Dialzgic.

Dialogic® IP Media Library API

Programming Guide and Library Reference

September 2014

05-2257-019

Copyright and Legal Notice

Copyright © 2003-2014 Dialogic Inc. All Rights Reserved. You may not reproduce this document in whole or in part without permission in writing from
Dialogic Inc. at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Inc. and its affiliates or subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in
the document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or
omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see http://www.dialogic.com/company/terms-of-use.aspx for
more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Inc. at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 6700 de la Cote-de-Liesse Road,
Suite 100, Borough of Saint-Laurent, Montreal, Quebec, Canada H4T 2B5. Dialogic encourages all users of its products to procure all
necessary intellectual property licenses required to implement any concepts or applications and does not condone or encourage any
intellectual property infringement and disclaims any responsibility related thereto. These intellectual property licenses may differ from
country to country and it is the responsibility of those who develop the concepts or applications to be aware of and comply with different
national license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, BorderNet, PowerMedia, ControlSwitch, I-Gate, Mobile Experience Matters, Network
Fuel, Video is the New Voice, Making Innovation Thrive, Diastar, Cantata, TruFax, SwitchKit, Eiconcard, NMS Communications, SIPcontrol, Exnet,
EXS, Vision, inCloud9, NaturalAccess and Shiva, among others as well as related logos, are either registered trademarks or trademarks of Dialogic
Inc. and its affiliates or subsidiaries. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may only be
granted by Dialogic’s legal department at 6700 de la Cote-de-Liesse Road, Suite 100, Borough of Saint-Laurent, Montreal, Quebec, Canada H4T 2B5.
Any authorized use of Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any
use of Dialogic’s trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your decision to use open
source in connection with Dialogic products (including without limitation those referred to herein), nor is Dialogic responsible for any present or future
effects such usage might have, including without limitation effects on your products, your business, or your intellectual property rights.

Using the AMR-NB or AMR-WB resource in connection with one or more Dialogic products mentioned herein does not grant the right to practice the
AMR-NB or AMR-WB standard. To seek a patent license agreement to practice the standard, contact the VoiceAge Corporation at http:/
www.voiceage.com/licensing.php.

Publication Date: September 2014
Document Number: 05-2257-019

Dialogic® IP Media Library APl Programming Guide and Library Reference

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com
http://www.voiceage.com/licensing.php

Contents

a A WO DN

Revision History e e 11
About This Publication 20

PUIDOSE . . . 20

Applicability e 20

Intended AUdIieNnCe. e 20

How to Use This Publication e 21

Related Information e 21
Product Description e 22
1.1 Features. e 22
1.2 Architecture e 22
1.3 Introduction to the Dialogic® IP Media Library APlcciiiiinienn... 23
1.4 Relationship with Dialogic® Global Call API Librarycoouuinienn... 23
1.5 Dialogic® Standard Runtime Library APl Supportcoiiiiinennenn... 24
1.6 Media Channel Device Namingottt e e 24
Feature Support by Platform. 25
Programming Models. e 27
State Models e 28
Event Handling e 29
5.1 Dialogic® Standard Runtime Library Event Management Functions. 29
5.2 Dialogic® Standard Runtime Library Standard Attribute Functions 29
Error Handling e e 31
Reserving Resources for AudioCodersttt 32
71 Feature DescCription e 32
7.2 Reserve Resources forOutbound Call 32
7.3 Reserve Resources forinbound Call. 34
7.4 Release Resources Implicitly by a Subsequent ReservationCall 35
7.5 Handling a Resource Reservation Failure. 36
7.6 Reservation State after a Subsequent Call to Resource Reservation Fails 38
Using the AMR-NB and AMR-WB AudioCoder i, 40
8.1 Feature Description 40
8.2 APl Library Support e 41

8.2.1 CMR Value (Preferred Receive BitRate) 41

8.2.2 Preferred TransmitBitRate 41

8.23 CMRRUIES e 42

8.24 RTPPayload Format 42
8.3 Sample SCenarios e 43

8.3.1 Sample Scenario: Transmit at Bit Rate Requested by Remote Side 43

8.3.2 Sample Scenario: Transmit at Bit Rate Less Than Preferred Value. 44

Dialogic® IP Media Library APl Programming Guide and Library Reference 3

Contents

10

11

12

13

14

Using AMR-NB, AMR-WB, and G.711 AudioOverNb UP 47
9.1 Feature Description e 47
9.2 APILibrary SUPPOIt . ..o e 48
9.3 Guidelines for Streaming Audio OverNb UP i 48
9.4 Guidelines for Streaming AMR-NB OverNb UP. 49
9.5 Guidelines for Streaming G.711 (5ms)overNb UP. 50
9.6 Guidelines for Streaming G.711 (20ms)overNb UP. 51
H.263 Using RFC 2429 (RFC 4629) Packetization. 52
10.1 Feature DesCription e 52
10.1.1 Streamingfrom IPt0 3G-324M Calls. i 52

10.1.2 Streaming Between One IP Call (using RFC 2429) and a Second IP Call (using RFC

2100) . o 53

10.2 APILibrary SUPPOM . ..o e 53
10.3 Usage GUIdelinest e 53
Configuring for Half- or Full-Duplex Media Streams 54
11.1 Overview of Half- and Full-Duplex Stream Support 54
11.2 APLLibrary SUPPOIt . . .ot e 55
11.3 Sample SCENAMOot e 56
11.4 Example Codeo e e e 57
DTMF Handling e e 60
12.1 Feature Description e 60
12.2 Setting DTMF Parameters e e e e 61
12.2.1 DTMF Transfer Modes. e 61

12.2.2 SettingIn-BandMode 61
12.2.3 Setting Full-Duplex RFC 2833 Mode.t 62

12.2.4 Setting Out-of-Band Mode. 64
12.2.5 Setting Receive-only RFC 2833 Mode i, 65

12.3 Notification of DTMF Detection. e 66
12.4 Generating DTMFo e e e 66
T 38 FaX SerVer . .. e 67
13.1 Feature Description e 67
13.2 Sample Scenario for T.38 Fax Server e 68
13.3 Example Code for T.38 Fax Server e e 69
Implementing Native T.38 Fax Hairpinning. 74
14.1 Feature Descriplion e 74
14.2 Implementation Guidelines. e 75
14.2.1 Initializing Structures 75

14.2.2 Connecting DeVICES. . . .« ottt 75
14.2.3 Exchange Media Using ipm_StartMedia()t 76

14.3 Sample SCENAMOS. oot ittt e 78
14.3.1 Scenario 1: INVITEforT.38 FaxCall 79
14.3.2 Scenario 2: Re-INVITEforT.38 FaxCall. 79

14.3.3 Scenario 3: Re-INVITE from Native Hairpin of Audio to Native Hairpin of T.38 ..80
14.3.4 Scenario 4: Re-INVITE from Non-native Hairpin of Audio to Native Hairpin of T.38.
81

Dialogic® IP Media Library APl Programming Guide and Library Reference

Contents

15 Using the Selective Packet Filtration Method 82
15.1 Feature DescCription e 82

15.2 APl Library SUPPOm e 82

16 Quality of Service (QoS) Alarms and RTCP Reports 84
16.1 QOS OVEIVIBW . . . oot e 84

16.2 QOS Alarm TyYPES . .ottt e 85

16.3 QoS Threshold Attributes 86

16.4 QOS Event Types. . . oot e 87

16.5 Implementing QOS Alarms.ot 87

16.6 QoS Alarm and Alarm Recovery Mechanisms 88

16.7 Example Code for QoS Alarm Handling 92

16.8 RTCP Reporting ot e e e 95
16.8.1 Basic RTCP Reports. oo e e e 95

16.8.2 Enhanced RTCP Reports. e e 95

16.8.3 Retrievingan RTCP Report e 96

16.8.4 Enabling RTCP Reporting System-Wide 97

17 Volume Control. e 98
17.1 Volume Control OVEIVIEWot e e e e e e 98

17.2 Volume Control Parameters i e e 98

17.3 Implementing Volume Control e 99

17.4 Volume Control Hints and Tipsot e 99

17.5 Example Code for Volume Control 99

18 Using Echo Cancellation e 102
18.1 Overview of Echo Cancellation e 102

18.2 Echo Cancellation Parameters e 103

19 Using NAT Traversal in SIP MediaSession. 104
19.1 Feature Description e 104

19.2 APl Library SUPPOrto e 104

19.3 Example Code 1 for NAT Traversal. e e e e 105

19.4 Example Code 2 for NAT Traversal. . ..ot e e e e e 106

20 Using Secure RTP e e e 108
20.1 Overview of Secure RTP e 108

20.2 Generating Encryption Keys 109

20.3 Starting and Modifying a Media Session that Uses Secure RTP. 110
20.3.1 Key Aboutto Expire Indication 110

20.3.2 Maximum Numberof Keys 110

20.3.3 Usage Restrictions 111

20.3.4 Switching from RTP to SRTP in Mid-session 111

20.3.5 Switching from SRTP to RTPin Mid-session 111

20.3.6 Automatic Validation of Keys 111

20.4 Retrieving and Modifying Encryption Key Expiry Notification Interval 112

20.5 Retrieving and Resetting Secure RTP Alarms. i 112

20.6 Retrieving and Setting Threshold Values for Secure RTP Alarms 113

20.7 Events Generated by Secure RTP 113

20.8 UseCaseforSecure RTP e e e 115

20.9 Example CodeforSecure RTP e 115

Dialogic® IP Media Library APl Programming Guide and Library Reference 5

Contents

21

22

23

24
25

Building Applications e 118
21.1 Compiling and Linkingunder Linux.t e 118

2111 Include Files. o 118

21.1.2 Required Libraries e 118
21.2 Compiling and Linking under Windows®t 119

21.21 Include Files. e 119

21.2.2 Required Libraries e 119
Function Summary by Category 120
22.1 System Control Functions. e 120
22.2 /O (Input/Output) Functions. e e e 121
22.3 Media Session FuNctions e 121
22.4 Quality of Service (QoS) Functions 121
22.5 Dialogic® IP Media Library APl Function Support by Platform..................... 122
Function Information. e 124
23.1 Function Syntax Conventions.ttt e 124
ipm_Close() —close an IP channeldevice i 125
ipm_DisableEvents() — disable IP notificationevents., 127
ipm_EnableEvents() — enable IP notificationevents 131
ipm_GeneratelFrame() —generatean |-Frame i 135
ipm_GetCapabilities() — retrieve capability (for example, coder) information. 138
ipm_GetCTInfo() — return information about a voice channel of an IPM device. 141
ipm_GetLocalMedialnfo() — retrieve properties for the local media channel 143
ipm_GetParm() — retrieve the current value of aparameter. 147
ipm_GetQoSAlarmStatus() — retrieve ON/OFF state of QoS alarms. 150
ipm_GetQoSThreshold() — retrieve QoS alarm threshold settings. 153
ipm_GetSessionInfo() — retrieve statistics fora session. L. 157
ipm_GetSessionInfoEx() — retrieve RTCP data forasession 161
ipm_GetXmitSlot() — return TDM time slot information foran IP channel. 165
ipm_InitResponseSend() — send a response to an Nb UP invitation 168
ipm_InitSend() — send an Nb UP initialization messagetoaremoteparty 174
ipm_Listen() — connect an IP channeltoa TDMtimeslot 180
ipm_ModifyMedia() — modify properties of active media session. 183
ipm_Open()—open an IP channeldevice i, 188
ipm_ReceiveDigits() — enable the IP channel to receive digits. 191
ipm_ResetQoSAlarmStatus() — reset QoS alarm(s)tothe OFF state 195
ipm_SecurityGenMasterKeys() — generate masterand saltkeys 198
ipm_SendDigits() — generate digits tothe TDM bus. L. 202
ipm_SetParm() — set value for specified parameter. 205
ipm_SetQoSThreshold() — change QoS alarm threshold settings 208
ipm_StartMedia() — set media properties and startthe session. 211
ipm_Stop() — stop operations on the specified IP channel. 216
ipm_UnListen() — stop listening to the TDM time slot. 219
EVeNtS. . . . e 222
Data Structures e 226

Dialogic® IP Media Library APl Programming Guide and Library Reference

26

Contents

CT_DEVINFO - channel/time slot device information 228
IPM_AUDIO_CODER_INFO — audio coder properties used in an IP session. 230
IPM_AUDIO_CODER_OPTIONS_INFO — audio coderoptions. 235
IPM_CLOSE_INFO —reserved forfuture use 237
IPM_DIGIT_INFO — used to transfer digits over IP network and TDMbus 238
IPM_ENDPOINTID_INFO — endpoint ID information. 239
IPM_EVENT_INFO — used for IP event notification. 241
IPM_FAX_SIGNAL — detected tone information definition. 242
IPM_IFRAME_INFO - retrieve I-Frame information. 243
IPM_INIT_FAILURE — IP failed response initialization message 244
IPM_INIT_RECEIVED - inbound IP initializationrequest 245
IPM_INIT_RESPONSE — IP initialization response 246
IPM_INIT_SEND — IP initialization message i 247
IPM_MEDIA — parent of port and coder info structures 248
IPM_MEDIA_INFO — parent of IP_MEDIA, contains sessioninfo 251
IPM_NACK_SENT — NACK responsetoanIPrequest............ 252
IPM_NBUP_INIT_FAILURE — Nb UP protocol failedmessage 253
IPM_NBUP_INIT_RECEIVED — Nb UP incoming request parameters 254
IPM_NBUP_INIT_RESPONSE - response to sendtoan Nob UP request................. 255
IPM_NBUP_INIT_SEND — Nb UP protocol initialization message. 256
IPM_NBUP_NACK_SENT — NACK response to sendtoan Nb UP request 257
IPM_NBUP_PROFILE_INFO — type of Nb UP profile beingrequested 259
IPM_NBUP_RFCI_INFO — RFCl items inthe Nb UP initmessage 261
IPM_NBUP_SUBFLOW_INFO — attributes of asubflow 262
IPM_OPEN_INFO —reserved forfuture use i 263
IPM_PARM_INFO — used to set or retrieve parameters foran IP channel 264
IPM_PORT_INFO — RTP and RTCP portpropertiest 267
IPM_QOS_ALARM_DATA — data associated with QoS alarms. 268
IPM_QOS_ALARM_STATUS — parent of QoS alarm data, contains alarm status 270
IPM_QOS_SESSION_INFO — QoS statistics foran IP session. 271
IPM_QOS_THRESHOLD_DATA — QoS alarm threshold settings for an IP channel. 272
IPM_QOS_THRESHOLD_INFO — parent of threshold data structures 275
IPM_RTCP_SESSION_INFO — session information for RTCP 276
IPM_SECURITY_BASE64_KEY — Base64-encoded security key information 278
IPM_SECURITY_BINARY_KEY - binary security key information 279
IPM_SECURITY_INFO — security information. e 280
IPM_SECURITY_KEY — contains security key info it 281
IPM_SESSION_INFO — parent structure containing RTCP and QoSinfo................. 283
IPM_SESSION_INFOEX —RTCP data e 284
IPM_SRTP_PARMS —secure RTP parameters. e ee e 285
IPM_TELEPHONY_EVENT_INFO — details of a telephonyevent. 288
IPM_TELEPHONY_INFO - telephony information for transfer over IP network 290
IPM_VIDEO_CODER_INFO — video coder properties used inan IP session 292
IPM_VIDEO_CODER_INFO_EX — additional video coder properties 293
SC_TSINFO — TDM bus (CT Bus) time slot information 297
Error Codes. 298

Dialogic® IP Media Library APl Programming Guide and Library Reference 7

Contents

GlOSSarY o e 300

8 Dialogic® IP Media Library APl Programming Guide and Library Reference

Contents

Figures

1 IP Media Architecture e 23
2 IP Media Channel State Diagram i e e e 28
3 Reserve Resources for OQutbound Call i i 33
4 Reserve Resources forlnbound Call. 34
5 Reserve Resources Implicitly 36
6 Reserve Resources Failure. i e 37
7 Reservation State after a SubsequentCallFails. 39
8 Endpoint Media Streaming State Transitions i i .. 56
9 Half- and Full-Duplex Media Streaming Sample Scenario 57
10 In-Band DTMF Mode Scenario Diagramot e 62
11 RFC 2833 Scenario Diagram.o e 63
12 Out-of-Band DTMF Mode Scenario Diagram 64
13 T.38 Fax Server Call SCenario.o o e e e e 69
14 QoS Scenario 1: Brief Alarm Condition 90
15 QoS Scenario 2: True Alarm Condition e 91
16 QoS Scenario 3: Alarm Condition Clearedt 92
17 Echo Cancellation e e e 102
18 SRTP USE CaSe . ..o it e 115

Dialogic® IP Media Library APl Programming Guide and Library Reference 9

Contents

Tables

10

NO O h WN =

High-Level Feature Supportby Platform 25
Secure RTP QoS Alarm Threshold Values i 113
Dialogic® IP Media Library APl Function Support by Platform......................... 122
Supported Audio Coder Properties. e 233
elPM_PARM Parametersand Values i 264
Quality of Service (QoS) Parameter Defaults. 274
Crypto Suite Parameter Values i e 286

Dialogic® IP Media Library APl Programming Guide and Library Reference

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No.

