Dialzgic.

Making Innovation Thrive~

Dialogic® NaturalAccess™
TCAP Layer Developer’s
Reference Manual

July 2009 64-0462-01

www.dialogic.com

TCAP Layer Developer’s Reference Manual

Copyright and legal notices

Copyright © 1997-2009 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in
whole or in part without permission in writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice
and do not represent a commitment on the part of Dialogic Corporation or its subsidiaries (“Dialogic”).
Reasonable effort is made to ensure the accuracy of the information contained in the document. However,
Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors,
inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC
ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL
PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems,
or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual
property licenses with the sale of Dialogic products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a
signed agreement with Dialogic. More detailed information about such intellectual property is available from
Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic
encourages all users of its products to procure all necessary intellectual property licenses required to implement
any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to
country and it is the responsibility of those who develop the concepts or applications to be aware of and comply
with different national license requirements.

Any use case(s) shown and/or described herein represent one or more examples of the various ways, scenarios
or environments in which Dialogic® products can be used. Such use case(s) are non-limiting and do not
represent recommendations of Dialogic as to whether or how to use Dialogic products.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS
(stylized), Eiconcard, SIPcontrol, Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation Thrive,
Connecting to Growth, Video is the New Voice, Fusion, Vision, PacketMedia, NaturalAccess, NaturalCallControl,
NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either registered
trademarks or trademarks of Dialogic Corporation or its subsidiaries. Dialogic's trademarks may be used publicly
only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800
Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will
be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of
Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. The
names of actual companies and product mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible
for your decision to use open source in connection with Dialogic products (including without limitation those
referred to herein), nor is Dialogic responsible for any present or future effects such usage might have, including
without limitation effects on your products, your business, or your intellectual property rights.

2 Dialogic Corporation

Revision history

Revision
9000-6469-10
9000-6469-11
9000-6469-12
9000-6469-13
9000-6469-14
9000-6469-15
9000-6469-16
9000-6469-17
9000-6469-18
9000-6469-19
9000-6469-20
64-0462-01

Release date
July 1997
October 1997
September 1998
March 1999
March 2000
November 2000
August 2001
November 2003
April 2005

July 2006
September 2008
July 2009

Last modified: July 7, 2009

Refer to www.dialogic.com for product updates and for information about support policies, warranty

information, and service offerings.

Notes

TCAP preliminary release A.0.2
TCAP preliminary release A.0.3
GIG

GIG

GIG

GJG, SS7 3.6

GJG, SS7 3.8 beta

SRG, SS7 4.0

SRG, SS7 4.2

LBZ, SS7 4.3

LBG, SS7 5.0

LBG, SS7 5.1

Table Of Contents

Chapter 1:INtroductionciiciiiiiir i r s s s s s s s s s s ra s ra s ramrmmnnmnnnnnns 9
Chapter 2:SS7 OVeIrVIeW . .iiciiiiiemmsesmsesmsssmsasssasssasssasssasssasssanssanssanssanssnnssnnnss 11
SS 7 ArChitECEUIE L i e 11
D Yo Y=l I oo] o Yo g 1= | =3 12

[(o1 o] o g 0o] =] o] = P 12
IO AN = 1] 13
Chapter 3: TCAP programming modelccvcvrvmmammnmsmmsessassessassassassansassansanss 15
Programming mMoOdel OVEIVIEW ...t aaes 15
O A =T =T VA ol U 1= = ol 15
ENtity @and iNSEanCe IS ..ot e 16
NMS TCAP fUNCHIONS .ttt e e e e e 16
=] VAol =TR U1 [t o] o 1= PP 16
Management fUNCHIONS ..ot i e e e et e e aneeaas 17
QUEUES AN CONEEXES 11ttt e e aaea 18
Single-context, single-queue model. ..o 18
Multiple-context, single-queue model ... 19
Multiple-context, multiple-queue model ..o 20
SCCP quality of service (QOS) ..ttt i i e e 21
B IO AN = o o= 1= T o o - 22
FA N Y B =] g 7= Lot o T VA o 1= P 22
VRS IR o =1 1Y Lot o] T 0V o 1= P 22
QIO AN oo T 0T =T o Lo 23
Message lengths and segmentation ..o 24
Multiple-threaded considerationsoooiiiiiiiiii i 24
Transaction checkpointing.....cooui i e 25
(@fo] g [<1=y (o] o I o] o) o | PP 26
OUtbOUNA CONGESTION vt e e ees 26
INboUNd CONGESEION .. e e e e e enenes 29
JLILO7AY oo a1 U] =) w o o 30
SCCP addressing and rOULING .. .cuviiiii i i i e e e e aas 31
Routing by point code and subsystem number........cccocoiiiiiiiiii i 31
Routing by global title ...coiiiiii 31
1] @@ ST [[=TS0 V7= o o e 1= 32
Global title translation.......ccoei i e 33
Setting fuNCLioN parameEters ..o e 33
Setting the SCCP configurationoiiiiiiii e e 34
Setting variations in global title translation ... 35
Status and Notify INAICatioONS ... ciiiii i i 36
(D= Lo T 5 1 36
Chapter 4:Using the TCAP ServiCe ...cuicurmmrmmrmmranmrassrasssasssassssssssssssnsssnssnnnss 37
Setting up the Natural Access environment.......ccooiiiiiiiii i e 37
Initializing the Natural Access environmentciiviiiiiiiiii e 37
Creating queues and CoONEEXES ..t e e 37
Binding to the TCAP SEIVICE .iiiiiiiiii it i e e e i a e aeeaas 38
Receiving TCAP Service eVENES ... i 39
Handling redundanCy @VeNES ... e 40
Generating TCAP transactionsouiiiiiiiiiiiii i s e e e aaeas 40

Dialogic Corporation 5

Table of Contents TCAP Layer Developer's Reference Manual

Simple request and response transactioncocoiiiiiiiiii i 41
Conversational linked transaction.........ccviiiii i e 42
Handling abnormal conditionsccoiiiiiii e 44
Invalid transaction PortioNS . ..coi it e 44
Transaction inactivity tiMeEOULSc.eviiiiiiii s 45
Invalid component in a begin or quUery mMessage......ccvvivviiiiiiiiiiiiiiirieiieenaes 46
Invalid component in a continue or conversation message.........cccoevviiieninnnn. 47
Invalid component in an end Or reSpoNSEe MESSAGEvvivieiieiieiieiieeieeereenenns 48
Invoke time-outs (ITU-T ONly)t e e aaeea 49
Invalid component in a multiple component message........cooevvviiiiiiiiiiininenn. 49
Signaling point and subsystem Status........ccooviiiiiiiii e 50
Coordinated state Changec.oiiiiii e 50
Subsystem state Changesoiiiiiiiii e 51
Remote signaling point failures.........oooiiiiiiii e 51
Tracing function calls and @VeNntS ... 52
Chapter 5: TCAP service function reference.......c.cuiciiiimrrsrsn s s s s snanns 53
TCAP service fUNCEION SUMIMIAIY c.uuireiiie ittt earesiresee s eare e aneaaneaaneaaneenes 53
Using the TCAP service function reference.......cccoviiiiiiiiiiiiii i 54
L7 27 1Y [[@o] 5 o] o S 55
IO AN 2 @0 o] /e | 2T T 56
IO o e To] /o | 2= T=] o 1 P 57
T C AP G A DI S AES it e 58
QL7 2N 2 CT = @] 1 1] o T 59
IO Y 2 1 Lol =T o = 61
IO A o 2= =11 T I = 1 62
IO N o X o g VA= N T Y= T 63
TC AP S At EREG. . it 64
IO A ol =1 1 1= 2o 1] P 65
Chapter 6: TCAP management function reference........cccvcvervmvmrnnnnsnsannaann 67
TCAP management fuNCtioN SUMMANYciiiiiiie e ee e eees 67
Using the TCAP management function referencecoooiiiiiiiii e 68
I O7 AN AN I Yo [) o o] 69
IO 2 C1=T 11 o 70
IO Y o = 1] =) 6 71
IO o C = 1= o [o [72
IO o €= u = o1 o 73
BT 23 101 ¥ = 11 o 74
TCAPTNIEMGMEA P .. e 76
LI O7 A o o ST=] o1 1« 77
IO AN 22 Y= o o [80
IO AN Y= 0 1) = 1 81
TCAPTermMgmMEAPL. ... s 83
IO AN I =T =T 1 o o P 84
Chapter 7: Demonstration programs and utilitiesccevciviviiivisnicnncnnnen, 85
Summary of the demonstration programs and utilities............ccociiiiiiiiiiinne, 85
Request and response transaction: find800c.ccoviiiiiiiiiii i 86
SOOI o101 0 gY o= Y=Y V7= PP 88
100 I o 1810 ¢ =T ol ol 1= o | P 88
TroUbIEShOOtING .o e 89
Using the TCAP ITU-T ProtoCol......ccouiiniiiiii e ees 89

6 Dialogic Corporation

TCAP Layer Developer's Reference Manual Table of Contents

Adding SUbSYSTEM NUMDEIS . .iiiiii i i eaees 89
TCAP configuration utility: t€apcfg ...covviriiiiii 90
TCAP layer status: tCaPmMIGr «iuiiii i e e e ane s 91

Chapter 8: Parameter and event structure overviewcccvcvemvmvmnnsansansanns 93
D11 = Y 0 93
Lo T o) oo o 1= PP 93
TCAP OCtEl SEMNG Sttt e e 93
TCAP COMPONENT IDS .ttt e e st rae s e r e e s e s rn s reaane s 94
(€ Lo o = | o 1= PP 94

Chapter 9: Common data structurescccvviciririnmrssmssrss s s s s ssansnannns 97
Common data struCtures SUMMaArYooviiiiii e e e e aeens 97
SCCP address StrUCTUN ...viii it a e ese e s nan e ranernnerneans 98
SCCP quality of service (QOS) StrUCTUIeceiiiiii i i e e 100
TCAP transaction information structure........c.oooiiiiiii 101
TCAP dialog section StrUCLUNEoiiiiii i e 103

Chapter 10: Component data structures.......ccccvicricrirrc i v v s s s s nnanuas 105
Component structure format... ..o i e 105
ANSI component StrUCTUNE. ..o e 106

Ier=To AN =1 (@] Tl Y L= PP 107

o=] 07 A =31 = g ol Yo [PR 109

TCAPANSI PIDCOdE .t e e 109
ITU-T cOmMponent SErUCEUNE ...co et e e e raeeeas 111

Chapter 11: Incoming message event structurescccccvcrvemvemramsansansansannas 115
TSt To LT A7 =] VA =Y 115
General receive information block structureccviiiiiiiiii i 115
TCAP coordinated event structureo i e 116
Signaling point status event structurecooiiiiii i 117
Subsystem status event structure.......cooviii i 118
TCAP notification event struCtUreoivviiiii e 119
TCAP status event strUCtUNe. .. oo s e e e e e raes 120
TCAP transaction data event structure.......cccoiiiiiiiiii i 121

Dialogic Corporation 7

1 Introduction

The Dialogic® NaturalAccess™ TCAP Layer Developer's Reference Manual explains
how to implement the SS7 TCAP layer using NaturalAccess™ TCAP. This manual
explains how to create applications using NaturalAccess™ TCAP and presents a
detailed specification of its messages and functions.

Note: The product(s) to which this document pertains is/are among those sold by
NMS Communications Corporation ("NMS”) to Dialogic Corporation (“Dialogic”) in
December 2008. Certain terminology relating to the product(s) has been changed,
whereas other terminology has been retained for consistency and ease of reference.
For the changed terminology relating to the product(s), below is a table indicating
the “New Terminology” and the “Former Terminology”. The respective terminologies
can be equated to each other to the extent that either/both appear within this
document.

Former terminology @ Current terminology

NMS SS7 Dialogic® NaturalAccess™ Signaling Software
Natural Access Dialogic® NaturalAccess™ Software
NMS TCAP Dialogic® NaturalAccess™ TCAP Layer

Dialogic Corporation

2 SS7 overview

SS7 architecture

The following illustration shows the SS7 software architecture in a typical system

with separate host applications handling transactions, the system configuration, and

system alarms:

TCAP

A

A 4

Application

Service

Host

Configuration

Host TX driver

Alarms
manager

task

TX board

SS7 TCAP
task

A

A

A

A 4

SS7 SCCP SS7 ISUP/TUP
task task

A

A 4

) 4

A

A

SS7 MTP layers 2 & 3

task

A

y

SS7 layer 1 driver

Dialogic Corporation

11

SS7 overview TCAP Layer Developer's Reference Manual

TX board components

The TX board consists of the following components:

TCAP task that implements the SS7 TCAP layer.
SCCP task that implements the SS7 SCCP layer.

MTP task that implements the SS7 MTP 2 (data link) layer and the MTP 3
(network) layer.

Optional ISUP/TUP task that implements the SS7 ISUP/TUP layer.

TX alarms manager task that collects unsolicited alarms (status changes)
generated by the SS7 tasks and forwards them to the host for application-
specific alarm processing.

Host components

The host consists of the following components:

12

A TX driver for the native host operating system that provides low-level
access to the TX board from the host.

Functions that provide the application with a high-level interface to the TCAP
layer services.

Functions that provide the application with a high-level interface to the TCAP
management layer services.

An alarm collector process for capturing alarms and saving them to a text file.
The alarm collector (txalarm) is provided in both executable and source form.
The source can be used as an example for developers who want to integrate
the TX alarms into their own alarm monitoring system.

Configuration utilities (one for each SS7 layer) that read the SS7
configuration file(s) and load the configurations to the TX processor tasks at
system startup. The TCAP configuration utility (tcapcfg) is provided in both
executable and source form. The source code can be used as an example for
developers who want to integrate the TCAP configuration into their own
configuration management system.

The TCAP manager utility (tcapmgr) provides a command line interface from
which alarm levels can be set, buffers can be traced, and TCAP statistics can
be viewed and reset.

Dialogic Corporation

TCAP Layer Developer's Reference Manual

TCAP task

SS7 overview

The TCAP task provides the following services on behalf of applications:

Multiple outstanding transactions per application/subsystem number

Assembling of application components (operation invokes and replies) and
parameters into TCAP messages

Association of replies with invokes
Optional timing for replies to invokes (ITU-T only)

Handling of abnormal conditions: protocol errors, timeouts, aborted
transactions

Use of ITU-T standard TCAP with ANSI-standard MTP/SCCP stack and vice
versa

The TCAP task uses the SCCP connectionless transport service. The TCAP task also
makes the following SCCP layer services available to the application:

Addressing by point code/subsystem number and/or global title
Subsystem and point code status change indications
Replicated subsystems with coordinated state change

Dialogic Corporation

13

3 TCAP programming model

Programming model overview

NMS TCAP consists of a set of function calls that provide access to the TCAP layer
operations, and a set of events that notify the application of incoming messages,
network status, and message delivery errors. NMS TCAP also performs the byte
ordering translation, where necessary, between application processor (little endian)
byte order and network (or big endian) byte order.

NMS TCAP is implemented as a Natural Access service. Natural Access is a
development environment for telephony and signaling applications that provides a
standard application programming interface for services, such as signaling protocol
stacks, independent of the underlying hardware. Understanding the basic Natural
Access programming concepts such as services, queues, contexts, and asynchronous
events is critical to developing applications that use the TCAP service. Refer to the
Natural Access Developer's Reference Manual for more information.

TCAP service users

NMS TCAP supports one or more applications with service access points, or SAPs.
One SAP is defined for each application that uses the TCAP service. At initialization,
applications bind to a particular SAP by specifying the SAP ID. Each user SAP is
associated with a single SCCP subsystem number. All TCAP messages destined for a
particular subsystem number are routed to the application bound to the SAP
associated with that subsystem number.

SAPs are shown in the following illustration:

Application Application
A X

| Bind . .
SSN=8 SSN=9 SSN=10
ITU-T ITU-T ITU-T TCAP
layer
TCAP SAPs
SSN=8 SSN=9 SSN=10
ITu-T ITu-T ITU-T SCCpP
layer
SCCP SAPs

Note: The number of SAPs and the characteristics of each SAP are specified at TCAP
configuration time. Refer to the NMS SS7 Configuration Manual for more information.

Dialogic Corporation 15

TCAP programming model TCAP Layer Developer's Reference Manual

Entity and instance IDs

Each application must have a unique entity and instance ID for routing messages
among the processes in the system. Entity IDs are single byte values in the range of
0x00 - OxFF, assigned by the application developer. Entity IDs are allocated as
follows:

Range Usage

0x00 - Ox1F Reserved for use by system utilities, configuration utilities, and management utilities.
0x80 - OxFF

0x20 - Ox7F Available for use by applications.

Instance IDs identify the processor on which the entity executes. The host is always
processor 0 (zero). Therefore, all host-resident TCAP applications must be coded to 0
(zero). All tasks on TX board number 1 receive an instance ID of 1. All tasks on TX
board number 2 receive an instance ID of 2, and so on.

NMS TCAP functions

NMS TCAP provides two sets of functions:
e Service functions
¢ Management functions

Service functions

The TCAP service functions provide the application access to the TCAP layer services.
Applications invoke TCAP services by calling TCAP request functions that generally
result in a TCAP message to a remote exchange, or signaling point (SP). Request
function parameters are converted to messages and sent through the device driver
to the TCAP task.

The TCAP requests from the remote signaling points are presented to the application
at the receiving side as indications.

The receiving application then issues a reply to the originating signaling point by
invoking the appropriate TCAP response function. The response function is typically
translated by the SCCP layer into a protocol message back to the originating
signaling point. That response is presented back to the application as a confirmation.

16 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

This communication model is shown in the following illustration. Some operations,
such as sending unit data, include only the request or indication steps. These
operations are called unconfirmed operations.

Signaling point A Signaling point B

TCAP TCAP TCAP TCAP
application layer layer application

Request function

-
-

Protocol message

Y

Indication event

[
-

Response function

A

Protocol message

A

Confirmation event

-l
-t

All TCAP service functions are asynchronous. Completion of the function implies only
that the function was successfully initiated (a request message was queued to the
SCCP task). Errors detected by the SCCP task result in asynchronous status
indications being sent to the application. Successfully delivered requests generally
result in no notification to the application until the far end takes some corresponding
action such as responding to a transaction invoke component with a return-result
component.

Indication and confirmation messages, as well as status messages from the local
TCAP layer, are passed to application processes as asynchronous events. All events
for a particular user SAP (subsystem) are delivered through the associated Natural
Access queue. For information about queues, refer to the Natural Access Developer's
Reference Manual.

Applications detect that an event is pending through a call to ctaWaitEvent. The
application retrieves the event data through a function that translates the event
parameters from SS7 TCAP raw format to API format.

For more information, refer to the TCAP service function summary on page 53.

Management functions

Unlike the TCAP service functions that send and receive messages asynchronously,
each TCAP management function generates a request followed immediately by a
response from the TX board. TCAP management functions block the calling
application waiting for this response (typically a few hundred milliseconds) and
return an indication as to whether or not an action completed successfully. For this
reason, the TCAP management functions are typically used by one or more
management applications, separate from the applications that use the TCAP service
functions. TCAP management is packaged as a separate library with its own interface
header files.

For more information, refer to the TCAP management function summary on page 67.

Dialogic Corporation 17

TCAP programming model TCAP Layer Developer's Reference Manual

Queues and contexts

Natural Access organizes services and their associated resources around a processing
object known as a context. Each instance of an application binding to a TCAP service
access point is a unique Natural Access context. Contexts are created with
ctaCreateContext.

All events and messages from the TCAP service are delivered to the application
through a Natural Access queue object. Queues are created with ctaCreateQueue.
Each context is associated with a single queue through which all events and
messages belonging to that context are distributed. More than one context can be
assigned to the same queue.

Different application programming models are possible depending on how many
TCAP service access points (how many TCAP subsystems) are implemented by the
application and how the application is organized.

Single-context, single-queue model

An application that uses a single TCAP service access point uses a single-context,
single-queue model as shown in the following illustration:

[Application j

4

Natural Event
Access ueue

Service manager
TCAP
service

Context

pmmmmmmm— e ——————
Nemmmm————

| J S

SAP O SAP 1 SAP 2
SSN=7 SSN=8 SSN=254

TCAP SAPs

18 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

Multiple-context, single-queue model

For a single-threaded application that uses multiple TCAP service access points
(implements multiple subsystems), a multiple-context, single-queue model is
recommended (as shown in the following illustration). In this case, the application
has a single event loop with events from all service access points delivered through
the same queue. The application determines which service access point a particular
event is associated with from a service user ID (sulD) value returned with each
event.

[Application]

Natural
Access

E Service manager i i Service manager i i Service manager E
] TCAP : ' TCAP H i TCAP ,
E service ; | service ; i service i
i Context i E Context i i Context E
SAP 0 SAP 1 SAP 2
SSN=7 SSN=8 SSN=254
TCAP SAPs

Dialogic Corporation 19

TCAP programming model

Multiple-context, multiple-queue model

TCAP Layer Developer's Reference Manual

For multiple-threaded applications using multiple TCAP service access points (one per
thread), a multiple-context, multiple-queue model is recommended (as shown in the
following illustration). In this case, each thread has its own event loop and receives
only the events associated with a service access point on its Natural Access queue.

Note: For this programming model, each thread or event queue must be assigned its
own entity ID. The entity ID must be unique among all applications on that host
accessing any of the SS7 services.

Application

Natural
Access

i Service manager i i Service manager i E Service manager E
5 TCAP . TCAP Lo TCAP :
i service v service i E service i
i Context | i Context | i Context |
SAP 0O SAP 1 SAP 2
SSN=7 SSN=8 SSN=254
TCAP SAPs

20

Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

SCCP quality of service (QOS)

The TCAP layer uses the SCCP connectionless transport service to deliver transaction
messages to their destinations. With this service, three additional quality of service
options are available to the application:

Quality of service Description

option

Message priority The application can assign a priority of 0 (lowest priority) through 3 (highest
priority).

Refer to the NMS SCCP Developer's Reference Manual for information about SCCP.

Dialogic Corporation 21

TCAP programming model

TCAP transactions

TCAP Layer Developer's Reference Manual

This topic provides the following information about TCAP transactions:
e ANSI and ITU-T transaction types

e TCAP components

e Message lengths and segmentation

e Multiple-threaded considerations

e Transaction checkpointing

ANSI transaction types

The TCAP layer supports the following ANSI transaction types (also called package

types):
Transaction type

Unidirectional

Query with permission
Query without permission
Conversation with

permission

Conversation without
permission

Response

Abort

Description

Sends information in one direction only, with no reply expected. No TCAP
transaction is established.

Initiates a TCAP transaction and gives the destination node permission to
end the transaction.

Initiates a TCAP transaction and notifies the destination node that it cannot
end the transaction.

Continues a TCAP transaction and gives the destination node permission to
end the transaction.

Continues a TCAP transaction and notifies the destination node that it
cannot end the transaction.

Ends a TCAP transaction.

Terminates a TCAP transaction without sending pending components.

