
Dialogic® Native Configuration
Manager API
Programming Guide

May 2008

05-1904-006

Dialogic® NCM API Programming Guide – May 2008
Dialogic Corporation

Copyright © 2002-2008 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in part without permission in writing from Dialogic
Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on the part of Dialogic
Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant
the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU
AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE
AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus may not function properly
in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such use is suitable. For information on specific products,
contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral produced by or on web pages
maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual property licenses
with the sale of Dialogic products other than a license to use such product in accordance with intellectual property owned or validly licensed by Dialogic and no such licenses
are provided except pursuant to a signed agreement with Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at
9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic encourages all users of its products to procure all necessary intellectual property
licenses required to implement any concepts or applications and does not condone or encourage any intellectual property infringement and disclaims any
responsibility related thereto. These intellectual property licenses may differ from country to country and it is the responsibility of those who develop the
concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Cantata, SnowShore, Eicon, Eicon Networks, Eiconcard, Diva, SIPcontrol, Diva ISDN, TruFax, Realblocs, Realcomm 100, NetAccess,
Instant ISDN, TRXStream, Exnet, Exnet Connect, EXS, ExchangePlus VSE, Switchkit, N20, Powering The Service-Ready Network, Vantage, Making Innovation Thrive,
Connecting People to Information, Connecting to Growth and Shiva, among others as well as related logos, are either registered trademarks or trademarks of Dialogic.
Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800 Cavendish Blvd.,
5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic
from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. The other names of actual companies and products mentioned herein
are the trademarks of their respective owners.

Publication Date: May 2008

Document Number: 05-1904-006

Dialogic® NCM API Programming Guide – May 2008 3
Dialogic Corporation

Contents

Revision History . 6

About This Publication . 7
Purpose . 7
Applicability . 7
Intended Audience. 7
How to Use This Publication . 8
Related Information . 8

1 Product Description . 9

1.1 Features. 9
1.2 Restrictions and Limitations. 10
1.3 Dialogic® NCM API Architecture . 11

2 Programming Models . 13

3 Event Handling . 15

4 Error Handling . 17

5 Application Development Guidelines . 19

5.1 Configuration Parameter Values and Device Instantiation . 19
5.2 Configuration Parameter Property Groups . 20
5.3 Configuration Parameter Scope . 20

5.3.1 Determining Configuration Parameter Scope . 21
5.3.2 Reading and Writing Configuration Parameter Values . 21

5.4 Populating Required Data Structures . 22
5.5 Device Model Names and Unique Device Names. 23
5.6 Dynamic Memory Allocation . 24
5.7 Working with Country Specific Parameters . 24
5.8 Discovering Installed Devices . 25

6 Clock Master Fallback List . 29

7 Bridge Devices . 31

7.1 Bridge Devices. 31
7.2 Controlling Bridge Devices . 31

7.2.1 Starting a Bridge Device . 32
7.2.2 Disabling a Bridge Device. 32
7.2.3 Stopping a Bridge Device . 32
7.2.4 Re-Enabling a Bridge Device . 32

7.3 Bridging Device Dialogic® HMP Software Clock Master Fallback List 33

8 Building Applications. 35

8.1 Compiling and Linking . 35
8.1.1 Include Files . 35
8.1.2 Required Libraries . 35

4 Dialogic® NCM API Programming Guide – May 2008
Dialogic Corporation

Contents

8.1.3 Variables for Compiling and Linking . 36

Index . 37

Dialogic® NCM API Programming Guide – May 2008 5
Dialogic Corporation

Contents

Figures

1 NCM API Architecture . 12
2 CT Bus Clocking . 29

Dialogic® NCM API Programming Guide — May 2008 6

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1904-006 May 2008 Made global changes to reflect Dialogic brand and changed title to “Dialogic® Native
Configuration Manager API Programming Guide.”

Section 1.1, “Features”, on page 9: Added Third Party Devices feature.

05-1904-005 August 2006 Application Development Guidelines chapter : Added new Section 5.8, “Discovering
Installed Devices”, on page 25.”

05-1904-004 October 2005 Global change: Added information about Dialogic® Host Media Processing (HMP)
Software release.

Bridge Devices chapter : Added this chapter for Dialogic® Host Media Processing
(HMP) Interface Board support.

05-1904-003 April 2005 Features section: Removed information about support for third party devices.

05-1904-002 November 2003 Features section: Reclassified the NCM API features.

Restrictions and Limitations section: Added note recommending that users not parse
the device name. Added note that detection is always run automatically via the
Plug and Play Observer service that is set to run automatically on system start.

NCM API Architecturefigure: Replaced with redrawn version.

Programming Models chapter : Added paragraph about exceptions to the
synchronous mode of operation.

Event Handling chapter : Added paragraph about the NCM AUID functions.

Configuration Parameter Property Groups section: Added mention of two more
groups (Misc and TDM Bus Configuration).

Device Model Names and Unique Device Names section: Added
NCM_ApplyTrunkConfig and NCM_ReconfigBoard to the list. Added information
about the automatic creation of device names.

05-1904-001 November 2002 Initial version of document. Much of the information in this document was previously
published in the Customization Tools for Installation and Configuration for Windows®,
document number 05-1103-007.

Dialogic® NCM API Programming Guide — May 2008 7

Dialogic Corporation

About This Publication

The following topics provide information about this Dialogic® Native Configuration Manager API
Programming Guide:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication provides guidelines for building customized system management applications for
Dialogic® Host Media Processing (HMP) Software and Dialogic® System Release Software using
the Dialogic® Native Configuration Manager (NCM) API on Windows® operating systems. Such
applications include, but are not limited to, TDM bus clock fallback management, device
configuration, and single board stop/start programs.

This publication is a companion guide to the Dialogic® Native Configuration Manager API
Library Reference, which provides details on the functions and parameters in the Dialogic® NCM
API library.