Publication Date

Description of Revisions

05-2257-019

September 2014

Feature Support by Platform chapter: Updated the High-Level Feature Support by
Platform table with Selective packet filtration method and NAT traversal support.
Removed references to HMP 5.0.

Function Summary by Category chapter: Removed references to HMP 5.0.

05-2257-018

October 2012

Feature Support by Platform chapter: Updated the High-Level Feature Support by
Platform table due to Nb UP updates. Removed references to Dialogic® Host
Media Processing Software Release 3.1LIN.

Using the AMR-NB and AMR-WB Audio Coder chapter: Added AMR-WB.
Using AMR-NB, AMR-WB, and G.711 Audio Over Nb UP chapter: Updated.

Function Summary by Category chapter: Removed references to Dialogic® Host
Media Processing Software Release 3.1LIN.

IPM_AUDIO_CODER_INFO structure: Updated with AMR-WB support.
IPM_AUDIO_CODER_OPTIONS_INFO chapter: Updated with AMR-WB support.
IPM_NBUP_PROFILE_INFO structure: Updated.

IPM_NBUP_SUBFLOW_INFO structure: Updated.

05-2257-017

June 2011

Removed references to Dialogic® Multimedia Kit Software for PCle (MMK) and
Dialogic® Multimedia Platform for AdvancedTCA (MMP) as these products are no
longer supported. Also removed features specific to these products such as EVRC
and QCELP.

Feature Support by Platform chapter: Added comment about audio transcoding
support for “H.263-1998 (H.263+) video from RTSP server to 3G-324M” row.
Added new row for H.263-1998 video IP. Indicated that Secure RTP is
supported on HMP 4.1LIN. Added HMP 5.0 column.

H.263 Using RFC 2429 (RFC 4629) Packetization chapter: Updated Feature
Description and Usage sections.

ipm_ModifyMedia() function: In Description, added bullet about “codec properties for
audio (speech) codecs only”. In Cautions, added bullet that video media types in
IPM_MEDIA structure are not supported by this function.

ipm_StartMedia() function: In Cautions section, added two bullets about
DATA_IP_RECEIVEONLY.

Events chapter: Updated description of IPMEV_TELEPHONY_EVENT.

IPM_VIDEO_CODER_INFO structure: Added CODER_TYPE_H264.

IPM_VIDEO_CODER_INFO_EX structure: Replaced data structure definition; added
new fields. Added VIDEO_PROFILE_BASELINE_H264 video profile. Added
VIDEO_LEVEL_1_H264, VIDEO_LEVEL_1_1_H264,
VIDEO_LEVEL_1_2_H264, VIDEO_LEVEL_1_3_H264 video signal levels.

Dialogic® IP Media Library API Programming Guide and Library Reference 11

Revision History

Document No.

Publication Date

Description of Revisions

05-2257-016

October 2009

Feature Support by Platform chapter: Added Dialogic® HMP Software 4.1LIN in the
Feature Support by Platform table.

Quality of Service (QoS) Alarms and RTCP Reports chapter: Corrected
unDebounceOn and unDebounceOff field descriptions in QoS Threshold
Attributes.

Function Summary by Category chapter: Added Dialogic® HMP Software 4.1LIN,
HMP Software 3.1LIN, and HMP Software 3.0WIN in the API Function Support
by Platform table.

ipm_InitResponseSend() function: Specified Dialogic® HMP Software (Linux) in
Platform row in function syntax table, as this function is supported on Linux only.

ipm_InitSend() function: Specified Dialogic® HMP Software (Linux) in Platform row
in function syntax table, as this function is supported on Linux only.

ipm_StartMedia() function: Corrected example code.

05-2257-015

February 2009

Feature Support by Platform chapter: Added RTCP reports (enhanced) feature.
Added NAT Traversal feature. Updated “Codec: AMR-NB” to include support for
Dialogic® HMP Software 3.1LIN (erroneously marked not supported).

Quality of Service (QoS) Alarms and RTCP Reports chapter: Updated chapter title to
include RTCP Reports. Added RTCP Reporting section and updated chapter
with RTCP reporting alarms and events.

Using NAT Traversal in SIP Media Session chapter: New.

Function Summary by Category chapter: Added ipm_GetSessionInfoEx() to Media
Session category.

ipm_DisableEvents() and ipm_EnableEvents() functions: Added
EVT_RTCP_JB_HIGH, EVT_RTCP_JB_LOW, EVT_RTCP_SCS event types.
Added EVT_ENDPOINTID_NOTIFY event type.

ipm_GetSessionInfo() function: Added that this function returns parsed data.
ipm_GetSessionInfoEx() function: New for enhanced RTCP reporting.

Events chapter: Added IPMEV_RTCP_NOTIFY_RECEIVED,
IPMEV_RTCP_NOTIFY_SENT, and IPMEV_NOTIFY_ENDPOINTID.

IPM_ENDPOINTID_INFO structure: New for NAT Traversal feature.

IPM_PARM_INFO structure: Added PARMCH_RTCP_ENHANCED_EVENT_FREQ
and PARMCH_RTCP_ENHANCED_REPORTING.

IPM_QOS_ALARM_DATA, IPM_QOS_SESSION_INFO, and
IPM_QOS_THRESHOLD_DATA structures: Added
QOSTYPE_RTCP_JB_HIGH, QOSTYPE_RTCP_JB_LOW, and
QOSTYPE_RTCP_SCS values for elPM_QOS_TYPE.

IPM_SESSION_INFOEX structure: New for enhanced RTCP reporting.

12

Dialogic® IP Media Library APl Programming Guide and Library Reference

Revision History

Document No. Publication Date Description of Revisions

05-2257-014 December 2008 Added programming guide content (05-2330-007) to create a combined API
Programming Guide and Library Reference document. Revisions to the 05-2330-007
and 05-2257-013 documents are listed below.

Reserving Resources for Audio Coders chapter: New.

Using the AMR-NB and AMR-WB Audio Coder chapter: New.

Using AMR-NB, AMR-WB, and G.711 Audio Over Nb UP chapter: New.

H.263 Using RFC 2429 (RFC 4629) Packetization chapter: New.

Using Enhanced Variable Rate Codecs (EVRC) chapter: New.

DTMF Handling chapter: Added Setting Receive-only RFC 2833 Mode.

Implementing Native T.38 Fax Hairpinning chapter: New.

Using the Selective Packet Filtration Method chapter: New.

Building Applications chapter: Added note about compiling Linux applications in
Required Libraries.

ipm_GeneratelFrame() function: Updated structure name to IPM_IFRAME_INFO
(from IFRAME_INFO).

ipm_GetSessionInfo() function: Updated description regarding QoS and RTCP
statistics.

Events chapter: Updated description for IPMEV_GET_SESSION_INFO event.

IPM_AUDIO_CODER_INFO structure: Added CODER_TYPE_UDPTL_NATIVE.

IPM_IFRAME_INFO structure: Updated structure name and inline function to
IPM_IFRAME_INFO (from IFRAME_INFO).

IPM_NBUP_PROFILE_INFO structure: Added AMR-NB and G.711 values to
eProfileType.

IPM_NBUP_SUBFLOW_INFO structure: Added AMR-NB and G.711 values to
eFlowSize.

IPM_PARM_INFO structure: Added PARMBD_RTP_SOURCE_FILTER.

IPM_SESSION_INFO structure: Updated description regarding QoS and RTCP
statistics.

IPM_VIDEO_CODER_INFO structure: Updated eCoderType values (changed
VIDEO_CODING_xxx to CODER_TYPE_xxx); added
CODER_TYPE_H263_1998; removed VIDEO_CODING DEFAULT; removed
note.

Dialogic® IP Media Library APl Programming Guide and Library Reference 13

Revision History

Document No.

Publication Date

Description of Revisions

05-2257-013

August 2008

Function Summary by Category chapter: Added Dialogic® Multimedia Kit for PCle to
Dialogic® IP Media Library API Function Support by Platform table.

Function Information chapter: For supported functions, added Dialogic® Multimedia
Kit for PCle to Platform line.

ipm_ReceiveDigits() function: Removed Dialogic® Multimedia Platform for
AdvancedTCA from Platform line (not supported).

ipm_StartMedia() function: Updated pMedialnfo parameter description (application
cannot define local IP address, local RTP/RTCP port, local T.38 port). Removed
first caution about calling ipm_Listen() after receiving ipm_StartMedia()
completion event (not applicable).

IPM_AUDIO_CODER_INFO data structure: For unFramesPerPkt field, added note
that this field controls the RTP packet type for the EVRC codec.
For unCoderPayloadType field, clarified description and revised to indicate that
the default value of 0 specifies G.711 mu-law. [IPY00044398]
Updated coder information in Supported Audio Coder Properties table: for AMR-
NB codec, 1 to 10 fpp is supported for Dialogic® HMP Software (previously only
1 fpp was supported); for AMR-NB codec, replaced lowercase ‘k’ with
uppercase K for consistency (both are supported); for QCELP, only 1 fpp is
supported (removed 2 and 3); for G.726, removed limitation on 16, 24, 40 kbps
for Dialogic® Multimedia Platform for AdvancedTCA or MMP (all are supported);
for G.723, frame size is 20 for all platforms (removed 10 for MMP).

IPM_PARM_INFO data structure: Updated table of parameters; ordered
alphabetically; indicated platform support variation for parameters as
appropriate.

IPM_VIDEO_CODER_INFO_EX data structure: For unBitRate field, revised
information when video transcoding is enabled.

For eFramesPerSec field, removed frame rate of 25 and 29.97 fps as they are
not supported. [IPY00043524]

05-2257-012

December 2007

ipm_GeneratelFrame() function: New, added for video fast update.

Events chapter: Added IPMEV_GENERATEIFRAME and
IPMEV_GENERATEIFRAME_FAIL for video fast update support.

IPM_IFRAME_INFO data structure: New, added for video fast update.
Error Codes: Added EIPM_ GENERATEIFRAME _INCAPABLE.

14

Dialogic® IP Media Library APl Programming Guide and Library Reference

Revision History

Document No. Publication Date Description of Revisions

05-2257-011 October 2007 ipm_DisableEvents() function: Added EVT_TELEPHONY value for RFC 2833.
Deprecated EVT_RFC2833.

ipm_EnableEvents() function: Added EVT_TELEPHONY value for RFC 2833.
Deprecated EVT_RFC2833.

ipm_InitResponseSend() function: Updated example code for Nb UP.
ipm_InitSend() function: Updated example code for Nb UP.

ipm_StartMedia(): Updated example code, remote video and local video coder
sections.

Events chapter: Added IPMEV_TELEPHONY_EVENT for RFC 2833.

IPM_AUDIO_CODER_INFO data structure: For Dialogic® Multimedia Platform for
AdvancedTCA (MMP), corrected coder information in table of supported audio
coder properties: for AMR-NB, fpp is 1 (removed 2,3,4); for G.726, only 32 kbps
is supported with frame sizes 10 and 20.

IPM_MEDIA data structure: Added NBUPProfilelnfo field (previously missing).
Added Nb UP values for eMediaType field (previously missing):
MEDIATYPE_NBUP_REMOTE_RTP_INFO,
MEDIATYPE_NBUP_LOCAL_RTP_INFO, and
MEDIATYPE_NBUP_PROFILE_INFO.

IPM_NBUP_RFCI_INFO data structure: Updated description of uclD field and added
valid values.

IPM_TELEPHONY_EVENT_INFO data structure: New, added for RFC 2833.
Deprecated IPM_RFC2833_SIGNALID_INFO structure.

IPM_TELEPHONY_INFO data structure: New, added for RFC 2833. Deprecated
IPM_RFC2833_SIGNALID_INFO structure.

IPM_VIDEO_CODER_INFO data structure: Removed unFrameRate and
unSamplingRate fields as these are not supported. Added pExtraCoderinfo
field. Added values to eCoderType field and noted that CODER_TYPE_H263 is
deprecated.

IPM_VIDEO_CODER_INFO_EX data structure: New, to support additional video

coder properties for MPEG-4 and H.263.

05-2257-010 August 2007 Made global changes to reflect Dialogic brand. As part of rebranding, renamed
document from "IP Media Library API for HMP Library Reference" to "Dialogic® IP
Media Library API Library Reference”.

IPM_AUDIO_CODER_INFO data structure: Updated to include
CODER_TYPE_EVRC; removed CODER_TYPE_EVRC_4_8k,
CODER_TYPE_EVRC_4_8k_NATIVE, CODER_TYPE_EVRC_9_6k,
CODER_TYPE_EVRC_4_8k_NATIVE.

Also removed CODER_TYPE_QCELP_8K_NATIVE and
CODER_TYPE_QCELP_13K_NATIVE.
Updated table of supported audio coder properties for AMR, EVRC, QCELP.

IPM_AUDIO_CODER_OPTIONS_INFO data structure: Updated unCoderOptions
(added value for QCELP); updated unParm1 and nValue1 (removed
CODER_OPT_CDMA_MAX_RATE for EVRC and QCELP); updated unParm2
and unValue2; updated example code.

Dialogic® IP Media Library APl Programming Guide and Library Reference 15

Revision History

Document No. Publication Date Description of Revisions

05-2257-009 May 2007 Function Summary by Category chapter: Added ipm_InitResponseSend() and
ipm_InitSend() to the Media Session Functions category. Added Dialogic® IP
Media Library APl Function Support by Platform section.

Function Information chapter: Added the following new functions for Nb UP support:
ipm_InitResponseSend() and ipm_InitSend().

ipm_GetCapabilities function: Corrected example code.

ipm_GetlLocalMedialnfo() function: Added statement about querying RTP/RTCP
information. Added caution for Dialogic® Multimedia Platform for AdvancedTCA
(Multimedia Platform for AdvancedTCA).

ipm_SetRemoteMedialnfo() function: Removed from this document. Deprecated
function. Replaced by ipm_StartMedia().

ipm_StartMedia() function: Added caution for Multimedia Platform for
AdvancedTCA. Updated example code to illustrate video.

Events chapter: Added the following events: IPMEV_INIT_COMPLETE,
IPMEV_INIT_FAILED, IPMEV_INIT_RESPONSE_SEND, IPMEV_INIT_SEND,
IPMEV_INIT_RECEIVED, IPMEV_NACK_SENT.

Data Structures chapter: Added the following new structures for Nb UP support:
IPM_INIT_FAILURE, IPM_INIT_RECEIVED, IPM_INIT_RESPONSE,
IPM_INIT_SEND, IPM_NACK_SENT, IPM_NBUP_INIT_FAILURE,
IPM_NBUP_INIT_RECEIVED, IPM_NBUP_INIT_RESPONSE,
IPM_NBUP_INIT_SEND, IPM_NBUP_NACK_SENT,
IPM_NBUP_PROFILE_INFO, IPM_NBUP_RFCI_INFO, and
IPM_NBUP_SUBFLOW_INFO.

CT_DEVINFO data structure: Added CT_DFHMPATCA value for ct_devfamily.
IPM_AUDIO_CODER_INFO data structure: Added several new coder types,

including AMR-NB, EVRC, QCELP, and all _NATIVE coder types. Updated
table of supported audio coder properties.

IPM_AUDIO_CODER_OPTIONS_INFO data structure: New.

IPM_MEDIA data structure: Added AudioCoderOptionsinfo field. Added eMediatype
values, including MEDIATYPE_AUDIO_LOCAL_CODER_OPTIONS_INFO and
MEDIATYPE_AUDIO_REMOTE_CODER_OPTIONS_INFO. Corrected
MEDIATYPE_FAX_SIGNAL value (previously listed as
MEDIATYPE_FAX_SIGNAL_INFO).

IPM_PARM_INFO data structure: Added elP_PARM defines, including
PARMCH_LATENCYALG_AUDIO, PARMCH_LATENCYFRAMEINIT_AUDIO,
and PARMCH_LATENCYFRAMEMAX_AUDIO.

IPM_VIDEO_CODER_INFO data structure: Removed unProfileLevellD and
szVisualConfiguration fields because they are not yet supported.

Error Codes chapter: Updated for ipm_InitResponseSend() and ipm_InitSend().

05-2257-008 August 2006 ipm_GetCapabilities() function: Added.