ITU-T transaction types

The TCAP layer supports the following ITU-T transaction types:

Transaction type Description

Unidirectional Sends information in one direction only, with no reply expected. No TCAP
transaction is established.

Initiates a TCAP transaction.

Continue Continues a TCAP transaction and transfers data in either direction.

transaction

End transaction Ends a TCAP transaction.
Abort Terminates a TCAP transaction without sending pending components.
22 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

TCAP components

TCAP transactions are composed of components that are remote operation
invocations, or invokes, and responses to invokes. Each TCAP message (begin,
continue, end, query with permission, response, and so on) is composed of zero or
more components. Each component can optionally have application-specific
parameters associated with it. Component parameters are not interpreted by the
TCAP layer but are passed on to the destination application.

The ANSI and ITU-T standards define a fairly compatible set of component types:

Component type Description

Invoke Invokes a remote operation. This component type applies to ANSI and ITU-T

[Last | Not Last] standards.

Return Result Reply for a successful operation invocation. This component type applies to ANSI

[Last | Not Last] and ITU-T standards.

Return Error Reply for an unsuccessful operation invocation.

Reject Reports the receipt and rejection of an incorrect transaction package or
component. This can be generated by either the TCAP layer itself or by the
application.

Cancel Local operation only. Cancels an outstanding invoke between the application and

the TCAP layer, but does not notify the far end.

Each invoke component is identified by a unique invoke ID that was assigned by the
application that originated the invoke. The invoke ID is returned in the response, and
allows the originator to correlate the reply with the invoke operation to which it
belongs.

A receiver of an invoke component can also generate a linked invoke in response to
the original invoke received. An example of this is when collecting more information
from the sending node before generating the response to the original invoke. The
linked invoke carries its own unique invoke ID plus the invoke ID of the original
invoke, called the correlation ID in ANSI or the linked ID in ITU-T. It allows the
originating application to associate the linked invoke with its original invoke.

In ITU-T, an invoke operation is assigned by the application to one of four classes,
numbered 1 through 4. The class designation specifies under what conditions a
response is expected, and determines what a timeout implies about the success or
failure of the operation.

Class type Description

1 Both successes and failures are reported. A timeout is an abnormal failure.
2 Only failure is reported. A timeout implies successful completion.

3 Only success is reported. A timeout implies a failed operation.

4 Neither success or failure is reported. There is no interpretation of timeout.

Dialogic Corporation 23

TCAP programming model TCAP Layer Developer's Reference Manual

Message lengths and segmentation

The maximum size of a TCAP transaction, including transaction part, component
parts, and application parameters is approximately 254 bytes, possibly less if global
titles are used in SCCP addresses.

If an application has transactions (invokes or responses) that exceed the maximum
size, it must provide its own segmentation and reassembly, using either the last/not
last designation for invokes (ANSI only) or responses, or some other application-
specific solution.

Multiple-threaded considerations

In a multiple-threaded application, any thread can generate a transaction request
when initiating a new transaction or when responding to a transaction initiated by a
far SP. However, there should be a single receiver thread that receives all
asynchronous events from the TCAP layer (new transaction invocations, transaction
responses, and status indications) and routes them to the proper transaction thread
based on the user dialog ID or other transaction information.

Consider, for example, an application that consisted of a main thread, which
spawned a child transaction thread whenever it wanted to initiate a new transaction.
The transaction thread would be responsible for initiating the transaction request,
collecting the response, and taking the appropriate action. The application could
have many simultaneous transactions, and transaction threads, active at any given
time.

Multiple transaction threads could generate the transaction requests in any order.
The requests would be processed by the TCAP layer in the order that they were
received. If each transaction thread then called TCAPRetrieveMessage to retrieve
the response to its transaction request, there would be no guarantee that the TCAP
message returned by TCAPRetrieveMessage would be associated with the calling
thread's transaction. The first thread to call TCAPRetrieveMessage when a
message is pending would receive the first pending message, regardless of which
transaction it was associated with. The incoming message could be a new transaction
request from a far SP or a network status indication message.

Instead, the main thread itself or a separate child receiver thread should be the only
caller of TCAPRetrieveMessage. It can then analyze each incoming event and
route it to the proper child transaction thread or, in the case of a hew incoming
transaction, create a new child transaction thread to handle the incoming transaction
request.

Note: In a multiple-threaded application similar to the one described here, call
ctalnitialize from the parent thread before any of the other functions are called by
any of the other threads.

24 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

Transaction checkpointing

If two TX boards are configured as a redundant pair, TCAP transaction checkpointing
can be used. In this configuration, one board is designated as the primary and the
other is designated as the backup. The TCAP task on the backup board is ready to
take over the TCAP service if the primary board fails or is taken out of service.

To enable the backup TCAP task to take over the TCAP service, the primary and
backup TX boards are connected by a private Ethernet connection. The primary TCAP
task sends transaction information to the backup TCAP task, which is known as
transaction checkpointing. If the primary board fails, or is taken out of service, the
backup TCAP task has a complete list of open TCAP transactions so that it can
properly handle TCAP traffic.

Transaction checkpointing is performed automatically, but can be controlled by the
TCAP application. A default checkpointing behavior can be set in the TCAP
configuration file for each service access point. The DEFAULT_CHECKPOINT field in
the SAP section of the TCAP configuration file can be set to one of the following
values:

Value Description

CHKPT_ALL Checkpoint all transactions.

CHKPT_SEND Checkpoint only transactions initiated by the application.
CHKPT_NONE Do not checkpoint any transactions.

A TCAP application can override the default checkpointing behavior for a single
transaction by setting the chkpt field in the TCAPTransInfo structure to one of the
following values:

Value Description
TCAP_NO_CHKPT Transaction is not checkpointed.
TCAP_CHKPT Checkpoint this transaction.

TCAP_CHKPT_DEFAULT Use the default checkpoint value.

A transaction can be checkpointed at any time during the transaction lifetime. For
example, if a begin message is received and the transaction is not checkpointed (the
default is set to CHKPT_SEND or CHKPT_NONE), the transaction can be
checkpointed when the application sends a reply (continue) message by setting the
chkpt field to TCAP_CHKPT. All further transaction information is checkpointed.

Dialogic Corporation 25

TCAP programming model TCAP Layer Developer's Reference Manual

Congestion control

Understanding the TCAP service congestion control mechanisms and developing an
effective application congestion control strategy is a critical step in developing a
reliable system.

The TCAP service implements a four-level congestion control strategy. Level zero (0)
indicates that TCAP is not congested and level three reflects the most congested
state. The TCAP service further distinguishes between outbound and inbound
congestion and maintains a separate congestion level for each direction.

Congestion type Description
Outbound From the application and towards the network.
Inbound From the network and towards the application.

Congestion control mechanisms include notifications to applications of congestion
conditions and congestion control actions within the TCAP layer itself. Congestion
notifications allow the application to take some corrective action, such as reducing
the traffic load that it generates, before the congestion becomes severe and impacts
the operation of the service. Congestion control actions within TCAP maintain the
operation of the SS7 stack (possibly at a reduced capacity), including the operation
of other SS7 layers and/or applications, during periods of congestion.

Outbound congestion

Outbound congestion in TCAP occurs when the:

e Application generates TCAP traffic at a rate greater than the capacity of the
SS7 links or downstream network, resulting in network overload.

e Application generates TCAP requests faster than they can be processed by the
TCAP layer, resulting in the TCAP service send queue building up beyond pre-
determined thresholds (TCAP service congestion).

e Overall memory available to the TCAP layer drops below pre-determined
thresholds (TCAP layer congestion).
Network overload

Network overload occurs when the MTP layer's outbound queues build up beyond
configured limits due to:

e A traffic load that exceeds the capacity of the available signaling links

e Receipt of a transfer controlled message (TFC) regarding a congested
destination

26 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

In either case, the application receives a TCAP PC-STATE indication containing the
affected pointed code and the current congestion level. The application should reduce
its traffic load toward the affected destination until the congestion abates. How the
reduction is accomplished is up to the application. The TCAP layer itself takes no
action to prevent further congestion. The following illustration shows a network
overload condition.

SCCP/MTP SS7
Application TCAP layer layer network
TcapTransReq |
g UDataReq N
TcapTransReq
UDataReq
TcapTransReq . > MSU -
g UDataReq N g
TcapTransReq |
> UDataReq
> MSU R
B PC-State
p PC-State " (APC=X, CONG1) MSU R
(APC=X, CONG1)
Reduce traffic MSU >
load
’ PC-State
§ PC-State " (APC=X, CONGDO)
(APC=X, CONGO)
Resume traffic
load
TcapTransReq
UDataReq
> MSU -

In ANSI networks and in other national networks employing multiple congestion
levels, the application must not generate any new traffic towards the affected
destination with a priority lower than the current destination congestion level, as it
will be discarded at the MTP layer.

For the international signaling network, and other ITU-based networks without
multiple congestion priorities, it is important for the application to reduce the traffic
load toward the affected destination, as the MTP layer only discards outgoing packets
in cases of excessive queuing of traffic to congested signaling links. If the application
fails to reduce its traffic load toward the congested destination, it can escalate the
congestion condition.

When the network overload condition ceases, the application receives a TCAP PC-
STATE indication containing the affected point code and a status value of
SP_CONG_OFF, indicating that the application can resume normal traffic towards the
affected destination.

Dialogic Corporation 27

TCAP programming model TCAP Layer Developer's Reference Manual

TCAP service congestion

TCAP service congestion occurs when the application generates traffic faster than it
can be accepted by the TCAP layer, resulting in the TCAP service transmission queue
building beyond pre-determined thresholds. The application is notified of congestion
when it receives a TCAPEVN_CONGEST event that includes the current TCAP
congestion level. The congestion level can be between 0 - 3. Zero (0) indicates that
congestion has ceased. As the TCAP congestion level increases, the application is
expected to reduce its traffic load proportionately until the congestion ceases.

Note: The application receives the TCAPEVN_CONGEST event in the case of either
TCAP service congestion or TCAP layer congestion. If it is necessary to distinguish
between these two causes, the application can call TCAPGetApiStats to check the
current congestion level for each of the possible causes to determine the cause of
the current congestion.

By default, the TCAP service allocates a buffer pool for up to 128 requests to be
queued to the TCAP layer. If the application fails to reduce its traffic load enough to
ease the congestion, the TCAP service buffer pool eventually becomes depleted and
the TCAP functions fail with a CTAERR_OUT_OF_MEMORY return code. When
opening the TCAP service, the application can increase the number of buffers in the
pool by setting service argument array element six to a number between 128 and
1024. Increasing the number of buffers in the pool allows a larger burst of traffic to
be absorbed without triggering congestion, at the cost of more host memory used.
Congestion onset and abatement thresholds are always set to a fixed percentage of
the in-use (queued to the TCAP layer) regardless of the total size of the pool, as
shown in the following table:

Congestion Onset threshold (to reach this Abatement threshold (to next lower
levels level) level)

1 Greater than 75% of pool in use Less than 50% of pool in use

2 Greater than 85% of pool in use Less than 80% of pool in use

3 Greater than 95% of pool in use Less than 90% of pool in use

28 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

TCAP layer congestion

TCAP layer outbound congestion occurs when the amount of memory available to the
TCAP layer for processing new transaction requests falls below configurable
thresholds. For the embedded TX board-based TCAP this is the total percentage of
available free memory on the board.

Similar to TCAP service congestion, the application is notified of TCAP layer outbound
congestion when it receives a TCAPEVN_CONGEST event that includes the current
TCAP congestion level. The congestion level can be between 0 - 3. Zero (0) indicates
that congestion has ceased. As the TCAP congestion level increases, the application
is expected to reduce its traffic load proportionately until the congestion ceases. The
TCAP layer also takes action to protect the integrity of the SS7 stack and minimize
the impact of the congestion on other services. The following table shows the TCAP
layer reaction to outbound congestion:

Congestion TCAP action

level

1 Alarm only - no traffic restriction.

2 No new outbound transactions (BEGIN or QUERY type) allowed. NMS TCAP responds to
each new transaction request from an application with a TCAP_STATUS_IND event
with a status of TCAP_CONGESTED (unless inbound congestion level is also at level
three) and the SAP outbound congestion abort counter is pegged. Other transaction
messages (CONTINUE/CONVERSATION, RESPONSE/END, and ABORT) are allowed.

3 All outbound messages are discarded and the SAP outbound congestion discard counter

is pegged.

Note: Applications are notified of a change in the outbound congestion level with a
TCAPEVN_CONGEST event, and an alarm is generated.

The congestion onset thresholds for TCAP layer congestion can be adjusted with
TCAPGenCfg or with the tcapcfg utility TCMEM_THRESH_X parameters. The
congestion abatement thresholds for each congestion level are set midway between
the previous two congestion onset thresholds. Refer to the NMS SS7 Configuration
Manual for information.

Inbound congestion

TCAP inbound congestion is caused by one of two possible conditions:

e The TCAP application is not reading incoming messages as fast as they are
generated by the network, resulting in build-up of the user queue.

e The overall memory available to the TCAP layer drops below pre-determined
thresholds.

The inbound congestion level of each TCAP user SAP at any given point in time is
defined to be the more severe of the current TCAP layer memory congestion level
and the user SAP queue congestion level. A low memory condition affects the
inbound and outbound congestion level of all user SAPs. A queue build-up congestion
condition affects the inbound congestion level of only the user SAP whose queue is
building or receding.

Unlike outbound congestion, the TCAP application is not notified directly of inbound
congestion level changes, to prevent escalation of the congestion condition. An alarm
is generated when a change in a TCAP user SAP's inbound congestion level occurs.
The current inbound congestion level of a user SAP can also be determined by calling
TCAPSapStats or by using the tcapmgr utility STATS command.

Dialogic Corporation 29

TCAP programming model TCAP Layer Developer's Reference Manual

For inbound congestion, the TCAP layer cannot rely on the application to reduce its
traffic load to ease the congestion, as the source of the traffic bursts is generally
other network nodes. Instead, the TCAP layer acts directly to control inbound
congestion by restricting the types of traffic that are allowed at the various
congestion levels. These actions are described in the following table:

Congestion level TCAP actions
1 Alarm only. There is no traffic restriction.
2 No new inbound transactions are allowed. TCAP responds to each incoming BEGIN

(ITU) or QUERY (ANSI) transaction with a P-Abort with a cause of resource
limitation (ITU) or resource unavailable (ANSI). The SAP's inbound congestion
abort counter is pegged. Other transaction messages are allowed.

3 All inbound messages are discarded and the SAP's inbound congestion discard
counter is pegged.

The memory onset and abatement thresholds can be adjusted with the same
configuration parameters described in TCAP service congestion on page 28.

By default, the user SAP queue congestion thresholds are set to absorb a short burst
of approximately 600 messages without the application retrieving a message before
congestion control is triggered.

TCAP configuration

NMS SS7 provides a standard configuration program to read the SS7 (including
TCAP) configuration from a set of text files and download the configuration to the
SS7 tasks running on the TX board. Refer to the NMS SS7 Configuration Manual for
information. The configuration program (tcapcfg) is distributed in both source and
executable form. The executable can be used as a standalone configuration tool. The
source can be used as a guide for developing a configuration utility using TCAP
management functions.

The TCAP layer supports the following configuration entities:
Configuration Description

The general configuration defines the resource allocation for the TCAP layer:
e Maximum number of user SAPs

e Maximum number of simultaneous dialogs

e Maximum number of outstanding invokes

The general configuration is loaded only once at system boot time and must be
loaded before any other configuration entities.

User SAPs One user SAP is defined for each application using the TCAP layer services.

A user SAP is associated with a single subsystem number and protocol switch type
(ANSI-88, ANSI-92, ITU-88, ITU-92, or ITU-97). The user SAP defines the default
timer values for invokes issued on the SAP and identifies the SCCP user SAP to be
used. Additional user SAPs can be added later, up to the maximum number specified
in the general configuration.

30 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

SCCP addressing and routing

All SCCP connectionless data requests and connection establishment requests
contain a mandatory called and calling party address. The calling address is optional
for the connection request message. These addresses are passed to and from
applications by the SccpAddr data structure, which is a C-language structure
representation of the actual address passed in the SCCP protocol message.

SCCP addresses can take several forms, containing various combinations of point
code, subsystem number, and global title. The combination of the address and
routing indicator constructed by applications (or received from the SS7 network)
together with the SCCP configuration allow these messages to be routed to the
correct destination or local application.

For outgoing messages from applications, the called party address in the unitdata
request or connection request message is used to route the message. The routing
method is chosen based on the value specified in the routing indicator field of the
called party address. The routing methods are:

e Point code and subsystem number (ROUTE_PC_SSN)
e Global title (ROUTE_GLT)

Routing by point code and subsystem number

When ROUTE_PC_SSN is chosen, the message is routed to the destination point
code/subsystem number (DPC/SSN) specified in the called party address. The
subsystem number must be present.

If the DPC is present, a route must be configured for the point code and the
subsystem must be configured for that route unless the default routing configuration
option is selected.

If the DPC is absent, the message is routed to the point code associated with the
first (and typically only) route in the SCCP configuration file, but that point code is
not included in the outgoing message. This option is typically used only on point-to-
point SS7 links, such as the link between a mobile switching center (MSC) and base
station controller (BSC) in a wireless network, where the destination point code is
not needed for routing.

If a global title was present in the called party address, it is copied to the outgoing
message but the routing indicator remains ROUTE_PC_SSN.

Routing by global title

When ROUTE_GLT is chosen, an address translation must be configured that, when
combined with the address mask configured for the application SAP, matches the
global title specified in the called party address. The message is routed to the point
code and subsystem number from the configured address translation entry. If no
subsystem number is configured for that address translation but one is supplied by
the application, it is copied to the outgoing message.

If the global title must be further translated at another node, the routing indicator
configured in the address translation entry specifies ROUTE_GLT and the point code
in the address translation entry specifies the next translator node. If this is the final
translation, the address translation entry specifies ROUTE_PC_SSN and the DPC in
the address translation entry specifies the final destination point code.

Dialogic Corporation 31

TCAP programming model TCAP Layer Developer's Reference Manual

When a global title is specified by the user, the global title is translated (if possible)
by the SCCP task, and the global title is included in the outgoing SCCP address along
with up to four parameters.

The glTransType, encoding, numPlan, and natAddrInd fields are only used with a
global title. Based on the value of the glITitleInd field, some or all of these values are
included with a global title in an outgoing SCCP address.

If swType is set to SW_ANSI, two combinations can be included with a global title.
The glTitleInd field determines which is selected:

global title + translation type (glTitleInd = GLT_TT)
global title + translation type + numbering plan + encoding (GLT_TT NP_E)

If swType is set to SW_ITU, four combinations can be included with a global title.
The glITitleInd field determines which is selected:

global title + encoding + nature of address
(glTitleInd = GLT_ITU_FMT1)

global title + translation type (GLT_ITU_FMT2)
global title + translation type + numbering plan + encoding (GLT_ITU_FMT3)

global title + translation type + numbering plan + encoding + nature of address

(GLT_I TU_FMT4)

If the user wants the global title to be passed to another node for translation, the
ROUTING_IND field can be defined in one of the ADDR sections in the SCCP
configuration file. If ROUTING_IND is set to GLT, the global title is passed along with
its routing field set to route by global title. The point code field is included, but the
subsystem field is not included in the outgoing message.

Refer to Global title translation on page 33 for more information.

SCCP address override

When a TCAP begin message is received, its corresponding SCCP called and calling
addresses are saved in the transaction context. When the application sends a
continue or end message, the application-specified SCCP called address is ignored
and the calling address from the received begin message is used instead. To use the
application-specified called address on a continue or end message, specify the
following field in the User SAP section of the TCAP configuration file:

SCCP_ADDR_OVERRIDE 1

32 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP programming model

Global title translation

A global title translation (GTT) translates an array of phone numbers into an
associated point code and subsystem for routing to another machine.

This topic provides the following information:
e Setting function parameters
e Setting the SCCP configuration
e Setting variations in global title translation

Setting function parameters

The following example is from a TCAP sample program that uses a global title. This
example shows the setting of only the called address SCCP address structure:

tInfo.cdAddr.presInd = PRESENT;
tInfo.cdAddr.swType = SW_ANSI;
tInfo.cdAddr.subsystemInd = SUBSYS_NONE; /* A subsystem does not need to be defined)
tInfo.cdAddr.pointCodeInd = PTCODE_NONE; /* A point code does not need to be defined */

tInfo.cdAddr.glTitleInd = GLT_TT; /* A global title format MUST be selected @/
tInfo.cdAddr.routingInd = ROUTE_GLT; /* The routing flag MUST be set to ROUTE_GLT */
tInfo.cdAddr.natIntInd = ADDRIND_ INT;

//tInfo.cdAddr.subsystem = destssn; /* The subsystem is not required w1/
//tInfo.cdAddr.pointCode = pointCode; /* The point code is not required Y/
tInfo.cdAddr.glTransType = 1; /* The global title fields MUST be filled =/
tInfo.cdAddr.encoding = ENC_BCD_EVEN;

tInfo.cdAddr.numPlan = NP_ISDN;

tInfo.cdAddr.natAddrInd = NATIND NATL;

tInfo.cdAddr.glTitlelLen = 5; /* The global title length is the BCD-encoded length*/

/* BCD encode the phone number */
for (i =0; i < 5; i++)

{

ch = gtitle[((i*2)+1)] - 0x30;
tInfo.cdAddr.glTitle[i] = (ch << 4) & OxFO;
ch = gtitle[(i*2)] - 0x30;

tInfo.cdAddr.glTitle[i] += ch;

}

The global title must be BCD encoded. The global title 8471234567 is BCD encoded
as:

tInfo.cdAddr.glTitle[0] = 0x48;
tInfo.cdAddr.glTitle[1l] = 0x17;
tInfo.cdAddr.glTitle[2] = 0x32;
tInfo.cdAddr.glTitle[3] = 0x54;

tInfo.cdAddr.glTitle[4] = 0x76;

The original global title was 10 digits long. When the global title is BCD encoded, it
five bytes in length. This length is used as the global title length.

tInfo.cdAddr.glTitleLen = 5;

Dialogic Corporation

is

33

TCAP programming model TCAP Layer Developer's Reference Manual

Setting the SCCP configuration

Once the application sends the TCAP message with the route by global title flag set,
the SCCP task receives the message and attempts the global title translation. The
SCCP task uses three steps to translate a global title:

Step
1

34

Description

The SCCP task masks the outgoing global title with the ADDR_MASK field in the USER SAP
section of the SCCP configuration file.

In the previous example, the global title was 8471234567. An ADDR_MASK of FFF masks the
first three digits of the global title. The result of the masking in the example is the first three
digits - 847.

On incoming messages, the ADDR_MASK in the NSAP section of the SCCP configuration file
masks global titles.

The SCCP task matches the masked result with the ADDRESS sections in the SCCP
configuration file. If a matching section is not found, the SCCP message is returned to the
application.