Applicability

This document version (05-1904-006) is published for Dialogic® Host Media Processing Software
Release 3.0WIN.

This document may also be applicable to other software releases (including service updates) on
Windows® operating systems. Check the Release Guide for your software release to determine
whether this document is supported.

Intended Audience

This information is intended for:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

8 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

About This Publication

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

How to Use This Publication

This document assumes that you are familiar with and have prior experience with Windows®
operating systems and the C programming language. Use this document in tandem with the
Dialogic® Native Configuration Manager API Library Reference.

This publication is organized as follows:

• Chapter 1, “Product Description” introduces the features of the Dialogic NCM API library and
provides a brief description of each feature.

• Chapter 2, “Programming Models” provides a brief overview of supported programming
models.

• Chapter 3, “Event Handling” provides information about handling events that are generated by
certain NCM library functions.

• Chapter 4, “Error Handling” includes information about handling errors within your
application.

• Chapter 5, “Application Development Guidelines” provides programming guidelines and
techniques for developing an application using the Dialogic NCM API library.

• Chapter 6, “Clock Master Fallback List” includes guidelines for using the Dialogic NCM API
library to set a customized CT Bus clock master fallback list.

• Chapter 7, “Bridge Devices” provides information about using the Dialogic NCM API library
to programmatically control bridge devices. Dialogic® Digital Network Interface boards have
a bridge device that enables communication and media streaming between Dialogic® HMP
Software and the boards on the CT Bus.

• Chapter 8, “Building Applications” discusses compiling and linking requirements such as
include and library files.

Related Information

See the following for additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Dialogic® NCM API Programming Guide — May 2008 9
Dialogic Corporation

11.Product Description

This chapter provides a general description of the Dialogic® Native Configuration Manager (NCM)
library. Topics include:

• Features . 9

• Restrictions and Limitations . 10

• Dialogic® NCM API Architecture . 11

1.1 Features

The Dialogic® NCM API consists of a library of functions for creating and manipulating the
configuration data necessary to initialize Dialogic® devices and control their operation on
Windows® systems. The features available through the Dialogic NCM API library can be grouped
as follows:

• Configuration: get and set parameters

– Board/Bus - determine which devices can be installed and which configuration parameter
values can be set for a given Dialogic® Software release; set configuration parameter
values for the boards or bridge devices in your system.

– Clock Master Fallback list - Get/set the TDM bus clock master fallback list for your
system. The clock master fallback list defines master capable devices in a preferred order.
If the primary clock master should fail, this list is consulted by the system and a new
primary clock master is assigned.

– Bridge Device Clock Master Fallback list [for Dialogic® Host Media Processing
(HMP) Software only] - Dialogic® HMP Interface Boards have a bridge device that
enables communication and media streaming between Dialogic® HMP Software and the
boards on the CT bus. The Dialogic NCM API allows you to programmatically define a
bridge device clock master fallback list. This list is used to specify which bridge device
provides streaming synchronization to the Dialogic® HMP Interface Boards in the system.

Note: The bridge device clock master fallback list has no relation to the clock master
fallback list, which is used to select clock masters to drive the CT bus.

– Third Party Devices (not supported by Dialogic® HMP Software)
• Add/remove board - Add a third party device to the system or remove a third party

device from the system. You may also define the TDM bus capabilities of the third
party device that you add to the system.

• Allocate/deallocate timeslots - Allocate/deallocate TDM bus time slots for use by
third party devices. Dialogic® boards will not use time slots that have been allocated
to third party devices.

• Initialization/Uninitialization

– Start/stop system - Start/stop the Dialogic® System Service and check the system status.

10 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Product Description

– Stop/start board - Stop and start individual boards in the system without affecting system
operation. Refer to the System Administration Guide that accompanied your system
software release for complete information about stopping and starting Dialogic® boards.

– Start/stop bridge devices - Stop and start individual bridge devices in the Dialogic®
HMP Software system without affecting system operation. Refer to the System
Administration Guide that accompanied your system software release for complete
information about stopping and starting Dialogic Digital Network Interface boards.

– System startup mode - You can set the startup mode to automatic or manual.

• Miscellaneous

– Get AUID - Get the device name for a given AUID and/or get the AUID for a given device
name. An AUID is a unique string of numbers that the Dialogic® System Software assigns
to any system component with which communications can be initiated. In the context of
the Dialogic NCM API, each unique device that is instantiated in the system is assigned
an AUID.

– Country specific format - Obtain information about country-specific parameters such as
a list of supported countries, a country code or name for a given country, and values for
country-specific configuration parameters. This only applies to Dialogic® Springware
devices.

– Release and operating system information - Determine which operating system and
Dialogic System Software versions are installed on the host computer.

1.2 Restrictions and Limitations

The following restrictions and limitations apply to the Dialogic NCM API:

• You can add and modify configuration data only for those hardware products supported by the
software release of which the Dialogic NCM API is a component. Refer to the Release Guide
that accompanies each system software release for a list of supported products.

• Because devices are instantiated in the system configuration according to their unique device
name, it is impossible to correlate an instantiated device with a device model name. You
should embed the device model name within the unique device name when you instantiate the
device with the NCM_AddDevice() function.

Note: You should not parse the unique device name from your application.

• All auto-detectable devices in the system must be detected using either the
NCM_DetectBoards() function or the NCM_DetectBoardsEx() function before
NCM_StartDlgSrv() can be called to start the Dialogic® System Service.

Note: Detection is always run automatically via the Plug and Play Observer service that is
set to run automatically on system start.

• When using cPCI boards, you can add or remove boards while the system is powered on.
However, you must first use the NCM_StopDlgSrv() function to stop the Dialogic System
Service and then use the NCM_DetectBoardsEx() function before rebooting the system.