16 Dialogic® IP Media Library APl Programming Guide and Library Reference

Revision History

Document No. Publication Date Description of Revisions

05-2257-007 June 2006 Media Session Functions section: Added ipm_SecurityGenMasterKeys() function.

ipm_GetLocalMedialnfo() function: Updated description to clarify eMediaType and
unCount as members of data structures referenced by the pMedialnfo function
parameter and enumerate the allowed values. Also updated for video support.

ipm_SecurityGenMasterKeys() function: Added for SRTP support.
Events chapter: Updated the IPMEV_QOS_ALARM event description.

Events chapter: Added IPMEV_SEC_NOTIFY_EXPIRE_KEY_AUDIO and
IPMEV_SEC_NOTIFY_EXPIRE_KEY_VIDEO event descriptions.

Data Structures chapter: Added SRTP and video related structures.
IPM_AUDIO_CODER_INFO data structure: Added to replace IPM_CODER_INFO.

IPM_PARM_INFO data structure: In the PARMCH_ECNLP_ACTIVE parameter
description in the table, updated the definition of “NLP”.

IPM_QOS_ALARM_DATA data structure: Updated to include SRTP and SRTCP
alarms.

IPM_QOS_THRESHOLD_DATA data structure: Updated to include SRTP and
SRTCP alarms.

IPM_MEDIA data structure: Updated for SRTP and video support.
IPM_SECURITY_BASE64_KEY data structure: Added for SRTP support.
IPM_SECURITY_BINARY_KEY data structure: Added for SRTP support.
IPM_SECURITY_INFO data structure: Added for SRTP support.
IPM_SECURITY_KEY data structure: Added for SRTP support.
IPM_SRTP_PARMS data structure: Added for SRTP support.
IPM_VIDEO_CODER_INFO data structure: Added for video support

05-2257-006 December 2005 Media Session Functions section: Added ipm_ModifyMedia() function

Events section: Added IPMEV_MODIFYMEDIA and
IPMEV_MODIFYMEDIA_FAIL

ipm_GetLocalMedialnfo() function: Removed references to video

ipm_ModifyMedia() function: Added to support endpoint configuration for half- and
full-duplex media streams

ipm_SetRemoteMedialnfo(): Removed detailed information since the function is
deprecated

ipm_StartMedia() function: Added the DATA_IP_INACTIVE option to the eDirection
parameter. Rephrased the first caution for greater clarity.

IPM_AUDIO_CODER_INFO data structure: Removed from this version

IPM_CODER_INFO data structure: Updated the supported coders table; removed
the original note and added a note about G.726 usage.

IPM_MEDIA data structure: Removed references to video; updated names of
elements for audio coders

IPM_PARM_INFO data structure: Added the following parameters:
PARMBD_RTCPAUDIO_INTERVAL
PARMBD_RTPAUDIO_PORT_BASE
PARMCH_ECACTIVE
PARMCH_ECHOTAIL
PARMCH_ECNLP_ACTIVE

IPM_VIDEO_CODER_INFO data structure: Removed from this version

General: Hid all references to deprecated ipm_SetRemoteMedialnfo() function
except the function reference page itself.

Dialogic® IP Media Library APl Programming Guide and Library Reference 17

Revision History

Document No. Publication Date Description of Revisions

05-2257-005 August 2005 ipm_GetLocalMedialnfo() function: Updated code example for video media info

IPM_AUDIO_CODER_INFO data a structure: Added note about name change;
added note to unCoderPayloadType description (PTR#33921)

IPM_MEDIA data structure: Added union element for video coders; changed name of
element for audio coders

IPM_PARM_INFO data structure: Added info on using PARMCH_TOS for DSCP
field

IPM_RFC2833_SIGNALID_INFO data structure: Restored to document (previous
removal was in error)

IPM_VIDEO_CODER_INFO: New data structure

05-2257-004 April 2005 Function Summary by Category chapter: Removed unimplemented
ipm_SendRFC2388SignallDTolP function

ipm_DisableEvents() function page: Removed unsupported EVT_FAXTONE and
EVT_T38CALLSTATE event types

ipm_EnableEvents() function page: Removed unsupported EVT_FAXTONE and
EVT_T38CALLSTATE event types
ipm_SendRFC2388SignallDTolP function: Removed as unimplemented

ipm_SetQoSThreshold() function page: Added Caution on possible failure scenario.
Corrected code example

Events chapter: Removed unimplemented IPMEV_RFC2833SIGNALRECEIVED
event

IPM_RFC2833_SIGNALID_INFO data structure section: Removed as unused

IPM_QOS_SESSION_INFO data structure page: Clarified descriptions of jitter and
lost packets QoS statistics

05-2257-003 September 2004 ipm_GetQoSAlarmStatus() function: Corrected code example
ipm_GetSessionlnfo() function: Added info on NULL pointer in asynch mode
ipm_GetXmitSlot() function: Added info on NULL pointer in asynch mode

ipm_Open() function: Removed caution that function must be called in synchronous
mode

ipm_ReceiveDigits() function: Clarified usage of data structure. Added caution
regarding active RTP session requirement for receiving digits.

ipm_SendDigits() function: Added info about maximum number of digits. Added
caution regarding active RTP session requirement for sending digits.

ipm_StartMedia() function: Added caution to avoid setting IP address 0.0.0.0
(PTR#32986). Corrected name of completion event.

CT_DEVINFO data structure: Removed much information irrelevant to the structure’s
use with IPML on HMP

IPM_DIGIT_INFO data structure: Added info about maximum number of digits and
send vs. receive usage differences

IPM_PARM_INFO data structure: Removed descriptions of three unsupported
RFC2833 parameters

IPM_PORT_INFO data structure: Added caution to avoid setting IP address 0.0.0.0
(PTR#32986)

18 Dialogic® IP Media Library APl Programming Guide and Library Reference

Revision History

Document No.

Publication Date

Description of Revisions

05-2257-002

April 2004

Made document HMP-specific by removing hardware-specific information, including
“IP Media Function Support by Platform” section.

ipm_DisableEvents() function: Removed two unsupported events. Added
EVT_RTCPTIMEOUT and EVT_RTPTIMEOUT QoS alarm events.

ipm_EnableEvents() function: Removed two unsupported events. Added
EVT_RTCPTIMEOUT and EVT_RTPTIMEOUT QoS alarm events.

ipm_GetLocalMedialnfo() function: Corrected MEDIATYPE... types referred to in the
Cautions and Code Example sections

ipm_Ping(): Removed as unsupported

ipm_SendDigits() function: Documented as supported for HMP

ipm_SetQoSThreshold() function: Revised code example to use correct minimum
value (100) for unTimelnterval

ipm_SetRemoteMedialnfo() function: Documented function as deprecated.
Corrected code example.

ipm_StartMedia() function: Corrected code example

ipm_Stop() function: Removed two unsupported elPM_STOP_OPERATION values

IPM_CODER_INFO data structure: Removed hardware-specific enum values and
tables of supported coders. Updated table of supported coders.

IPM_PARM_INFO data structure: Added PARMCH_RX_ADJVOLUME and
PARMCH_RX_ADJVOLUME parameters. Expanded and corrected descriptions
of all parameters. Removed hardware-specific enum values.

IPM_PING_INFO and IPM_PINGPARM structures: Removed as unsupported

IPM_QOS_ALARM_DATA data structure: Corrected names of elPM_QOS_TYPE
enums. Added new enums for RTCP Timeout and RTP Timeout alarms.

IPM_QOS_SESSION_INFO data structure: Corrected names of elPM_QOS_TYPE
enums. Added new enums for RTCP Timeout and RTP Timeout alarms.

IPM_QOS_THRESHOLD_DATA data structure: Corrected names of
elPM_QOS_TYPE enums. Added new enums for RTCP Timeout and RTP
Timeout alarms. Added value ranges for unFaultThreshold. Updated
descriptions of all fields. Added table of default parameter values.

Error Codes chapter: added EIPM_RESOURCEINUSE

05-2257-001

September 2003

Initial version of HMP-specific document. Much of the information contained in this
document was previously published in the IP Media Library API for Linux and
Windows Operating Systems Library Reference, document number 05-1833-002.
Among other small changes, the following changes were made:

ipm_GetCTInfo(): New function
CT_DEVINFO: Added to book

IPM_PARM_INFO data structure: Added valid value and variable type info for
PARMCH_RFC2833EVT_TX_PLT and PARMCH_RFC2833EVT_RX_PLT.
Deleted PARMCH_RFC2833MUTE_AUDIO,
PARMCH_RFC2833TONE_TX_PLT, and PARMCH_RFC2833TONE_RX_PLT

Dialogic® IP Media Library APl Programming Guide and Library Reference 19

About This Publication

The following topics provide information about this publication:

* Purpose

Applicability

Intended Audience

How to Use This Publication

Related Information

Purpose

This publication describes the features of the Dialogic® IP Media Library API and provides
programming guidelines for those who choose to develop applications using this API library. It
also provides a reference to the functions, events, data structures, and error codes in the Dialogic®
IP Media Library API.

This guide applies to the Dialogic® IP Media Library API that is provided with the Dialogic® Host
Media Processing (HMP) Software.

A separate version of the guide is provided for Dialogic® System Release software, as there are
some functional differences in the I[P Media Library API implementation.

Applicability

This document version is published for Dialogic® Host Media Processing (HMP) Software Release
4.1LIN.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This guide is intended for software developers who will access the Dialogic® IP Media Library
API. This may include any of the following:

¢ Distributors
¢ System Integrators

¢ Toolkit Developers

Dialogic® IP Media Library API Programming Guide and Library Reference 20

About This Publication

¢ Independent Software Vendors (ISVs)
e Value Added Resellers (VARS)
* Original Equipment Manufacturers (OEMs)

How to Use This Publication

This publication assumes that you are familiar with the Linux or Windows® operating system and
the C programming language.
The information in this guide is organized in two major parts:

* Programming Guide content, which describes the features of the Dialogic® IP Media Library
API and provides feature implementation guidelines.

* Library Reference content, which provides reference information about functions, data
structures, events, and error codes.

Related Information

See the following for more information:

* For Dialogic® product documentation, see http.//www.dialogic.com/manuals
¢ For Dialogic technical support, see http://www.dialogic.com/support

* For Dialogic® product information, see http://www.dialogic.com

Dialogic® IP Media Library API Programming Guide and Library Reference 21

http://www.dialogic.com/manuals
http://www.dialogic.com/support
http://www.dialogic.com

Product Description

1.1

1.2

This chapter provides an overview of the Dialogic® IP Media Library API software. Topics

include:
® Featlresottt 22
® AIChItECIUTE . . . oottt 22
¢ Introduction to the Dialogic® IP Media Library API 23
* Relationship with Dialogic® Global Call API Library 23
* Dialogic® Standard Runtime Library API Support. 24
* Media Channel Device Naming.ottt 24

Features

Features of the Dialogic® IP Media Library API software include:

media resource management, such as open, close, and configure tasks
media resource operations, such as start, stop, and detect digits
Quality of Service (QoS) threshold alarm configuration and status reporting

support of Dialogic® Standard Runtime Library API event management routines for error
retrieval

compatibility with Dialogic® Global Call API library or another call control stack to provide

IP call control functionality

Architecture

Figure 1 shows the Dialogic® IP Media Library API architecture when using a user-supplied call
control stack.

Dialogic® IP Media Library API Programming Guide and Library Reference

22

Product Description

Figure 1. IP Media Architecture

Host Application

A

Call Control Media
Host
i i NIC User-Supplied
Signalin pp ‘
IP lg\]letwogr]k IP Call Control IP Media
stack Library

A

Y
IP Media TOM DTI Network oV
— etworl

Resource Device

RTP/RTCP

Media
IP Network

1.3 Introduction to the Dialogic® IP Media Library API

The Dialogic® IP Media Library API provides an application programming interface to control the
starting and stopping of RTP sessions, transmit and receive DTMF or signals, QoS alarms and their
thresholds, and general-purpose device control functions. The library is only used to control media
functions. It is not used to control the signaling stack. The application developer may choose to
integrate any third party IP signaling stack (H.323, SIP, MGCP, etc.), or implement a proprietary
signaling stack solution. The application developer uses the IP signaling stack to initiate or answer
calls, and negotiate media characteristics such as coder, frames per packet, destination IP address,
etc. Once media characteristics have been negotiated, the application uses Dialogic® IP Media
Library API functions to start RTP streaming using the desired media characteristics.

1.4 Relationship with Dialogic® Global Call API Library

The Dialogic® Global Call API library provides a common call control interface that is
independent of the underlying network interface technology. While the Dialogic® Global Call API
library is primarily used for call establishment and teardown, it also provides capabilities to support
applications that use IP technology, such as:

¢ call control capabilities for establishing calls over an IP network, via the RADVISION H.323
and SIP signaling stacks

¢ support for IP media control by providing the ability to open and close IP media channels for
streaming, using the Dialogic® IP Media Library API software internally (under the hood)

Note: Applications should not mix Dialogic® Global Call API and Dialogic® IP Media Library API
library usage of the same ipm_ devices.

Dialogic® IP Media Library API Programming Guide and Library Reference 23

Product Description

1.5

1.6

24

Refer to the following Global Call manuals for more details:

* Dialogic® Global Call IP Technology Guide
* Dialogic® Global Call API Programming Guide
 Dialogic® Global Call API Library Reference

Dialogic® Standard Runtime Library APl Support

The Dialogic® IP Media Library API performs event management using the Dialogic® Standard
Runtime Library (SRL), which provides a set of common system functions that are applicable to all
devices. Dialogic® SRL functions, parameters, and data structures are described in the Dialogic®
Standard Runtime Library API Library Reference. Use the Dialogic® SRL functions to simplify
application development by writing common event handlers to be used by all devices.

Media Channel Device Naming

To determine available resources, call ipm_Open() on a board device, then call
ATDV_SUBDEVS() to get the available resources. (SRL operations are described in the
Dialogic® Standard Runtime Library API Library Reference.)

To determine available resources in the Windows® environment, use the sr_getboardcent()
function, which returns the number of boards of a particular type. (SRL operations are described in
the Dialogic® Standard Runtime Library API Library Reference.)

Each IP media channel device follows the naming convention ipmBxCy; where:

* B is followed by the unique logical board number

¢ Cis followed by the number of the media device channel

You may also use the ipm_Open() function to open a board device, ipmBx, where B is followed
by the unique logical board number.

Before you can use any of the other Dialogic® IP Media Library API functions on a device, that
device must be opened. When the device is opened using ipm_Open(), the function returns a
unique device handle. The handle is the only way the device can be identified once it has been
opened. The ipm_Close() function closes a device.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Feature Support by Platform

This chapter describes high-level features and support for each feature by platform.

This document is used in more than one Dialogic® platform (software release). There may be

information in this document that is not supported in a Dialogic® platform. Table 1 lists the high-
level features of the Dialogic® IP Media Library API software documented in this current version
and lists the Dialogic® platform (software release) that currently supports each feature. This table
will be updated as a feature becomes available on a platform.

For function support information, see Section 22.5, “Dialogic® IP Media Library API Function
Support by Platform”, on page 122.

Note: Using the AMR-NB resource in connection with one or more Dialogic products does not grant the

right to practice the AMR-NB standard. To seek a license patent agreement to practice the
standard, contact the VoiceAge Corporation at www.voiceage.com/licensing/php.

Table 1. High-Level Feature Support by Platform

HMP HMP

Feature 3.0WIN 41LIN Comments
Coder: AMR-NB audio NS S
Coder: AMR-WB audio NS S
Coder: G.722 NS S
Coder: H.263-1998 (H.263+) | S S
native hairpinning
Coder: H.263-1998 (H.263+) | NS S* * On this platform, audio transcoding is
video from RTSP server to supported.
3G-324M
Coder: H.263-1998 (H.263+) | NS S* * On this platform, audio transcoding is
video from IP to/from IP supported.
H.263 (RFC 2190)
DTMF handling - RFC 2833 S S See Section 12.2.5, “Setting Receive-
receive-only mode only RFC 2833 Mode”, on page 65.
Echo cancellation S S
|-Frame update NS S See ipm_GeneratelFrame().
NAT traversal S S Network Access Translation (NAT).
Native RTP hairpinning S S
Native RTP play and record S S
Native T.38 hairpinning S NS

Legend:

S = supported; NS = not supported

HMP 3.0WIN = Dialogic® Host Media Processing Software Release 3.0 for Windows
HMP 4.1LIN = Dialogic® Host Media Processing Software Release 4.1LIN

Dialogic® IP Media Library API Programming Guide and Library Reference

25

www.voiceage.com/licensing/php
www.voiceage.com/licensing/php
www.voiceage.com/licensing/php

Feature Support by Platform

Table 1. High-Level Feature Support by Platform (Continued)

Feature HMP HMP Comments
3.0WIN 4.1LIN

IPM Nb UP Protocol NS

Native connection between NS

IPM Nb UP and MM device

Transcoded connection NS S

between IPM Nb UP and MM

device

Transcoded connection NS S

between IPM Nb UP and DX

device

AMR-NB, AMR-WB, G.711 NS S Both Native and Transcoded.

over Nb UP

Quality of service S S* * On this platform, QoS alarms and
events are not supported for video
streams.