In the example, an ADDRESS 847 section is configured in the SCCP configuration file and
matches the masked global title:

ADDRESS 847 # global title matching characters
REPLACE_GLT FALSE # do NOT replace the global title
SWITCH_TYPE ANSI # one of ITU, ANSI

NI_IND NATIONAL # one of NATIONAL, INTERNATIONAL

DPC 1.1.2 # translated destination point code

SSN 254

ROUTING_IND PC_SSN # set outgoing routing flag(PC_SSN or GLT)
END #

The SCCP task modifies the SCCP called address of the outgoing message. In the example, the
outgoing message has a called address of:

cdAddr.pointCode = 1.1.2
cdAddr.subsystem = 254
cdAddr.routingInd = "Route by PC_SSN"

The global title specified by the application is also carried in the outgoing message.

Note: The point code used in the translated message must be listed as a ROUTE in the SCCP
configuration file.

Dialogic Corporation

TCAP Layer Developer's Reference Manual

TCAP programming model

Setting variations in global title translation

The following table describes the most common variations to global title translation:

Variation

Forward a global title
translation to another
node

Configure a single
ADDRESS section that
matches any global
title

Do not encode a point
code in the translated
outgoing message

Copy the application
specified subsystem
in the translated
outgoing message

Dialogic Corporation

Description

The following example shows a global title translation block (ADDRESS
section) in the SCCP configuration file. 1.1.2 is the point code of the node that
performs the global title translation:

ADDRESS 847 # global title matching characters
REPLACE_GLT FALSE # do NOT replace the global title
SWITCH_TYPE ANST # one of ITU, ANSI

NI_IND NATIONAL # one of NATIONAL, INTERNATIONAL

DPC 1.1.2 # forward translation to this point code
ROUTING_IND GLT # set outgoing routing flag (PC_SSN or
GLT)

END #

This translation block forwards a message to another node (1.1.2) to do the
global title translation.

The ROUTING_IND field is set to GLT (route by global title), which sets the
routing flag in the outgoing message. The DPC field contains the point code of
the node that receives the message and translates the global title. The SSN
field does not need to be defined. The called address of the outgoing message
is set to:

cdAddr.pointCode = 1.1.2
cdAddr.subsystem = "not encoded"
cdAddr.routingInd = "Route by Global Title"

The global title specified by the application is also carried in the outgoing
message.

Note: The point code of the forwarded node must be listed as a route in the
SCCP configuration file.

Set the ADDR_MASK in the USER SAP section of the SCCP configuration file to
0 (zero). Create an ADDRESS 0 translation block. This block matches all
global titles.

Remove the DPC field from the ADDRESS translation block. The called address
DPC is not encoded in the outgoing message. Use the default routing option to
provide an MTP header DPC.

Remove the SSN field from the ADDRESS translation block. The subsystem

field specified by the application in the SCCP called address (if it exists) is
inserted in the SCCP called address of the outgoing message.

35

TCAP programming model TCAP Layer Developer's Reference Manual

Status and notify indications

The application is notified of errors encountered in processing transaction requests
by the TCAP layer at any time with unsolicited TCAP status indication messages
(event type TCAP_EVENT_STA_IND). The status field returned in the status
indication message indicates the reason for the error.

Transaction requests that could not be delivered by the SCCP layer due to routing
errors, global title translation failures, or temporary network outages, for example,
are returned to the originating application if requested through the SCCP quality of
service parameters with unsolicited TCAP notify indication messages (event type
TCAP_EVENT_NOT_IND). The notify indication includes a return cause field that
identifies the reason the message could not be delivered.

Dialog IDs

A TCAP application uses two dialog IDs that are 32-bit unsigned integers to reference
a particular transaction:

e Service user dialog ID (suDlgId)
e Service provider dialog ID (spDlgld)

The service user dialog ID is assigned by the application on the first outgoing request
for a particular transaction. This ID must be unique among all concurrently active
transactions associated with a particular TCAP SAP (subsystem number). The content
of this dialog ID is not checked by the TCAP protocol layer, but it is passed back and
forth between the application and the TCAP layer on all subsequent requests or
indications belonging to that transaction. The application can choose any value for
the suDlgld such as an address or index to a data structure, to associate a message
with its transaction. A suDIgld value can be reused by the application any time after
the previous transaction using that value has completed.

The service provider dialog ID is assigned by the TCAP layer in the first incoming
message associated with a particular transaction (either a new transaction indication
or a response from a far SP). The application is expected to store this value and pass
it back to the TCAP layer on all subsequent requests belonging to that transaction.
On the first outgoing request for a transaction, and on any subsequent request prior
to receiving an incoming message belonging to that transaction, the application must
pass a spDlIgld value of zero.

36 Dialogic Corporation

Using the TCAP service

Setting up the Natural Access environment

Before calling any TCAP service functions, the application must:
e Initialize Natural Access
e Create queues and contexts
e Bind to the TCAP service

Refer to the Natural Access Developer's Reference Manual for information about
Natural Access.

Initializing the Natural Access environment

The Natural Access environment is initialized by calling ctaInitialize. Initialize
Natural Access only once per application, regardless of the number of queues and
contexts created.

CTA_INIT_PARMS tcapInitparms = {0};

CTA_SERVICE NAME tcapServiceNames[] = {{"TCAP", "TCAPMGR"}};
tcapInitparms.size = sizeof (CTA_INIT_PARMS) ;
tcapInitparms.traceflags = CTA_TRACE_ENABLE;

tcapInitparms.parmflags
tcapInitparms.ctacompatlevel

CTA_PARM MGMT_SHARED;
CTA_COMPATLEVEL;

Ret = ctalnitialize (tcapServiceNames, 1, &tcapInitparms);

if (Ret != SUCCESS) {
printf ("ERROR code 0x%08x initializing CT Access.", Ret);
exit(1);

Creating queues and contexts

The application creates the required Natural Access queues and contexts. The queue
must always be created before any associated context is created.

CTAHD ctaHd; /* CTA context handle */
CTAQUEUEHD ctaQueue; /* Queue */

Ret = ctaCreateQueue(NULL, 0, &ctaQueue);
if (Ret != SUCCESS)

{
ctaGetText (NULL_CTAHD, Ret, sErr, sizeof(sErr));

printf ("*ERROR : ctaCreateQueue failed(%s)\n", sErr);

}

sprintf (contextName, "TcapSAP-%d", spld); /* context name is optional */
Ret = ctaCreateContext (ctaQueue, spId, contextName, &ctaHd);
if (Ret != SUCCESS)

{
ctaGetText (NULL_CTAHD, Ret, sErr, sizeof(sErr));
printf ("ERROR : ctaCreateContext failed(%s)\n", sErr);
ctaDestroyQueue (pSap->ctaQueue) ;

Dialogic Corporation 37

Using the TCAP service TCAP Layer Developer's Reference Manual

Binding to the TCAP service

Once the queues and contexts are created, the application must bind to each desired
TCAP user service access point by calling ctaOpenServices once for each binding.
The binding operation specifies the following parameters:

Parameter Description

board TX board number.

srcEnt Calling application entity ID.

srclnst Calling application instance ID.

suld Calling application service user ID.

spId TCAP service access point ID on which to bind.

ssn TCAP subsystem number associated with the service access point.

API queue size Maximum number of requests that can be queued to the board within the TCAP

service. Valid range is 128 to 1024. Default = 128.

In Natural Access, these parameters are specified in the CTA_SERVICE_ARGS
structure, contained in the CTA_SERVICE_DESC structure. An example of the
parameter specification is provided:

CTA_SERVICE DESC TCAPOpenSvcLst[] = {{{"TCAP", "TCAPMGR"}, {0}, {0}, {0}}};
tcapOpenSvcLst[0] .svcargs.args[0] = boardNum; /* board number */
tcapOpenSvcLst[0] .svcargs.args[1l] = DPRCHAN + sapid; /* srcEnt /)
tcapOpenSvcLst[0] .svcargs.args[2] = ZERO; /* srclnst */
tcapOpenSvcLst[0] .svcargs.args[3] = SUID; /* suld */
tcapOpenSvcLst[0] .svcargs.args[4] = sapid; /* spld w2/
tcapOpenSvcLst[0] .svcargs.args[5] = ssn; /* ssn */
tcapOpenSvclLst [0] .svcargs.args[6] = 256;

/* increase API queue size */

ctaOpenServices is an asynchronous function. The return from the function
indicates that the bind operation initiated. Once completed, a
CTAEVN_OPEN_SERVICES_DONE event is returned to the application.

Note: Only a single thread should call ctaOpenServices to open the TCAP service
for a single board. All messages generated by the TCAP task on a single board are
reported to the last thread to call ctaOpenServices for the TCAP service.

38 Dialogic Corporation

TCAP Layer Developer's Reference Manual Using the TCAP service

Receiving TCAP service events

After binding to a TCAP user SAP with ctaOpenServices, the application receives
TCAP service events by periodically calling ctaWaitEvent, specifying the Natural
Access queue handle. The TCAP service can generate data events and congestion
events.
ret = ctaWaitEvent (ctaQueue, &event, CTA WAIT FOREVER) ;
if (ret != SUCCESS)

/* handle the error */
elise

{

switch (event.id)

{
case TCAPEVN_DATA:

/* an TCAP date event has occured, call TCAPRetrieveMessage ()
to retrieve the message and proccess it */
tcret = TCAPRetrieveMessage(ctaHd, &msg, &infoBlk);
if (ret == TCAP_SUCCESS)
/* process received TCAP event */
else if(ret == TCAP_NOMSG
/* this is normal - just ignore and wait for next event */
else
/* TCAPRetrieveMessage failed - handle the error */

break;

case TCAPEVN_CONGEST:
/* TCAP layer or API is congested or congestion abated;
take appropriate action */

cong_lvl = (U8) event.value;
if (cong_lvl ==)

/* congestion abated - restore traffic to normal levels */
else

/* congestion now at level "cong_lvl" - take appropriate

action to reduce traffic. */

break;

}

When a TCAPEVN_DATA event is received, the application calls
TCAPRetrieveMessage to retrieve the TCAP message for processing. The message
could be a TCAP transaction message, or other type of indication, such as a status or
notify event. It is possible for TCAPRetrieveMessage to return a value of
TCAP_NOMSG, indicating that the event was processed internally by the TCAP
service, and there is nothing for the application to process. This usually occurs before
a congestion event is generated, but can also happen at other times.

If a TCAPEVN_CONGEST event is received, the outbound congestion level of the
TCAP user SAP has changed. The new congestion level is contained in the value field
of the event structure returned by ctaWaitEvent. Upon receipt of this event, the
application should take action to reduce (in the case of congestion onset) or restore
(in the case of congestion abatement) the traffic load it is generating.

It is also recommended that the application call TCAPStateReq and mark the
subsystem in service as soon as it is ready to handle data traffic, in case the
subsystem was previously left out of service by an application unbinding from the
same TCAP service access point.

Dialogic Corporation 39

Using the TCAP service TCAP Layer Developer's Reference Manual

Handling redundancy events

After binding to a TCAP user SAP, the application receives a
TCAP_EVENT_RUN_STATE event indicating the redundancy state of the TCAP layer
on the board. The event type associated with this event indicates one of the
following states:

Event type Description
TCAP_STANDALONE Application is in a non-redundant configuration. Normal operation can begin.
TCAP_PRIMARY TCAP task on this board is currently the primary board in a redundant board

pair. Normal operation is allowed as long as the board remains the primary.

TCAP_BACKUP TCAP task on this board is currently the backup board in a redundant board
pair, monitoring the status of the primary. No active traffic passes through
this SAP until the board becomes the primary member of the pair.

TCAP_BACKUP_READY Backup task has finished updating its list of open transactions.

The TCAP_EVENT_RUN_STATE event is the first message posted to the application's
queue for each SAP after the binding is confirmed. No data traffic (unitdata or
connections requests) should be directed to this SAP until this event is received.

Refer to the SS7 Health Management Developer's Reference Manual for information
on writing redundant TCAP applications.

Generating TCAP transactions

Generating a TCAP transaction requires the following steps:
Step Action

1 Allocate a memory buffer large enough for the transaction request. A TCAP transaction buffer
must be at least TCAP_MSG_SIZE bytes.

2 Assign a unique user dialog ID (suDlgld) for the transaction (if it is the first request belonging
to this transaction) and populate the transaction information data structure with the:

Message type

[]
e Dialog ID(s)
e Originating address
e Destination address
e Quality of service parameters
3 Initialize the transaction request with TCAPInitTrans.
4 Add one or more components to the request with TCAPAddComp. Each invoke component

must also have a unique invoke ID assigned within the current dialog ID.
5 Send the transaction to the destination signaling point by calling TCAPTransRqst.

The following examples show how the TCAP service implements a simple request and
response transaction and a more complex conversational linked transaction. The ITU-
T and ANSI variants are shown separately to clarify the conceptual differences.

40 Dialogic Corporation

TCAP Layer Developer's Reference Manual Using the TCAP service

Simple request and response transaction

A simple transaction consists of a transaction begin (ITU-T) or query with permission
(ANSI) request with a single invoke component, followed by a single end (ITU-T) or
response (ANSI) message with a single return result component. An example
transaction is a request from a service switching point (SSP) to a service control
point (SCP) to translate an 800 number into a subscriber directory number.

The following illustration shows the ANSI version of a simple transaction:

Requester Server
application TCAP layer TCAP layer application
TcapTransReq [Invoke]
SUDlgiIr:jvzaké?lef 1d=0 Query with permission
Trans ID=X, TcapRetrieveMsg
invokeID=1 — >
spDIgID=x,
invokeID=1
‘TcapTransReq [Ret. Rslt]
Response suDlgId=b, spDIgID=x,
. Trans ID=x, corrID=1
; TcapRetrieveMsg ::orrID=1X
suDlgId=a, spDlgld=x
corrID=1

The following illustration shows the ITU-T version of a simple transaction:

Requester Server
application TCAP layer TCAP layer application
TcapTransReq [Invoke
Digld=a,
opDIgId=0 BEGIN [Invoke]
invokeID=1 Trans ID=x, TcapRetrieveMsg
invokeID=1
TcapTransReq [Ret. Rslt]
END [Ret. Rslt] suDIIgId=y,
_ spDIgID=x,
TcapRetrieveMsg Trans ID=x, irR,oEeIDﬂ
< invokeID=1
suDlgld=a,
spDIgld=x,
invokeID=1

Dialogic Corporation 41

Using the TCAP service TCAP Layer Developer's Reference Manual

Conversational linked transaction

A complicated conversational and linked transaction can occur as described in the
following ANSI and ITU-T examples:

Stage Description

1 A switching application issues an invoke on behalf of a subscriber to initiate a feature in a
remote switch.

2 The remote switch decides it does not have enough information to carry out the feature
invocation. It responds with a new invoke (linked to the original invoke) to play an
announcement to the subscriber and collect digits.

3 The original switch collects the digits and returns them as the result to invoke #2.

4 The remote switch now completes the feature invocation and returns the result to invoke #1.

ANSI version

The following illustration shows the ANSI version of a conversational linked
transaction:

Requester Server
< - TCAP layer TCAP layer .
application Yy y application
TcapTransReq [Invok
par q [Invoke] Query with permission .
suDlgld=a, T iD= TcapRetrieveMsg
invokeID=1 rans Lo DIgID=x, invokeID=1
invokeID=1 SpLIgID=X, InvokelD=
Conversation TcapTransReq [Invoke]
 TcapRetrieveMsg |« with peErmission suDIgId=b, spDIgID=x,
*suDlgId=a, spDIgId=x_ |, 4rans ID=x, invokeID=2, corrID=1
sublgld=a, spLIgld=X; linyokeID=2 , corrID=1
invokeID=2, corrID=1
TcapTransReq [Ret. Rslt] ~ Conversation
suDIgld=1, spDIgld=x, W_I'_th pe;rllj‘ussmn » TcapRetrieveMsg
corrID=2 rans 1D=x, _ _
corriD=2 suDIgcho—rrt},D s=pI23IgID—x,
R TcapTransReq [Ret. Rslt]
esponse - -
TcapRetrieveMsg |* P . suDlgId=b, spDIgID=X,
< Trans ID—X, corrID=1
suDIgld=1, spDIgld=x corriD=1
corrID=1

42 Dialogic Corporation

TCAP Layer Developer's Reference Manual Using the TCAP service

ITU-T version

The following illustration shows the ITU-T version of a conversational linked
transaction:

Requester

uest TCAP layer TCAP layer Server
application

application
TcapTransReq [Invoke]

BEGIN [Invoke]]
suDIgId=a, invokeID=1 Trans ID=X, TcapRetr.leveMSQ >
invokeID=1 spDIgID=x, invokeID=1

A 4

TcapTransReq [Invoke]
" suDlgId=b, spDIgID=x,

_ CONTINUE [Invoke]

__TcapRetrieveMsg Trans ID=x . . _
suDIgld=a, spDlgld=x, invokeID=2, invokeID=2, linkedID=1
invokeID=2, linkedID=1 linkedID=1

TcapTransReq [Ret. Rslt]

suDlIgld=1, spDigld=x, CONTINUE [Ret. RSIt]= TcapRetrieveMsg -

invokeID=2 Trans ID=x, suDIgld=b, spDIgID=x,

invokeID=2 invokeID=2

TcapTransReq [Ret.Rslt]

TcapRetrieveMsg [« CND [Ret Rslt] Feypigid=b, spDigiD=x,
Trans ID=x, invokeID=1

suDlgld=1, spDIgId=x invokeID=1
invokeID=1

Dialogic Corporation 43

Using the TCAP service TCAP Layer Developer's Reference Manual

Handling abnormal conditions

A TCAP message consists of a transaction portion and a component portion. If the
transaction portion is invalid, it causes a P-Abort or it is ignored. A P-Abort indication
terminates the transaction. An ignored, invalid message does not terminate the
transaction. If a TCAP message has an invalid component, a reject component is
generated, but the transaction generally is not closed.

The following abnormal condition scenarios are presented:
e Invalid transaction portions
e Transaction inactivity timeouts
e Invalid component in a begin or query message
e Invalid component in a continue or conversation message
e Invalid component in an end or response message
e Invoke time-outs (ITU-T only)
e Invalid component in a multiple component message

Invalid transaction portions

A TCAP transaction can be received that has an invalid transaction portion. The
transaction portion contains the transaction type of begin (ITU-T) or query (ANSI)
and any required transaction IDs (TIDs). If an error is detected and a valid
transaction ID can be found:

e A P-Abort is returned to the sender.
e A P-Abort indication is delivered to the receiver.
e The transaction is closed.

However, if the TCAP stack cannot find a valid transaction ID, it ignores the
message. No response is returned to the sender and no indication is sent to the
receiver. As the message is ignored, any transaction that was open remains open.

44 Dialogic Corporation

TCAP Layer Developer's Reference Manual Using the TCAP service

The following illustration shows a transaction where an ITU-T TCAP message is
received that does not have a valid message type of begin, continue, or end. The
message does have a valid originating transaction ID. The TCAP stack recognizes the
invalid message and sends a P-Abort to the sender. Also, a P-Abort indication is
delivered to the receiving application.

Requester Server
N TCAP layer TCAP layer Y .
application y y application
TcapTransReq [Invoke]
suDlgId=a, g
spDIgId=0, BEGIN [Invoke] -
invokeID=1 Trans ID=x, | TcapRetrieveMsg .
invokeID=1 spDIgID=x,
invokeID=1
TcapTransReq [Ret. Rslt]
Unknown Type [Ret. Rslt] suDIgld=y,
< _ spDIgID=X,
TcapRetrieveMsg Trans ID=x, inR/OEeID=1
invokeID=1
suDlIgld=a,
spDIgld=x, P-Abort
invokeID=1 Trans ID = x TcapRetrieveMsg .
msgType = P_ABORT spDIgID = x
msgType = P_ABORT

Transaction inactivity timeouts

Inactivity timeouts can optionally be specified for TCAP transactions. If a specified
period of time elapses with no traffic, an inactivity timeout indication
(TCAP_XACTION_TIMEOUT) is sent to the TCAP application. The TCAP application
can then:

e Close the transaction through an end, response, or abort message.
e Leave the transaction open with TCAPRetainTrans.
e Do nothing and allow the transaction to expire.

TCAPRetainTrans resets the inactivity timer for that transaction. If the inactivity
timer expires again and no traffic has occurred, another inactivity timeout indication
is sent to the application.

If the application does nothing, and no further traffic occurs for the transaction, the
inactivity timer expires a second time, and a P-Abort closes the transaction. The P-
Abort indication is sent to the TCAP application, and if traffic has been received, a P-
Abort message is sent to the destination.

A default inactivity timer value (INACTIVITY_TIMEOUT) can be specified in each SAP
section of the TCAP configuration file. If INACTIVITY_TIMEOUT is set to zero,
inactivity timers are not set for any transactions. If INACTIVITY_TIMEOUT is set to a
non-zero value, inactivity timers are set to the specified humber (in seconds) for
every transaction.

A TCAP application can override the default inactivity timer value by setting the
inactvTimer field in the TCAPTransInfo structure. If set to zero, the transaction uses
the default inactivity timer. If greater than zero, an inactivity timer is set to that
number of seconds for that transaction.

Dialogic Corporation 45

Using the TCAP service TCAP Layer Developer's Reference Manual

Once a transaction has been opened, the inactivity timer value can be modified by
sending a Conversation or Continue with a non-zero value in the inactvTimer field in
the TcapTranslInfo structure. The TcapRetainTrans call can also be used to modify
the inactivity timer value.

If the inactivity timer is not used, the application must ensure that transactions are
closed. If transactions are not closed, the TCAP task eventually runs out of
transaction contexts and fails.

A transaction is closed if one of the following conditions occur:
e P-Abort indication is received.
e User abort message is sent or received.
e End (ITU-T) or Response (ANSI) message is sent or received.

If none of these conditions occur, the application must ensure that the transaction is
eventually closed.

Invalid component in a begin or query message

If the TCAP stack receives a begin (ITU_T) or query (ANSI) message with an invalid
component, it passes a reject component to the receiving application, but does not
automatically send the reject component to the sender. This occurs because the
stack is unsure whether to end the transaction, as another component in the
message can be valid. In this case, the application must send a continue or an end
with no components. The TCAP stack attaches the reject component and sends it to
the original sender.

An example of an invalid component is if a return result or return error component is
received with an invoke ID that does not correspond to an outstanding invoke
component. In this case, a reject component is returned to the sender with the
invoke ID it was sent with. If the TCAP stack receives a component with an invalid or
missing invoke ID, a reject component is returned to the sender with an invoke ID
tag of ASN.1 Universal NULL (0x05). The invoke ID length is set to zero.

46 Dialogic Corporation

TCAP Layer Developer's Reference Manual Using the TCAP service

In the following illustration, an invalid invoke component is received. The TCAP stack
recognizes the error and passes a reject component to the receiving application.
Since the reject component is contained in a begin message, the receiving
application sends an end message with no components. The TCAP stack attaches the
reject component (it has saved the component) and sends it to the original sender.
The transaction is now closed.