Dialogic® NCM API Programming Guide — May 2008 11
Dialogic Corporation

Product Description

1.3 Dialogic® NCM API Architecture

The Dialogic® NCM API is one layer of a multi-layer configuration management architecture. This
architecture provides a vehicle for managing configuration data for Dialogic® products. The
components of this architecture are:

• DCM catalog: Default configuration information originates in the Dialogic® Configuation
Manager (DCM) catalog. This default information includes the devices that can be installed,
the configuration parameters that can be applied to them, and the default configuration
parameter values. The content of the DCM catalog is determined by the software release of
which the Dialogic NCM API is a component. The Dialogic NCM API therefore does not
enable you to modify the DCM catalog.

Throughout this manual, the term “installable” indicates that the configuration data element to
which it applies is contained in the DCM catalog. For example, an installable device is a
device that is defined in the DCM catalog.

• System configuration: The system configuration consists of the configuration data currently
in use in your system.

In this manual, the terms “instantiate” and “instantiation” refer to the process of creating
system configuration data.

The Dialogic devices and configuration parameter values you can instantiate are determined by
the DCM catalog. The Dialogic NCM API enables you to instantiate and delete devices and to
change the configuration parameter values in your system configuration. The system
configuration is read by the Dialogic System Software through the Dialogic NCM API when it
initializes Dialogic devices.

Note: In the current version of the Dialogic NCM API, the system configuration is stored in
the Windows® registry. Do not attempt to modify the NCM registry data through any
means other than the NCM API. By adhering to this guideline, you ensure forward-
compatibility between your application and future versions of the Dialogic NCM
API.

• NCM API: The Dialogic NCM API consists of a library of functions for instantiating Dialogic
devices in the system configuration and for modifying configuration parameter values. It also
enables you to start and stop the system, stop and start individual boards, and to auto-detect
devices.

• Client Application: A client application makes the functionality of the Dialogic NCM API
available to end-users. A client application may be a GUI-based configuration tool, a
customized automated silent configuration process, or some other type of application.

An example of a Client Application is the DCM configuration utility GUI client, which is
included in every Dialogic System Software release that includes the Dialogic NCM API.
Access the DCM GUI client by clicking the Configuration Manager-DCM icon from the
Dialogic System Release submenu in the Windows® Start menu.

Figure 1 shows the various components that interface with the Dialogic NCM API architecture:

12 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Product Description

Figure 1. NCM API Architecture

DCM CATALOG

Installable Devices
and Default Values

SYSTEM
CONFIGURATION

Instantiated Devices
and Configuration
Parameter Values

Client
Application

NCM API

Device
Initialization

Process

Dialogic® NCM API Programming Guide — May 2008 13
Dialogic Corporation

22.Programming Models

This chapter provides information about supported programming models.

All functions in the Dialogic® Native Configuration Manager (NCM) API library run exclusively
in synchronous mode. The synchronous programming model uses functions that block application
execution until the function completes. This model requires that each device be controlled from a
separate process. This allows you to assign distinct applications to different devices dynamically in
real time.

Synchronous programming models allow you to scale an application by simply instantiating more
threads or processes. This programming model may be easy to encode and manage but it relies on
the system to manage scalability.

The only exceptions to the synchronous mode of operation are the NCM_StartDlgSrv() and
NCM_StopDlgSrv() APIs. These APIs send a start/stop command to the Dialogic® System
Service, but do not wait until the system has started/stopped. The application should check the
system state in a loop (via NCM_GetDlgSrvStateEx()) to confirm that start/stop has finished
execution.

14 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Programming Models

Dialogic® NCM API Programming Guide — May 2008 15
Dialogic Corporation

33.Event Handling

This chapter provides information on handling events that are generated by certain Dialogic®
Native Configuration Manager (NCM) API library functions (other than the exceptions noted in
Chapter 2, “Programming Models”).

All functions in the Dialogic® NCM API operate in synchronous mode, so the start/completion of
each function is not determined by events. However, certain functions generate events that are
transmitted via the Dialogic® Event Notification framework’s ADMIN_CHANNEL or
BRIDGING_CHANNEL (for Dialogic® HMP Software only).

You can design your application to receive events from the ADMIN_CHANNEL
BRIDGING_CHANNEL. This allows your system management application to be informed when
an individual board has started/stopped and when the Dialogic® System or Dialogic® HMP
Software System has started/stopped.

The following Dialogic NCM library functions generate events that are carried on the event
notification framework’s ADMIN_CHANNEL and BRIDGING_CHANNEL:

• NCM_StartBoard()

• NCM_StartDlgSrv()

• NCM_StopBoard()

• NCM_StopDlgSrv()

The events reported by Event Service contain the AUID to identify a device. The Dialogic NCM
API normally uses the family and device to identify a device. The Dialogic NCM AUID functions
(NCM_GetAUID() and NCM_GetFamilyDeviceByAUID()) provide a mapping from
family/device to AUID and vice-versa, thus allowing the Dialogic NCM API to be used in
conjunction with Event Service to control the application.

Refer to the Dialogic® Event Service API Library Reference and the Dialogic® Event Service API
Programming Guide for information about registering your application to receive events on the
ADMIN_CHANNEL and BRIDGING_CHANNEL.

16 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Event Handling

Dialogic® NCM API Programming Guide — May 2008 17
Dialogic Corporation

44.Error Handling

This chapter discusses how to handle errors that can occur when running an application.

All Dialogic® Native Configuration Manager (NCM) API library functions have a return code
(NCMRetCode()) to indicate success or failure of the function. A return code of
NCM_SUCCESS indicates that the function completed successfully. Any other return value
indicates failure.

If a Dialogic® NCM API library function fails, call the NCM_GetErrorMsg() function to process
the returned error code. The following sample code shows how to implement error handling into
Dialogic NCM API function calls:

#include "NCMApi.h"

...