RTCP reports (enhanced) NS S Created using
ipm_GetSessionInfoEx(). See
Section 16.8.2, “Enhanced RTCP
Reports”, on page 95.

Secure RTP

Selective packet filtration

method

Volume control S S

Legend:

S = supported; NS = not supported

HMP 3.0WIN = Dialogic® Host Media Processing Software Release 3.0 for Windows

HMP 4.1LIN = Dialogic® Host Media Processing Software Release 4.1LIN

26 Dialogic® IP Media Library API Programming Guide and Library Reference

Programming Models 3

This chapter describes the programming models supported by the Dialogic® IP Media Library API
software.

The Dialogic® Standard Runtime Library API Programming Guide describes different
programming models which can be used by applications. The Dialogic® IP Media Library API
supports all the programming models described therein.

Note: The synchronous programming model is recommended for low-density systems only. For high-
density systems, asynchronous programming models provide increased throughput for the
application.

Dialogic® IP Media Library API Programming Guide and Library Reference 27

State Models 4

This chapter describes a simple Dialogic® IP Media Library API state-based application.
Figure 2 shows a simple application using two channel device states, IDLE and STREAMING.

Figure 2. IP Media Channel State Diagram

See NOTE
ipm_Open
IDLE

| NOTE: The other functions in the IP
Media library can be called
from any state. They do not
cause a state change.

ipm_Stop ipm_StartMedia

ipm_Close
STREAMING

See NOTE

Dialogic® IP Media Library API Programming Guide and Library Reference 28

Event Handling 5

5.1

5.2

Note:

All IP media events are retrieved using the Dialogic® Standard Runtime Library (SRL) event
retrieval mechanisms, including event handlers. The SRL is a device-independent library
containing Event Management functions and Standard Attribute functions. This chapter lists SRL
functions that are typically used by IP media-based applications.

* Dialogic® Standard Runtime Library Event Management Functions. 29

* Dialogic® Standard Runtime Library Standard Attribute Functions. 29

Dialogic® Standard Runtime Library Event
Management Functions

SRL Event Management functions retrieve and handle device termination events for certain library
functions. Applications typically use the following functions:

sr_enbhdlr()
enables event handler

sr_dishdlr()
disables event handler

sr_getevtdev()
gets device handle

sr_getevttype()
gets event type

sr_waitevt()
wait for next event

sr_waitevtEx()
wait for events on certain devices

See the Dialogic® Standard Runtime Library API Library Reference for function details.

Dialogic® Standard Runtime Library Standard
Attribute Functions

SRL Standard Attribute functions return general device information, such as the device name or the
last error that occurred on the device. Applications typically use the following functions:

ATDV_ERRMSGP()
pointer to string describing the error that occurred during the last function call on the specified
device

Dialogic® IP Media Library API Programming Guide and Library Reference 29

Event Handling

ATDV_LASTERR()
error that occurred during the last function call on a specified device. See the function
description for possible errors for the function.

ATDV_NAMEP()
pointer to device name, for example, ipmBxCy

ATDV_SUBDEVS()
number of subdevices

Note: See the Dialogic® Standard Runtime Library API Library Reference for function details.

30 Dialogic® IP Media Library APl Programming Guide and Library Reference

Error Handling 6

This chapter describes error handling for the Dialogic® IP Media Library API software.

All Dialogic® IP Media Library API functions return a value that indicates the success or failure of
the function call. Success is indicated by a return value of zero or a non-negative number. Failure is
indicated by a value of -1.

If a function fails, call the Standard Attribute functions ATDV_LASTERR() and
ATDV_ERRMSGP() for the reason for failure. These functions are described in the Dialogic®
Standard Runtime Library API Library Reference.

If an error occurs during execution of an asynchronous function, the IPMEV_ERROR event is sent
to the application. No change of state is triggered by this event. Upon receiving the
IPMEV_ERROR event, the application can retrieve the reason for the failure using the standard
runtime library functions ATDV_LASTERR() and ATDV_ERRMSGP().

Dialogic® IP Media Library API Programming Guide and Library Reference 31

Reserving Resources for Audio 7
Coders

This chapter describes how to reserve resources for audio coders. Topics include:

e Feature DesCriptionottt 32

¢ Reserve Resources for Outbound Call. 32

¢ Reserve Resources for Inbound Callo .. 34

¢ Release Resources Implicitly by a Subsequent Reservation Call 35

¢ Handling a Resource Reservation Failure 36

¢ Reservation State after a Subsequent Call to Resource Reservation Fails 38
71 Feature Description

When working with audio coders, it is necessary to reserve resources for these coders prior to
invoking the ipm_StartMedia() function to enable Dialogic® software to use resources more
efficiently. It is also good practice to release these resources after the call is completed.

Several scenarios are provided to explain how to reserve and release audio coder resources. The
Dialogic® IP Media Library API (ipm_ API functions) and the Dialogic® Device Management API
(dev_ API functions) are used in these scenarios.

Note: The Device Management API _Ex functions described in this chapter are not supported on
Dialogic® Host Media Processing (HMP) Software Release 3.0 for Windows.

7.2 Reserve Resources for Outbound Call

The following steps describe a sample scenario in which an application reserves resources for an
outbound call:

1. Issue dev_GetResourceReservationInfoEx() to query and get the current reservation
information for the specified resources and device. The information is provided in the
DEV_RESOURCE_RESERVATIONINFO_EX structure.

2. Issue dev_ReserveResourceEx() to reserve coders; for example,
RESOURCE_IPM_G711_20MS, RESOURCE_IPM_G723, RESOURCE_IPM_G726, and
RESOURCE_IPM_G729.

3. Offer the reserved coders to the remote side.
4. The remote side selects G.723 and G.726.

Dialogic® IP Media Library API Programming Guide and Library Reference 32

Reserving Resources for Audio Coders

5. Issue dev_ReleaseResourceEx() to release unused resources:
RESOURCE_IPM_G711_20MS and RESOURCE_IPM_G729. This leaves
RESOURCE_IPM_G723 and RESOURCE_IPM_G726 as the reserved audio coders.

6. Issue ipm_StartMedia() to start media and proceed with the call.

7. After the call is disconnected, issue ipm_Stop().

8. Issue dev_ReserveResourceEx() to release the reserved coders RESOURCE_IPM_G723 and
RESOURCE_IPM_G726. Alternatively, you can release all reserved coders by specifying

RESOURCE_IPM_ALL_AUDIO_CODERS.
The following figure illustrates this scenario.

Figure 3. Reserve Resources for Outbound Call

Application

Device Management Interface

IPML Interface

dev_GetResourceReservationInfoEx(ipmH,pResourcelnfo,ASYNC) |

L DMEV_GET_RESOURCE_RESERVATIONINFO |

Application queries for availability
and then reserves coder resources.

1
| | Application offers the coders to the
remote side in an INVITE. The remote
| | side picks G.723, G.726.

|dev_ReserveResourceEX(ipmH,RESOURCE_IPM_G71 1_20MS,RESOURCE_IPM}G?ZS,RESOURCE_IPM_G726, RESOUFCE_IPM_G729)

I< DMEV_RESERVE_RESOURCE | |

dev_ReIeaseResourceEx(ipmH,RESOURCE_IPM_G71 1_20MS,RESOURCE_|PMIG729) App|ication releases unused coders. j

DMEV_RELEASE_RESOURCE | |

| ipm_StartMedia(ipmH,G.726) | |
| IPMEV_STARTMEDIA

4— — — — — — — — o— e— — — — — e—

| ipm_Stop() | o I
! IPMEV_STOP ! !
4— — — — — — — — — —

I DMEV_RELEASE_RESOURCE I |

Dialogic® IP Media Library API Programming Guide and Library Reference 33

Reserving Resources for Audio Coders

7.3

Reserve Resources for Inbound Call

The following steps describe a sample scenario in which an application reserves resources for an

inbound call:

1. Receive an INVITE from the remote side that specifies a list of coders.

2. Reserve all the coders or a subset of the coders that the remote side offered using

dev_ReserveResourceEx().

. Offer the coders to the remote side.

. After the call is disconnected, issue ipm_Stop().

3
4. Tssue ipm_StartMedia() to start media and proceed with the call.
5
6

. Issue dev_ReleaseResourceEx() to release all reserved coders by explicitly listing them or by

specifying RESOURCE_IPM_ALL_AUDIO_CODERS.

The following figure illustrates this scenario.

Figure 4. Reserve Resources for Inbound Call

Application Device Management Interface IPML Interface

34

Y

DMEV_RESERVE_RESOURCE

|
dev_ReserveResourceEx(ipmH,RESOURCE_IPM_G71 1_20MS,RESOURCE_IPML
dev_ReleaseResourceEx(ipmH,RESOURCE_IPM_ALL_AUDIO_CODERS) |

DMEV_RELEASE_RESOURCE |

1. The INVITE from the remote side specifies a

list of coders.

2. Application reserves all coders that the

remote side offers or picks a subset. It reserves

the chosen coders and responds to the remote side
with local coder capabilities.

G723,RESOURCE_IPM_G726, RESOU‘RCE_IPM_G729)

After the call is done, application

releases all reserved coders by explicitly
listing them or by specifying
RESOURCE_IPM_ALL_AUDIO_CODERS.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Reserving Resources for Audio Coders

7.4 Release Resources Implicitly by a Subsequent
Reservation Call

The following steps describe a sample scenario in which an application releases reserved resources
implicitly by making another resource reservation call:

1.

W AW N

Reserve RESOURCE_IPM_G726 and RESOURCE_IPM_G729 resources using
dev_ReserveResourceEx().

. Use RESOURCE_IPM_G726 for a media operation via ipm_StartMedia().

. Receive a re-INVITE message from the remote side requesting a change of coder to G.723.

. Issue ipm_Stop() to stop the media operation.

. Issue dev_ReserveResourceEx() to reserve RESOURCE_IPM_G723. This call is successful.

This call implicitly releases RESOURCE_IPM_G726 and RESOURCE_IPM_G729, and
replaces these coders with RESOURCE_IPM_G723 as the only reserved coder.

. Issue ipm_StartMedia() to start media and proceed with the call using

RESOURCE_IPM_G723.

. After the call is disconnected, issue ipm_Stop().

8. Issue dev_ReleaseResourceEx() to release RESOURCE_IPM_G723.

The following figure illustrates this scenario.

Dialogic® IP Media Library API Programming Guide and Library Reference 35

Reserving Resources for Audio Coders

Figure 5. Reserve Resources Implicitly

Application

7.5

36

Device Management Interface IPML Interface

dev_ReserveResourceEx(ipmH,RESOURCE_IPM_G726,RESOURCE_IPM_G729)

I > Application gets a re-INVITE from the
I DMEV_RESERVE_RESOURCE I remote side requesting a change of
—_— o coder (G.723). Application issues call
I<) o | to stop media operation.
ipm_StartMedia(ipmH,G.726)

| IPMEV_STARTMEDIA

| ipm_Stop()

IPMEV_STOP

dev_ReserveResourceEx(ipmH,RESOURCE_IPM_G723)

Application issues reserve for G.723. This
reserve call implicitly releases G.726 and

DMEV_RESERVE_RESOURCE

P> G.729, and replaces it with G.723 as the only

| reserved coder.
| ipm_StartMedia(ipmH,G.723) | |
IPMEV_STARTMEDIA
R e
| ipm_Stop() |
| IPMEV_STOP |
- — — — e ——_— ——_— ——_— —_— —— — — — — — —

| dev_ReleaseResourceEx(ipmH,RESOURCE_IPM_G723)
I

DMEV_RELEASE_RESOURCE

Handling a Resource Reservation Failure

The following steps describe a sample scenario in which an application handles a resource

reservation failure:

1. The dev_ReserveResourceEx() call to reserve RESOURCE_IPM_G726 and
RESOURCE_IPM_G729 resources fails for lack of available resources.

Note: The reservation call fails when one or more of the resources requested is not
available. You can query to check on resource availability prior to issuing a
reservation request. Otherwise, you will need to query after the operation fails prior
to re-issuing a reservation request.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Reserving Resources for Audio Coders

2. Issue dev_GetResourceReservationInfoEx() to check on resource availability. In this
example, RESOURCE_IPM_G726 is available.

3. Issue dev_ReserveResourceEx() to reserve RESOURCE_IPM_G726.

4. Issue ipm_StartMedia() to start media and proceed with the call using
RESOURCE_IPM_G726.

5. After the call is disconnected, issue ipm_Stop().
6. Issue dev_ReleaseResourceEx() to release RESOURCE_IPM_G726.

The following figure illustrates this scenario.

Figure 6. Reserve Resources Failure

Application

Device Management Interface IPML Interface

DMEV_RESERVE_RESOURCE_FAIL |

I
devﬁReserveResourceEx(ipmH,RESOURCE?IPM7G726,RESOURCE?IPM?G729)| |
|

Application queries to see which

dev_ReserveResourceEx(ipmH,RESOURCE_IPM_G726) |

The result shows G.726 is available and

> | resource is available and which is not.
G.729 is not available.

DMEV_RESERVE_RESOURCE |

ipm_StartMedia(ipmH,G.726)

IPMEV_STARTMEDIA

ipm_Stop() |

IPMEV_STOP | |

Dialogic® IP Media Library API Programming Guide and Library Reference 37

Reserving Resources for Audio Coders

7.6

38

Reservation State after a Subsequent Call to
Resource Reservation Fails

This sample scenario describes the reservation state when an initial resource reservation call
succeeds, and a subsequent resource reservation call fails:

1.

| S S

O 0 3

Issue dev_ReserveResourceEx() to reserve RESOURCE_IPM_G726 and
RESOURCE_IPM_G729 resources.

. Issue ipm_StartMedia() to start media operation using G.726.

. Receive a re-INVITE request from the remote side to use the AMR-NB coder.

. Issue ipm_Stop() to stop media operation.

. Issue dev_ReserveResourceEx() to reserve RESOURCE_IPM_AMR_NB. However, the

operation fails for lack of available resources. Because this operation failed, the previous
successful resource reservation is preserved and remains in effect. In this case,
RESOURCE_IPM_G726 and RESOURCE_IPM_G729 are still reserved.

Note: Using the AMR-NB resource in connection with one or more Dialogic products does
not grant the right to practice the AMR-NB standard. To seek a license patent
agreement to practice the standard, contact the VoiceAge Corporation at
www.voiceage.com/licensing/php.

. Reject the re-INVITE from the remote side and continue to use any of the reserved coders.
. Issue ipm_StartMedia() to start media operation using G.726 or G.729.

. After the call is disconnected, issue ipm_Stop() to stop media operation.

. Issue dev_ReleaseResourceEx() to release RESOURCE_IPM_G726 and

RESOURCE_IPM_G729. Alternatively, use RESOURCE_IPM_ALL_AUDIO_CODERS to
release all the reserved audio coders.

The following figure illustrates this scenario.

Dialogic® IP Media Library APl Programming Guide and Library Reference

www.voiceage.com/licensing/php
www.voiceage.com/licensing/php
www.voiceage.com/licensing/php

Reserving Resources for Audio Coders

Figure 7. Reservation State after a Subsequent Call Fails

Application

Device Management Interface

IPML Interface

devaeserveResourceEx(ipmH,RESOURCE?IPM7G726,RESOURCE?IPM7G729)|

ipm_StartMedia(ipmH,G.726) | |
| IPMEV_STARTMEDIA | |
- ————,—,—,——,—— — — — — — — — — —
| | Application gets a re-INVITE from the
remote side requesting a change of coder.
Application issues call to stop the media
| | operation.
ipm_Stop() ! s
IPMEV_STOP I
- ——— e, —— ,———— — — — — — — — —

dev_ReserveResourceEx(ipmH,RESOURCE_IPM_AMR_NB)

DMEV_RESERVE_RESOURCE_FAIL

Application issues reserve for AMR-NB;
operation fails for lack of available resources.
G.726 and G.729 were previously reserved
successfully and remain in effect.

dev_ReleaseResourceEx(ipmH,RESOURCE_IPM_ALL_AUDIO_CODERS)

~~— — — —

| ipm_StartMedia(ipmH,G.726) |

I T =
IPMEV_STARTMEDIA

-+ = — — — —

l ipm_Stop() | |

| IPMEV_STOP | |

|<-——————————

|

DMEV_RELEASE_RESOURCE

Dialogic® IP Media Library API Programming Guide and Library Reference

39

Using the AMR-NB and AMR-WB 8
Audio Coder

8.1

Note:

Note:

This chapter describes the AMR Narrow Band and AMR Wide Band coders and how to implement
the coders in an application.