Requester Server
application TCAP layer TCAP layer application

_ TcapTransReq [Invoke]
«BEGIN [Invoke] suDIgId=b, spDIgID=X,

TcapRetrieveMsg

3 Trans ID=x, : _
suDIgId=a, spDIgld=x, invokeID=1, invokeID=1
invokeID=1, INVALID

compType=Reject

TcapTransReq [None] END [Reject]

subigld=1, spDigld=x, Trans ID=x, "I TcapRetrieveMsg
invokeID=1 suDlgld=b, spDIgID=X,
invokeID=1,

compType=Reject

Invalid component in a continue or conversation message

If the TCAP stack receives a continue (ITU-T) or conversation (ANSI) message with a
bad component, it automatically sends a continue or conversation with the reject
component back to the sender, and sends the reject component to the receiving
application. In this case, the application does not need to send a response.

In the following illustration, after sending an invoke component, a continue message
with an invalid linked invoke component is received. The TCAP stack automatically
sends a continue message with a reject component back to the sender.

Dialogic Corporation 47

Using the TCAP service TCAP Layer Developer's Reference Manual

In addition, a continue message with a reject component is passed to the receiving
application. The transaction is still open and can continue or be closed.

Requester Server
application TCAP layer TCAP layer application

TcapTransReq [Invoke]
> BEGIN [Invoke]

suDlgld=a, invokeID=1 | Trans ID=x, invokelD=1 | —1capPRetrieveMsg |
spDIgID=x,invokelD=1

_ TcapTransReq [Invoke]

suDIgld=b, spDIgID=x,
CONTINUE [Invoke] | inyokelD=2, linkedID=1

Trans ID=x,
invokeID=2 , linkedID=1,

INVALID

<

TcapRetrieveMsg
) suDlgld=a, spDlgld=x,
invokeID=2, linkedID=1,
compType = Reject | CONTINUE [Reject]

Trans ID=x, TcapRetrieveMsg
invokeID=2 suDIgld=b,spDIgID=x, -
invokeID=2,

compType = Reject

Invalid component in an end or response message

As shown in the following illustration, if the TCAP stack receives an end (ITU-T) or
response (ANSI) message with a bad component, it sends the reject up to the
receiving application, but nothing back to the sender, as the sender has already
closed the transaction. The application does not need to send any response.

Requester Server
application TCAP layer TCAP layer application
TcapTransReq [Invoke]
suDIgld=a,
9. BEGIN [Invoke]
spDIgld=0, > .
invokeID=1 Trans ID=Xx, TcapRetrieveMsg
invokeID=1 spDIgID=x,
invokeID=1
TcapTransReq [Ret. Rslt]
END [Ret. Rslt] [* —
suDIgld=y,
TcapRetrieveMsg Trans ID=x, spDIgID=x,
invokeID=1, invokeID=1
suDIgId=a, INVALID
spDIgld=x,
invokeID=1
compType = Reject

48 Dialogic Corporation

TCAP Layer Developer's Reference Manual Using the TCAP service

Generally, an invoke component is not allowed in an end message. However, invoke
components are allowed by setting the ALLOW_INVOKE_END field in the USER_SAP
section of the TCAP configuration file. Refer to the NMS SS7 Configuration Manual for
information.

Invoke time-outs (ITU-T only)

As shown in the following illustration, only the ITU-T protocol implements invoke
time-outs. If an application sends an invoke component, and does not receive a
return result last, return error, or a reject with the same invoke ID within a
configured time, the invoke times-out. A message type of TCAP_LOC_IND is
returned with a TCAP_CANCEL component. The application closes the transaction by
an end (ITU-T) or a user abort.

Requester Server
application TCAP layer TCAP layer application

TcapTransReq [Invoke]:

suDIgId=a,
spDIgId=0, BEGIN [Invoke]

invokeID=1 Trans ID=x,
invokeID=1

TcapRetrieveMsg_»
spDIgID=x,
invokeID=1

Time-out period
elapses
TcapRetrieveMsg

suDIgld=a,

spDIgld=x,

invokeID=1
msgType = LOCAL_IND
compType = Cancel

Invalid component in a multiple component message

A TCAP message can contain multiple components. As soon as an invalid component
is detected by the TCAP stack, any valid components are indicated to the receiving
application along with the rejected component. Any components detected after the
rejected component are ignored.

For example, if a TCAP message is received with three components, and the second
component is invalid, the first valid component and the second rejected component
are indicated to the receiving application. The third valid component is ignored and
not indicated to the receiving application.

Dialogic Corporation 49

Using the TCAP service TCAP Layer Developer's Reference Manual

Signaling point and subsystem status

The TCAP service contains functions that provide TCAP applications with access to
the SCCP layer facilities for maintaining signaling point and subsystem status
between the calling application's system and backup signaling points or concerned
signaling points.

Coordinated state change

An application requests that its subsystem be taken out of service and have all traffic
routed to its backup point code by invoking TCAPStateReq with a request type of
TCAP_COORDREQ. This generates a SCCP subsystem-out-of-service-request (SOR)
to the backup signaling point as specified in the SCCP SAP configuration. The
application receives an incoming TCAP event with an event type of TCAP_COORDCFM
when the backup signaling point returns a subsystem-out-of-service-grant (SOG), as
shown in the following illustration:

Application = TCAP/SCCP layers Backup SP

TCAPStateReq
(TCAP_COORDREQ), ssn=x) SCCP SOR
J SCCP SOG
TCAPRetrieveMsg

(event = TCAP_COORCFM)

If the backup signaling point fails to return a SOG message and the grant request
times out, the TCAP_COORDCFM event indication contains a value of UOR_DENIED
in the subsystem multiplicity indicator (smi) field, implying that the application
should not go out of service.

50 Dialogic Corporation

TCAP Layer Developer's Reference Manual Using the TCAP service

Alternatively, the backup point code requests to go out of service by sending the
SOR message. This results in the application receiving a TCAP_COORDIND event as
shown in the following illustration. The application invokes TCAPCoordResp with an
event type of TCAP_COORDRESP to accept the request and return the SOG message.

Application TCAP/SCCP layers Backup SP

SCCP SOR

A

 TCAPRetrieveMsg
(event = TCAP_COORIND)

TCAPStateResp
(TCAP_COORDRESP) | SCCP SOG

Subsystem state changes

The application notifies all concerned point codes of a change in its state by invoking
TCAPStateReq with a status of SS_IS (in service) or SS_0QOS (out of service). This
request generates a subsystem available (SSA) or subsystem prohibited (SSP)
message to all concerned signaling points as specified by the SCCP configuration of
the application's SAP.

When the SCCP task receives messages from concerned signaling points indicating
that their status has changed, the application receives an unsolicited TCAP event
with an event type of TCAP_SSNSTIND (subsystem status) or TCAP_PCSTIND (point
code status).

Remote signaling point failures

An application can monitor the status of remote signaling points by specifying a list
of concerned point codes in the SCCP user SAP configuration corresponding to that
application.

If all routes to a concerned point code (CPC) become unavailable, the application
receives an unsolicited TCAP event with an event type of TCAP_PCSTIND with the
status field set to SP_INACC (signaling point inaccessible). In addition, the
application receives an unsolicited TCAP event with an event type of
TCAP_SSNSTIND with the status field set to SS_0QOS (subsystem out-of-service) for
each known subsystem at that signaling point.

If the MTP layer receives an indication from the remote SP that the SCCP user part is
unavailable, the application receives a TCAP_SSNSTIND (SS_0OS) event for each
known subsystem at that signaling point. This is not true for the TCAP_PCSTIND
event indication, since only the SCCP user part has failed and not the entire signaling
point.

When communication with the affected signaling point is restored, the application
receives an unsolicited TCAP event with an event type of TCAP_PCSTIND and the
status field set to SP_ACC (SP accessible). The SCCP layer initiates subsystem status
testing of all known subsystems at the affected SP. When a subsystem available

Dialogic Corporation 51

Using the TCAP service TCAP Layer Developer's Reference Manual

message is returned by the affected SP, the application receives a TCAP event with
an event type of TCAP_SSNSTIND and the status field set to SS_IS (subsystem in-
service). The application can re-establish communication with the affected
SP/subsystem.

The following example shows a remote signaling point failure and recovery
procedure:

Application TCAP/SCCP layers Backup SP

< SCCP SOR
. TCAPRetrieveMsg
(event = TCAP_COORIND)
TCAPStateResp |
(TCAP_COORDRESP) SCCP SOG

Tracing function calls and events

Natural Access provides a mechanism for tracing function calls and events issued or
received by an application. To capture trace messages, the Natural Access Server
(ctdaemon) must be running, and the TCAP service must be included in the [ctasys]
section of the cta.cfg file, as shown:

[ctasys]
Service = tcap, tcapmgr

In addition, the application must enable tracing when Natural Access is initialized:

tcapIlnitparms.size
tcapInitparms.traceflags
tcapInitparms.parmflags
tcapInitparms.ctacompatlevel

sizeof (CTA_INIT_ PARMS) ;
CTA_TRACE_ENABLE;
CTA_PARM MGMT SHARED;
CTA_COMPATLEVEL;

Ret = ctalInitialize (tcapServiceNames, 1, &tcapInitparms);

if (Ret != SUCCESS) ({
printf ("ERROR code 0x%08x initializing CT Access.", Ret);
exit(1);

}

For information about tracing, refer to the Natural Access Developer's Reference
Manual.

52 Dialogic Corporation

TCAP service function
reference

TCAP service function summary

NMS TCAP consists of the following service functions:

Function

TCAPAddComp

TCAPCoordReq

TCAPCoordResp

TCAPGetApiStats

TCAPGetComp

TCAPRetainTrans
TCAPRetrieveMessage

TCAPStateReq

TCAPTransRqst

Dialogic Corporation

Description

Adds a component and, optionally, its associated parameters to a TCAP
transaction data message being constructed.

Requests that the subsystem be taken out of service and have all traffic
routed to its backup point code.

Accepts a request that an associated signaling point subsystem be taken
out of service.

Retrieves congestion level activity statistics from the TCAP service.
Extracts a specific component and, optionally, its associated parameters
from a TCAP transaction data message received through
TCAPRetrieveMessage.

Initializes a new transaction message prior to adding components to the
transaction message (with TCAPAddComp) or sending the transaction
request with TCAPTransRqst, or both.

Resets the TCAP inactivity timer.

Retrieves the next message from the TCAP layer.

Notifies all concerned point codes of a change in its subsystem state by
generating a subsystem available (SSA) or subsystem prohibited (SSP)

message to all concerned signaling points as specified by the application's

SCCP service access point.

Sends a transaction message request to the TCAP layer.

53

TCAP service function reference TCAP Layer Developer's Reference Manual

Using the TCAP service function reference

This section provides an alphabetical reference to the TCAP service functions. A
prototype of each function is shown with the function description and details of all
arguments and return values. A typical function includes:

Prototype The prototype is followed by a listing of the function arguments. NMS data types include:
U8 (8-bit unsigned)

S16 (16-bit signed)

DWORD (32-bit unsigned)

Bool (8-bit unsigned)

If a function argument is a data structure, the complete data structure is shown.

Return The return value for a function is either TCAP_SUCCESS or an error code. For
values asynchronous functions, a return value of TCAP_SUCCESS (zero) indicates the function
was initiated; subsequent events indicate the status of the operation.

Use of the TCAP service functions requires the prior installation of the SCCP layer
package, particularly the sccpapi.h file, which defines data structures and constants
required for TCAP applications.

54 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP service function reference

TCAPAddComp

Adds a component and, optionally, its associated parameters to a TCAP transaction
data message being constructed.

Prototype

DWORD TCAPAddComp (U8 *pMessage, TcapComp *pComp, U16 paramlLen,
U8 *pParamBuf)

Argument Description

pMessage Pointer to the address of the caller's message buffer. This buffer must have been
previously initialized with TCAPInitTrans.

pComp

Return values
Return value Description
TCAP_SUCCESS

TCAP_OVERFLOW Adding this component/parameters to the message overflows the maximum TCAP
message size.

TCAP_PARAM NULL pointer was passed for a required parameter.
TCAP_UNINIT Supplied message buffer (pMessage) is not a valid message.
Details

For ANSI components, all parameters associated with a component must be enclosed
by an ASN.1 SET or SEQUENCE constructor. This is performed on behalf of the
application by the TCAP layer, based on the value in the paramFlg field in the ANSI
component structure.

For ITU-T components, there is no requirement that all parameters be enclosed in a
ASN.1 SET or SEQUENCE constructor. If this is required by the specific application
protocol, then it must be done by the application.

Dialogic Corporation 55

TCAP service function reference TCAP Layer Developer's Reference Manual

TCAPCoordReq

Requests that the subsystem be taken out of service and have all traffic routed to its
backup point code.

Prototype
DWORD TCAPCoordReq (CTAHD ctahd, S16 spId, U8 aSsn)

Argument Description

ctahd Context handle returned by ctaCreateContext.
spId TCAP service access point to which the caller is bound.
assn Affected subsystem number.

Return values
Return value Description
TCAP_SUCCESS

CTAERR_BAD_ARGUMENT Natural Access handle is invalid, or an invalid message buffer has
been used.

Details

Generates a SCCP subsystem-out-of-service-request (SOR) to the backup signaling
point as specified in the SAP configuration.

56 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP service function reference

TCAPCoordResp

Accepts a request that an associated signaling point subsystem be taken out of

service.

Prototype

DWORD TCAPCoordResp (CTAHD ctahd, S16 spId, U8 aSsn)

Argument Description

ctahd Context handle returned by ctaCreateContext.
spId TCAP service access point to which the caller is bound.
assn Affected subsystem number.

Return values

Return value

TCAP_SUCCESS

CTAERR_DRIVER_SEND_FAILED

CTAERR_INVALID_HANDLE

CTAERR_OUT_OF_MEMORY

Details

Description

Natural Access handle is invalid, or an invalid message buffer has
been used.

Message buffer was not sent to the board. Call TCAPGetApiStats
and check the txLastErr field to find the error.

Natural Access handle is invalid.

TCAP service queue is full and another request could not be queued
to the TCAP layer.

Generates a SCCP subsystem-out-of-service-grant (SOG) to the backup signaling
point as specified in the SAP configuration.

Dialogic Corporation

57

TCAP service function reference TCAP Layer Developer's Reference Manual

TCAPGetApiStats

Retrieves congestion level activity statistics from the TCAP service. For more
information, refer to TCAP service congestion on page 28.

Prototype
DWORD TCAPGetApiStats (CTAHD ctahd, TCAPAPISTATS *pStats, BOOL reset)

Argument Description

ctahd

U8 tcapConglLvl; /* current TCAP layer congestion
*

level [0..3] /)
U8 tcapCongSrc; /* reason for TCAP layer congestion i/
U8 sparel; /* spare for alignment 7

} TCAPAPISTATS;

If set to TRUE, all statistics (but not current congestion level) are reset to zero after
statistics are returned.

Return values
Return value Description
TCAP_SUCCESS
CTAERR_BAD_ARGUMENT Natural Access handle is invalid, or the statistics buffer is set to NULL.

CTAERR_INVALID_HANDLE Natural Access handle is invalid.

58 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP service function reference

TCAPGetComp

Extracts a specific component and, optionally, its associated parameters from a TCAP
transaction data message received through TCAPRetrieveMessage.

Prototype

DWORD TCAPGetComp (U8 *pMessage, U8 index, TcapComp *pComp, U16
*pParamlLen, U8 *pParamBuf)

Argument

pMessage

index

pComp

pParamLen

pParamBuf

Description

Pointer to the address of the caller's message buffer containing a message of type
TCAP_EVENT_DAT_IND that was previously received through TCAPRetrieveMessage.

Index of the component being retrieved. Valid range is 0 to
(TcapTransEvent.numComps - 1), where TcapTransEvent is the event structure
associated with this message that was returned by TCAPRetrieveMessage.

Pointer to the address of the caller's TcapComp area where the component body is
returned.

On input, this field is set to the maximum number of bytes of parameters to be copied
into the caller's parameter buffer. On return, this field is set to the actual number of
bytes of parameters copied to the caller's parameter buffer.

Pointer to the address of the caller's parameter buffer where parameters belonging to
this component are returned to the caller. The size of this buffer is passed initially in
pParamLen.

Return values

Return value
TCAP_SUCCESS

TCAP_INDEX

Description

Specified component index does not exist in the message buffer passed by the
caller, or it was not a valid TCAP transaction message in the buffer.

TCAP_OVERFLOW Caller's parameter buffer was not large enough to hold the parameters for this

TCAP_PARAM

TCAP_UNINIT

component.
pComp buffer is NULL.

Supplied message buffer (pMessage) is not a valid message.

Dialogic Corporation 59

TCAP service function reference TCAP Layer Developer's Reference Manual

Details

Preserve the contents of the message buffer between the call to
TCAPRetrieveMessage that returned the message and the last call to
TCAPGetComp to retrieve the last component. Once the last call to TCAPGetComp
returns, the message buffer can be released or reused.

If the caller does not expect any parameters with this component, then NULL
pointers can be specified for pParamLen and pParamBuf.

If the number of bytes of component parameters belonging to the specified
component exceeds the size of the caller's parameter buffer (as specified by the
input value of pParamLen), then:

e Only the first (*pParamLen) bytes of parameters are copied to the caller's
parameter buffer (if pParamLen and pParamBuf are not NULL).

e The actual humber of bytes needed to contain the parameters is returned to
the caller in pParamLen (if pParamLen is not NULL).

e The return value of the function is TCAP_OVERFLOW.

60 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP service function reference

TCAPInitTrans

Initializes a new transaction message prior to adding components to the transaction
message (with TCAPAddComp) and/or sending the transaction request with
TCAPTransRqst.

Prototype

DWORD TCAPInitTrans (U8 *pMessage, TcapTransinfo *pTinfo, TcapDIgSect
*pDigPart, U16 userInfolLen, U8 *pUserInfo)

Argument Description

pMessage Pointer to the address of the caller's message buffer, where the TCAP message is
constructed. This buffer must be at least TCAP_MSG_SIZE bytes long (currently
1076).

pTInfo Pointer to the address of the caller's TcapTransInfo buffer specifying the general

characteristics of the transaction message.

pDIigPart Pointer to the address of the caller's TcapDIlgSect structure (optional).
pUserInfolLen Byte length of user data to be included in the message (optional).
pUserInfo Pointer to the address of the caller's user data to be included in the message.

Return values
Return value Description
TCAP_SUCCESS
TCAP_OVERFLOW Caller's user information is too big for a TCAP message.

TCAP_PARAM NULL pointer was passed for a required parameter.

Details

After successful completion of TCAPInitTrans, the caller can then call
TCAPAddComp one or more times to add components to the transaction message.
The application must then call TCAPTransRqst to send the constructed message to
the TCAP layer.

For information about the structure of the transaction information block that is
pointed to in pTinfo, refer to TCAP transaction information structure on page 101.

The dialog portion is valid only for ITU-92 or later and ANSI-96 or later protocols. If
no dialog portion is in the outgoing message, a NULL pointer should be passed in
pDIgPart. For information about the structure of the TcapDIlgSect block, refer to
TCAP dialog section structure on page 103.

The user information portion is valid only for ITU-92 or later and ANSI-96 or later
protocols. For other protocol variants, or if no user data is included, a NULL pointer
should be passed in pUserInfo and pUserInfolLen should be set to zero.

The application has 912 bytes in the message buffer to specify the dialog section,
user information section, and components. If a dialog section is specified, about 600
bytes remain for the user information section, and the components and their
parameters. Each component uses 88 bytes plus the size of its parameter.

Dialogic Corporation 61

TCAP service function reference TCAP Layer Developer's Reference Manual

TCAPRetainTrans
Resets the TCAP inactivity timer.

Prototype
DWORD TCAPRetainTrans (CTAHD ctahd, S16 spId, TcapTransinfo *pTinfo)

Argument Description

ctahd Context handle returned by ctaCreateContext.
spId TCAP service access point ID.
pTinfo Pointer to the address of the caller's TcapTransInfo buffer specifying the general

characteristics of the transaction message.

Return values
Return value Description
TCAP_SUCCESS

CTAERR_BAD_ARGUMENT Natural Access handle is invalid, or an invalid message buffer has
been used.

CTAERR_DRIVER_SEND_FAILED Message buffer was not sent to the board. Call TCAPGetApiStats
and check the txLastErr field to find the error.

CTAERR_INVALID_HANDLE Natural Access handle is invalid.

CTAERR_OUT_OF_MEMORY TCAP service queue is full and another request could not be queued
to the TCAP layer.

Details

This function is normally called after an inactivity timeout indication was received for
an open transaction. If the application wants to keep the transaction open, a call to
TCAPRetainTrans causes the inactivity timer to be reset. When the inactivity timer
expires again, another inactivity timeout indication is received.

The inactivity timer value can be modified by setting a non-zero value in the
inactvTimer field in the TcapTransinfo structure. If set to zero, the inactivity timer
value remains the same.

62 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP service function reference

TCAPRetrieveMessage

Retrieves the next message from the TCAP layer.

Prototype

DWORD TCAPRetrieveMessage (CTAHD ctahd, U8 *pMessage, TcapRecvInfo
*pInfoBlk)

Argument Description

ctahd Context handle returned by ctaCreateContext.

pMessage Pointer to the address of the caller's message buffer where the received message is
returned to the caller. This buffer must be at least TCAP_MSG_SIZE bytes long
(currently 512).

pInfoBlk Pointer to the address of the caller's receive information block where information
regarding the received message is returned to the caller.

Return values

Return value Description

TCAP_SUCCESS

TCAP_DRIVER Error occurred accessing the CPI driver.
TCAP_NOMSG No event messages are waiting.
Details

Periodically call this function to receive messages from the TCAP layer.

When a message is received, TCAPRetrieveMessage copies the message to the
caller's message buffer and performs any necessary byte order translation to convert
to the host's native byte ordering. Information about the received message is
returned to the caller in the pinfoBlk parameter. The event structure associated
with a received message and the information returned in the receive information
block depend on the type of message received from the TCAP layer (as determined
by the value of the pinfoBlk.indType field).

For all events other than TCAP_EVENT_DAT_IND events, all relevant event
information is copied from the message buffer directly to the caller's receive
information block and the message buffer can be deallocated or reused immediately
upon return from this function.

For TCAP_EVENT_DAT_IND events, however, the component portion, application
component, parameters, and any user dialog information present in the message
remain in the caller's message buffer upon return from this function. Therefore, the
caller must preserve the contents of the message buffer until all component data,
component parameters, and dialog portion user information has been retrieved
through TCAPGetComp and processed completely or copied to a safe location.

pinfoBlk defines the type of event received and other event-specific attributes of the
incoming message. For more information, refer to General receive information block
structure on page 115.

Dialogic Corporation 63

TCAP service function reference

TCAPStateReq

TCAP Layer Developer's Reference Manual

Notifies all concerned point codes of a change in its subsystem state by generating a
subsystem available (SSA) or subsystem prohibited (SSP) message to all concerned
signaling points as specified by the application's SCCP service access point.