NCMFamily *pFamilies= NULL;

NCMRetCode ncmRc= NCM_GetAllFamilies(&pFamilies);

if (ncmRc == NCM_SUCCESS)
{
 ...
}
else
{
 //process error

 //execute
 ncmErrorMsg *pErrorMsg = NULL;
 ncmRc = NCM_GetErrorMsg(ncmRc, &pErrorMsg);
 if (ncmRc = NCM_SUCCESS)
 {
 printf("Failed to get families: %s\n", pErrorMsg->name);
 }

 //deallocate memory
 NCM_Dealloc(pErrorMsg);
}

//deallocate memory when through with it
NCM_Dealloc(pFamilies);
...

For a list of error codes that can be returned by the Dialogic NCM library functions, see the
Dialogic® Native Configuration Manager API Library Reference. You can also look up the error
codes in the NCMTypes.h file.

18 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Error Handling

Dialogic® NCM API Programming Guide — May 2008 19
Dialogic Corporation

55.Application Development
Guidelines

This chapter contains guidelines for developing applications with the Dialogic® Native
Configuration Manager (NCM) API. Topics include:

• Configuration Parameter Values and Device Instantiation . 19

• Configuration Parameter Property Groups . 20

• Configuration Parameter Scope . 20

• Populating Required Data Structures . 22

• Device Model Names and Unique Device Names. 23

• Dynamic Memory Allocation . 24

• Working with Country Specific Parameters . 24

• Discovering Installed Devices . 25

5.1 Configuration Parameter Values and Device
Instantiation

The basic unit of configuration data is the configuration parameter value. There are configuration
parameter values for each Dialogic® board in your system configuration. When the Dialogic®
System Service is initiated, it reads the configuration parameter values through the Dialogic® NCM
API from the system configuration and uses them to initialize the devices.

For information about the function of each configuration parameter, consult the online help for the
Dialogic® Configuration Manager (DCM) GUI client. Access the DCM GUI client by clicking the
Configuration Manager-DCM icon from the Dialogic System Release submenu in the
Windows® Start menu. Access the online help by pressing the F1 key at any window.

A device is a Dialogic® board, such as a Dialogic® D/240JCT-T1. The Dialogic NCM API enables
you to instantiate devices in your system configuration and to query the DCM catalog to determine
which configuration parameter values can be set for a given device.

20 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Application Development Guidelines

5.2 Configuration Parameter Property Groups

The DCM catalog organizes configuration parameters into groupings called properties. For
example, the parameters related to configuring interrupts, memory addresses, and bus slot
assignments are grouped together under the System property. The System property may include
the following parameters:

• AUID

• DlgcOUI

• InstanceNumber

• IntVector

• IRQLevel

• LogicalID

• PciBusNumber

• PciID

• PciSlotNumber

• PLXAddr

• PLXlength

• PrimaryBoardID

• SecondaryBoardID

• SerialNumber

• SRAMAddr

• SRAMlength

• SRAMSize

There are other groups like “Misc” and “TDM Bus Configuration”. The parameters in any given
property group vary depending on the Dialogic® System Release Software with which the Dialogic
NCM API is provided.

The properties to which configuration parameters belong are determined by the DCM catalog. This
relationship cannot be modified through the Dialogic NCM API.

5.3 Configuration Parameter Scope

The DCM catalog defines the scope of configuration parameters so that their value can apply either
to one specific device or to a group of devices.

There are three categories of parameter scope:

Note: Refer to Section 5.3.1, “Determining Configuration Parameter Scope”, on page 21 for information
about determining a parameter’s scope.

Dialogic® NCM API Programming Guide — May 2008 21
Dialogic Corporation

Application Development Guidelines

• Device-Specific: a device-specific configuration parameter value applies to only one device
(board) in the system. When you edit a device specific configuration parameter, the parameter
value applies only to that specific device.

• Family-Level: a family-level configuration parameter applies to a family of devices (boards)
in the system, such as the Dialogic® DM3 board family. At this level, each family of devices
has configuration information that is pertinent to the entire family of devices.

• Global: global configuration parameter values apply to all “applicable” devices. An applicable
device is a device for which the parameter has functional relevance. For example, when you set
the value of a global parameter, the value applies to all boards to which the parameter applies.

Overridable configuration parameters can either be treated as global configuration parameters,
affecting all applicable devices, or restricted to the device level. For example, by default the
ParameterFile2 parameter affects all applicable devices. But it can also be modified as a device-
level parameter. Once the configuration parameter has been modified at the device level,
subsequent modifications to the global parameter have no effect at the device level.

The configuration parameter scope is determined by the DCM catalog. It cannot be modified
through the Dialogic NCM API.

5.3.1 Determining Configuration Parameter Scope

A configuration parameter’s scope determines whether its value applies to all devices, a family of
devices, or one specific device.

In order to modify a configuration parameter, you must know its scope. To determine the scope of a
configuration parameter, consult the online help accompanying the DCM GUI client by following
these steps:

1. Click the Configuration Manager-DCM icon from the Dialogic System Release submenu in
the Windows® Start menu.

2. When DCM GUI client loads, press F1 to invoke the online help.

3. Click Help Topics to invoke the table of contents for the help file.

4. From the DCM online help, click the Parameter Reference book.

5. From the Parameter Reference book, click Configuration Parameters.

6. From the list of parameters, click the name of the parameter you wish to modify.

7. Consult the Rules section of the parameter description. The two elements of the Rules section
relevant to a parameter’s scope are:

• Scope: This element indicates whether the parameter’s scope is global or device.

• Override: For global parameters, the letter Y indicates that the parameter can be
overridden on a global basis; the letter N indicates that the parameter can not be
overridden.

5.3.2 Reading and Writing Configuration Parameter Values

Functions such as NCM_GetValue(), NCM_GetValueEx(), NCM_SetValue() and
NCM_SetValueEx() that enable you to read or write a configuration parameter value in the

22 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Application Development Guidelines

system configuration require that you specify the parameter’s scope. Such functions accept the
NCMFamily and NCMDevice data structures as input, and it is through these structures that you
specify the parameter’s scope.