AMR references apply to both AMR-NB and AMR-WB.

Topics include:

e Feature DesCriptionottt e 40
® APILibrary SUPpPOIt . . .« .ottt e e 41
e Sample Scenario: Transmit at Bit Rate Requested by Remote Side 43
e Sample Scenario: Transmit at Bit Rate Less Than Preferred Value 44

Feature Description

The AMR-NB audio coder is not supported on all releases. For support information, see Chapter 2,
“Feature Support by Platform”.

Using the AMR-NB resource in connection with one or more Dialogic products does not grant the
right to practice the AMR-NB standard. To seek a license patent agreement to practice the
standard, contact the VoiceAge Corporation at www.voiceage.com/licensing/php.

AMR is an adaptive multi-rate speech codec. During operation, both local and remote sides can
request a change in the bit rate and dynamically adjust the bandwidth. The protocol uses the
following:

Frame Type (FT)
to indicate the transmitted bit rate

Codec Mode Request (CMR) value
to request a particular bit rate in every packet

To control the bit rate, AMR assumes that all connections are bi-directional.

This feature is specific to AMR-NB. It excludes support for AMR-WB and AMR-WB+, which are
wideband audio, and some other formats not addressed by AMR-NB.

The AMR-NB codec supports the following bit rates:

e 12.2 kbps (GSM EFR)
* 10.2 kbps
e 7.95 kbps

Dialogic® IP Media Library API Programming Guide and Library Reference 40

www.voiceage.com/licensing/php
www.voiceage.com/licensing/php

8.2

8.2.1

8.2.2

Using the AMR-NB and AMR-WB Audio Coder

7.40 kbps (IS-641)
6.70 kbps (PDC-EFR)
5.90 kbps

5.15 kbps

4.75 kbps

1.80 kbps (assuming SID frames are continuously transmitted)

Note: The 1.80 kbit/s rate is not actually a voice signal, but the bit rate consumed when
Voice Activation Detection (VAD) is processing a silence.

This feature is only supported when using the Session Initiation Protocol (SIP). None of the
available SDP options are currently supported through Dialogic® Global Call software (that is,
direct first-party call control). The options are only available using third-party call control (3PCC),
where the application is responsible for interpreting received SDP text strings and for constructing
all outbound SDP text strings.

API Library Support

The Dialogic® IP Media Library API allows the application to provide a preferred receive bit rate,
a preferred transmit bit rate, and a rule to determine how changes in the received Codec Mode
Request (CMR) value control the transmitted bit rate. This API library support is described in the
following topics:

¢ CMR Value (Preferred Receive Bit Rate)
¢ Preferred Transmit Bit Rate

¢ CMR Rules

e RTP Payload Format

CMR Value (Preferred Receive Bit Rate)

The CMR value indicates a preferred receive bit rate on the local side. The CMR value is a
preference and is communicated to the remote side as a request.

To specify the CMR value, set eMediaType in the IPM_MEDIA structure to
MEDIATYPE_AUDIO_LOCAL_CODER_INFO and set eCoderType in the
IPM_AUDIO_CODER_INFO structure to a value that corresponds to the preferred receive bit rate
(CMR value). For example, to specify a CMR value of 5 which corresponds to a preferred receive
bit rate of 7.95 kbit/s, set eCoderType to CODER_TYPE_AMRNB_7_95K.

Preferred Transmit Bit Rate

The preferred transmit bit rate indicates the following:

e The transmit bit rate to be used when a CMR value from the remote side has not been received
yet

Dialogic® IP Media Library API Programming Guide and Library Reference 4

Using the AMR-NB and AMR-WB Audio Coder

8.2.3

8.24

42

Note:

¢ The transmit bit rate to be used when the CMR value received from the remote side is 15 (don't
care)

e The maximum transmit bit rate when the CMR rule is “CMR Limit” (see CMR Rules).

To specify the preferred transmit bit rate, set eMediaType in the IPM_MEDIA structure to
MEDIATYPE_AUDIO_REMOTE_CODER_INFO and set eCoderType in the
IPM_AUDIO_CODER_INFO structure to the desired transmit bit rate. For example, to specify a
Frame Type index of 4 which corresponds to a preferred transmit bit rate of 7.4 kbit/s, set
eCoderType to CODER_TYPE_AMRNB_7_4K.

CMR Rules

The CMR rules indicate how the transmit bit rate is affected by CMR values received from the
remote side. The rules are:

CMR Tracking
Indicates that the transmit bit rate should follow the CMR value in the received packet.

CMR Limit
Indicates that the transmit bit rate should follow the CMR value in the received packet as long
as it doesn’t exceed the preferred transmit bit rate setting.

To specify CMR rules, set eMediaType in the IPM_MEDIA structure to
MEDIATYPE_AUDIO_REMOTE_CODER_OPTIONS_INFO and bitwise OR either
CODER_OPT_AMR_CMR_TRACK or CODER_OPT_AMR_CMR_LIMIT in the
AudioCoderOptionsInfo.unCoderOptions field. AudioCoderOptionsInfo field (of type
IPM_AUDIO_CODER_OPTIONS_INFO) is a member of the IPM_MEDIA union.

For AMR-NB, specifying a CMR rule is mandatory and the rules are mutually exclusive. With
either rule, a preferred transmit bit rate must also be specified so that the software can transmit at
the bit rate before the first packet is received or when a CMR value of 15 (don't care) is received
from the remote side.

CMR rules are not applicable to the MEDIATYPE_AUDIO_LOCAL_CODER_OPTIONS_INFO
eMediaType.

RTP Payload Format

AMR supports two different formats for the RTP payload:

Bandwidth efficient
Minimizes the amount of network bandwidth.

Octet-aligned
Makes the packet parsing easier for the AMR application.

To specify the RTP payload format, set eMediaType in the IPM_MEDIA structure to either
MEDIATYPE_AUDIO_REMOTE_CODER_OPTIONS_INFO (for the transmit side) or
MEDIATYPE_AUDIO_LOCAL_CODER_OPTIONS_INFO (for the receive side) and bitwise
OR either CODER_OPT_AMR_EFFICIENT or CODER_OPT_AMR_OCTET in the

Dialogic® IP Media Library APl Programming Guide and Library Reference

Using the AMR-NB and AMR-WB Audio Coder

AudioCoderOptionsInfo.unCoderOptions field. AudioCoderOptionsInfo (of type
IPM_AUDIO_CODER_OPTIONS_INFO) is a member of the IPM_MEDIA union.

Note: For AMR-NB, specifying an RTP payload is mandatory and the formats are mutually exclusive.

8.3 Sample Scenarios

The following sections show sample scenarios for using AMR-NB and for setting CMR and FT
values:
e Sample Scenario: Transmit at Bit Rate Requested by Remote Side
¢ Sample Scenario: Transmit at Bit Rate Less Than Preferred Value
Note: Using the AMR-NB resource in connection with one or more Dialogic products does not grant the

right to practice the AMR-NB standard. To seek a license patent agreement to practice the
standard, contact the VoiceAge Corporation at www.voiceage.com/licensing/php.

8.3.1 Sample Scenario: Transmit at Bit Rate Requested by
Remote Side

In this example, the host application wants to transmit at the bit rate requested by the incoming
CMR value. The following diagram depicts this use case, where the local side is the host
application. FT refers to Frame Type and CMR refers to Codec Mode Request.

Local Side Remote Side
FT=4 (7.4 kbit/s), CMR=5 (7.95 kbit/s) .
- FT=5 (7.95 kbit/s), CMR=6 (10.2 kbit/s)
FT=6 (10.2 kbt/s), CMR=5 (7.95 kbit/s) %

Note: While the diagram above implies an immediate reaction to a CMR from the other side, in reality,
the other side’s response to a CMR may take a few packets.

The sequence of activities is as follows:

1. The application on the local side:
a. Sets its preferred bit rate via the remote audio coder settings, in this case 7.4 kbit/s.
b. Sets its CMR value via the local audio coder settings, in this case 7.95 kbit/s.

c. Sets the RTP payload format to bandwidth efficient and its CMR rule to “CMR Tracking”
via the coder options settings.

Dialogic® IP Media Library API Programming Guide and Library Reference 43

www.voiceage.com/licensing/php
www.voiceage.com/licensing/php

Using the AMR-NB and AMR-WB Audio Coder

d. Starts RTP streaming using ipm_StartMedia().
2. The IPM device on the local side transmits at the preferred bit rate, in this case 7.4 kbit/s.

3. The IPM device on the local side receives its first packet from the remote side with a CMR
value which is higher than its preferred bit rate. In this case the CMR value of 10.2 kbit/s is
higher than the preferred bit rate of 7.4 kbit/s.

4. Since the CMR rule is set to “CMR Tracking”, the IPM device on the local side changes its
transmitted bit rate to match the received CMR value, in this case 10.2 kbit/s.

Example Code

The following code demonstrates the configuration required to handle this scenario.

/* Setup IP address here */

// Local Audio Coder

ipmMediaInfo.MediaData[unCount].eMediaType = MEDIATYPE AUDIO LOCAL CODER_INFO;
ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eCoderType = CODER TYPE AMRNB 7 95k;
ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eFrameSize = CODER_FRAMESIZE 20;
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderInfo.unFramesPerPkt = 1;
ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eVadEnable = CODER_VAD ENABLE
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderInfo.unCoderPayloadType = 96;
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderInfo.unRedPayloadType = 0
unCount++;

// Remote Audio Coder

ipmMediaInfo.MediaData[unCount].eMediaType = MEDIATYPE AUDIO REMOTE CODER_INFO;
ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eCoderType = CODER TYPE AMRNB 7 4k;
ipmMediaInfo.MediaData[unCount].mediaInfo.AudioCoderInfo.eFrameSize = CODER_FRAMESIZE 20;
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderInfo.unFramesPerPkt = 1;
ipmMediaInfo.MediaData[unCount].medialnfo.AudioCoderInfo.eVadEnable = CODER_VAD ENABLE
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderInfo.unCoderPayloadType = 96;
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderInfo.unRedPayloadType = 0
unCount++;

ipmMediaInfo.MediaData[unCount].eMediaType = MEDIATYPE AUDIO LOCAL CODER OPTIONS INFO;
ipmMedialInfo.MediaData[unCount] .mediaInfo.AudioCoderOptionsInfo.unVersion =
IPM_AUDIO CODER OPTIONS INFO_VERSION;
ipmMedialInfo.MediaData[unCount].mediaInfo.AudioCoderOptionsInfo.unCoderOptions=
CODER_OPT_AMR EFFICIENT;
unCount++;

ipmMediaInfo.MediaData[unCount].eMediaType = MEDIATYPE AUDIO_REMOTE_CODER OPTIONS INFO;
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderOptionsInfo.unVersion =
IPM AUDIO CODER OPTIONS INFO VERSION;
ipmMediaInfo.MediaData[unCount] .mediaInfo.AudioCoderOptionsInfo.unCoderOptions=
CODER OPT AMR CMR TRACK | CODER OPT AMR EFFICIENT;
unCount++;
ipmMediaInfo.unCount = unCount;

8.3.2 Sample Scenario: Transmit at Bit Rate Less Than Preferred
Value

In this example, the host application wants to limit the transmitted bit rate to less than the preferred
value. The following diagram shows this case, where the local side is the host application. FT
refers to Frame Type and CMR refers to Codec Mode Request.

44 Dialogic® IP Media Library APl Programming Guide and Library Reference

Using the AMR-NB and AMR-WB Audio Coder

Local Side Remote Side
FT=4 (7.4 kbit/s), CMR=5 (7.95 khbits/s) >
< FT=5 (7.95 kbit/s), CMR=6 (10.2 kbit/s)
FT=4 (7.4 kbit/s), CMR=5 (7.95 kbits/s) -
- FT=5 (7.95 kbit/s), CMR=3 (6.7 kbit/s)
FT=3 (6.7kbit/s), CMR=5 (7.95 kbit/s) o

Note: While the diagram above implies an immediate reaction to a CMR from the other side, in reality,
the other side’s response to a CMR may take a few packets.

The sequence of activities is as follows:

1. The application on the local side:
a. Sets its preferred bit rate via the remote audio coder settings, in this case 7.4 kbit/s.
b. Sets its CMR value via the local audio coder settings, in this case 7.95 kbit/s.

c. Sets the RTP payload format to bandwidth efficient and its CMR rule to “CMR Limit” via
the coder options settings.

d. Starts RTP streaming using ipm_StartMedia().
2. The IPM device on the local side transmits at the preferred bit rate, in this case 7.4 kbit/s.

3. The IPM device on the local side receives its first packet from the remote side with a CMR
value which is higher than its preferred bit rate. In this case, the CMR value of 10.2 kbit/s is
higher than the preferred bit rate of 7.4 kbit/s.

4. Since its CMR rule is set to “CMR Limit”, the IPM device on the local side cannot exceed the
preferred bit rate, so it leaves the transmitted bit rate at the preferred value, in this case 7.4
kbit/s.

5. The IPM device on the local side receives a packet from the remote side with a CMR value
which is less than its preferred bit rate. In this case, the CMR value of 6.7 kbit/s is less than the
preferred bit rate of 7.4 kbit/s.

6. Since the new received CMR value of 6.7 kbit/s does not exceed the limit (7.4 kbit/s), the IPM
device on the local side changes its transmitted bit rate to match the received CMR value (6.7
kbit/s).

Example Code

The following code demonstrates the configuration required to handle this scenario.

/* Setup IP address here */

// Local Audio Coder
ipmMediaInfo.MediaData[unCount] .eMediaType = MEDIATYPE AUDIO LOCAL CODER INFO;

Dialogic® IP Media Library API Programming Guide and Library Reference 45

Using the AMR-NB and AMR-WB Audio Coder

46

ipmMediaInfo.

MediaData [unCount]

CODER_TYPE AMRNB 7 95k;

ipmMediaInfo
ipmMediaInfo
ipmMediaInfo
ipmMediaInfo
ipmMediaInfo
unCount++;

.MediaData[unCount]
.MediaData[unCount]
.MediaData[unCount]
.MediaData [unCount]
.MediaData[unCount]

// Remote Audio Coder

ipmMediaInfo.
.MediaData [unCount]

ipmMediaInfo

[

[
ipmMediaInfo. [
.MediaData [unCount]

[

[

[

ipmMediaInfo

ipmMediaInfo.
.MediaData[unCount]

ipmMediaInfo

ipmMediaInfo.

unCount++;

ipmMediaInfo

ipmMediaInfo.
.MediaData [unCount]

ipmMediaInfo

ipmMediaInfo

unCount++;

ipmMediaInfo

ipmMediaInfo.
.MediaData[unCount]

ipmMediaInfo

ipmMediaInfo

unCount++

ipmMediaInfo.

MediaData [unCount]

MediaData [unCount]

MediaData [unCount]

MediaData [unCount]

.MediaData[unCount]

MediaData [unCount]

.MediaData [unCount]

.MediaData[unCount] .
.mediaInfo.AudioCoderOptionsInfo = {0};
.mediaInfo.AudioCoderOptionsInfo.unVersion =

MediaData [unCount]

.MediaData[unCount]

unCount = unCount;

Dialogic® IP Media Library APl Programming Guide and Library Reference

.mediaInfo.AudioCoderInfo.eCoderType =

.mediaInfo.AudioCoderInfo.eFrameSize = CODER_FRAMESIZE 20;
.mediaInfo.AudioCoderInfo.unFramesPerPkt = 1;
.mediaInfo.AudioCoderInfo.eVadEnable = CODER_VAD ENABLE
.mediaInfo.AudioCoderInfo.unCoderPayloadType = 96;
.mediaInfo.AudioCoderInfo.unRedPayloadType = 0

.eMediaType = MEDIATYPE AUDIO_REMOTE_CODER_INFO;
.medialnfo.AudioCoderInfo.eCoderType = CODER_TYPE_AMRNB 7 4k;
.mediaInfo.AudioCoderInfo.eFrameSize = CODER_FRAMESIZE 20;
.mediaInfo.AudioCoderInfo.unFramesPerPkt = 1;
.medialInfo.AudioCoderInfo.eVadEnable = CODER_VAD ENABLE
.mediaInfo.AudioCoderInfo.unCoderPayloadType = 96;
.mediaInfo.AudioCoderInfo.unRedPayloadType = 0

.eMediaType = MEDIATYPE AUDIO LOCAL_CODER OPTIONS_ INFO;
.mediaInfo.AudioCoderOptionsInfo = {0};
.mediaInfo.AudioCoderOptionsInfo.unVersion =

IPM_AUDIO_CODER_OPTIONS_INFO_VERSION;

.mediaInfo.AudioCoderOptionsInfo.unCoderOptions=

CODER_OPT_AMR EFFICIENT;

eMediaType = MEDIATYPE AUDIO REMOTE CODER OPTIONS_ INFO;

IPM_AUDIO_CODER_OPTIONS_INFO_VERSION;

.mediaInfo.AudioCoderOptionsInfo.unCoderOptions=
CODER_OPT_AMR CMR LIMIT | CODER_OPT AMR EFFICIENT;

Using AMR-NB, AMR-WB, and 9
G.711 Audio Over Nb UP

This chapter describes how to stream AMR-NB, AMR_WB, and G.711 audio over Nb UP. Topics

include:
e Feature DesCriptionottt 47
® APILibrary SUPpPOIt . ..« .ottt e 48
* Guidelines for Streaming AudioOver NbUP. 48
* Guidelines for Streaming G.711 (Sms)over NbUP.......... 50
* Guidelines for Streaming G.711 (20ms)over NbUP. 51
9.1 Feature Description

The “Audio Over Nb UP” feature is comprised of several features. Not all features are supported
on all releases. For support information, see Chapter 2, “Feature Support by Platform”.

