
	
	Prototype
	Return values
	Details

	TUPConnectResp
	
	
	Prototype
	Return values
	Details

	TUPConnectStatusReq
	
	
	Prototype
	Return values
	Details

	TUPGetApiStats
	
	
	Prototype
	Return values

	TUPReleaseReq
	
	
	Prototype
	Return values
	Details

	TUPReleaseResp
	
	
	Prototype
	Return values
	Details

	TUPRetrieveMessage
	
	
	Prototype
	Return values
	Details

	TUPStatusReq
	
	
	Prototype
	Return values
	Details

	Managing TUP tasks on the board
	TUP management overview
	Configuration
	General configuration
	USAP and NSAP configuration
	Circuits and groups configuration

	Managing circuits
	Retrieving statistics and status

	TUP management function reference
	TUP management function summary
	Configuration functions
	Control functions
	Statistics functions
	Status functions

	Using the TUP management function reference
	TUPAlarmControl
	
	
	Prototype
	Return values

	TUPBlockCircuit
	
	
	Prototype
	Return values

	TUPBlockGroup
	
	
	Prototype
	Return values

	TUPDeleteCircuit
	
	
	Prototype
	Return values
	Details

	TUPDeleteGroup
	
	
	Prototype
	Return values

	TUPGetCircCfg
	
	
	Prototype
	Return values

	TUPGetCircStats
	
	
	Prototype
	Return values
	Details

	TUPGetCircStatus
	
	
	Prototype
	Return values
	Details

	TUPGetGenCfg
	
	
	Prototype
	Return values

	TUPGetGrpCfg
	
	
	Prototype
	Return values

	TUPGetGrpStats
	
	
	Prototype
	Return values
	Details

	TUPGetGrpStatus
	
	
	Prototype
	Return values

	TUPGetNSapCfg
	
	
	Prototype
	Return values

	TUPGetNSapStats
	
	
	Prototype
	Return values

	TUPGetUSapCfg
	
	
	Prototype
	Return values

	TUPInitCircCfg
	
	
	Prototype
	Return values
	Details

	TUPInitGenCfg
	
	
	Prototype
	Return values
	Details

	TUPInitGrpCfg
	
	
	Prototype
	Return values
	Details

	TUPInitMgmtAPI
	
	
	Prototype
	Return values
	Details

	TUPInitNSapCfg
	
	
	Prototype
	Return values
	Details

	TUPInitUSapCfg
	
	
	Prototype
	Return values
	Details

	TUPQuietReset
	
	
	Prototype
	Return values
	Details

	TUPResetCircuit
	
	
	Prototype
	Return values

	TUPResetGroup
	
	
	Prototype
	Return values

	TUPSetCircCfg
	
	
	Prototype
	Return values

	TUPSetGenCfg
	
	
	Prototype
	Return values

	TUPSetNSapCfg
	
	
	Prototype
	Return values

	TUPSetUSapCfg
	
	
	Prototype
	Return values

	TUPTermMgmtAPI
	
	
	Prototype
	Return values
	Details

	TUPTraceControl
	
	
	Prototype
	Return values
	Details

	TUPUnblockCircuit
	
	
	Prototype
	Return values

	TUPUnblockGroup
	
	
	Prototype
	Return values

	Demonstration programs and utilities
	Summary of the demonstration programs and utilities
	TUP configuration utility: tupcfg
	
	
	Requirements
	Procedure
	Details

	TUP layer status: tupmgr
	
	
	Requirements
	Procedure
	Details

	Accepting incoming calls: tupterm
	
	
	Requirements
	Procedure

	Generating outbound calls: tuporig
	
	
	Requirements
	Procedure

	Information elements and events reference
	Usage information overview
	Data structures
	Coding of presence indicators

	Information elements (IEs)
	Element header
	Token string
	Address signals
	Answer type information
	Automatic congestion level
	Calling party category
	Charge information
	Closed user group interlock code
	Initial address indicator
	LineID
	Message indicator
	Point code
	Range information
	Response indicator
	Trunk ID

	Events
	Connect request
	Connect response
	Connect status
	Status
	Release
	All events