Set the data structures as follows depending on the type of parameter you wish to modify:

• device-specific configuration parameters: NCMDevice should be set to a valid address.

• family level configuration parameters: NCMFamily should be set to a valid address.

• global configuration parameters: NCMFamily and NCMDevice should be set to NULL.

Note: The NCM_GetVariables() function can be used to retrieve a list of all global
configuration parameters from the DCM catalog by setting both the NCMFamily and
NCMDevice structures to NULL.

• overridable configuration parameters: to treat the parameter globally, set the value of the
NCMFamily and NCMDevice structures as you would a global parameter, both to NULL; to
treat the parameter at the device level, set the value of the NCMFamily and NCMDevice
structures as you would a device-level parameter, both set to a valid address.

Note: The DCM catalog maintains two copies of overridable configuration parameters, one
at the global level, and another for each device. By default, the device-level copy is
updated whenever the global-level copy is modified. But once the device-level copy is
modified, its value is de-linked from the global-level copy. Changes to the global-
level no longer affect that device.

5.4 Populating Required Data Structures

There are a number of data structures that are necessary in order to perform basic Dialogic NCM
API operations. For example, the NCM_SetValue() function, which enables you to change the
value of a configuration parameter, requires data structures to identify the family, device, and
property to which the configuration parameter to be modified belongs. All required data structures
for NCM_SetValue() are aliases for the NCMString data structure.

The following steps illustrate how to populate these data structures:

1. Use NCM_GetAllFamilies() to return a list of NCMFamily data structures; the structures in
this list indicate the families for all installable devices defined by the current version of the
DCM catalog.

2. Use any one of the NCMFamily data structures as input to NCM_GetAllDevices() to return a
list of NCMDevice structures for one of the families designated by the list of NCMFamily
structures. Lists of installable devices can be retrieved only for one family at a time.

3. Use the NCMFamily and NCMDevice data structures for a specific device as input to
NCM_GetProperties(); this function returns a list of NCMProperty data structures for the
device identified by the NCMFamily and NCMDevice data structures. Lists of properties can
be retrieved only for one device at time.

4. Use the NCMProperty, NCMFamily, and NCMDevice data structures as input to
NCM_GetVariables(); this function returns a list of NCMVariable data structures for the
installable device indicated by the specified input structures. The list of NCMVariable data
structures contains all the installable configuration parameters within the property for the
specified device.

Dialogic® NCM API Programming Guide — May 2008 23
Dialogic Corporation

Application Development Guidelines

5.5 Device Model Names and Unique Device Names

The NCMDevice structure can be set to a “device model name” or a “unique device name”. A
device model name is the generic Dialogic name for a device, such as “D/240JCT”for the
Dialogic® D/240JCT board. The device model name is necessary to retrieve a list of installable
devices with the NCM_GetAllDevices() function.

Note: You should not parse the unique device name from your application.

A unique device name is a unique identifier that you create when you instantiate a device in the
system configuration using the NCM_AddDevice() function. The unique device name is
necessary to distinguish multiple instances of the same device model in the system.

Dialogic NCM API functions that take a pointer to an NCMDevice structure as input differ with
respect to the type of device name they require. These functions fall into the following categories:

• Functions that write to or read from the system configuration and require a unique
device name. This category includes:

– NCM_AddDevice()
– NCM_ApplyTrunkConfig()
– NCM_DeleteEntry()
– NCM_EnableBoard()
– NCM_IsBoardEnabled()
– NCM_ReconfigBoard()
– NCM_SetValue()
– NCM_SetValueEx()
– NCM_StartBoard()
– NCM_StopBoard()

When NCM_DetectBoards() is run, unique device names are automatically created by the
NCM framework. You can also create a device name with the NCM_AddDevice() function.
You can then retrieve the unique device name with the NCM_GetInstalledDevices()
function. The unique device name you retrieve can then be used with the other functions in this
category.

• Functions that read from the DCM catalog and require either a device model name or a
unique device name. This category includes:

– NCM_GetProperties()
– NCM_GetValueRange()
– NCM_GetValueRangeEx()
– NCM_GetVariables()
– NCM_IsEditable()

The data provided by the NCM_GetValue() and NCM_GetValueEx() functions is affected by
whether NCMDevice is a device model name or a unique device name. If NCMDevice is a device
model name, these functions read the default configuration parameter value from the DCM catalog.
If NCMDevice is a unique device name, they read the instantiated configuration parameter value
from the system configuration.

24 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Application Development Guidelines

In the Dialogic® Native Configuration Manager API Library Reference, the functions that require
an NCMDevice structure as input indicate whether the structure must contain a device model name
or a unique device name.

5.6 Dynamic Memory Allocation

Many Dialogic NCM API functions return dynamic data in the form of linked lists, the last item in
the list pointing to NULL. In this case, memory space must be allocated to accommodate the linked
list. Functions of this type accept a pointer to an address at which to allocate the memory needed to
return data to the client. The pointer is declared in the client application.

In order to avoid memory leaks in the application, this memory must be deallocated when it is no
longer being used. The NCM_Dealloc() and NCM_DeallocValue() functions can be called by
the client application to deallocate the memory dynamically allocated by another API function.
Functions that require the use of NCM_Dealloc() and NCM_DeallocValue() are identified as
such in the Dialogic® Native Configuration Manager API Library Reference.

5.7 Working with Country Specific Parameters

The country-specific configuration parameters behave differently from other configuration
parameters. Rather than being stored in individual configuration parameters, the country-specific
configuration parameters are concatenated together in a comma-separated string. This string is
stored in the Features configuration parameter. The countries for which country-specific
configuration parameters can be set are stored in the Country configuration parameter.

Working with country-specific configuration parameters differs from other configuration
parameters in the following ways:

• You can use special functions for reading country-specific configuration parameters. A
distinct set of functions enables you to read the country-specific configuration parameters
contained in the Features parameter. These functions are:

– NCM_GetCspFeaturesValue(), to get the value of a particular country-specific
configuration parameter from the system configuration (such as Frequency Resolution or
Analog Signaling) from within Features.