Note: Using the AMR-NB or the AMR-WB resource in connection with one or more Dialogic products
mentioned herein does not grant the right to practice the AMR-NB or the AMR-WB standard. To
seek a patent license agreement to practice the standard, contact the VoiceAge Corporation at
www.voiceage.com/licensing.php.

This feature allows an IP media streaming (IPM) device to stream AMR-NB audio, AMR-WB
audio and G.711 audio over Nb UP. This data can be streamed to and from a 3G network. A
multimedia (MM) device or a voice device (DX) can be connected to an IPM device for play and
record operations.

Setting up AMR-NB, AMR_WB or G.711 over Nb UP media sessions is similar to setting up a 3G-
324M over Nb UP session; however, the 3G-324M (M3G) component is not used. The following
section provide guidelines for streaming AMR-NB audio, AMR-WB audio or G.711 audio over Nb
UP.

For information on the Dialogic® 3G-324M API, see the Dialogic® 3G-324M API Programming
Guide and Library Reference.

Dialogic® IP Media Library API Programming Guide and Library Reference 47

Using AMR-NB, AMR-WB, and G.711 Audio Over Nb UP

9.2

9.3

48

API Library Support

In the Dialogic® IP Media Library API, the following values in the eProfileType field,
e]PM_NBUP_PROFILE_TYPE enumeration, of the IPM_NBUP_PROFILE_INFO structure are
used for streaming AMR-NB or G.711 audio over Nb UP:

NBUP_PROFILE_AMR_NB
AMR-NB type connection

NBUP_PROFILE_G711ALAW64K_5MS
G.711 A-law 5 ms type connection

NBUP_PROFILE_G711ALAW64K_20MS
G.711 A-law 20 ms type connection

NBUP_PROFILE_G711ULAW64K_5MS
G.711 mu-law 5 ms type connection

NBUP_PROFILE_G711ULAW64K_20MS
G.711 mu-law 20 ms type connection

In the Dialogic® IP Media Library API, the following values in the eFlowSize field,
e]PM_NBUP_FLOW_SIZE enumeration, of the IPM_NBUP_SUBFLOW_INFO structure are
used for streaming AMR-NB or G.711 audio over Nb UP:

NBUP_FLOW_SIZE_39_BITS
use 39 bits (for AMR-NB)

NBUP_FLOW_SIZE_60_BITS
use 60 bits (for AMR-NB)

NBUP_FLOW_SIZE_81_BITS
use 81 bits (for AMR-NB)

NBUP_FLOW_SIZE_103_BITS
use 103 bits (for AMR-NB)

NBUP_FLOW_SIZE_1280_BITS
use 1280 bits (for G.711)

Guidelines for Streaming Audio Over Nb UP

To stream AMR-NB, AMR-WB or G.711 audio over Nb UP, follow these general guidelines:

1. Create a connection between an IPM device and an MM or DX device. See Table 1,
“High-Level Feature Support by Platform”, on page 25 for supported connection types
and devices.

2. Initialize data structures using the inline function where available. For example, use the
INIT_IPM_NBUP_PROFILE_INFO inline function to initialize the
IPM_NBUP_PROFILE_INFO structure, and the INIT_IPM_NBUP_INIT_SEND inline
function to initialize the PM_NBUP_INIT_SEND structure.

Dialogic® IP Media Library APl Programming Guide and Library Reference

9.4

Using AMR-NB, AMR-WB, and G.711 Audio Over Nb UP

3. Enable IPM events. Call ipm_EnableEvents() to enable the following Nb UP protocol
events: EVT_INIT_RECEIVED, EVT_PROCEDURE_DONE, EVT_SEND_FAILED,
EVT_NACK_SENT

4. Start the Nb UP session by calling the ipm_StartMedia() function. In the
IPM_NBUP_PROFILE_INFO structure, specify the audio type in the eProfileType field.

5. Initiate the initialization procedure or respond to the initialization request.

* To initiate, call the ipm_InitSend() function to send an Nb UP initialization message
to the remote endpoint. Construct the [IPM_NBUP_INIT_SEND structure to define
the sub-flow sizes of each RFCI. The IPM_NBUP_INIT_SEND structure contains
one or more IPM_NBUP_RFCI_INFO structures. Each IPM_NBUP_RFCI_INFO
structure contains an ID and the three sub-flow sizes. The table in the
IPM_NBUP_SUBFLOW_INFO section contains the possible sub-flow sizes. The
IPMEV_INIT_SEND termination event indicates successful completion of the
ipm_InitSend() function.

* To respond to the Nb UP message sent by the local endpoint upon receiving the
IPMEV_INIT_RECEIVED event, the remote endpoint calls the
ipm_InitResponseSend() function. The IPMEV_INIT_RESPONSE_SEND
termination event indicates successful completion of the ipm_InitResponseSend()
function.

e Start play/record: Upon receiving this event, the endpoints may exchange data, for
example, using the mm_Play() or mm_Record() function if the IPM device was
connected to an MM device.

Notes: 1. For play operation, native audio files containing G.711 20 ms format may be used for a session

configured to transmit 5 ms G.711. The Dialogic product transforms this data to 5 ms format
before transmitting to the IP network.

. Native play and record operation takes place using native audio files.

. The AMR rate control procedure defined in 3GPP TS 25.415 is not supported so AMR-NB and
AMR-WB are streamed at the initial rate set in the ipm_StartMedia() function for the duration
of a media session.

Guidelines for Streaming AMR-NB Over Nb UP

To stream AMR-NB audio (20 ms, 12.2 Kbps bit rate) over Nb UP, follow these general
guidelines:

1. Specify a native connection between the IPM device and the MM device. Native play and
record operation takes place using native AMR-NB 12.2 Kbps audio files.

2. Where available, use the inline function to initialize a data structure. For example, use the
INIT_IPM_NBUP_PROFILE_INFO inline function to initialize
IPM_NBUP_PROFILE_INFO, and the INIT_IPM_NBUP_INIT_SEND inline function to
initialize IPM_NBUP_INIT_SEND.

3. Call ipm_StartMedia() to start the session. In the [IPM_NBUP_PROFILE_INFO structure,
specify NBUP_PROFILE_AMR_NB in the eProfileType field.

Dialogic® IP Media Library API Programming Guide and Library Reference 49

Using AMR-NB, AMR-WB, and G.711 Audio Over Nb UP

9.5

50

4. Call ipm_InitSend() to send an Nb UP initialization message to the remote endpoint.

Construct the IPM_NBUP_INIT_SEND structure with a list of two IPM_NBUP_RFCI_INFO
structures.

The first IPM_NBUP_RFCI_INFO structure, which represents the first RFCI, should contain
three IPM_NBUP_SUBFLOW_INFO structures. For the first
IPM_NBUP_SUBFLOW_INFO structure, specify NBUP_FLOW_SIZE_81_BITS. For the
second structure, specify NBUP_FLOW_SIZE_103_BITS. For the third structure, specify
NBUP_FLOW_SIZE_60_BITS. This represents the RFCI used for the source rate of AMR-
NB 12.2 Kbps.

The second IPM_NBUP_RFCI_INFO structure, which represents the second RFCI, should
contain three IPM_NBUP_SUBFLOW_INFO structures. For the first
IPM_NBUP_SUBFLOW_INFO structure, specify NBUP_FLOW_SIZE_39_BITS. For the
second and third structures, specify NBUP_FLOW_SIZE_0_BITS. This represents the RFCI
used for the source rate of AMR-NB SID.

The IPMEV_INIT_SEND termination event indicates successful completion of the
ipm_InitSend() function.

. Upon receiving the IPMEV_INIT_RECEIVED event, the remote endpoint calls

ipm_InitResponseSend() to respond to the Nb UP message sent by the local endpoint.

The IPMEV_INIT_RESPONSE_SEND termination event indicates successful completion of
the ipm_InitResponseSend() function.

. Both the remote endpoint and the local endpoint should receive the

IPMEV_INIT_COMPLETE unsolicited event, which indicates that the Nb UP session is
successfully established. Upon receiving this event, the endpoints may exchange data, for
example, using mm_Play() and mm_Record().

Guidelines for Streaming G.711 (5 ms) over Nb UP

To stream G.711 (5 ms) audio over Nb UP, follow these general guidelines:

1. Specify a native connection between the IPM device and the MM device. Native play and

record operation takes place using native G.711 audio files.

Note: For play operation, native audio files containing G.711 20 ms format may be used.
The Dialogic® product transforms this data to 5 ms format before transmitting to the
IP network.

2. Where available, use the inline function to initialize a data structure. For example, use

INIT _IPM_NBUP_PROFILE_INFO inline function to initialize
IPM_NBUP_PROFILE_INFO, and INIT_IPM_NBUP_INIT_SEND inline function to
initialize IPM_NBUP_INIT_SEND.

. Call ipm_StartMedia() to start the session. In the IPM_NBUP_PROFILE_INFO structure,

specify NBUP_PROFILE_G711ALAW64K_5MS or
NBUP_PROFILE_G711ULAW64K_5MS in the eProfileType field.

. Call ipm_InitSend() to send an Nb UP initialization message to the remote party. Construct

the IPM_NBUP_INIT_SEND structure with a list of one IPM_NBUP_RFCI_INFO structure.

The IPM_NBUP_RFCI_INFO structure should contain three IPM_NBUP_SUBFLOW_INFO
structures. For the first [PM_NBUP_SUBFLOW_INFO structure, specify
NBUP_FLOW_SIZE_320_BITS. For the second and third structures, specify

Dialogic® IP Media Library APl Programming Guide and Library Reference

Using AMR-NB, AMR-WB, and G.711 Audio Over Nb UP

NBUP_FLOW_SIZE_0_BITS. This represents the RFCI used for the source rate of G.711 5
ms.

The IPMEV_INIT_SEND termination event indicates successful completion of the
ipm_InitSend() function.

5. Upon receiving the IPMEV_INIT_RECEIVED event, the remote endpoint calls
ipm_InitResponseSend() to respond to the Nb UP message sent by the local endpoint.

The IPMEV_INIT_RESPONSE_SEND termination event indicates successful completion of
the ipm_InitResponseSend() function.

6. Both the remote endpoint and the local endpoint should receive the
IPMEV_INIT_COMPLETE unsolicited event, which indicates that the Nb UP session is
successfully established. Upon receiving this event, the endpoints may exchange data, for
example, using mm_Play() and mm_Record().

9.6 Guidelines for Streaming G.711 (20 ms) over Nb UP

To stream G.711 (20 ms) audio over Nb UP, follow these general guidelines:

1. Specify a native connection between the IPM device and the MM device. Native play and
record operation takes place using native G.711 audio files.

2. Where available, use the inline function to initialize a data structure. For example, use
INIT_IPM_NBUP_PROFILE_INFO inline function to initialize
IPM_NBUP_PROFILE_INFO, and INIT_IPM_NBUP_INIT_SEND inline function to
initialize IPM_NBUP_INIT_SEND.

3. Call ipm_StartMedia() to start the session. In the IPM_NBUP_PROFILE_INFO structure,
specify NBUP_PROFILE_G711ALAW64K_20MS or
NBUP_PROFILE_G711ULAW64K_20MS in the eProfileType field.

4. Call ipm_InitSend() to send an Nb UP initialization message to the remote party. Construct
the IPM_NBUP_INIT_SEND structure with a list of one IPM_NBUP_RFCI_INFO structure.
The IPM_NBUP_RFCI_INFO structure should contain three IPM_NBUP_SUBFLOW_INFO
structures. For the first [IPM_NBUP_SUBFLOW_INFO structure, specify
NBUP_FLOW_SIZE_1280_BITS. For the second and third structures, specify
NBUP_FLOW_SIZE_0_BITS. This represents the RFCI used for the source rate of G.711 20
ms.

The IPMEV_INIT_SEND termination event indicates successful completion of the
ipm_InitSend() function.

5. Upon receiving the IPMEV_INIT_RECEIVED event, the remote endpoint calls
ipm_InitResponseSend() to respond to the Nb UP message sent by the local endpoint.
The IPMEV_INIT_RESPONSE_SEND termination event indicates successful completion of
the ipm_InitResponseSend() function.

6. Both the remote endpoint and the local endpoint should receive the
IPMEV_INIT_COMPLETE unsolicited event, which indicates that the Nb UP session is
successfully established. Upon receiving this event, the endpoints may exchange data, for
example, using mm_Play() and mm_Record().

Dialogic® IP Media Library API Programming Guide and Library Reference 51

H.263 Using RFC 2429 (RFC 4629) 10
Packetization

10.1

10.1.1

This chapter describes the H.263 video coder using RFC 2429 (RFC 4629) packetization.

e Feature DesCriptionottt 52
® APILibrary SUPpPOIt . ..« .ot e e 53
® Usage GUIdEIINeS.ottt e e e 53

Feature Description

H.263 video coder using RFC 2429 (RFC 4629) packetization is not supported on all releases. For
support information, see Chapter 2, “Feature Support by Platform”.

The Dialogic® IP Media Library API supports RFC 2429 (RFC 4629) packetization for the
following use cases:

e Streaming from IP to 3G-32M calls
¢ Streaming between one IP call (RFC 2429) and a second IP call (RFC 2190)

Streaming from IP to 3G-324M Calls

The Dialogic® IP Media Library API supports streaming H.263 Baseline Profile (Profile 0) Level
10 video using RFC 2429 packetization from an RTSP (Real-time Streaming Protocol) Server to
3G-324M calls. Note that this codec is also known as H.263-1998 or H.263+. Only Baseline
Profile is supported. No H.263 annexes are supported.

This feature allows an application to natively stream audio and video from an RTSP Server to 3G-
324M calls terminated by the Dialogic® product. These 3G-324M calls may be established over the
PSTN (for example, E1 circuit-switched connection) or over IP.

For 3G-324M calls established over the PSTN, this feature uses DTI and M3G devices. For 3G-
324M calls established over IP, this feature uses IPM and M3G devices. The DTI device and the
IPM device establish the transport to the remote endpoint. H.223 multiplexed multimedia data
flows between these devices and the M3G device. The M3G device performs the
multiplex/demultiplex operations and acts as the portal to the rest of the multimedia server.

Audio may be streamed natively or transcoded. Some releases may only support native streaming
for audio. When using native audio streaming, the audio streaming formats supported for this
feature include AMR-NB and G.723 and must match that being used by the 3G-324M call.

For information on the Dialogic® 3G-324M API, see the Dialogic® 3G-324M API Programming
Guide and Library Reference.

Dialogic® IP Media Library API Programming Guide and Library Reference 52

10.1.2

10.2

10.3

H.263 Using RFC 2429 (RFC 4629) Packetization

Streaming Between One IP Call (using RFC 2429) and a
Second IP Call (using RFC 2190)

The Dialogic® IP Media Library API supports streaming H.263 Baseline Profile (Profile 0) Level
10 video natively between two IP endpoints, one using RFC 2429 packetization and the second
using RFC 2190 packetization. Note that the codec using RFC 2429 packetization is also known as
H.263-1998 or H.263+. Only Baseline Profile is supported. No H.263 annexes are supported.
When using this feature, the media server converts between the two H.263 packetization formats
without using video transcoding.

Audio may be streamed natively or transcoded.

API Library Support

In the Dialogic® IP Media Library API, the following value in the eCoderType field,
eI[PM_CODER_TYPE enumeration, of the IPM_VIDEO_CODER_INFO structure is supported:

CODER_TYPE_H263_1998
H.263-1998 (also known as H.263+) video coder

Usage Guidelines

The following usage guidelines as well as restrictions and limitations are described for this feature:

¢ This feature is only supported for the 3PCC/SIP call model.

¢ Although the video format supported by this feature is H.263-1998 using RFC 2429
(RFC 4629) packetization, only Baseline H.263 is supported. Annexes are not supported.
Video transcoding is not supported. Specify native connection (no transcoding) between
devices in the DM_PORT_CONNECT_INFO structure of the Device Management API
library.