Prototype

DWORD TCAPStateReq (CTAHD ctahd, S16 spId, U8 aSsn, U8 status)

Argument Description

ctahd Context handle returned by ctaCreateContext.
spId TCAP SAP ID to which the caller is bound.

assn Affected subsystem number.

status New subsystem status:

0x03 = SS_00S Subsystem out of service

0x04 = SS_IS

Return values
Return value
TCAP_SUCCESS

CTAERR_BAD_ARGUMENT

CTAERR_DRIVER_SEND_FAILED

CTAERR_INVALID_HANDLE

CTAERR_OUT_OF_MEMORY

64

Subsystem in service

Description

Natural Access handle is invalid, or an invalid message buffer has
been used.

Message buffer was not sent to the board. Call TCAPGetApiStats
and check the txLastErr field to find the error.

Natural Access handle is invalid.

TCAP service queue is full and another request could not be queued
to the TCAP layer.

Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP service function reference

TCAPTransRqst

Sends a transaction message request to the TCAP layer.

Prototype
DWORD TCAPTransRqst (CTAHD ctahd, S16 spId, U8 *pMessage)

Argument Description

ctahd Context handle returned by ctaCreateContext.
spld TCAP SAP ID to which this transaction belongs.
pMessage Pointer to the address of the caller's transaction message that was constructed with

TCAPInitTrans, and optionally, TCAPAddComp.

Return values
Return value Description

TCAP_SUCCESS

TCAP_PARAM Message buffer is not valid. Call TCAPInitTrans using the
message buffer before you call TCAPTransRqst.

CTAERR_BAD_ARGUMENT Natural Access handle is invalid, or an invalid message buffer has
been used.

CTAERR_BAD_SIZE Message buffer is too large to be sent.

CTAERR_DRIVER_SEND_FAILED Message buffer was not sent to the board. Call TCAPGetApiStats
and check the txLastErr field to find the error.

CTAERR_INVALID_HANDLE Natural Access handle is invalid.

CTAERR_OUT_OF_MEMORY TCAP service queue is full and another request could not be queued
to the TCAP layer. Refer to TCAP service congestion on page 28 for
more information.

Details

Successful completion of this function implies that the request was successfully
queued to the TCAP layer. The request can subsequently be rejected by the TCAP
layer. If the request is rejected, the application receives a status event indication
(TCAP_EVENT_STA_IND) message from the TCAP layer. If the request cannot be
delivered by the SCCP layer, the application receives a notify event indication
(TCAP_EVENT_NOT_IND) message from the TCAP layer.

The transaction message must have been constructed using TCAPInitTrans, and
optionally TCAPAddComp, prior to being sent.

Dialogic Corporation 65

TCAP management function
reference

TCAP management function summary

NMS TCAP consists of the following management functions:

Function
TCAPAlarmControl
TCAPGenCfg
TCAPGenStatus

TCAPGetGenCfg

TCAPGetSapCfg

TCAPInitGenCfg

TCAPInitMgmtAPI

TCAPInitSapCfg

TCAPSapCfg

TCAPSapStats

TCAPTermMgmtAPI

TCAPTraceControl

Dialogic Corporation

Description

Controls the level of alarms generated by the TCAP task on the TX board.
Sends the TCAP general configuration parameters to the TX board.
Retrieves the TCAP general status structure.

Retrieves the current values for the general configuration parameters from the
TX board.

Retrieves the current configuration parameter values for a specific TCAP SAP.

Initializes a TCAP general configuration buffer to default configuration values
that can be passed to TCAPGenCfg.

Initializes TCAP management and provides access to the TX board.

Builds a default TCAP user SAP configuration buffer that can be passed to
TCAPSapCfg.

Sends a TCAP service access point (SAP) configuration parameter block to the
specified TX board to define or update the configuration for a specific TCAP
SAP.

Retrieves and optionally resets the statistics for a specified TCAP service
access point (SAP).

Terminates the connection between the application and the TX board,
releasing any resources (file descriptors) associated with TCAP management
functions.

Sends a request to enable or disable tracing of TCAP protocol messages.

67

TCAP management function reference TCAP Layer Developer's Reference Manual

Using the TCAP management function reference

This section provides an alphabetical reference to the TCAP management functions. A
prototype of each function is shown with the function description and details of all
arguments and return values. A typical function includes:

Prototype The prototype is followed by a listing of the function arguments. NMS data types include:
U8 (8-bit unsigned)

S16 (16-bit signed)

U16 (16-bit unsigned)

U32 (32-bit unsigned)

Bool (8-bit unsigned)

If a function argument is a data structure, the complete data structure is shown.

Return The return value for a function is either TCAP_SUCCESS or an error code. For
values asynchronous functions, a return value of TCAP_SUCCESS (zero) indicates the function
was initiated; subsequent events indicate the status of the operation.

Unlike the TCAP service functions that send and receive messages asynchronously,
each TCAP management function generates a request followed immediately by a
response from the TX board. TCAP management functions block the calling
application waiting for this response (typically a few hundred milliseconds) and
return an indication as to whether or not an action was completed successfully. For
this reason, the TCAP management functions are typically used by one or more
management applications, separate from the applications that use the TCAP service
functions. TCAP management is packaged as a separate library with its own interface
header files.

68 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP management function reference

TCAPAlarmControl

Controls the level of alarms generated by the TCAP task on the TX board.

Prototype
S16 TCAPAlarmControl (U8 board, U8 alarmLvl)

Argument Description
board TX board number to which this request is directed.

alarmLvl New alarm level.

Return values

Return value Description

TCAP_SUCCESS

TCAPM_BOARD board is out of range.
TCAPM_DRIVER Error occurred accessing the driver.
TCAPM_FAILED Task on the TX board reported a failure.

TCAPM_TIMEOUT Request timed out.

TCAPM_UNINIT Application failed to call TCAPInitMgmtAPI prior to this call.

Details
All TCAP alarm messages are sent to the txalarm utility.

The following table defines the TCAP alarm levels and their recommended use:

Alarm level Description

TCAP_ALARMLVL_DIS All alarms are disabled. This alarm level is not recommended for use.

TCAP_ALARMLVL_DFLT Default alarm level. Service impacting events such as application/SSN
unavailable, resource failures, and application interface violations are
logged.

TCAP_ALARMLVL_DEBUG | All default level alarms plus detailed message encoding or decoding
diagnostics to troubleshoot individual application or transaction problems.
Use this alarm level for application development.

TCAP_ALARMLVL_DETAIL | All debug level alarms plus some normal events to help isolate network or

application problems. Do not use this alarm level under production load
conditions.

Dialogic Corporation 69

TCAP management function reference TCAP Layer Developer's Reference Manual

TCAPGenCfg

Sends the TCAP general configuration parameters to the TX board.

Prototype
S16 TCAPGenCfg (U8 board, TcapGenCfg *cfg)

Argument Description
board TX board number to which this request is directed.

cfg Pointer to the address of a general configuration parameters buffer. The buffer's format
is specified in TCAPInitGenCfg.

Return values
Return value Description
TCAP_SUCCESS

TCAPM_BADPARAM A parameter is out of range, most likely because the general configuration
parameters buffer was not initialized using TCAPInitGenCfg.

TCAPM_BOARD board is out of range.

TCAPM_CFGDUP General configuration has already been sent to the board.

TCAPM_DRIVER Error occurred accessing the driver.

TCAPM_FAILED Task on the TX board reported a failure.

TCAPM_MAXSAPS Value specified for maxSaps is out of range.

TCAPM_NULLPTR Null pointer was specified for cfg.

TCAPM_RANGE Value is out of range.

TCAPM_TIMEOUT Request timed out.

TCAPM_UNINIT Application failed to call TCAPInitMgmtAPI prior to this call.
Details

This function can be called only once per download of the TX board. It must be called
before any TCAP SAPs are configured.

cfg must be initialized with TCAPInitGenCfg prior to this call.

70 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP management function reference

TCAPGenStatus

Retrieves the TCAP general status structure.

Prototype

S16 TCAPGenStatus (U8 board, TcapGenStatus *status)
Argument Description
board TX board number.

status Pointer to the TcapGenStatus structure:

/* TCAP General statistics structure */
typedef struct TCAP_Gen_Stats
{

U8 haSt; /* high availability state */
us mcSt; /* mate connection state =/
} TcapGenStatus;

Refer to the Details section for more information.

Return values

Return value Description

TCAP_SUCCESS

TCAPM_BOARD board is out of range.
TCAPM_DRIVER Error occurred accessing the driver.
TCAP_FAILED Task on the TX board reported a failure.

TCAPM_NULLPTR Null pointer was specified for status.
TCAPM_TIMEOUT Request timed out.

TCAPM_UNINIT Application failed to call TCAPInitMgmtAPI prior to this call.

Details
haSt has the following valid values:

Value Description

0 ST_HAST_STARTING

1 ST_HAST_STANDALONE
2 ST_HAST_PRIMARY

3 ST_HAST_BACKUP

mcSt has the following valid values:
Value Description
0 ST_MCST_ISOLATED

1 ST-MCST_CONNECTED

Dialogic Corporation 71

TCAP management function reference TCAP Layer Developer's Reference Manual

TCAPGetGenCfg

Retrieves the current values for the general configuration parameters from the TX

board.

Prototype

S16 TCAPGetGenCfg (U8 board, TcapGenCfg *cfg)

Argument Description

board TX board number to which this request is directed.

cfg Pointer to the address of a general configuration parameters buffer. The buffer's format
is specified in TCAPInitGenCfg.

Return values
Return value
TCAP_SUCCESS
TCAPM_BOARD
TCAPM_DRIVER
TCAPM_FAILED
TCAPM_NULLPTR
TCAPM_TIMEOUT

TCAPM_UNINIT

72

Description

board is out of range.

Error occurred accessing the driver.
Task on the TX board reported a failure.
Null pointer was specified for cfg.
Request timed out.

Application failed to call TCAPInitMgmtAPI prior to this call.

Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP management function reference

TCAPGetSapCfg

Retrieves the current configuration parameter values for a specific TCAP SAP.

Prototype

S16 TCAPGetSapCfg (U8 board, TcapSapCfg *cfg, U16 sapId)

Argument Description

board TX board number to which this request is directed.

cfg Pointer to the address of the SAP configuration parameters buffer. The buffer's format is
specified in TCAPInitSapCfg.

sapld Service access point being defined.

Return values
Return value
TCAP_SUCCESS
TCAPM_BADSAP
TCAPM_BOARD
TCAPM_DRIVER
TCAPM_FAILED
TCAPM_NULLPTR
TCAPM_TIMEOUT

TCAPM_UNINIT

Dialogic Corporation

Description

SAP ID is either out of range or the call was made prior to calling TCAPGenCfg.
board is out of range.

Error occurred accessing the driver.

Task on the TX board returned a failure.

Null pointer was specified for cfg.

Request timed out.

Application failed to call TCAPInitMgmtAPI prior to this call.

73

TCAP management function reference

TCAPInitGenCfg

TCAP Layer Developer's Reference Manual

Initializes a TCAP general configuration buffer to default configuration values that

can be passed to TCAPGenCfg.

Prototype

S16 TCAPInitGenCfg (TcapGenCfg *cfg)

Argument Descript

ion

cfg Pointer to the TCAP general configuration structure to be initialized:

typedef struct Tcap_ Gen Cfg

{

S16
Sl6
Sl6
Sl6
PDesc
U8

us

Us
U8
U8
U8
Ule6
Uleé
Ulé

maxSaps;
maxDlgs;
maxInvs;
timeRes;
smPst;
alarmLvl;
minTidLen;

haState;
mcState;
traceData;
£fill;
memThreshl;
memThresh2;
MemThresh3;

} TcapGenCfg;

/*
/*
/*
/*
/*
/*
/*

*
/*
/*
/*
/*
/*
/*
/*

Max Number of TCAP Saps 7
Max number of dialogs; system-wide @/
Max number of invokes; system-wide %/
Timer Resolution - for internal use */
not used s/
Alarm level =/
Minimum transaction ID length

(ITU only) */
high availability state (ouput only) */
mate connection state (output only) */
enables/disables TCAP packet trace =/
spare for alignment)
congestion onset level 1 mem percent */

congestion onset level 2 mem percent */
congestion onset level 3 mem percent */

Refer to the Details section for more information.

Return values

Return value Description

TCAP_SUCCESS

TCAPM_NULLPTR Null pointer was specified for cfg.

Details

The application can change the default values within the specified range for any
fields other than those denoted as internal or unused prior to calling TCAPGenCfg to
send the configuration to the TCAP layer.

TcapGenCfg structure members not listed in the following table are either unused or
for internal use only. These fields are set to correct values by TCAPInitGenCfg and
must not be overridden by the application.

74

Dialogic Corporation

TCAP Layer Developer's Reference Manual

TCAP management function reference

Default values for the TcapGenCfg structure that can be overridden by the calling
application are listed in the following table:

Field

maxSaps

maxDlgs

maxInvs

alarmLvl

minTidLen

haState

mcState

traceData

memThresh1

memThresh2

memThresh3

Range

1-64

1-32767

1-32767

TCAP_ALARMLVL_DIS
TCAP_ALARMLVL_DFLT
TCAP_ALARMLVL_DEBUG
TCAP_ALARMLVL_DETAIL

1-4

ST_HAST_STARTING
ST_HAST_STANDALONE
ST_HAST_PRIMARY
ST_HAST_BACKUP

ST_MCST_ISOLATED
ST_MCST_CONNECTED

TCAP_BUFTRACE_OFF
TCAP_BUFTRACE_ON

1-99

1-99

Dialogic Corporation

Default value

4

256

256

TCAP_ALARMLVL_DFLT

N/A

N/A

TCAP_BUFTRACE_OFF

20

15

10

Description

Maximum number of TCAP user
SAPs (subsystem number or
protocol variant) that can be
defined.

Maximum number of outgoing and
incoming TCAP transactions that
can be pending at one time.

Maximum number of outgoing and
incoming TCAP invoke operations
that can be pending at one time.

Level of alarms generated by the
TCAP layer. TCAPAlarmControl
provides information on alarm
levels.

Minimum transaction ID length
(ITU only). If an out of range value
is specified, the value is forced to 1
without a reported error.

Current TCAP layer state returned
by TCAPGetGenCfg. It is ignored
by TCAPGenCfg.

Current TCAP layer state of
communication with mated TCAP
when deployed as a redundant
pair. Returned by
TCAPGetGenCfg. The layer state
is ignored by TCAPGenCfg.

Enables and disables tracing of
TCAP packets to the ss7trace
utility.

Percentage of memory available to
TCAP below which inbound and
outbound congestion level 1 is
triggered.

Percentage of memory available to
TCAP below which inbound and
outbound congestion level 2 is
triggered.

Percentage of memory available to
TCAP below which inbound and
outbound congestion level 3 is
triggered.

75

TCAP management function reference TCAP Layer Developer's Reference Manual

TCAPInitMgmtAPI

Initializes TCAP management and provides access to the TX board.

Prototype
S16 TCAPInitMgmtAPI (U8 board, U8 srcEnt, U8 srcInst)

Argument Description

board TX board number to which this request is directed.
srcEnt Calling application entity ID.
srcInst Calling application instance ID.

Return values
Return value Description
TCAP_SUCCESS
TCAPM_BOARD board is out of range.
TCAPM_DRIVER Error occurred accessing the driver.

TCAPM_TOOMANY Too many applications initialized the board concurrently.

Details

This function must be called before any other TCAP management functions are
called.

If the same application uses both the TCAP service functions and the TCAP
management functions, specify separate entity IDs when the two APIs are initialized.

76 Dialogic Corporation

TCAP Layer Developer's Reference Manual

TCAPInitSapCfg

TCAP management function reference

Builds a default TCAP user SAP configuration buffer that can be passed to

TCAPSapCfg.

Prototype

S16 TCAPInitSapCfg (U8 board, S16 spId, S16 swProt, TcapSapCfg *cfg)

Argument Description

board TX board number to which this request is directed. This parameter also identifies the
TCAP layer instance ID.

spld Index number of the TCAP SAP being defined.
Valid range is 0 to (TcapGenCfg.maxSaps - 1).

swProt Protocol selector switch. Refer to the Details section for more information.

cfg Pointer to the address of the TCAP SAP configuration parameters buffer:

typedef struct Tcap_Sap_Cfg

{

S16 swtch; /=
U8 selectorUser; /*
U8 sparel; /%
MemoryId memUser; /=
U8 priorUser; A
U8 routeUser; /%
TmrCfg tl; /%
TmrCfg t2; /=
U8 seqTimer; A

*
Us selectorSP; /%
MemoryId memSP; /=
Ulé6 procIdSP; /=
us entSP; /*
U8 instSP; /%
OF:] priorSP; /=
U8 routeSP; /=
S16 spIdSP; /%
Us altParamlLen; /*

*
Us chkpt; /=

/*
U8 addrOverride; /*

/*
U8 allowInvkEnd; /*

/*
S16 qThreshl; /%

/*
S16 qThresh2; /=

/*
S16 qThresh3; /%

/*

} TcapSapCfg;

Protocol selector switch
selector for TCAP User
spare for alignment
Memory ID - not used
priority - not used
route - not used

default invocation timer
wait for rejection timer

duration to maintain SLS for

sequential delivery
selector for SCCP

memory ID/SCCP - not used
processor Id -not used
SCCP entity ID = ENT_SCCP
SCCP inst. ID = board num.
SCCP priority - not used
SCCP route - not used

SCCP SAP ID for this TCAP SAP

Alternate Parameter Length
Calculation

default checkpoint strategy for

this application
application overrides SCCP
address

allow invoke component in end

message

*/
Y/

*/

queue size triggering congestion

level 1

Y/

queue size triggering congestion

level 2

*/

queue size triggering congestion

level 3

Refer to the Details section for more information.

Dialogic Corporation

=

77

TCAP management function reference TCAP Layer Developer's Reference Manual

Return values

Return value Description

TCAP_SUCCESS

TCAPM_BOARD board is out of range.

TCAPM_NULLPTR Null pointer was specified for cfg.

TCAPM_SWTYPE Protocol selector switch type is invalid.

Details

swProt identifies one of the following TCAP protocol variants used on the specified

SAP:
Value
1

2

5

6

Description
TCAP_SW_ITU88
TCAP_SW_ITU92
TCAP_SW_ANSS88
TCAP_SW_ANS92
TCAP_SW_ITU97

TCAP_SW_ANS96

The application can change the default values within the specified range for any
fields other than those denoted as internal or unused prior to calling TCAPSapCfg to
send the configuration block to the TCAP layer.

TcapSapCfg structure members not listed in the following table are either unused or
for internal use only. These fields are set to correct values by TCAPInitSapCfg and
must not be overridden by the application.

78

Dialogic Corporation

TCAP Layer Developer's Reference Manual

TCAP management function reference

Default values for the TcapSapCfg structure that can be overridden by the calling
application are listed in the following table:

Field

swtch

t1

t2

seqTimer

instSP

spIdSP

altParamLen

chkpt

addrOverride

allowInvkEnd

gThresh1

gThresh2

qThresh3

Range

1-6

1 - 65535

1 - 65535
1-255

1-8

0 - 32766
Oorl
CHKPT_NONE
CHKPT_SEND
CHKPT_ALL
Oorl

Oor1

1- 32766
1-32766
1-32766

Dialogic Corporation

Default value

swProt
parameter

60

60
60
board

parameter

spId
parameter

CHKPT_NONE

600

900

1200

Description

TCAP protocol variant to be used on this SAP.

Default invocation timer, in seconds.

Time to wait for reject of non-invoke component,
where applicable, in seconds.

Duration to request SCCP to maintain signaling link
selector (SLS) when sequential delivery is required.

SCCP task instance ID, always equal to the board
number.

SCCP SAP ID (from the SCCP configuration) to map
this TCAP SAP onto. By default, set to the same value
as the TCAP SAP ID.

Used for ANSI TCAP protocols only.

0 = Uses the normal method of deriving a component
parameter length from the component length field.

1 = Uses an alternate method of obtaining the
parameter length from the set or sequence tag and
length.

Checkpointing option for this SAP when deployed in a
redundant configuration. Refer to Transaction
checkpointing on page 25.

If set to 1, the application provides a called party
address in a transaction response message. By default,
TCAP uses a calling party address from the incoming
message that initiated the transaction.

If set to 1, the application includes an invoke
component in the end transaction message.

Number of inbound messages queued to the
application before congestion level 1 is triggered.

Number of inbound messages queued to the
application before congestion level 2 is triggered.

Number of inbound messages queued to the
application before congestion level 3 is triggered.

79

TCAP management function reference TCAP Layer Developer's Reference Manual

TCAPSapCfg

Sends a TCAP service access point (SAP) configuration parameter block to the
specified TX board to define or update the configuration for a specific TCAP SAP.

Prototype
S16 TCAPSapCfg (U8 board, TcapSapCfg *cfg, U16 sapId)

Argument Description
board TX board number to which this request is directed.

cfg Pointer to the address of the SAP configuration parameters buffer. The buffer's format is
specified in TCAPInitSapCfg.

sapld Service access point being defined.

Return values

Return value Description

TCAP_SUCCESS

TCAPM_BADSAP SAP ID is either out of range or the call was made prior to calling TCAPGenCfg.
TCAPM_BOARD board is out of range.

TCAPM_DRIVER Error occurred accessing the driver.

TCAPM_FAILED Task on the TX board returned a failure.

TCAPM_NULLPTR Null pointer was specified for cfg.
TCAPM_SWTYPE Protocol selector switch type is invalid.
TCAPM_TIMEOUT Request timed out.

TCAPM_UNINIT Application failed to call TCAPInitMgmtAPI prior to this call.

Details

This function can be called any time after the general configuration is downloaded to
the TX board using TCAPGenCfg but before any application attempts to bind to this
SAP for transaction processing.

An existing TCAP SAP can be redefined to change one or more of its configuration
parameters by calling TCAPSapCfg a second time, but only if there is no application
currently bound to the SAP.

cfg must be initialized with TCAPInitSapCfg prior to this call.

80 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP management function reference

TCAPSapStats

Retrieves and optionally resets the statistics for a specified TCAP service access point
(SAP).

Prototype
S16 TCAPSapStats (U8 board, S16 sapID, TcapSapStats *stats, U8 reset)

Argument Description

board TX board number to which this request is directed.
sapld Index number of the target TCAP SAP.
stats Pointer to the address of a caller's TCAP SAP statistics buffer where statistics are to be

returned. Refer to the Details section for more information.

reset If non-zero, statistics are reset to zero after retrieving.

Return values
Return value Description
TCAP_SUCCESS

TCAPM_BADSAP sapld is either out of range or the call was made prior to calling TCAPGenCfg.

TCAPM_BOARD board is out of range.
TCAPM_DRIVER Error occurred accessing the driver.
TCAP_FAILED Task on the TX board reported a failure.

TCAPM_NULLPTR Null pointer was specified for stats.
TCAPM_TIMEOUT Request timed out.

TCAPM_UNINIT Application failed to call TCAPInitMgmtAPI prior to this call.