– NCM_GetCspFeaturesValueRange(), to get the valid value range for a specific
country-specific configuration parameter code from the DCM Catalog.

– NCM_GetCspFeaturesVariables(), to get all country-specific configuration parameters
contained in the DCM Catalog.

• You must set the Features configuration parameter using the normal NCM API write
functions. Although you can read the individual country-specific configuration parameters
using the parameters outlined above, the Feature configuration parameter must be set using
the functions described in Section 5.3.2, “Reading and Writing Configuration Parameter
Values”, on page 21. To change the value of any particular country-specific configuration
parameter, your application must modify the parameter within the pointer to a comma-
separated list of country-specific configuration parameters and write this string to the Feature
configuration parameter using the NCM_SetValue() function.

Dialogic® NCM API Programming Guide — May 2008 25
Dialogic Corporation

Application Development Guidelines

• The country-specific configuration parameters retrieved for the Country property vary
with the value of the Country parameter. For all other properties, the configuration
parameters are retrieved with the NCM_GetVariables() function; the configuration
parameters retrieved in this way are those that are applicable to the device name input to this
function. In the case of country-specific configuration parameters, it is the value of the
Country configuration parameter that determines which country-specific configuration
parameters belong to the property. You can retrieve a list of valid country-specific
configuration parameters for a given country with the NCM_GetCspFeaturesVariables()
function.

• The valid values for the Country configuration parameter must be determined using
special functions. A distinct set of functions enables you to work with country codes and
country names. You can use these functions to help set the Country configuration parameter,
which contains the ISO country code for the country you want to set. The functions are:

– NCM_GetCspCountries(), to get a list of supported countries from the DCM Catalog.

– NCM_GetCspCountryCode(), to get the country code for a country from the DCM
Catalog.

– NCM_GetCspCountryName(), to get the country name for a given country code from
the DCM Catalog.

5.8 Discovering Installed Devices

By iterating first through all the device families (NCM_GetInstalledFamilies) and then through all
of the devices in the family (NCM_GetInstalledDevices), you may programmatically discover each
installed device type in a system.

The following steps are used to determine the number and types of boards installed in a system.

1. Use NCM_GetInstalledFamilies() to return a list of all installed device families in your
current sytem configuration.

2. Use NCM_GetInstalledDevices() to return a list of all installed devices within a family in
your current sytem configuration.

The following sample code returns a list of installed device families, followed by a list of installed
devices within a family:

void NCM_GetInstalledFamiliesAndDevices()
{

// Declare & initialize variables
NCMDevice *pDevices= NULL;
NCMFamily *pFamilies= NULL;

// Get all the installed families
NCMRetCode ncmRc = NCM_GetInstalledFamilies(&pFamilies);
if (ncmRc == NCM_SUCCESS)
{

// Loop through the installed families
while (pFamilies !=NULL)
{

/*

26 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Application Development Guidelines

// NOTE: If querying for a specific family, you can
use the following example:

if (stricmp(pFamilies->name, "DM3"))
{

// Found family
pFamilies = pFamilies->next;
continue;

}
*/

cout << "Family: " << pFamilies->name << endl;

// Get all the installed devices for a specific family
ncmRc = NCM_GetInstalledDevices(pFamilies,&pDevices);
if (ncmRc == NCM_SUCCESS)
{

// Loop through the installed devices
while (pDevices != NULL)
{

/*
// NOTE: If querying for a specific

device, you can use the following example:

 if (strstr(pDevices->name, "HMP"))
*/

 // Found device
 cout << "- Device: |- " <<

pDevices->name << endl;

// Get the next installed device
pDevices = pDevices->next;

}
}
else
{

// Process error
cout << "NCM_GetInstalledDevices() failed \n";

}

cout << endl;

// Deallocate memory for the list of the installed
devices

NCM_Dealloc(pDevices);

// Get the next installed family
pFamilies = pFamilies->next;

}
}
else
{

// Process error
cout << "NCM_GetInstalledFamilies() failed \n";

}

Dialogic® NCM API Programming Guide — May 2008 27
Dialogic Corporation

Application Development Guidelines

// Deallocate memory for the list of installed families
NCM_Dealloc(pFamilies);

}

28 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Application Development Guidelines

Dialogic® NCM API Programming Guide — May 2008 29
Dialogic Corporation

66.Clock Master Fallback List

This chapter provides guidelines for using the Dialogic® Native Configuration Manager (NCM)
API library to define a TDM bus clock master fallback list.

The Primary Clock Master provides bus timing (bit clock and frame synchronization) to all boards
in the system. The Primary Clock Master derives its timing from either a network interface
(optimum) or from its own internal oscillator. When clocking is derived from a network interface,
the Primary Master Clock uses the CT Bus NETREF signal as the clock reference.

Under normal operation, the Primary Clock Master clock output is re-driven by the Secondary
Clock Master, providing redundant backup clocking to all boards in the system should the Primary
Clock Master fail.

Figure 2 shows the CT Bus clocking scheme:

Figure 2. CT Bus Clocking

In addition, multiple clock master fallback devices can be defined using the clock master fallback
list. The clock master fallback list defines a list of master capable devices in a preferred order. If the
current Primary Clock Master should fail, this list is consulted by the system and a new Primary
Clock Master is assigned.

The CT Bus includes a primary clock signal line (Line A) and a secondary clock signal line (Line
B). Either Line A or Line B can be assigned as the Primary Line (driven by the Primary Clock
Master). The remaining line is assigned as the Secondary Line (driven by the Secondary Clock
Master). The Primary Line carries clock synchronization to all boards in the system.