¢ The RTSP Server or IP endpoint using RFC 2429 packetization must be configured
appropriately or the IP session must be negotiated properly to interoperate with this feature.
The characteristics of the video streamed from the RTSP Server or IP endpoint must be
compatible with the device receiving the video stream. In the case of 3G mobile devices using
3G-324M transports, QCIF should be used for the picture format and a constant bit rate (CBR)
mode should be used rather than a variable bit rate (VBR) mode. Bit rates should not exceed
40 Kbps and frame rates should not exceed 15 fps. A nominal bit rate and frame rate to use is
37.8 Kbps at 7.5 fps.

* This feature only supports half-duplex streaming from the IPM device to the 3G-324M device.
¢ This feature does not support video play and record operations for IPM calls.

* When switching between video sources for transmission of video to the 3G remote terminal,
such as switching between the RTSP Server and the MM device, you must send an I-frame as
the first video frame streamed from the new source. Ensure that this takes place by starting a
new play from the MM device when it becomes the new source or by starting a new play from
the RTSP Server when it becomes the new source.

Dialogic® IP Media Library API Programming Guide and Library Reference 53

Configuring for Half- or Full- 11
Duplex Media Streams

11.1

Note:

This chapter describes the Dialogic® IP Media Library API capability for setting up and
reconfiguring endpoints for half-duplex and full-duplex media streams.

¢ Overview of Half- and Full-Duplex Stream Support. 54
® APILibrary SUPpPOIt . ..« .ottt e 55
® Sample SCeNATIOottt 56
o Example Codeot 57

Overview of Half- and Full-Duplex Stream Support

When using IP technology, the ability to start a stream session at an endpoint for half-duplex (or
full-duplex) media streaming and subsequently update the stream session for full-duplex (or half-
duplex) media streaming is a useful capability.

One example that demonstrates this is when providing support for a call control feature known as
“Early Media”. In IP technology, the establishment of RTP media streaming is normally one of the
final steps in establishing and connecting a call. This is in contrast to the Public Switched
Telephone Network (PSTN), where call progress signaling is commonly provided to the calling
party via audible, in-band call progress tones, such as ringback, busy signal, and SIT tones. When
implementing a VoIP gateway, it is often imperative to initiate media (RTP) streaming from the
local endpoint to the calling party before the call is connected.

To achieve this functionality using the Dialogic® IP Media Library API, the calling party endpoint
can be configured for half-duplex streaming (in the receive direction) prior to call connection to
receive call progress signaling. The endpoint can then be reconfigured for full-duplex streaming
when the call is connected.

Another useful application of this feature is in the implementation of H.450.4 call hold message
flows.

Configuring half-duplex streaming for T.38 fax does not apply, since T.38 fax is inherently full-
duplex.

Dialogic® IP Media Library API Programming Guide and Library Reference 54

Configuring for Half- or Full-Duplex Media Streams

11.2 API Library Support

The ipm_ModifyMedia() function is not supported on all releases. For function support
information, see Section 22.5, “Dialogic® IP Media Library API Function Support by Platform”,
on page 122.

The following Dialogic® IP Media Library API functions are used to configure and reconfigure an
endpoint for half-duplex or full-duplex media streaming:

ipm_StartMedia()
sets media properties and starts an RTP media streaming session

ipm_ModifyMedia()
modifies various properties of an active RTP media streaming session

Both functions contain an eDirection parameter that is used to specify if the media stream should
be half-duplex or full-duplex. Possible values of the eDirection parameter are:

DATA_IP_RECEIVEONLY
receive RTP and RTCP packets from the IP network, but do not send packets

DATA_IP_SENDONLY
send RTP and RTCP packets to the IP network, but do not receive packets

DATA_IP_TDM_BIDIRECTIONAL
full-duplex RTP and RTCP path between IP network and TDM

DATA_IP_INACTIVE
allow RTCP while blocking RTP or T.38 packets

DATA_IP_DIR_NONE
do not modify the direction of the current session; the previous direction remains in effect.
This value is used when changing the coder and/or IP address without changing the direction.

Note: The DATA_IP_DIR_NONE parameter applies only when using the ipm_ModifyMedia()
function.

Both functions also have pointers to a media information structure through which coder attributes,
such as the coder type, frame size, frames per packet setting etc. can also be configured.

Figure 8 shows the possible endpoint states for media streaming and how the ipm_StartMedia()
and ipm_ModifyMedia() functions are used to transition between those states.

Dialogic® IP Media Library API Programming Guide and Library Reference 55

Configuring for Half- or Full-Duplex Media Streams

Figure 8. Endpoint Media Streaming State Transitions

ipm_Stop() ipm_Stop()

ipm_StartMedia(TxRx) ipm_StartMedia(Tx)
ipm_ModifyMedia(RxTx)

SendRev |- | sendonly

ipm_ModifyMedia(Tx)

ipm_ModifyMedia(Tx)

ipm_ModifyMedia(InActive)

ipm_ModifyMedia(InActive)

RcvOnly , 1 InActive
ipm_ModifyMedia(Rx)

ipm_StartMedia(InActive)
ipm_StartMedia(Rx)

ibm_Stop() ipm_Stop()

11.3 Sample Scenario

Figure 9 shows a scenario in which the ipm_StartMedia() function is used to configure an
endpoint for a half-duplex (receive-only) media stream early in the setup sequence. This media
stream can be used to receive call setup information, for example call progress tones. Later, the
ipm_ModifyMedia() function can be used to reconfigure the endpoint for full-duplex media
streaming.

56 Dialogic® IP Media Library APl Programming Guide and Library Reference

Configuring for Half- or Full-Duplex Media Streams

Figure 9. Half- and Full-Duplex Media Streaming Sample Scenario

11.4

IPLM Application |

libipm@O
(or underlying library)

1: ipm_Open()

2: ipm_GetLocalMedialnfo()

3: ipm_StartMedia(Rx)

n e

4: IPMEV_START_MEDIA

L

-

L]

5: ipm_ModifyMedia(TxRx)

I

6: IPMEV_MODIFYMEDIA

~ L

1

Example Code

!

eDirection = DATA_IP_RECEIVEONLY

pMedialnfo =
MEDIATYPE_LOCAL_RTP_INFO
MEDIATYPE_LOCAL_RTCP_INFO
MEDIATYPE_LOCAL_CODER_INFO

Caller is capable of
half-duplex media
(reception only)

eDirection = DATA_IP_TDM_BIDIRECTIONAL

pMedialnfo =
MEDIATYPE_LOCAL_RTP_INFO
MEDIATYPE_LOCAL_RTCP_INFO
MEDIATYPE_LOCAL_CODER_INFO

MEDIATYPE_REMOTE_RTP_INFO
MEDIATYPE_REMOTE_RTCP_INFO
MEDIATYPE_REMOTE_CODER_INFO

Caller is capable of
full-duplex media

The following sample code demonstrates how to reconfigure an endpoint from full-duplex media
streaming to half-duplex (send only) media streaming. The coder is also changed from G.711 u-law
to G.711 A-law.

#include <stdio.h>
#include <string>

#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);

void CheckEvent () ;

void main
{
/*

0

Main Processing

*/

Dialogic® IP Media Library API Programming Guide and Library Reference 57

Configuring for Half- or Full-Duplex Media Streams

58

/*

Set the media properties for a remote party using IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .

*/

IPM MEDIA INFO MedialInfo;
MediaInfo.unCount = 4;

MediaInfo.MediaData[0].eMediaType = MEDIATYPE AUDIO_REMOTE_RTP_ INFO;
MediaInfo.MediaData[0] .mediaInfo.PortInfo.unPortId = 2328;
strcpy (MediaInfo.MediaData[0] .mediaInfo.PortInfo.cIPAddress, "111.21.0.9");

MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO_REMOTE_RTCP_INFO;
MediaInfo.MediaData[l].mediaInfo.PortInfo.unPortId = 2329;

strcpy (MediaInfo.MediaData[l] .mediaInfo.PortInfo.cIPAddress, "111.41.0.9");
MediaInfo.MediaData[2].eMediaType = MEDIATYPE AUDIO_REMOTE CODER_INFO;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ULAW64K;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eFrameSize = (eIPM CODER FRAMESIZE) 30;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
MediaInfo.MediaData([2] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unRedPayloadType = 0;
MediaInfo.MediaData[3].eMediaType = MEDIATYPE AUDIO_LOCAL_CODER_INFO;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ULAW64K;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eFrameSize = (eIPM _CODER_FRAMESIZE) 30;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eVadEnable = CODER_VAD_DISABLE;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.unRedPayloadType = 0;

if (ipm_StartMedia (nDeviceHandle, &MediaInfo, DATA_ IP_TDM BIDIRECTIONAL, EV_SYNC)
{
printf ("ipm StartMediaInfo failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

Y
}
/*

Continue processing
*/
MediaInfo.unCount =
MediaInfo.MediaData
MediaInfo.MediaData

MediaInfo.MediaData

[.eMediaType = MEDIATYPE AUDIO REMOTE_CODER_INFO;

[

[
MediaInfo.MediaData |

[

[

[

]

].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ALAW64K;

].mediaInfo.CoderInfo.eFrameSize = (eIPM CODER FRAMESIZE) 30;

] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[0]
MediaInfo.MediaData[O0]
MediaInfo.MediaData[0]

2
0
0
0
0
0] .mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
0] .mediaInfo.CoderInfo.unCoderPayloadType = 8;

0] .mediaInfo.CoderInfo.unRedPayloadType = 0;

MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO_ LOCAL CODER INFO;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ALAW64K;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE) 30;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.eVadEnable = CODER _VAD DISABLE;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.unCoderPayloadType = 8;

[1]

MediaInfo.MediaData .mediaInfo.CoderInfo.unRedPayloadType = 0;

Dialogic® IP Media Library APl Programming Guide and Library Reference

Configuring for Half- or Full-Duplex Media Streams

if (ipm_ModifyMedia (nDeviceHandle, &MediaInfo, DATA IP_SENDONLY, EV_SYNC) == -1)
{

printf ("ipm Modify failed for device name = %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

/*

Perform Error Processing

*/

/*

continue processing

*/

Dialogic® IP Media Library API Programming Guide and Library Reference 59

DTMF Handling 12

This chapter contains guidelines for handling DTMF using the Dialogic® IP Media Library API.
Topics include:

e Feature Descriptionottt e e 60

e Setting DTMF Parameters.ottt e e e ee s 61

e Notification of DTMF Detection.ttt 66

e Generating DTMEF 66
12.1 Feature Description

When a session is started on a Dialogic® IPM device, the IPM device receives data from its IP
interface and transmits data to the TDM bus. A Dialogic® DTI device receives data from its public
switched telephone network (PSTN) interface and transmits to the TDM bus as well. In a gateway
configuration, the DTT and IPM devices are configured, via ge_Listen() and ipm_Listen()
respectively, to listen to each other and thus create a full-duplex communication path. The IPM
device forwards DTMF that it receives on one interface to the other interface. Figure 1, “IP Media
Architecture”, on page 23 shows the data flow between the Dialogic® IP Media Library API, the IP
network, and the PSTN.

When an IPM device receives DTMF from the TDM bus, there are several ways to forward it to the
IP interface. The DTMF transfer modes include:

¢ Encoding the DTMF as audio in the RTP stream (also called in-band)
¢ Sending the DTMF in the RTP stream via RFC 2833 packets

¢ Using an application-controlled method (also called out-of-band).

The IPM device can automatically forward the DTMF when either the in-band mode or the

RFC 2833 mode has been selected. DTMF is not automatically forwarded when the out-of-band
mode has been selected. In the out-of-band case, the application must call ipm_ReceiveDigits()
and have an IPM_DIGITS_RECEIVED event handler in place. Upon receiving the
IPM_DIGITS_RECEIVED event, the DTMF information is contained in the IPM_DIGIT_INFO
structure delivered with the event. The application has the responsibility to forward the DTMF via
whatever mechanism, open or proprietary, it desires.

The DTMF transfer mode also affects the handling of DTMF that is received from the IP interface:

¢ In in-band mode, the DTMF is automatically forwarded to the TDM bus.
¢ In RFC 2833 mode, the DTMF is forwarded to the TDM bus as PCM data.

¢ In out-of-band mode, the application uses its own mechanism to be notified that a DTMF digit
has been received. Then, ipm_SendDigits() is used when necessary to transmit a DTMF digit
to the TDM bus.

Dialogic® IP Media Library API Programming Guide and Library Reference 60

12.2

12.2.1

12.2.2

Note:

DTMF Handling

Setting DTMF Parameters

This section contains the following topics:
¢ DTMEF Transfer Modes
¢ Setting In-Band Mode
Setting Full-Duplex RFC 2833 Mode
Setting Out-of-Band Mode
¢ Setting Receive-only RFC 2833 Mode

DTMF Transfer Modes

The Dialogic® IP Media Library API can be used to configure which DTMF transfer mode (in-
band, RFC 2833, or out-of-band) is used by the application. The mode is set on a per-channel basis
using ipm_SetParm() and the IPM_PARM_INFO data structure.

The eIPM_DTMFXFERMODE enumeration identifies which DTMF mode to use. The following
values are supported:

DTMEXFERMODE_INBAND
DTMF digits are sent and received in-band via standard RTP transcoding. This is the default
mode when a channel is opened.

Note: In-band mode cannot be used when using low bit-rate (LBR) coders.

DTMFXFERMODE_RFC2833
DTMF digits are sent and received in the RTP stream as defined in RFC 2833.

Note: Receive-only RFC 2833 mode is also available. See Section 12.2.5, “Setting Receive-
only RFC 2833 Mode”, on page 65.

DTMFXFERMODE_OUTOFBAND

DTMEF digits are sent and received outside the RTP stream.
When using RFC 2833, the payload type is specified through the following parameter/value setting
in a call to ipm_SetParm():

PARMCH_RFC2833_EVT_TX_PLT
Identifies the transmit payload type. The value range for this field is 96 to 127.

PARMCH_RFC2833_EVT_RX_PLT
Identifies the receive payload type. The value range for this field is 96 to 127.

Setting In-Band Mode

In in-band mode, the DTMF audio is not clamped (not muted) and DTMF digits are sent in the RTP
stream. When a channel is opened, the DTMF transfer mode is in-band by default.

In-band mode cannot be used when using low bit-rate coders.

Dialogic® IP Media Library API Programming Guide and Library Reference 61

DTMF Handling

To set up a channel for in-band mode, do the following:
1. Open a channel using ipm_Open(): ipm_Open("ipmB1C1",NULL,EV_SYNC).
2. Set the DTMF mode in the IPM_PARM_INFO structure and call ipm_SetParm() as shown

below:

IPM PARM INFO parmInfo;

unsigned long ulParmValue = DTMFXFERMODE_INBAND;
parmInfo.eParm = PARMCH_DTMFXFERMODE ;
parmInfo.pvParmValue = &ulParmValue

ipm SetParm(chdev, &parmInfo, EV_ASYNC)

Figure 10 shows a scenario diagram for setting in-band mode.

Figure 10. In-Band DTMF Mode Scenario Diagram

Application IPML Interface

b
L

ipm_Open("ipmB1C1",NULL, EV_SYNC) |

N

|

)|

~ |
~ |

|

N

This will not clamp the DTMF audio. B‘

| ipm_SetParm(chdev, PARMCH_DTMFXFERMODE = DTMFXFERMODE_INBAND
| The system comes up in inband mode.

12.2.3 Setting Full-Duplex RFC 2833 Mode

In full-duplex RFC 2833 mode, the DTMF audio is clamped (muted) and DTMF digits are sent in
the RTP stream only as RFC 2833 packets. To set up a channel for full-duplex RFC 2833 mode, do
the following:

1. Open a channel using ipm_QOpen(): ipm_Open("ipmB1C1",NULL,EV_SYNC).

2. Set the DTMF mode in the IPM_PARM_INFO structure and call ipm_SetParm() as shown
below:

62 Dialogic® IP Media Library APl Programming Guide and Library Reference

DTMF Handling

IPM PARM INFO parmInfo;

unsigned long ulParmValue = DTMFXFERMODE RFC2833;
parmInfo.eParm = PARMCH DTMFXFERMODE ;
parmInfo.pvParmValue = &ulParmValue
ipm_SetParm(chdev, &parmInfo, EV_ASYNC)

3. Set up the RFC 2833 event payload on the transmit side as shown below:

IPM PARM INFO parmInfo;

unsigned long ulParmValue = 101;
parmInfo.eParm = PARMCH RFC2833EVT_TX PLT;
parmInfo.pvParmValue = &ulParmValue

ipm SetParm(chdev, &parmInfo, EV_ASYNC)

4. Set up the RFC 2833 event payload on the receive side as shown below:

IPM PARM INFO parmInfo;

unsigned long ulParmValue = 101;
parmInfo.eParm = PARMCH RFC2833EVT_RX PLT;
parmInfo.pvParmValue = &ulParmValue

ipm SetParm(chdev, &parmInfo, EV_ASYNC)

Figure 11 shows a scenario diagram for setting RFC 2833 mode.