Details

The TcapSapStats structure is shown here. Counts of type S32 represent the number
of event occurrences since last cleared. Counts of type TcapEvCnt include both a
count of events plus a time stamp of the first occurrence of the event, displayed in
hundredths of seconds since the last boot.

typedef struct Tcap_ Ev_Cnt
{

532 cnt; /* event count)
U32 first; /* when it first happened x/
} TcapEvCnt;

typedef struct Tcap_Sap_Stats
{

S16 swtch; /* protocol variant switch w/
S16 fill; /* £ill for alignment */
S32 openTrans; /* number of open transactions)
S32 frmTx; /* frames transmitted =/
S32 invTx; /* invoke components transmitted w/
S32 resTx; /* result components transmitted =/
S32 rejTx; /* reject components transmitted)
S32 errTx; /* error components transmitted x/
S32 uniTx; /* unidirectional msgs xmitted =/

Dialogic Corporation 81

TCAP management function reference TCAP Layer Developer's Reference Manual

S32 beginTx; /* begin messages transmitted x/
S32 contTx; /* continue messages transmitted w5/
S32 endTx; /* end messages transmitted =/
S32 abortTx; /* abort messages transmitted /)
S32 qryPrmTx; /* query with permission xmitted x/
S32 qryNoPrmTx; /* query w/out permission xmitted w5/
532 conPrmTx; /* conversation with permission

* xmitted */
S32 conNoPrmTx; /* conversation without permission

* transmitted =
S32 respTx; /* response transmitted &/
532 frmRx; /* frames received =Y
S32 invRx; /* invoke components received /)
S32 resRx; /* result components received x/
S32 rejRx; /* reject components received w5/
S32 errRx; /* error components received =/
S32 uniRx; /* unidirectional msgs received)
S32 beginRx; /* begin messages received x/
S32 contRx; /* continue messages received w5/
S32 endRx; /* end messages received &/
S32 abortRx; /* abort messages received /)
S32 qryPrmRx; /* query with permission rec'd x/
532 gryNoPrmRx; /* query without permission rec'd w5/
532 conPrmRx; /* conversation with permission

* rec'd =Y
S32 conNoPrmRx; /* conversation w/out permission

* rec'd =
S32 respRx; /* response received &/
S32 drop; /* frames dropped /)
TcapEvCnt urPkg; /* unrecognized package type x/
TcapEvCnt inTrn; /* incorrect transaction portion w5/
TcapEvCnt bdTrn; /* badly structured transaction

* portion */
TcapEvCnt urTrn; /* unrecognized transaction ID x/
TcapEvCnt prTrn; /* permission to release problem w5/
TcapEvCnt ruTrn; /* resource unavailable /)
TcapEvCnt urCmp; /* general - unrecognized comp. =/
TcapEvCnt inCmp; /* general-incorrect component

* portion 7
TcapEvCnt bdCmp; /* general - badly structured

* component portion /)
TcapEvCnt dupId; /* invoke - duplicate Invoke Id /)
TcapEvCnt urOp; /* invoke - unrecognized op code x/
TcapEvCnt inPrm; /* invoke - incorrect parameters w5/
TcapEvCnt iurId; /* invoke - unrecognized correlation

* ID */
TcapEvCnt rurId; /* ret. result - unrecognized correl.

% 1D =/
TcapEvCnt uxRes; /* ret. result - unexpected ret.

* result =Y
TcapEvCnt eurId; /* ret. error - unrecognized correl.

% 1D =/
TcapEvCnt uxRer; /* ret. error - unexpected return

* error =Y
TcapEvCnt urErr; /* ret. error - unrecognized error

* code =
TcapEvCnt uxErr; /* ret. error - unexpected error =/
TcapEvCnt enPrm; /* ret. error - incorrect parameter */
S32 outCongAbort; /* outbound transactions refused -

/* congestion =/
532 outCongDisc; /* outbound msgs discarded -

/* congestion &/
S32 inbCongAbort; /* inbound transactions refused -

/* congestion 7
532 inbCongDisc; /* inbound msgs discarded -

/* congestion &/
us currInbCongLvl; /* current inbound congestion level */
U8 currOutbCongLvl; /* current outbound congestion level */

} TcapSapStats;

82 Dialogic Corporation

TCAP Layer Developer's Reference Manual TCAP management function reference

TCAPTermMgmtAPI

Terminates the connection between the application and the TX board, releasing any
resources (file descriptors) associated with TCAP management functions.

Prototype
S16 TCAPTermMgmtAPI (U8 board)

Argument Description

board TX board number to which this request is directed.

Return values
Return value Description
TCAP_SUCCESS
TCAPM_BOARD board is out of range.

TCAPM_UNINIT Application failed to call TCAPInitMgmtAPI prior to this call.

Details
Call this function once for each board the application initialized.

Dialogic Corporation

83

TCAP management function reference TCAP Layer Developer's Reference Manual

TCAPTraceControl

Sends a request to enable or disable tracing of TCAP protocol messages.

Prototype
S16 TCAPTraceControl (U8 board, U32 flags)

Argument Description
board TX board to which this request is directed.

flags Bit map of trace facilities to turn on or off.

Return values

Return value Description

TCAP_SUCCESS

TCAPM_BOARD board is out of range.
TCAPM_DRIVER Error occurred accessing the driver.
TCAPM_FAILED Task on the TX board reported a failure.

TCAPM_TIMEOUT Request timed out.

TCAPM_UNINIT Application failed to call TCAPInitMgmtAPI prior to this call.

Details
TCAPTraceControl is currently not implemented.

TCAP supports only protocol buffer tracing (dumps of all TCAP protocol messages
sent or received).

0x00 TCAP_BUFTRACE_OFF

0x01 TCAP_BUFTRACE_ON

84 Dialogic Corporation

Demonstration programs and
utilities

Summary of the demonstration programs and utilities

NMS TCAP provides the following demonstration programs and utilities:

Program Description

find800 Implements a single request and response transaction using the TCAP layer.
tcapcfg Downloads the TCAP configuration to the TX board at boot time.

tcapmgr Monitors and manages the status of the TCAP layer.

Dialogic Corporation

85

Demonstration programs and utilities TCAP Layer Developer's Reference Manual

Request and response transaction: find800

Implements a single request and response transaction using the TCAP layer.
Separate samples are included for ITU-T TCAP and ANSI TCAP.

This program... Uses... Defaults to... Optionally supports...
ansi800 ANSI TCAP messages 24-bit addressing 14-bit ITU addressing
itu800 ITU-T TCAP messages 14-bit ITU-T addressing 24-bit ANSI addressing

find800 uses NMS TCAP to send and receive 800 number translation requests.
find800 can act as an 800 number server, or as an 800 number client requesting an
800 number translation. Both utilities can be found in the \tektx\samples\tcap\
directory.

Usage
£ind800 [options] pointcode: subsystem phonenum
Requirements
e A computer with a TX board installed
e Windows or UNIX
e Natural Access
e NMS SS7

86 Dialogic Corporation

TCAP Layer Developer's Reference Manual

Procedure
To run find800:

Step Action

1 From the command line prompt, navigate to the tektx\samples\tcap\find800 directory under
Windows or the /usr/bin directory under UNIX.

2 Enter the following command:

find800 [options] pointcode:subsystem phonenum

where options include:

Option

-b board

-p sapno

-n number

-i iterations

-j delay

Description

TX board number.
Default = 1. Valid range is 1 - 8.

Service access point ID.
Default = 0. Valid range is 0 - 255.

Subsystem number.
Default = 254. Valid range is 0 - 255.

Number of times a transaction is repeated.
Default = 1. Valid range is 0 - 32000.

Delay, in ms, between transaction repetition.
Default = 5000. Valid range is 1 - 65536.

Activates detailed dump of each sent or received packet.

Uses ITU addressing. The ansi800 program defaults to ANSI
addressing.

Uses ANSI addressing. The itu800 program defaults to ITU
addressing.

Causes find800 to act as an 800 number server. The find800 program
acts as a client by default.

pointcode:subsystem specifies the pointcode and subsystem number of the 800 number
server that is used by clients.

phonenum indicates the 800 number to be translated that is used by clients.

Note: If multiple instances of find800 are bound to the same TX board, the SAP ID
(-s) and the subsystem number (-n) must be unique for each instance.

Dialogic Corporation

Demonstration programs and utilities

87

Demonstration programs and utilities TCAP Layer Developer's Reference Manual

800 number server

To start find800 as an 800 number server:

Step

1

Action
Enter the following command:
£find800 -b 1 -p 0 -n 255 -s

In this case, find800 binds to TX board 1, uses SAP ID 0, and uses subsystem number 255.
Since -s is specified, find800 acts as a server and waits for an 800 nhumber request to arrive.

When a request arrives, find800 takes the received 800 number and compares it to the
numbers found in the numbers.800 file.

Note: The numbers.800 file must be in the same directory as the find800.exe file.

The numbers.800 file looks like this:
[800 Numbers]
8001234567=3122456789
8004561234=8477069700

Additional 800 numbers can be added, as long as they are listed after the [800 Numbers]
section header and they conform to the following syntax:
800nNNNNNNN=yyyyyyyyyy

If a matching 800 number is found, the FIND80O server returns the translated number in a
RETURN_RESULT [last] component.

If no matching 800 number is found, the find800 server returns a RETURN_ERROR component.

The find800 server continues to listen for and respond to requests indefinitely.

To stop the server, press any key.

800 number client

To start find800 as a client:

Step

1

88

Action

Enter the following command:
£find800 -b 2 -p 1 -n 254 1.1.1:255 8001234567

In this case, find800 binds to TX board 2, uses SAP ID 1, and uses subsystem number 254.
Since -s is not specified, find800 acts as a client, and immediately sends an 800 nhumber
request to pointcode 1.1.1, subsystem 255. The 800 number to be translated is 8001234567.

After sending the 800 number request, find800 waits for a response.

After a response is received, find800 continues to run, but no further requests are sent.

To stop the client, press any key.

Dialogic Corporation

TCAP Layer Developer's Reference Manual Demonstration programs and utilities

Troubleshooting

If TCAP messages are not sent, check the following:

e By default, the TCAP configuration is set up for ANSI-protocol messages.
Ensure that you are using the ansi800 version of find800.

e Structures used by TCAP must be packed on one-byte boundaries. The default
in most compilers is packing on 8-byte boundaries. For both Windows and
UNIX systems, the -Zp compiler flag must be set. The sample code makefile
shows how this flag is properly set.

e By default, the find800 demonstration program uses subsystem number 254.
However, the SCCP layer is initially configured with only subsystem numbers
3 and 4. Use the -n 3 command line option on both the client and the server
of find800.

The following code is an example of starting find800 as a client using
subsystem number 3:
£find800 -b 2 -p 1 -n 3 1.1.1:3 8001234567

Using the TCAP ITU-T protocol

To use the TCAP ITU protocol, modify the tcapcpl.cfg file. Change the SWITCH_TYPE
parameter to ITU88, ITU92, or ITU97 and modify as many SAP IDs as needed:

#

User SAP configuration for 1lst application

#

USER_SAP 0 # Sap number start at 0

SWITCH_TYPE ITU92 # one of ITU92, ITU88, ANSI92, ANSI8S8
END # User application 0

Note: ANSI-style point code addressing is still used (1.1.1).
If two TX boards are used, modify the tcapcp2.cfg file.

Adding subsystem numbers

To define new subsystem numbers, modify the sccpcpl.cfg file. The following code is
an example of a subsystem definition section:

#define all subsystems of interest at 1.1.1 (up to 8)

SSN 3 # first subsystem at 1.1.2

SSN_SNR TRUE # normal routed

SSN_ACC TRUE # initially accessible

#SSN_BPC X.V.2 # this subsystem not currently replicated

concerned point codes - other nodes to be notified when
status of this SSN at this node changes - must have a
route for any point code listed here

#CONC_PC g.r.s # 1lst concerned point code
#CONC_PC g.r.t # 2nd concerned point code
END # of route 1.1.2, SSN 3

Either change the SSN field or copy the definition section and define new subsystem
numbers. If two TX boards are used, modify the sccpcp2.cfg file.

Dialogic Corporation 89

Demonstration programs and utilities TCAP Layer Developer's Reference Manual

TCAP configuration utility: tcapcfg

Downloads the TCAP configuration to the TX board at boot time.

Once the TCAP configuration file is created, run the TCAP configuration (tcapcfg)
utility to download it to scan the ASCII text file and download the configuration to
the TCAP task on the TX board.

Usage
tcapcfg options
Requirements
e A computer with a TX board installed
e Windows or UNIX
e Natural Access
e NMS SS7

Procedure
To run tcapcfg:
Step Action

1 From the command line prompt, navigate to the \tektx\samples\tcap\tcapcfg directory under
Windows or the /usr/bin directory under UNIX.

2 Enter the following command:
tcapcfg options

where options include:

Options Description
-b board Board number to which the TCAP configuration is downloaded.
Default = 1.

-f filename Name and location of the TCAP configuration file to be downloaded.
The TCAP configuration program scans the information in the ASCII file (specified with the -f
option) and downloads this information to the task on the TX board.
Details

The TCAP configuration utility is available in both source code and executable
formats. Use tcapcfg if you want your application to load the TCAP configuration to
the TX board.

90 Dialogic Corporation

TCAP Layer Developer's Reference Manual Demonstration programs and utilities

TCAP layer status: tcapmgr

After downloading the TCAP configuration to the TX board with tcapcfg, run the TCAP
manager (tcapmgr) program to monitor the status of the TCAP layer. The TCAP
manager provides a command line interface that enables an application to set alarm
levels, trace buffers, and view and reset TCAP statistics.

Usage
tcapmgr -b board
Requirements
e A computer with a TX board installed
e Windows or UNIX
e Natural Access
e NMS SS7

Procedure
To run tcapmagr:

Step Action

1 From the command line prompt, navigate to the \tektx\samples\tcap\tcapmgr directory under
Windows or the /usr/bin directory under UNIX.

2 Enter the following command:
tcapmgr -b board
where board is the TX board number where the TCAP layer is loaded.

The tcapmgr program supports the following commands:
Command Description

ALARMLVL options Sets the current alarm output level.
Valid range for options is 0 - 3.

CONFIG SAP sapno | GEN Displays current general or SAP configuration parameter
values.

STATS sapno [RESET] Retrieves statistics on an application service access point
(sapno) and optionally resets them to zero (RESET)
after fetch.

STATUS Retrieves the general status of the TCAP task.

TRACE ON | OFF Turns buffer tracing on or off. This feature is not
currently supported.

BOARD board Switches to a new target board (board).

? [COMMAND] Lists available commands or parameters of a specific

command (COMMAND).

Q Quits the application.

Dialogic Corporation 91

Demonstration programs and utilities TCAP Layer Developer's Reference Manual

Details

The TCAP manager program is available in both source code and executable formats.
The source code demonstrates the use of TCAP management for developers who
want to integrate management of the SS7 TCAP layer into their own configuration
management systems.

92 Dialogic Corporation

8 Parameter and event structure
overview

Data types

NMS TCAP uses the following conventions for data types:

TCAP type C implementation Description

us unsigned char unsigned 8-bit quantity
ule unsigned short unsigned 16-bit quantity
S16 short signed 16-bit quantity
u32 unsigned long unsigned 32-bit quantity
S32 long signed 32-bit quantity

Point codes

Signaling point codes are represented as 32 bit unsigned integers (type U32) of
which either the least significant 14 bits or 24 bits (depending on the specific
configuration) are used. For example, an ANSI point code represented by the
(decimal) string 1.4.7 is encoded as (hex) 0x00010407.

TCAP octet strings
TCAP octet strings represent variable length octet strings such as ITU-T application

context names, operation codes, and problem codes:

typedef struct Tcap_ Octet_Str
{

Ul6 length;
U8 fill; /* £ill for alignment */
U8 fill2z; /* £ill for alignment */
U8 octStr[TCAP_MAX OCTSTR] ;

} TcapOctetStr;

For optional octet strings, the length field is set to zero to indicate that the
parameter is not included. Currently, the maximum length of octet strings using this
structure is set to 64 bytes.

Dialogic Corporation 93

Parameter and event structure overview TCAP Layer Developer's Reference Manual

TCAP component IDs

TCAP component IDs are used in the component definitions to represent invoke IDs,
linked IDs (ITU-T), and correlation IDs (ANSI).

They consist of a flag to indicate if the ID is present or not (for example, for optional
IDs). If the ID is present, an ID value is also specified.
For the present flag, use the present or not present identifiers defined in sccpapi.h.

typedef struct Tcap_CompId
{

U8 present; /* component ID present/not present */

U8 compIld; /* component ID value /)

U8 fill; /* £ill for alignment */

U8 fill2; /* fill for alignment &/
} TcapCompId;

Global titles

Strings of digits, such as a telephone number or a mobile identification number, that
routes TCAP transactions when the actual destination point code is unknown or can
change. A global title is translated into a destination point code/SSN by the SCCP
layer. Translations are configured in the SCCP configuration database. For more
information, refer to Global title translation on page 33.

The global title must be BCD-encoded. The global title 8471234567 is BCD encoded
as:

tInfo.cdAddr.glTitle[0] = 0x48;
tInfo.cdAddr.glTitle[1] = 0x17;
tInfo.cdAddr.glTitle[2] = 0x32;
tInfo.cdAddr.glTitle[3] = 0x54;
tInfo.cdAddr.glTitle[4] = 0x76;

The original global title was 10 digits long. BCD-encoded, it is five bytes in length.
This is used as the global title length.

tInfo.cdAddr.glTitlelLen = 5;
Global titles are encoded as follows:

Octet 1 | 2nd address digit 1st (most significant) address digit

Octet n | m + 1™ address digit or filler | m'™ address digit

94 Dialogic Corporation

TCAP Layer Developer's Reference Manual Parameter and event structure overview

Each digit is encoded with the following bit pattern:

Bit pattern Digit/signal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 spare
1011 code 11
1100 code 12
1101 spare
1110 spare
1111 ST

Dialogic Corporation 95

9 Common data structures

Common data structures summary

This section describes the following common data structures:
e SCCP address structure
e SCCP quality of service (QOS) structure
e TCAP transaction information structure
e TCAP dialog section structure

Dialogic Corporation

97

Common data structures TCAP Layer Developer's Reference Manual

SCCP address structure

The SCCP address structure represents a called party (destination) address and a
calling party (originating) address. The following declarations are found in the
sccpapi.h file:

typedef struct Tcap_Sp_Addr /* SCCP Address =Y

{
U8 presind; /* presence indicator x /!
U8 sparel; /* spare for alignment @/
S16 swTlype; /* switch type (ANSI/ITU-T) &/
U8 subsystemInd; /* subsystem indicator)
U8 pointCodelInd; /* point code indicator x /!
U8 glTitleInd; /* global title indicator @/
U8 routingInd; /* routing indicator =/
U8 natIntInd; /* national/international ind.)
U8 subsystem; /* subsystem number x/
U32 pointCode; /* point code @/
U8 glTransType; /* global title translation type */
U8 encoding; /* address encoding scheme */
U8 numPlan; /* numbering plan x/
U8 natAddrInd; /* nature of address indicator =/
U8 spare2; /* spare for alignment &/
U8 glTitlelen; /* length of global title #/
U8 glTitle[MAX GLT_Sz]; /* Global Title */

} SccpAddr;

The fields in the sccpAddr structure are encoded as follows:

Field Value

presind 0 = NOT_PRESENT Field not present in message
1 = PRESENT Field present in message

swtype 1 =SW_ITU ITU-T address

2 = SW_ANSI ANSI address

subsystemInd 0x00 = SUBSYS_NONE No subsystem number in address
0x01 = SUBSYS_INC Address contains subsystem number

pointCodelnd 0x00
0x01

PTCODE_NONE No point code in address
PTCODE_INC Address contains point code

glTitleInd 0x00 = GLT_NONE No global title in address
0x01 = GLT_TT_NP_E ANSI global title includes translation type, numbering plan
and encoding
0x02 = GLT_TT ANSI global title includes translation type only
0x01 = GLT_ITU_FMT1 ITU global title includes encoding and nature of address
0x02 = GLT_ITU_FMT2 ITU global title includes translation type only
0x03 = GLT_ITU_FMT3 ITU global title includes translation type, numbering plan,
and encoding
0x04 = GLT_ITU_FMT4 ITU global title includes translation type, numbering plan,
encoding, and nature of address

routingInd 0x00 = ROUTE_GLT Route by global title only
0x01 = ROUTE_PC_SN Route by point code and subsystem number
natIntInd 0x00 = ADDRIND_INT International address indicator

0x01 = ADDRIND_NAT National address indicator

98 Dialogic Corporation

TCAP Layer Developer's Reference Manual Common data structures

Field

subsystem

pointCode

glTransType

encoding

numPlan

glTitleLen

Dialogic Corporation

Value

0x00 = SUBSYS_NONE Subsystem unknown or not used

0x01 = SUBSYS_SCCPMGMT SCCP management subsystem

0x03 = SUBSYS_ISUP ISUP subsystem

0x04 = SUBSYS_OMAP Operations, maintenance, and administration
0x05 = SUBSYS_MAP Mobile application part

0x06 = SUBSYS_HLR Home location register

0x07 = SUBSYS_VLR Visitor location register

0x08 = SUBSYS_MSC Mobile switching center

0x09 = SUBSYS_EIR Equipment identification register

0x0A = SUBSYS_AUTH Authentication center

Other values in range 0x0B - OxFF are also allowed.

A 32 bit quantity of which the least significant 24 bits (ANSI) or the least significant
14 bits (ITU-T) are used. For example, an ANSI point code represented by the decimal
string 1.4.7 is encoded as hex 0x00010407. If a point code is not included in the
called address, the default point code is used.

Translation type when the global title indicator field (glTitleInd) specifies that the
global title includes translation type. Any 8-bit value [0x00 - OxFF] is allowed.

Specifies whether the number of digits in the addrSig field is even or odd. If the
number of digits is even, the last octet contains two digits. If the number of digits is
odd, the last octet contains only one digit and the most significant four bits are not
used.

0x00 = ENC_UNKNOWN Encoding unknown

0x01 = ENC_BCD_ODD BCD, odd number of digits
0x02 = ENC_BCD_EVEN BCD, even number of digits
0x00 = NP_UNK Unknown

0x01 = NP_ISDN ISDN/telephony - E.164/E.163

0x02 = NP_TEL Telephony numbering - E.163

0x04 = NP_TELEX Telex numbering - Recommendation F.69
0x05 = NP_MARITIME Maritime mobile humbering
0x06 = NP_LANDMOB Land mobile nhumbering

0x08 = NP_NATIONAL National standard numbering
0x09 = NP_PRIVATE Private numbering
0x0f = NP_EXT Reserved for extension

0x01 = NATIND_SUBS Subscriber number
0x03 = NATIND_NATL National number

Contains the byte length of the encoded global title. For example, a 10-digit global
title, after BCD encoding, would be five bytes long, so glTitleLen would be set to five
bytes.

Encoded global title.