Primary
Clock

Master

Secondary
Clock

Master

Board
(Slave)

Network
Reference
(Master

Capable)

Interface
Board

(Master
Capable)

Digital Network
Reference (T1/E1)

1 2 3 4 5

Clock
Reference

NETREF

Line A

Line B

CT Bus

30 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Clock Master Fallback List

Primary and Secondary Clock Masters are always selected automatically by the system. When a
clock failure occurs and the clock master fallback list is defined, the list is consulted by the system
(without the intervention of the administrative application) to determine the new clock master
device. The list is consulted from the first entry down each time to assign the best clock master
device available.

If the clock master fallback list is not defined, the system will select a new clock master device on
its own, should a failure occur.

For example, if the clock fallback list is defined as follows:

1. Board 1

2. Board 2

3. Board 5

4. Board 4

and Board 2 is the current Primary Clock Master, if a failure should occur on the Primary lines, the
system will first check if Board 1 is capable of being the Primary Clock Master before proceeding
farther down the list.

Note: If a previously failed clock master recovers, the system will not automatically assign that clock
master as the Primary Clock Master.

The clock fallback list is defined using the NCM_SetClockMasterFallbackList() function. Clock
fallback clock master sources are defined with the NCM_SetTDMBusValue() function.

Dialogic® NCM API Programming Guide — May 2008 31
Dialogic Corporation

77.Bridge Devices

This chapter provides information about programmatically controlling the bridge devices on
Dialogic® Host Media Processing (HMP) Interface Boards. Topics are as follows:

• Bridge Devices. 31

• Controlling Bridge Devices . 31

• Bridging Device Dialogic® HMP Software Clock Master Fallback List 33

7.1 Bridge Devices

Dialogic® HMP Interface Boards have a bridge device that enables communication and media
streaming between Dialogic® HMP Software and the boards on the CT Bus.

The Dialogic® Native Configuration Manager (NCM) API provides support for the following:

• Starting a bridge device

• Stopping a bridge device

• Setting a bridge device Dialogic® HMP Software clock master fallback list

• Getting a bridge device Dialogic® HMP Software clock master fallback list

The Dialogic® Event Service API provides a BRIDGING_CHANNEL event notification channel
for tracking bridge device state changes. For example, when a bridge device is stopped, the event
service generates a DLGC_EVT_BRIDGE_DEVICE_STOPPED event on the
BRIDGING_CHANNEL. Refer to the Dialogic® Event Service API Library Reference and the
Dialogic® Event Service API Programming Guide for information about the bridging events.

7.2 Controlling Bridge Devices

Use the Dialogic® NCM API to programmatically control bridge devices. The following sections
provide information about the Dialogic NCM API functions used to control bridge devices:

• Starting a Bridge Device

• Disabling a Bridge Device

• Stopping a Bridge Device

• Re-Enabling a Bridge Device

Note: Bridge device settings cannot be modified while the Dialogic® HMP Interface Board is running.
Bridge device settings can only be modified when the board is stopped. Refer to the Dialogic®
Host Media Processing Software Administration Guide for information about using the Dialogic®
Configuration Manager (DCM) to start/stop a single board or refer to the Dialogic® Native
Configuration Manager API Library Reference for information about using the
NCM_StopBoard() function to stop a single board.

32 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Bridge Devices

7.2.1 Starting a Bridge Device

Bridge devices must be started before they can stream media from the Dialogic® HMP Software
host to the CT bus. By default, a Dialogic® HMP Interface Board’s bridge device is started when
the board is started. Dialogic® HMP Interface Boards are started when the DCM or the
NCM_StartSystem() function is used to start Dialogic® HMP Software on the target system.
Refer to the Dialogic® Host Media Processing Software Administration Guide for information
about using the DCM to start the Dialogic® HMP Software system. Refer to the Dialogic® Native
Configuration Manager API Library Reference for information about using the
NCM_StartSystem() function to programmatically start the Dialogic® HMP Software system.

7.2.2 Disabling a Bridge Device

Use the following procedure to programmatically disable a board’s bridge device:

1. Ensure that either the Dialogic® HMP Interface Board is not running or the Dialogic® HMP
Software system is stopped.

2. Use the NCM_SetValueEx() function to change the Dialogic® HMP Interface Board’s
BridgeDeviceEnabled parameter to “No”.

3. Start the Dialogic® HMP Software system (if it is stopped) or start the Dialogic® HMP
Interface Board (if the Dialogic® HMP Software system is running and the board is stopped).
The board’s bridge device will be disabled and the bridge device will not start.

7.2.3 Stopping a Bridge Device

Use the following procedure to programmatically stop a board’s bridge device:

1. Ensure that the Dialogic® HMP Software system, along with the Dialogic® HMP Interface
Board, is started.

2. Use the NCM_StopBoard() function to stop the Dialogic® HMP Interface Board.

3. Use the NCM_SetValueEx() function to change the Dialogic® HMP Interface Board’s
BridgeDeviceEnabled parameter to “No”.

4. Use the NCM_StartBoard() function to start the Dialogic® HMP Interface Board. The
board’s bridge device will be disabled and the bridge device will not start.

7.2.4 Re-Enabling a Bridge Device

 Use the following procedure to programmatically re-enable a stopped board’s bridge device:

1. Ensure that the Dialogic® HMP Software system, along with the Dialogic® HMP Interface
Board, is stopped.

2. Use the NCM_SetValueEx() function to change the Dialogic® HMP Interface Board’s
BridgeDeviceEnabled parameter to “No”.

3. Use the NCM_StartSystem() function to start the Dialogic® HMP Software system. The
board’s bridge device will be disabled and the bridge device will not start.

4. Use the NCM_StopBoard() function to stop the Dialogic® HMP Interface Board.

Dialogic® NCM API Programming Guide — May 2008 33
Dialogic Corporation

Bridge Devices

5. Use the NCM_SetValueEx() function to change the Dialogic® HMP Interface Board’s
BridgeDeviceEnabled parameter to “Yes”.