99

Common data structures TCAP Layer Developer's Reference Manual

SCCP qu

ality of service (QOS) structure

Specifies a

requested quality of service from the SCCP layer:

typedef struct Tcap_Sccp_Qos

{

U8 priority; /* message priority (lowest) 0..3 (highest) =/
U8 retOpt; /* action to take if msg undeliverable w
U8 segDlvy; /* sequential deliver required? W /]
U8 spare; /* spare for alignment =/

} TcapSccpQos;

The fields in the TcapSccpQos structure are encoded as follows:

Field
priority

retOpt

segDlvy

100

Value

Message priority range 0 (lowest) to 3 (highest).

0x08 = MSG_RETURN Return message on error

1 = TCAP_QOS_SEQDEL Sequential delivery required, use SCCP class 1

Dialogic Corporation

TCAP Layer Developer's Reference Manual Common data structures

TCAP transaction information structure

Holds the transaction-level information regarding an outgoing transaction request or
an incoming transaction message:

typedef struct Tcap Trans_Info
{

U8 msgType; /* transaction message/package type W/
U8 abortCause; /* cause of an abort by TCAP layer, valid

* only if msgType is TCAP_ANSI_PABORT or

* TCAP_P_ABORT */
us preArgEnd; /* pre-arranged end? 0O=no, l=yes */
U8 chkpt; /* Checkpoint behavior W/
Ule6 inactvTimer; /* Inactivity timer Y
Ulé6 sparel; /* spare for alignment =/
U32 suDlgId; /* service user dialog ID &/
U32 spDlgId; /* service provider (TCAP) dialog ID W/
TcapSpAddr cdAddr; /* called party address Y
TcapSpAddr cgAddr; /* calling party address =/
TcapSccpQos gos; /* SCCP quality of service requested)

} TcapTransInfo;

The fields in the TcapTransInfo structure are encoded as follows:
Value

msgType The message type identifies the TCAP transaction message that is sent or received:

1 = TCAP_BEGIN ITU-T begin message

2 = TCAP_CONTINUE ITU-T continue message

3 = TCAP_END ITU-T end message

4 = TCAP_U_ABORT ITU-T user abort message

5 = TCAP_UNI ITU-T unidirectional

6 = TCAP_QRY_PRM ANSI query with permission message

7 = TCAP_QRY_NO_PRM ANSI query without permission message

8 = TCAP_RESPONSE ANSI response message

9 = TCAP_CNV_PRM ANSI conversation with permission message

10 = TCAP_CNV_NO_PRM ANSI conversation without permission message
11 = TCAP_ANSI_UABORT TCAP ANSI user abort message

12 = TCAP_ANSI_PABORT TCAP ANSI protocol abort message

13 = TCAP_P_ABORT CCITT protocol abort message

14 = TCAP_ANSI_UNI ANSI unidirectional

15 = TCAP_LOC_IND Locally-generated comp. indication

16 = TCAP_XACTION_TIMEOUT Locally generated transaction time-out indication

abortCause Identifies the cause of an abort initiated by the TCAP layer. Its value is valid only on
incoming messages when the msgType field is TCAP_ANSI_PABORT or TCAP_P_ABORT.

P-Abort ITU-T causes

0x00 = TCAP_ABORT_UNREC_MSG Unrecognized message

0x01 = TCAP_ABORT_UNREC_TRS Unrecognized transaction ID

0x02 = TCAP_ABORT_BAD_FRMT Malformed trans. part

0x03 = TCAP_ABORT_INC_TRANS Incorrect trans. part

0x04 = TCAP_ABORT_RESOURCE Insufficient resources

0x05 = TCAP_ABORT_ABNML_DLG Incorrect dialog portion

0x06 = TCAP_ABORT_NO_CMN_DLG Unsupported protocol version dialog portion

P-Abort ANSI causes

0x01 = TCAP_ANSI_ABORT_UP Unrecognized package type

0x02 = TCAP_ANSI_ABORT_IN Incorrect transaction portion

0x03 = TCAP_ANSI_ABORT_BD Badly structured transaction portion
0x04 = TCAP_ANSI_ABORT_UT Unrecognized transaction ID

0x05 = TCAP_ANSI_ABORT_PR Permission to release problem

0x06 = TCAP_ANSI_ABORT_RN Resource not available

Dialogic Corporation 101

Common data structures TCAP Layer Developer's Reference Manual

Field

chkpt

inactv
Timer

suDlgId

spDlgld

cdAddr
cgAddr
gos

preArgEnd

102

Value

If redundant TCAP is in use, this field determines the checkpoint behavior of a
transaction. The default checkpoint behavior is defined in the TCAP configuration file.

0 = TCAP_NO_CHKPT Do not checkpoint this transaction
1 = TCAP_CHKPT Checkpoint this transaction
2 = TCAP_CHKPT_DEFAULT Use the default checkpoint value

Determines the setting (in seconds) for the inactivity timer for the transaction. If set to
0 (zero), the transaction uses the default inactivity timer.

Service user dialog ID assigned by the application for this transaction. This value must
be unique among all active transactions belonging to this TCAP SAP.

Provider dialog ID assigned by the TCAP layer for this transaction. On transactions
initiated by the application, this value must be set to zero on any outgoing request sent
before the first incoming transaction message is received. The first incoming message
for any transaction (initiated by either end) contains the spDIgld assigned by the TCAP
layer. The application should save this value to be used with subsequent requests
belonging to the same transaction.

Destination address of a transaction message.

Originating address of a transaction message.

Quality of service requested from the SCCP.

Set to 1 if the transaction end is pre-arranged. When a transaction end is pre-arranged,
there is no explicit transaction end message exchanged between the two signaling
points. The transaction is cleared locally by the TCAP layer and the far signaling point is

expected to do the same. If this field is set to 0 (zero), a normal transaction end is
performed.

Dialogic Corporation

TCAP Layer Developer's Reference Manual Common data structures

TCAP dialog section structure

Holds the optional dialog information that can be contained in a TCAP message. The
dialog section is used only for ITU-T-92 or later and ANSI-96 or later protocols.

typedef struct
{

Tcap_Dlg_Sect

U8 dlgType; /* type of message this dialog is for W /]
U8 resPres; /* result field present? &/
U8 result; /* dialog result: accepted/rejected perm &/
us resSrc; /* result source: user or provider (TCAP) /)
U8 resDiag; /* result diagnostic)
U8 abrtSrc; /* source of abort =/
U8 £fill; /* £ill for alignment &/
U8 fill2; /* £ill for alignment */
TcapOctetStr apConName; /* application context name)
TcapOctetStr secConInfo; /* security context name W /]
TcapOctetStr confAlgId; /* confidentiality algorithm ID &/
TcapOctetStr confValue; /* confidentiality value /)
us apConNameType; /* security context information type)
U8 secConInfoType; /* confidentiality algorithm ID type W /]
U8 confAlgIdType; /* confidentiality value type &/
U8 confValueId; /* confidentiality value identifier =/

} TcapDlgSect;

The fields in the TcapDlgSect structure are encoded as follows:

Field

digType
(ITU9X)

resPres
(ITU9X)

apConName
(ITU9x and
ANSI96)

result
(ITU9X)

resSrc
(ITU9X)

Value

The dialog type identifies the dialog application PDU type. The value
TCAP_DLGP_NONE indicates that the dialog portion was not present in an
incoming message or should not be included in an outgoing message.

0 = TCAP_DLGP_UNK Unknown dialog portion type

1 = TCAP_DLGP_UNI Unidir. dialog portion type

2 = TCAP_DLGP_REQ Request dialog portion type

3 = TCAP_DLGP_RSP Response dialog portion type

4 = TCAP_DLGP_ABT Abort dialog portion type

1 = TCAP_DLGP_ANSI ANSI96 dialog portion type
OxFF = TCAP_DLGP_NONE Dialog portion not present

Indicates whether the result, resSrc, and resDiag fields are present or not. It is
coded to either PRESENT or NOT_PRESENT.

Application context name used in a structured dialog. This field is passed through
transparently by the TCAP layer and must be ASN.1 encoded/decoded by the
application if the application protocol in use specifies ASN.1 encoding of this field.

Result of a dialog section exchange. It is only present if the resPres field is set to
PRESENT.

0 = TCAP_DLG_ACCEPTED Dialog has been accepted

1 = TCAP_DLG_REJ_PERM Dialog rejected permanently

Source of the result of a dialog section exchange. It is only present if the resPres
field is set to PRESENT.

0x21 = TCAP_DLG_SU_TAG Dialog service user tag
0x22 = TCAP_DLG_SP_TAG Dialog service provider tag

Dialogic Corporation 103

Common data structures TCAP Layer Developer's Reference Manual

Field Value
resDiag Diagnostic value associated with the dialog result. It is only present if the resPres
(ITU9X) field is set to PRESENT.

0 = TCAP_DLG_RSD_NULL Result diagnostic null

1 = TCAP_DLG_RSD_NORSN No reason

2 = TCAP_DLG_RSD_NOACN User: no application context name

2 = TCAP_DLG_RSD_NCDLG 2 Provider: no common dialog portion

abortSrc Source of an aborted dialog.

(ITUSx) 0 = TCAP_DLG_USR_ABRT Service user
1 = TCAP_DLG_PRV_ABRT Service provider

If a dialog is aborted by the application, this field is set to TCAP_DLG_USR_ABRT.
If a dialog is aborted by the TCAP layer, this field is set to TCAP_DLG_PRV_ABRT.

secConlInfo Reserved for future use.

(ANSI96)

secConlInfoType Reserved for future use.

(ANSI96)

confAlgld Reserved for future use.

(ANSI96)

confAlgldType Reserved for future use.

(ANSI96)

confValue Reserved for future use.

(ANSI96)

confValueld Reserved for future use.

(ANSI96)

apConNameType Specifies whether apConName is encoded as an integer or object ID. For ITU,
(ANSI96 only) apConName is always an object ID type.

104 Dialogic Corporation

1 0 Component data structures

Component structure format

The component data structure assigns components to an outgoing transaction
request or receives components from an incoming transaction message. The general
format of the component structure is:

typedef struct Tcap_Comp

{

U8 compType; /* Component type... &/
U8 rejSrc; /* source of reject/cancel component /)
U8 fill; /* fill for alignment)
U8 £i112; /* £ill for alignment W /]
union /* ANSI or ITU-T component =/
{
TcapItuComp ituComp; /* ITU-T component w
TcapAnsiComp ansiComp; /* ITU-T component W /]
} uProt;
} TcapComp;

Fields are coded as follows:

Field

compType

rejSrc

uProt
Union

Value

Indicates the type of component and determines which protocol specific (ANSI or ITU-T)
member is used:

0 = TCAP_UNKNOWN Unknown component

1 = TCAP_INVOKE Invoke

2 = TCAP_RET_RES_L Return result last

3 = TCAP_RET_ERR Return error

4 = TCAP_REJECT Reject

5 = TCAP_RET_RES_NL Return result not last
6 = TCAP_INVOKE_L Invoke last

7 = TCAP_INVOKE_NL Invoke not last

8 = TCAP_CANCEL Cancel outstanding invoke

Specifies the status of an incoming reject or cancel (timed out invoke) component. rejSrc
distinguishes among the different reject sources:

0 = TCAP_COMP_NONE No additional status

5 = TCAP_COMP_CANCEL Invoke component timed out

6 = TCAP_COMP_REJ_USR TCAP user reject component

7 = TCAP_COMP_REJ_LOCAL Local TCAP reject component

8 = TCAP_COMP_REJ_REMOTE Remote TCAP reject component

When an outstanding invoke operation times out, the TCAP layer creates a REJECT
component with a rejSrc of TCAP_COMP_CANCEL. This field is not used for outgoing
components.

Indicates protocol-specific component information specified in ANSI component structure
and ITU-T component structure.

This section describes the following common data structures:

e ANSI component structure

e ITU-T component structure

Dialogic Corporation 105

Component data structures TCAP Layer Developer's Reference Manual

ANSI component structure

The ANSI component structure is used by applications implementing ANSI TCAP:

typedef struct Tcap_Ansi_Comp
{

TcapCompId invokeId; /* invoke id &/

TcapCompId corrId; /* correlation id /)

Ulé6 invokeTimer; /* Invoke Timer */

union /* component type-specfic fields 7

{

TcapAnsiOpcode opcode; /* operation code for invoke /)

TcapAnsiErrcode errcode; /* error code for return error)

TcapAnsiPrbcode prbcode; /* problem code for reject W /]
} uComp;

U8 paramFlg; /* Set or Sequence...)

U8 spare; /* spare for alignment 7
} TcapAnsiComp;

Fields are coded as follows:
Field Description

invokeld Contains the invocation ID. It must be set for any invoke component to a value unique
to all outstanding invoke components belonging to this transaction. To cancel an
outstanding invoke component, set this field to the invokelD of the component that is
cancelled.

corrld Contains the optional ANSI correlation ID.

e For a reply component (return result, return error, reject), set it to the invokeID of
the component to which the reply is directed.

e For an invoke component, it creates a linked invoke (a new invoke sent as a
response to a received invoke) by setting this field to the invokelD from the
original received invoke and setting the invokeld to a new unique value.

invokeTimer Not applicable for the ANSI protocol.

opcode Represents the operation code in an invoke component:

typedef struct Tcap_ Ansi_Opcode
{

U8 opCodeld; /* operation code identifier */
U8 opFamily; /* operation code family 7
U8 opSpec; /* operation code =)
U8 spare; /* spare for alignment =/

} TcapAnsiOpcode;

Refer to TcapAnsiOpcode on page 107 for information about the fields.

errcode Represents the error code in a return error component:

typedef struct Tcap_Ansi_Errcode
{

U8 errCodeld; /* error code identifier */

U8 errCode; /* error code value 5/

U8 fill; /* f£ill for alignment i/

U8 fill2; /* £ill for alignment */
} TcapAnsiErrcode;

Refer to TcapAnsiErrcode on page 109 for information about the fields.

106 Dialogic Corporation

TCAP Layer Developer's Reference Manual Component data structures

Field Description
prbcode Represents the problem code in a reject component:
typedef struct Tcap_Ansi_Prbcode
{
U8 probType; /* problem type /)
U8 probSpec; /* problem specifier */
U8 fill; /* £ill for alignment */
U8 fill2; /* £ill for alignment */
} TcapAnsiPrbcode;
Refer to TcapAnsiPrbcode on page 109 for information about the fields.
parmFig Specifies whether application parameters associated with this component are encoded
as (ASN.1) SET or SEQUENCE:
0 = TCAP_NO_SET_SEQ No parameters
1 = TCAP_SEQUENCE Parameter is a sequence
2 = TCAP_SET Parameter is a set
parmFlg is valid only for ANSI protocols. When configured with the ANSI-88 protocaol,
only TCAP_SET is valid. When configured for ANSI-92 or later protocols, either
TCAP_SET or TCAP_SEQUENCE can be used.
If parmFlg is set to TCAP_NO_SET_SEQ, then no parameter is sent, even if one is
specified.
TcapAnsiOpcode

TcapAnsiOpcode contains the following fields:

Field

opCodeld

opFamily

Value

Set to one of the following values:

3 = TCAP_NATIONAL National TCAP
4 = TCAP_PRIVATE Private TCAP

There are several pre-defined fields for national TCAP. If the opCodeld specifies private
TCAP, an application-specific value is used:

0x00 = TCAP_ANSI_NOF_NU Not used

0x01 = TCAP_ANSI_NOF_PARAM Parameter

0x02 = TCAP_ANSI_NOF_CHGING Charging

0x03 = TCAP_ANSI_NOF_PR_INS Provide instructions

0x04 = TCAP_ANSI_NOF_CN_CTL Connection control

0x05 = TCAP_ANSI_NOF_CL_INT Caller interaction

0x06 = TCAP_ANSI_NOF_SND_NO Send notification

0x07 = TCAP_ANSI_NOF_NET_MN Network management

0x08 = TCAP_ANSI_NOF_PROC Procedural

0x09 = TCAP_ANSI_NOF_OP_CTL Operation control family (ANSI-92)
0x0A = TCAP_ANSI_NOF_RP_EVT Report event family (ANSI-92)
0x7E = TCAP_ANSI_NOF_MISC Miscellaneous

0Ox7F = TCAP_ANSI_NOF_RSRVD Reserved

To specify that a reply is required, the following value is logically OR'd with one of the
previous values:

0x80 = TCAP_ANSI_NOF_RP_REQ Reply required OR w/value

Dialogic Corporation 107

Component data structures TCAP Layer Developer's Reference Manual

Field Value

opSpec Specifies a particular operation within an operation family:

OxFF = TCAP_ANSI_OS_RSRVD All families - reserved

0x00 = TCAP_ANSI_OS_NU All families - not used

0x01 = TCAP_ANSI_OS_PRV_VAL Parameter - provide value

0x02 = TCAP_ANSI_OS_SET_VAL Parameter - set value

0x01 = TCAP_ANSI_OS_BL_CALL Charging - bill call

0x01 = TCAP_ANSI_OS_START Provide instruction - start

0x02 = TCAP_ANSI_OS_ASSIST Provide instruction assist

0x01 = TCAP_ANSI_OS_CONNECT Connection control - connect

0x02 = TCAP_ANSI_OS_TMP_CON Connection control - temporary connect
0x03 = TCAP_ANSI_OS_DISC Connection control - disconnect

0x04 = TCAP_ANSI_OS_FWD_DIS Connection control - forward disconnect
0x01 = TCAP_ANSI_OS_PLY_ANN Caller interaction - play announcement
0x02 = TCAP_ANSI_OS_COL_DIG Caller interaction - play and collect digits
0x03 = TCAP_ANSI_OS_INF_WTG Caller interaction - information waiting
0x03 = TCAP_ANSI_OS_INF_PVD Caller interaction - information provided
0x01 = TCAP_ANSI_OS_PTY_FRE Send notification when free

0x01 = TCAP_ANSI_OS_RAS_TRM Procedural report assist termination
0x01 = TCAP_ANSI_OS_CANCEL Operation control - cancel

0x01 = TCAP_ANSI_OS_VM_AVL Report event - voice message available
0x02 = TCAP_ANSI_OS_VM_RTVD Report event - voice message retrieved
0x02 = TCAP_ANSI_OS_Q_CALL Miscellaneous - queue call

0x02 = TCAP_ANSI_OS_DQ_CALL Miscellaneous - dequeue call

0x01 = TCAP_ANSI_OS_CAL_GAP Network management - call gap

0x01 = TCAP_ANSI_OS_TMP_HDN Proc. - temporary handover

108 Dialogic Corporation

TCAP Layer Developer's Reference Manual Component data structures

TcapAnsiErrcode

TcapAnsiErrcode contains the following fields:
Field Value

errCodeld Set to one of the following values:

3 = TCAP_NATIONAL National TCAP
4 = TCAP_PRIVATE Private TCAP

errCode Has several pre-defined fields for national TCAP. If the errCodeld specifies private TCAP,
an application-specific value is used:

0x00 = TCAP_ANSI_ERR_NU Not used

0x01 = TCAP_ANSI_ERR_UX_CMP Unexpected component sequence

0x02 = TCAP_ANSI_ERR_UX_DAT Unexpected data value

0x03 = TCAP_ANSI_ERR_UA_NET Unavailable network resource

0x04 = TCAP_ANSI_ERR_MSG_RC Missing customer record

0x05 = TCAP_ANSI_ERR_REP_OD Reply overdue (ANSI-88)

0x05 = TCAP_ANSI_ERR_REP_SC Spare code (ANSI-92)

0x06 = TCAP_ANSI_ERR_DAT_UA Data unavailable

0x07 = TCAP_ANSI_ERR_TSK_RE Task refused (ANSI-92)

0x08 = TCAP_ANSI_ERR_Q_FULL Queue full (ANSI-92)

0x09 = TCAP_ANSI_ERR_NO_Q No queue (ANSI-92)

Ox0A = TCAP_ANSI_ERR_TMR_EX Timer expired (ANSI-92)

0x0B = TCAP_ANSI_ERR_DAT_EX Data already exists (ANSI92)

0x0C = TCAP_ANSI_ERR_UNAUTH Unauthorized request (ANSI-92)

0x0D = TCAP_ANSI_ERR_NOT_QD Not queued (ANSI-92)

OX0E = TCAP_ANSI_ERR_UAS_DN Unassigned DN (ANSI-92)

OxOF = TCAP_ANSI_ERR_SPARE Spare (ANSI-92)

0x10 = TCAP_ANSI_ERR_NOT_AV Notification available on destination DN (ANSI-92)
0Ox11 = TCAP_ANSI_ERR_VMSR_E VMSR system ID does not match user profile (ANSI-
92)

TcapAnsiPrbcode

TcapAnsiPrbcode contains the following fields:
Field Value

probtype Classifies the problem encountered in the rejected component:

0x00 = TCAP_ANSI_PRB_NU Not used

0x01 = TCAP_ANSI_PRB_GEN General

0x02 = TCAP_ANSI_PRB_INV Invoke

0x03 = TCAP_ANSI_PRB_RR Return result

0x04 = TCAP_ANSI_PRB_RE Return error

0x05 = TCAP_ANSI_PRB_TRANS Transaction portion
OxFF = TCAP_ANSI_PRB_RSRVD All families - reserved

Dialogic Corporation 109

Component data structures TCAP Layer Developer's Reference Manual

Field Value

probSpec General problems
0x01 = TCAP_ANSI_PRB_UR_CMP Unrecognized component
0x02 = TCAP_ANSI_PRB_IN_CMP Incorrect component
0x03 = TCAP_ANSI_PRB_BD_CMP Badly structured component

Invoke problems

0x01 = TCAP_ANSI_PRB_DUP_ID Duplicate invoke ID

0x02 = TCAP_ANSI_PRB_UR_OP Unrecognized operation code
0x03 = TCAP_ANSI_PRB_IN_PRM Incorrect parameter

0x04 = TCAP_ANSI_PRB_IUR_ID Unrecognized correlation ID

Return result problems
0x01 = TCAP_ANSI_PRB_RUR_ID Unrecognized correlation ID
0x02 = TCAP_ANSI_PRB_UX_RES Unexpected return result

Return error problems

0x01 = TCAP_ANSI_PRB_EUR_ID Unrecognized correlation ID
0x02 = TCAP_ANSI_PRB_UX_RER Unexpected return error
0x03 = TCAP_ANSI_PRB_UR_ERR Unrecognized error

0x04 = TCAP_ANSI_PRB_UX_ERR Unexpected error

0x05 = TCAP_ANSI_PRB_EN_PRM Incorrect parameter

Transaction portion problems

0x01 = TCAP_ANSI_PRB_UR_PKG Unrecognized package type

0x02 = TCAP_ANSI_PRB_IN_TRN Incorrect transaction part

0x03 = TCAP_ANSI_PRB_BD_TRN Badly structured transaction portion
0x04 = TCAP_ANSI_PRB_UR_TRN Unrecognized transaction ID

0x05 = TCAP_ANSI_PRB_PR_TRN Permission to release

0x06 = TCAP_ANSI_PRB_RU_TRN Resource unavailable

110 Dialogic Corporation

TCAP Layer Developer's Reference Manual Component data structures

ITU-T component structure

The ITU-T component structure is used by applications implementing ITU-T TCAP:

typedef struct Tcap_Itu Comp

{

TcapCompId invokeId; /* invoke id /)
TcapCompId linkedId; /* linked id w
Ule invokeTimer; /* Invoke Timer W /]
U8 opClass; /* operation class for invoke &/
U8 spare; /* spare for alignment /)
union /* component type-specific fields)
{
TcapItuOpcode opcode; /* operation code for invoke &/
TcapIltuErrcode errcode; /* error code for return error /)
TcapIltuPrbcode prbcode; /* problem code for reject)
} uComp;

} TcapItuComp;

Fields are coded as follows:

Field

invokelD

linkedId

invokeTimer

opClass

opcode

Description

Contains the invocation ID. It must be set for any invoke component to a value unique
to all outstanding invoke components belonging to this transaction. To cancel an
outstanding invoke component, this field is set to the invokelD of the component that is
cancelled.