6. Use the NCM_StartBoard() function to start the Dialogic® HMP Interface Board. The
board’s bridge device will be enabled and the bridge device will start.

7.3 Bridging Device Dialogic® HMP Software Clock
Master Fallback List

The bridge device Dialogic® HMP Software clock master fallback list is used to specify which
bridge device provides the streaming synchronization to all Dialogic® HMP Interface Boards in the
system. To set the bridge device Dialogic® HMP Software clock master fallback list, the
application must call the NCM_SetValueEx() function for each board that contains a bridge
device. This function call should set the
BridgeDeviceHMPClockMasterFallbackNbrUserDefined parameter to a number between 0 and
15, where 0 indicates the primary Dialogic® HMP Software clock master fallback bridge device, 1
indicates the secondary Dialogic® HMP Software clock master fallback bridge device, 2 indicates
the third Dialogic® HMP Software clock master fallback bridge device and so on.

The NCM_GetBridgeDeviceHMPClockMasterFallbackList() is a convenience function that
retrieves the bridge device Dialogic® HMP Software clock master fallback list. The bridge device
Dialogic® HMP Software clock master fallback list has no relation to the CT Bus clock master
fallback list.

Refer to the Dialogic® Host Media Processing Software for Windows® Configuration Guide for
additional information about Dialogic® HMP Software clocking and clock fallback.

34 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Bridge Devices

Dialogic® NCM API Programming Guide — May 2008 35
Dialogic Corporation

88.Building Applications

This chapter provides information about building applications using the Dialogic® Native
Configuration Manager (NCM) API library. The following topics are discussed:

• Compiling and Linking . 35

8.1 Compiling and Linking

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries

• Variables for Compiling and Linking

8.1.1 Include Files

Function prototypes and equates are defined in include files, also known as header files.
Applications that use Dialogic® NCM library functions must contain statements for include files in
this form, where filename represents the include file name:

#include <filename.h>

The following header files must be included in application code prior to calling Dialogic NCM
library functions:

NCMApi.h
Contains function prototypes for the Dialogic NCM library. Used for all Dialogic NCM library
application development.

devmap.h
Contains equates used to assign AUIDs to boards. Used only if you are invoking the
NCM_GetAUID() or NCM_GetFamilyDeviceByAUID() functions in your application.

Note: By default, the header files are located at <install drive>:\<install directory>\dialogic\inc or
<install drive>:\<install directory>\dialogic\HMP\inc.

8.1.2 Required Libraries

You must link the following library file when compiling your Dialogic NCM API application:

NCMApi.lib
Main Dialogic NCM library function

By default, the library files are located at <install drive>:\<install directory>\dialogic\lib or
<install drive>:\<install directory>\dialogic\HMP\lib.

36 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

Building Applications

8.1.3 Variables for Compiling and Linking

In Dialogic® System Release 6.0 Software, the following variables were introduced to provide a
standardized way of referencing the directories that contain header files and shared objects:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored.

INTEL_DIALOGIC_LIB
Variable that points to the directory where shared library files are stored.

These variables are automatically set at login and should be used in compiling and linking
commands.

Note: Developers should begin using these variables when compiling and linking applications since they
will be required in future releases. The name of the variables will remain constant, but the values
may change in future releases.

Dialogic® NCM API Programming Guide — May 2008 37

Dialogic Corporation

Index

A
ADMIN_CHANNEL 15

AUID 35

C
Client Application 11

compiling
header files 35
variables 36

country specific parameters 24

cPCI boards 10

CT Bus clocking scheme 29

D
DCM catalog 11

DCM configuration tool 11

DCM online help 19

device
installable 11
instantiated 11
model names 23
unique names 23

device model names 23

Device-Specific parameters 21

devmap.h 35

discovering installed devices 25

E
event notification framework 15

Event Service API 15

F
Family-Level parameters 21

G
Global parameters 21

I
In 36

installable devices 11

instantiated devices 11

INTEL_DIALOGIC_INC 36

INTEL_DIALOGIC_LIB 36

L
linking

library files 35
variables 36

M
memory allocation 24

N
NCM registry data 11

NCM_SUCCESS 17

NCMApi.h 35

NCMRetCode 17

NCMString data structure 22

NCMTypes.h 17

NETREF 29

O
Overriding parameters 21

P
parameter scope 20

Primary Clock Master 29

property section 20

R
registry data 11

restrictions and limitations 10

38 Dialogic® NCM API Programming Guide — May 2008
Dialogic Corporation

S
Secondary Clock Master 29

synchronous programming model 13

System configuration 11

T
TDM bus clock master fallback list 29

U
unique device names 10, 23

V
variables for compiling and linking 36

	Contents
	Figures
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Features
	1.2 Restrictions and Limitations
	1.3 Dialogic® NCM API Architecture

	2. Programming Models
	3. Event Handling
	4. Error Handling
	5. Application Development Guidelines
	5.1 Configuration Parameter Values and Device Instantiation
	5.2 Configuration Parameter Property Groups
	5.3 Configuration Parameter Scope
	5.3.1 Determining Configuration Parameter Scope
	5.3.2 Reading and Writing Configuration Parameter Values

	5.4 Populating Required Data Structures
	5.5 Device Model Names and Unique Device Names
	5.6 Dynamic Memory Allocation
	5.7 Working with Country Specific Parameters
	5.8 Discovering Installed Devices

	6. Clock Master Fallback List
	7. Bridge Devices
	7.1 Bridge Devices
	7.2 Controlling Bridge Devices
	7.2.1 Starting a Bridge Device
	7.2.2 Disabling a Bridge Device
	7.2.3 Stopping a Bridge Device
	7.2.4 Re-Enabling a Bridge Device

	7.3 Bridging Device Dialogic® HMP Software Clock Master Fallback List

	8. Building Applications
	8.1 Compiling and Linking
	8.1.1 Include Files
	8.1.2 Required Libraries
	8.1.3 Variables for Compiling and Linking

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