Contains the optional ITU-T linked ID. The linked ID can be used to create a linked
invoke (a new invoke sent as a response to a received invoke) by setting this field to
the invokelD from the original received invoke and setting the invokeld to a new unique
value.

Specifies the time, in seconds, to wait for a response to an invoke component. If zero,
the value from the TCAP SAP configuration is used. This field is ignored for any
component other than an invoke component.

Specifies the ITU-T operation class. It is encoded to one of the values specified in the
opClass table.
Represents the operation code in an invoke component:

typedef struct Tcap_ Itu Opcode
{

U8 opCodeType; /* operation code type */

U8 spare; /* spare for alignment */

U8 fill; /* £ill for alignment */

U8 £ill2; /* f£ill for alignment */

TcapOctetStr opCode; /* opcode length/value */
} TcapItuOpcode;

The opCode value is a variable length octet string coded to the standards for the
application protocol in use.

opCodeType can be set to one of the following values:
0 = TCAP_NONE Opcode omitted (return result only)
1 = TCAP_LOCAL Local error/operation code

2 = TCAP_GLOBAL Global error/operation code

Dialogic Corporation 111

Component data structures TCAP Layer Developer's Reference Manual

Field

errcode

prbcode

112

Description

Represents the error code in a return error component:
typedef struct Tcap_Itu_Errcode
{

U8 errCodelId; /* error code identifier x/

U8 £fill; /* £ill for alignment w/

U8 fill2; /* £ill for alignment */

U8 spare; /* spare for alignment */

TcapOctetStr errCode; /* error code length/value x/
} TcapIltuErrcode;

The errCode value is a variable length octet string coded to the standards for the
application protocol in use. errCodeld can be set to either:

1 = TCAP_LOCAL Local error/operation code
2 = TCAP_GLOBAL Global error/operation code

Represents the problem code in a reject component:

typedef struct Tcap_Itu_Prbcode
{

U8 probType; /* problem type w/
U8 spare; /* spare for alignment /)
U8 fill; /* fill for alignment)
U8 £i112; /* £ill for alignment x/
TcapOctetStr prbCode; /* problem code length/value w/

} TcapIltuPrbcode;

The probType field classifies the problem encountered in the rejected component:

0x00 = TCAP_PROB_NONE No problem code flag

0x80 = TCAP_PROB_GENERAL General problem code flag
0x81 = TCAP_PROB_INVOKE Invoke problem code flag

0x82 = TCAP_PROB_RET_RES Return result problem code
0x83 = TCAP_PROB_RET_ERR Return error problem code flag

The prbCode value is a variable length octet string:

General problems

0 = TCAP_UNREC_COMP Unrecognized component

1 = TCAP_MISTYPED_COMP Mistyped parameter

2 = TCAP_BAD_STRUC_COMP Badly structured component

Invoke problems

0 = TCAP_DUP_INVOKE Duplicate invoke ID

1 = TCAP_UNREC_OPR Unrecognized invoke ID

2 = TCAP_MISTYPED_PARAM Mistyped parameter

3 = TCAP_RESOURCE_LIMIT Resource limitation

4 = TCAP_INIT_RELEASE Initiating release

5 = TCAP_UNREC_LINKED_ID Unrecognized linked ID

6 = TCAP_LINKED_RESP_UNX Linked response unexpected
7 = TCAP_UNX_LINKED_OP Unexpected linked operation

Return result problem

0 = TCAP_RR_UNREC_INVKID Unrecognized invoke ID
1 = TCAP_UNX_RETRSLT Return result unexpected

2 = TCAP_RR_MISTYPED_PAR Mistyped parameter

Return error problems

0 = TCAP_RE_UNREC_INVKID Unrecognized invoke ID
1 = TCAP_RE_UNX_RETERR Unexpected return error
2 = TCAP_UNREC_ERROR Unrecognized error

3 = TCAP_UNX_ERR Unexpected error

4 = TCAP_RE_MISTYPED_PAR Mistyped parameter

Dialogic Corporation

TCAP Layer Developer's Reference Manual Component data structures

The opclass field can be one of the following values:

Value Description

1 Both successes and failures are reported. A timeout is an abnormal failure.
2 Only failure is reported. A timeout implies successful completion.

3 Only success is reported. A timeout implies a failed operation.

4 Neither success or failure is reported. There is no interpretation of timeout.

Dialogic Corporation 113

1 1 Incoming message event

structures

Messages overview

TCAPRetrieveMessage is unique in that the event structure associated with a
received message depends on the type of message received from the TCAP layer.

This section provides a description of each possible event, as well as the structures

that are returned with each event.

General receive information block structure

Describes incoming events to the calling application. It contains an event type and a

service provider ID that are common to all received events and an event-specific

section:

typedef struct Tcap_ Recv_Info

{
U8 eventType; /*
U8 spare; /=

S16 suld; A
union /%
{
TcapCoordEvent coord; /=
TcapPCStateEvent pcstate; /=
TcapSsnStateEvent ssnstate; /*
TcapNotifEvent notif; /%
TcapStatusEvent status; 7%
TcapTransEvent; data; A
} event;
} TcapRecvInfo;

Event type...

spare for alignment

TCAP SAP ID event belongs to
event-specific info

coord indication/confirm
SP state change
subsystem state change
undeliverable msg notify
TCAP error indication
transaction data

The TcapRecviInfo structure contains the following fields:

Field Description

B/
*/
*/
wY

*/
*/
wY
=Y
*/
*/

eventType Identifies the event received, and determines which event-specific union member is used.

0xB1 = TCAP_EVENT_DAT_IND Transaction data indicator

0xB2 = TCAP_EVENT_STA_IND Status (error) indicator

0xB3 = TCAP_EVENT_COORD_IND Coordinated state change indication
0xB4 = TCAP_EVENT_COORD_CFM Coordinated state change confirmation
0xB5 = TCAP_EVENT_SSN_STATE Subsystem state change

0xB6 = TCAP_EVENT_PC_STATE SP state change

OxBF

sulD Identifies the TCAP SAP to which the incoming message belongs. This is useful to

TCAP_EVENT_NOT_IND Notice indication (SCCP undeliverable message return)

applications that bind to more than one TCAP SAP, such as ones that implement multiple
subsystems in a single application.

Dialogic Corporation

115

Incoming message event structures TCAP Layer Developer's Reference Manual

TCAP coordinated event structure

Represents both incoming coordinated status change indication (remote request) and
confirmation (response) events. It is indicated by an eventType of
TCAP_EVENT_COORD_IND or TCAP_EVENT_COORD_CFM.

typedef struct Tcap_Coord_Event
{

U8 aSsn; /* affected subsystem number w/

U8 smi; /* subsystem multiplicity indicator... &/

U8 fill; /* f£ill for alignment)

U8 £1112; /* fill for alignment x/
} TcapCoordEvent;

The TcapCoordEvent structure contains the following fields:
Field Description
aSsn Represents the affected subsystem number. The value can be in the range of 0 - 255.
smi Represents the subsystem multiplicity indicator, or the status of the replicated subsystem from

the underlying SCCP message:

0x00 = SMI_UNKNOWN Multiplicity unknown

0x01 = SMI_SOLO Subsystem not replicated

0x02 = SMI_DUP Subsystem is replicated

0x10 = SMI_DENIED Indicate denial of coordinated state change

SMI_DENIED is used by the SCCP in the TCAP_EVENT_COORD_CFM message to indicate that
the state change request timed out and was not granted.

116 Dialogic Corporation

TCAP Layer Developer's Reference Manual Incoming message event structures

Signaling point status event structure

Notifies the application of a change in the state of a concerned signaling point
(eventType of TCAP_EVENT_PC_STATE).

typedef struct Tcap PCState_ Event
{

U32 aPc; /* affected point code x/

U8 status; /* new signaling point status w/

U8 spare; /* spare for alignment w/

U8 fill; /* £ill for alignment */

U8 £ill12; /* f£ill for alignment &/
U32 opc; /* originating point code x/
} TcapPCStateEvent;

The TcapPCStateEvent structure contains the following fields:

Field Description
aPc Contains the point code of the affected signaling point.
status Represents the new status of the affected signaling point:

0x00 = SP_ACC Signaling point accessible

0x01 = SP_INACC Signaling point inaccessible

0x06 = SP_INACC_NODROP Signaling point inaccessible - connections not dropped
0x07 = SP_CONG_OFF APC congestion ceased

0x10 = SP_CONG1 APC congestion level 1

0Ox11 = SP_CONG2 APC congestion level 2

0x12 = SP_CONG3 APC congestion level 3

opc Originating point code - used for multiple OPC support.

Dialogic Corporation 117

Incoming message event structures TCAP Layer Developer's Reference Manual

Subsystem status event structure

Notifies the application of a change in the state of a subsystem at a concerned
signaling point (eventType of TCAP_EVENT_SSN_STATE):

typedef struct Tcap_ Ssn_State Event
{

U8 aSsn; /* affected subsystem number W/

U8 status; /* new subsystem status w5/

U8 smi; /* subsystem multiplicity indicator w5/

U8 spare; /* spare for alignment &/

U32 aPc; /* affected point code - future use #

U32 opc; /* originating point code W/
} TcapSsnStateEvent;

The TcapSsnStateEvent structure contains the following fields:

Field Description
assn Contains the affected subsystem number. Valid range is 0 - 255.
status Represents the new status of the affected subsystem:

0x03 = SS_0O0S Subsystem out of service
0x04 = SS_IS Subsystem in service

smi Represents the subsystem multiplicity indicator, or the new status of the subsystem with
respect to replication:

0x00 = SMI_UNKNOWN Multiplicity unknown
0x01 = SMI_SOLO Subsystem not replicated
0x02 = SMI_DUP Subsystem is replicated

aPc Not currently available. Reserved for future use.

opc Originating point code - used for multiple OPC support.

118 Dialogic Corporation

TCAP Layer Developer's Reference Manual Incoming message event structures

TCAP notification event structure

Notifies an application that a message could not be delivered by the SCCP layer
(eventType of TCAP_EVENT_NOT_IND).

typedef struct Tcap Notif Event

{

TcapTransInfo transInfo; /* trans. info from failed Req W /]

U8 retcause; /* cause for return of message &/

U8 spare; /* spare for alignment &/

U8 fill; /* £ill for alignment */

U8 £ill2; /* fill for alignment)
} TcapNotifEvent;

The TcapNotifEvent structure contains the following fields:

Field Description

transInfo Contains the message type, dialog IDs, and SCCP addresses from the failed request.

retcause Cause for the return of the message. This field must be set to one of the following values:
0x00 = RETCGENTRANS No translation for address of this nature
0x01 = RETCNOTRANS No translation for this address
0x02 = RETCSUBSCONG Subsystem congestion
0x03 = RETCSUBSFAIL Subsystem failure
0x04 = RETCUNQUIP Unequipped user
0x05 = RETCNETFAIL Network failure
0x06 = RETCNETCONG Network congestion
0x07 = RETCUNQUALIFIED Unqualified
0x08 = RETCHOPCNT Hop counter violation
0x09 = RETCMSGXPORT Error in message transport
0x0A = RETCLOCALPROC Error in local processing
0x0B = RETCREASSEMBLY Destination cannot do re-assembly
0xF9 = RETCBADISNI Invalid ISNI routing request
OxFA = RETCAUTH Unauthorized message
OxFB = RETCINCOMPAT Message incompatibility
OxFC = RETCNOISNI Cannot do ISNI constrained routing
OxFD = RETCREDISNI Redundant ISNI constrained routing information
OXFE = RETCISNIID Cannot do ISNI identification

Dialogic Corporation

119

Incoming message event structures TCAP Layer Developer's Reference Manual

TCAP status event structure

Notifies the application that it could not correctly process the request (eventType of
TCAP_EVENT_STA_IND). It is usually accompanied by an alarm that indicates the
cause of the failure. This event is primarily intended as a debugging aid during
system development and integration.

typedef struct Tcap_ Status_Event
{

S1l6 status; /* cause of error */
S16 suld /* caller's service user ID */
} TcapStatusEvent;

The TcapStatusEvent structure contains the following fields:
Field Description

status Identifies that cause of the error:

1 = TCAP_R_EVT_INAPP Received event in inappropriate state

2 = TCAP_MSNG_ELE Missing mandatory element

3 = TCAP_DUP_INV_ID Duplicate invoke ID

4 = TCAP_INV_RE] Received reject with syntax error

5 = TCAP_CONGESTED Unable to initiate new transaction due to outbound congestion

6 = TCAP_RES_FAIL Unable to initiate new transaction due to dialog control block
exhaustion

suld Contains the calling application service user ID from the bind request.

120 Dialogic Corporation

TCAP Layer Developer's Reference Manual Incoming message event structures

TCAP transaction data event structure

Represents an

incoming transaction message (eventType of

TCAP_EVENT_DAT_IND):

typedef struct Tcap Trans_Event

{
U32 opc; /* originating point code from

* routing label =/

TcapTransInfo transInfo; /* transaction info block &/
TcapDlgSect dlgPart; /* ITU-92 dialog section /)
Ulé6 numComps ; /* number of components in msg */
Ule userInfolen; /* byte length of user info W /]
U8 *pUserInfo; /* pointer to user dialog info &/

} TcapTransEvent;

The TcapTransEvent structure contains the following fields:

Field
opc

transInfo

digPart

numComps

userInfolLen

pUserInfo

Description
Originating point code from the routing label of the incoming message.

Contains the transaction message type, dialog IDs, and originating and destination SCCP
addresses.

Contains the dialog portion (application context name, etc.) of the message. It is used
only for ITU-92 or later and ANSI-96 and later protocols.

Contains a count of the number of components in the received message.

Contains the number of bytes in the user information section of the dialog portion
message. It is used only for ITU-92 or later and ANSI-96 and later protocols. It is set to
zero if there was no user information in the dialog portion of the message and for
protocol variants other than ITU-92 or later and ANSI-96 and later protocols.

Contains the address of the user information section of the dialog portion message. It is
used only for ITU-92 or later and ANSI-96 and later protocols. It is set to NULL if there
was no user information in the dialog portion of the message and for protocol variants
other than ITU-92 or later and ANSI-96 and later protocols.

Dialogic Corporation 121

8

800 number client 86

800 number server 86

A

abnormal conditions 44
address override 31
addressing and routing 31
ANSI component structure 106
ANSI transaction types 22
application programming models 18
B

backup subsystem status 50

C

checkpointing 22

common data structures 97, 98, 100,

101, 103

component data structures 105, 106,

111
configuration 30, 90, 91
congestion 26
contexts and queues 18
conversational linked transaction 42
D
data types 93
demonstration programs 85
dialog IDs 36
E
entity 16

events 39, 115, 115, 116, 117, 118,
119, 120, 121

F
find800 86
functions 16, 53, 54, 67, 68

Dialogic Corporation

Index

G

General receive information block
structure 115

global title translation 31, 33, 94
I

inactivity timeout 45

inbound congestion 29
instance ID 16

invalid components 44

invoke time-outs 44

ITU-T component structure 111
ITU-T transaction types 22

M

management functions 16, 67, 68
message length 24

N

Natural Access 18, 37

network overload 26

o

octet strings 93

outbound congestion 26
out-of-service 50

P

package types 22

point codes 93

programming model 15

Q

QO0s 21, 100

quality of service 21, 100
queues and contexts 18

123

Index

R

redundancy 40

remote signaling points 51

request and response transaction
find800

routing 31

S

SAP 15

SCCP 21, 31, 33

SCCP address override 31

SCCP address structure 98

SCCP quality of service (QOS)
structure 100

SccpAddr 98

segmentation 24

service access points 15
service functions 16, 53, 54
signaling point 50

Signaling point status event structure
117

simple transaction 41

SS7 architecture 11

state changes 50

status and notify indications 36
subsystem status 50

Subsystem status event structure 118
T

TCAP coordinated event structure 116
TCAP dialog section structure 103
TCAP notification event structure 119
TCAP status event structure 120
TCAP task 13

TCAP transaction data event structure
121

TCAP transaction information structure
101

TCAPAddComp 55
TCAPAlarmControl 69
TcapAnsiComp 106

124

NMS TCAP Developer's Reference Manual

TcapAnsiErrcode 109
TcapAnsiOpcode 107
TcapAnsiPrbcode 109
TCAPAPISTATS 58
tcapcfg 90

TcapComp 105
TcapCompld 94
TcapCoordEvent 116
TCAPCoordReq 56
TCAPCoordResp 57
TcapDlgSect 103
TCAPGenCfg 70, 74
TCAPGenStatus 71
TCAPGetApiStats 58
TCAPGetComp 59
TCAPGetGenCfg 72
TCAPGetSapCfg 73
TCAPInitGenCfg 74
TCAPInitMgmtAPI 76
TCAPInitSapCfg 77
TCAPInitTrans 61
TcapltuComp 111
TcapNotifEvent 119
TcapOctetStr 93
TcapPCStateEvent 117
TcapRecvInfo 115
TCAPRetainTrans 62
TCAPRetrieveMessage 63, 115
TCAPSapCfg 77, 80
TCAPSapStats 81
TcapSccpQos 100
TcapSsnStateEvent 118
TCAPStateReq 64
TcapStatusEvent 120
TCAPTermMgmtAPI 83
TCAPTraceControl 84
TcapTransEvent 121
TcapTransInfo 101

Dialogic Corporation

NMS TCAP Developer's Reference Manual Index

TCAPTransRqgst 65 U
tracing 52 unconfirmed operations 16
transactions 22, 40, 44 utilities 85

Dialogic Corporation 125

	Copyright and legal notices
	Revision history
	Introduction
	SS7 overview
	SS7 architecture
	TX board components
	Host components

	TCAP task

	TCAP programming model
	Programming model overview
	TCAP service users
	Entity and instance IDs
	NMS TCAP functions
	Service functions
	Management functions

	Queues and contexts
	Single-context, single-queue model
	Multiple-context, single-queue model
	Multiple-context, multiple-queue model

	SCCP quality of service (QOS)
	TCAP transactions
	ANSI transaction types
	ITU-T transaction types
	TCAP components
	Message lengths and segmentation
	Multiple-threaded considerations
	Transaction checkpointing

	Congestion control
	Outbound congestion
	Network overload
	TCAP service congestion
	TCAP layer congestion

	Inbound congestion

	TCAP configuration
	SCCP addressing and routing
	Routing by point code and subsystem number
	Routing by global title
	SCCP address override

	Global title translation
	Setting function parameters
	Setting the SCCP configuration
	Setting variations in global title translation

	Status and notify indications
	Dialog IDs

	Using the TCAP service
	Setting up the Natural Access environment
	Initializing the Natural Access environment
	Creating queues and contexts
	Binding to the TCAP service

	Receiving TCAP service events
	Handling redundancy events
	Generating TCAP transactions
	Simple request and response transaction
	Conversational linked transaction
	ANSI version
	ITU-T version

	Handling abnormal conditions
	Invalid transaction portions
	Transaction inactivity timeouts
	Invalid component in a begin or query message
	Invalid component in a continue or conversation message
	Invalid component in an end or response message
	Invoke time-outs (ITU-T only)
	Invalid component in a multiple component message

	Signaling point and subsystem status
	Coordinated state change
	Subsystem state changes
	Remote signaling point failures

	Tracing function calls and events

	TCAP service function reference
	TCAP service function summary
	Using the TCAP service function reference
	TCAPAddComp
	
	
	Prototype
	Return values
	Details

	TCAPCoordReq
	
	
	Prototype
	Return values
	Details

	TCAPCoordResp
	
	
	Prototype
	Return values
	Details

	TCAPGetApiStats
	
	
	Prototype
	Return values

	TCAPGetComp
	
	
	Prototype
	Return values
	Details

	TCAPInitTrans
	
	
	Prototype
	Return values
	Details

	TCAPRetainTrans
	
	
	Prototype
	Return values
	Details

	TCAPRetrieveMessage
	
	
	Prototype
	Return values
	Details

	TCAPStateReq
	
	
	Prototype
	Return values

	TCAPTransRqst
	
	
	Prototype
	Return values
	Details

	TCAP management function reference
	TCAP management function summary
	Using the TCAP management function reference
	TCAPAlarmControl
	
	
	Prototype
	Return values
	Details

	TCAPGenCfg
	
	
	Prototype
	Return values
	Details

	TCAPGenStatus
	
	
	Prototype
	Return values
	Details

	TCAPGetGenCfg
	
	
	Prototype
	Return values

	TCAPGetSapCfg
	
	
	Prototype
	Return values

	TCAPInitGenCfg
	
	
	Prototype
	Return values
	Details

	TCAPInitMgmtAPI
	
	
	Prototype
	Return values
	Details

	TCAPInitSapCfg
	
	
	Prototype
	Return values
	Details

	TCAPSapCfg
	
	
	Prototype
	Return values
	Details

	TCAPSapStats
	
	
	Prototype
	Return values
	Details

	TCAPTermMgmtAPI
	
	
	Prototype
	Return values
	Details

	TCAPTraceControl
	
	
	Prototype
	Return values
	Details

	Demonstration programs and utilities
	Summary of the demonstration programs and utilities
	Request and response transaction: find800
	
	
	Usage
	Requirements
	Procedure

	800 number server
	800 number client
	Troubleshooting
	Using the TCAP ITU-T protocol
	Adding subsystem numbers

	TCAP configuration utility: tcapcfg
	
	
	Usage
	Requirements
	Procedure
	Details

	TCAP layer status: tcapmgr
	
	
	Usage
	Requirements
	Procedure
	Details

	Parameter and event structure overview
	Data types
	Point codes
	TCAP octet strings
	TCAP component IDs
	Global titles

	Common data structures
	Common data structures summary
	SCCP address structure
	SCCP quality of service (QOS) structure
	TCAP transaction information structure
	TCAP dialog section structure

	Component data structures
	Component structure format
	ANSI component structure
	TcapAnsiOpcode
	TcapAnsiErrcode
	TcapAnsiPrbcode

	ITU-T component structure

	Incoming message event structures
	Messages overview
	General receive information block structure
	TCAP coordinated event structure
	Signaling point status event structure
	Subsystem status event structure
	TCAP notification event structure
	TCAP status event structure
	TCAP transaction data event structure