Figure 11. RFC 2833 Scenario Diagram

Application IPML Interface

chdev = ipm_Open("ipmB1C1",NULL, EV_SYNC)

ipm_SetParm(chdev, PARMCH_DTMFXFERMODE = DTMFXFERMODE_RFC2833)

ipm_SetParm(chdev,PARMCH_RFC2833EVT_TX_PLT = 101)

ipm_SetParm(chdev,PARMCH_RFC2833EVT_RX_PLT = 101)

v e e v

AN

Set named event payload on
both send and receive sides.
Only named event is supported.

Dialogic® IP Media Library API Programming Guide and Library Reference 63

DTMF Handling

12.2.4 Setting Out-of-Band Mode

In out-of-band mode, the DTMF audio is automatically clamped (muted) and DTMF digits are not
sent in the RTP packets. To set up a channel for out-of-band mode, do the following:
1. Open a channel using ipm_Open(): ipm_Open("ipmB1C1",NULL,EV_SYNC).

2. Set the DTMF mode in the IPM_PARM_INFO structure and call ipm_SetParm() as shown
below:

IPM PARM INFO parmInfo;

unsigned long ulParmValue = DTMFXFERMODE OUTOFBAND;
parmInfo.eParm = PARMCH DTMFXFERMODE;
parmInfo.pvParmValue = &ulParmValue

ipm SetParm(chdev, &parmInfo, EV_ASYNC)

3. Call ipm_ReceiveDigits() to have digits reported to the application and clamped from the
RTP packets.

To change back to in-band mode, set the PARMCH_DTMFXFERMODE parameter to
DTMFXFERMODE_INBAND.

Figure 12 shows a scenario diagram for setting out-of-band mode.

Figure 12. Out-of-Band DTMF Mode Scenario Diagram

Application IPML Interface

chdev = ipm_Open("ipmB1C1",NULL, EV_SYNC)

>
P>

ipm_SetParm(chdev, PARMCH_DTMFXFERMODE = DTMFXFERMODE_OUTOFBAND

)

Digits will be reported to the application
and clamped from the RTP packets.

ipm_SetParm(chdev, PARMCH_DTMFXFERMODE = DTMFXFERMODE_INBAND)

|
|
| \
|
|

>
>

ipm_ReceiveDigits(chdev) |

The application can change back to in-band
by calling ipm_SetParm and setting the DTMF
transfer mode to inband.

64 Dialogic® IP Media Library APl Programming Guide and Library Reference

DTMF Handling

12.2.5 Setting Receive-only RFC 2833 Mode

Receive-only RFC 2833 mode is not supported on all releases. For support information, see
Chapter 2, “Feature Support by Platform”.

In full-duplex RCF 2833 mode, the mechanism used to detect and remove in-band DTMF digits
from the audio stream prior to the transmission of audio RTP packets contributes to audio latency.
In receive-only RFC 2833 mode, this additional transmit audio latency is reduced.

For the third-party call control model (3PCC), select this mode of operation at runtime using
ipm_SetParm() with the appropriate parameter and value prior to invoking ipm_StartMedia().
The parameter to set is PARMCH_DISABLE_TX_TELEPHONY_EVENT in the
IPM_PARM_INFO data structure. If needed, this mode can be set on a board basis through the
Hmp.Uconfig file. For more information, see the Dialogic® System Configuration Guide.

For the first-party call control model (1PCC), select this mode using the parameter element
IPSET_DTMF in GC_PARM_BLK, which is associated with ge_SetUserInfo() and
gc_SetConfigData(). For more information, see the Dialogic® Global Call IP Technology Guide.

Example Code Using Dialogic® IP Media Library API

The following example demonstrates how to set or get parameters for receive-only RFC 2833
mode using the Dialogic® IP Media Library API.

int disable;
IPM PARM INFO ParmInfo;

// Open the IPM Device
int handle;
handle = ipm Open (“ipmB1C1",NULL,EV_SYNC) ;

// Set the TX disable parameter

disable = 1;

ParmInfo.eParm = PARMCH DISABLE TX TELEPHONY EVENT;
ParmInfo.pvParmvValue = &disable;

ipm SetParm(handle, &ParmInfo, EV_SYNC);

Example Code Using Dialogic® Global Call API

The following example demonstrates how to set
PARMCH_DISABLE_TX_TELEPHONY_EVENT using the Dialogic® Global Call API.

int wvalue = 1; // Disable transmit RFC2833 digits
IPM PARM INFO ipmParmInfo;
GC_PARM BLKP parmblkp;

ipmParmInfo.eParm = PARMCH DISABLE TX TELEPHONY EVENT;
ipmParmInfo.pvParmValue = (void *)&value;

gc util insert parm ref (&parmblkp, IPSET CONFIG, IPPARM IPMPARM, (unsigned
long)sizeof (IPM_PARM INFO), &ipmParmInfo);

gc_SetUserInfo (GCTGT _GCLIB CHAN, lineDev, parmblkp, GC_ALLCALLS);
gc_util delete parm blk(parmblkp);

For more information, see the Dialogic® Global Call IP Technology Guide.

Dialogic® IP Media Library API Programming Guide and Library Reference 65

DTMF Handling

12.3

12.4

66

Note:

Only the GC_ALLCALLS mode supports this feature.

Download and Startup Parameter Usage

To set receive-only RFC 2833 mode on a board basis, add the following line to the IPVSC [0x40]
section of the Hmp.Uconfig file:

SetParm=0x4019, 1 ! 1 means Disable transmit RFC2833 digits

Run the FCDGEN utility to generate the corresponding FCD file. Stop the Dialogic® Services, and
then re-start services.

Notification of DTMF Detection

Notification of DTMF detection depends on the DTMF mode being used. For out-of-band mode,
when an incoming DTMF digit is detected (received from the TDM bus), the application receives
an unsolicited IPMEV_DIGITS_RECEIVED event. The event data is contained in
IPM_DIGIT_INFO. One event is returned for each digit that is received.

Generating DTMF

Once DTMF mode has been configured, the application can generate DTMF digits using the
ipm_SendDigits() function.

The only supported direction for DTMF digit generation is to the TDM bus.

Dialogic® IP Media Library APl Programming Guide and Library Reference

T.38 Fax Server 13

This chapter discusses the T.38 fax server support in the Dialogic® IP Media Library API. Topics

include:
e Feature Descriptionottt e e 67
e Sample Scenario for T38 Fax Server 68
e Example Code for T.38 Fax Server. 69
13.1 Feature Description

The Dialogic® IP Media Library API supports T.38 fax server capability via the T.38 fax resource.
The T.38 fax resource provides the host application the ability to initiate T.38 fax functionality,
including modifying the codec from audio to T.38 and T.38 only.

Note: The T.38 fax resource does not support the gateway mode nor does it support T.38 fax relay
capability (T.38 packet to V.17/V.27/V.21 fax modem conversion and vice versa). Hence, the fax
data cannot be shared on the CT Bus by multiple channels.

Since the T.38 fax server resource has control of the UDP port, unlike the gateway model where
the ipm channel controls the UDP port, two additional API functions, dev_Connect() and
dev_Disconnect() are needed to associate or disassociate the voice media handle and the fax
handle. When dev_Connect() is executed on an ipm channel and a T.38ServerFax resource, the IP
media library API translates the ipm_(Get/Start)LocalMedialnfo() API call to a
T38ServerFax_msg(Get/Set)Parm. As soon as dev_Disconnect() is issued, this translation is
stopped and messages are forwarded to the ipm channel. For more information on dev_ functions,
see the Dialogic® Device Management API Library Reference.

When using third party IP call control engines, specify the following sequence of calls in the
application to make and break a T.38 session for sending fax. The Dialogic® IP Media Library API
provides the primitives to control media/session parameters.

1. Open an ipm channel using ipm_Open(). For example:
ipmDevHl1 = ipm open ("ipmB1C1")

2. Open a dxxx channel to be used for fax using dx_open(). For example:
dxDevH1 = dx open ("dxxxB17C3")

3. Issue dx_getfeaturelist() on the dxxx channel to verify that this channel supports fax.
For example:
dx getfeaturelist (dxDevHl, feature tablep)

4. Verify that dx_getfeaturelist() returns FT_FAX for ft_fax bitmask in the
FEATURE_TABLE structure. For example:
if (feature tablep->ft fax & FT_ FAX)

5. Open the same dxxx channel using fx_open(). For example:
faxdevHl = fx open ("dxxxB17C3")

Dialogic® IP Media Library API Programming Guide and Library Reference 67

T.38 Fax Server

13.2

68

10.

11

12.

13.
14.

. Issue dx_getfeaturelist() to determine whether this fax resource supports T.38 fax. For

example:
if (feature tablep->ft fax & FT FAX T38UDP)

. To route the fax channel to the ipm channel, use dev_Connect(). For example:

ret = dev Connect (ipmDevH1, faxdevHl1l, DM FULLDUP, EV_ASYNC)

. Process the DMEV_CONNECT completion event.

Note: DM_FULLDUP is the only mode supported when passing T.38 devices because the
connection is made logically in both directions.

. Issue ipm_GetLocalMedialnfo() to get the T.38 port and IP address information. The first

media type in the IPM_MEDIA structure must be set to
MEDIATYPE_LOCAL_UDPTL_T38_INFO. Process the
IPMEV_GET_LOCAL_MEDIA_INFO completion event.

Get the remote end IP address and port information, achieved via signaling.

. Issue ipm_StartMedia() to start media streaming. Specify the remote T.38 information

obtained earlier. Process the IPMEV_START_MEDIA completion event.

To begin fax transmission, use fx_sendfax(). For example:
fx sendfax (faxdevH1,EV_ASYNC)

Process the TFX_FAXSEND completion event.

When fax transmission is completed, use ipm_Stop() to stop operations on the ipm channel.

For information on dx_ functions, see the Dialogic® Voice API documentation. For information on
fx_ functions, see the Dialogic® Fax API documentation.

Sample Scenario for T.38 Fax Server

The following figure illustrates a T.38 fax server call scenario.

Dialogic® IP Media Library APl Programming Guide and Library Reference

T.38 Fax Server

Figure 13. T.38 Fax Server Call Scenario

Sending Fax using IPML application (With Voice)

App Voice IPVSC T.38 Origination T.38 Origination IPVSC App

dx_Open
M (dooBiCt) P

Ipm_StartMedia() sends
remote IP address and RTP
Ipm_Open(ipmB1C1) ——», Port number termination to
the firmware.

INVITE/SETUP with TCS to send Origination

»
IP address and RTP Port number '
< Call Connected
Ipm_StartMedia() ———p»|
-t RTP DATA -
Ipm_Stop(ipmB1C1) —’ Stop the RTP streaming. l@— Ipm_Stop() —
fx_open(dxxxB23C1) ————————p
| Connect fax and ipvsc
xx_Connect(dxxB23C1, ipmB1C1) ———»| | devices. FAX data flows
| | to packet network
Ipm_GetLocalMedia(ipmB1C1, T.38)
Get FAX UDP port info from Fax| ———»
connected ipvsc device N
reINVITE/RequestMode to switch to T.38 Fax
»
| Send local UDP port and IP Address
<} reINVITE/RequestMode Ack

Ipm_StartMedia(ipmB1C1) ————— o Send UDP ﬂg’:;:mt’me&:;d IP address | §——— Ipm_StartMedia()

x_sndfax(dxxxB23C1) =————P» l——— fx_roviax()
Periodic CNG events in UDP Packets —b

< Single CED event in UIZ_)P Packet
-- not important, optional --

— DIS Capability Information - stops CNG

There is no dependency between CED and CNG tones/events.
After receiving CED event, CNG event generation will stop.

Fax Data L

fx_stop/fax_complete event is rcvd ————|
' '
ipm_StopMedia(ipmB1C1) ——»
1 1

xx_Disconnect(dxxxB23C1, ipmB1C1) ———» | Free/Disconnect Fax Device as soon its use is over.

13.3 Example Code for T.38 Fax Server

The following illustrates example code for T.38 fax server.

Dialogic® IP Media Library API Programming Guide and Library Reference 69

T.38 Fax Server

70

#include <stdio.h>

#include <stdlib.h>
#include <conio.h>

#include <string.h>
#include <fcntl.h>

#include <srllib.h>
#include <dxxxlib.h>
#include <faxlib.h>
#include <ipmlib.h>
#include <devmgmt.h>

static
static

static
static
static

static
static

int ipm handle = -1;
int fax handle -1;

DF_IOTT iott = {0};
int fd = 0;
IPM MEDIA INFO info;

bool ipm_handle disconnected = false;
bool fax handle disconnected = false;

long IpmEventHandler (unsigned long evthandle)

{

int evttype = sr_getevttype();

printf ("Event=0x%x SRL handle=0x%x\n",evttype, evthandle);
switch(evttype)

{

case DMEV_CONNECT:

printf("DMEV_CONNECT event received.\n");
{
info.MediaData[0].eMediaType = MEDIATYPE LOCAL UDPTL T38 INFO;
if (ipm_GetLocalMedialInfo(ipm_handle, &info, EV_ASYNC) == -1)
{
printf("ipm GetLocalMedialInfo () failed.\n");
exit(1);

}

break;

case IPMEV GET LOCAL MEDIA INFO:

printf("IPMEV_GET_ LOCAL_MEDIA INFO event received.\n");

info.unCount = 1;
info.MediaData[0] .eMediaType = MEDIATYPE REMOTE UDPTL_T38 INFO;
info.MediaData[0] .mediaInfo.PortInfo.unPortId = 2001;// remote IP port
strcpy (info.MediaData[0] .mediaInfo.PortInfo.cIPAddress, "146.152.84.56");
info.MediaData[l].eMediaType = MEDIATYPE FAX SIGNAL;
info.MediaData[l] .mediaInfo.FaxSignal.eToneType = TONE CED;
printf ("Press enter to continue (ipm StartMedia)\n");
//getchar () ;
//printf("calling ipm StartMedia ()\n");
if(ipm StartMedia(ipm handle, &info, DATA IP TDM BIDIRECTIONAL, EV ASYNC) == -1)
{
printf("ipm StartMedia () failed.\n");
exit(1);
}
else
{
printf("[%s] ipm StartMedia ok \n", ATDV_NAMEP (ipm_handle));
}
//getchar () ;
//printf ("Press enter to continue (ipm StartMedia)\n");
}

break;

case DMEV_DISCONNECT:

printf("DMEV_DISCONNECT event received.\n");

Dialogic® IP Media Library APl Programming Guide and Library Reference

T.38 Fax Server

ipm_handle_disconnected = true;
if(fax _handle_disconnected)
{
return 0;
}
break;

case IPMEV_STARTMEDIA:
printf("IPMEV_STARTMEDIA event received.\n");
fd = dx fileopen("onepg high.tif", O RDONLY|O BINARY);
if(fd == -1)
{
printf("dx fileopen() failed.\n");
exit(1);
}
fx setiott(siott, fd, DF TIFF, DFC_EOM) ;

iott.io_type |= IO_EOT;

iott.io firstpg = 0;

iott.io_pgcount = -1;

iott.io _phdcont = DFC_EOP;

if (fx_initstat(fax handle, DF_TX) == -1)

{
printf("fx initstat() failed.\n");
exit(1);
}
if(fx_sendfax(fax handle, &iott, EV_ASYNC) == -1)
{
printf("fx sendfax() failed.\n");
exit(1);
}

break;

case IPMEV_STOPPED:
printf("IPMEV_STOPPED event received.\n");
if (dev_Disconnect(ipm_handle, EV_ASYNC) == -1)
{

printf("dev_Disconnect () failed.\n"
exit(1);

if (dev_Disconnect(fax_handle, EV_ASYNC

Il

I

|
—

printf("dev_Disconnect () failed.\n"
exit(1);

break;
case IPMEV_ERROR:
printf("IPMEV_ERROR event received on IPM channel.\n");
exit(-1);
break;

default:
printf ("Unknown event %d received.\n", evttype);
break;

}

return 0;

long FaxEventHandler (unsigned long evthandle)
{
int evttype = sr_getevttype();

switch(evttype)
{
case TFX_FAXSEND:
printf("TFX FAXSEND event received.\n");
if (ipm_Stop(ipm_handle, STOP_ALL, EV_ASYNC) == -1)

Dialogic® IP Media Library API Programming Guide and Library Reference 71

T.38 Fax Server

pri
exi
}

break;

ntf("ipm Stop() failed.\n");
tC1);

case TFX_ FAXERROR:

printf(

exit(1

break;
default:

printf(

break;
}

return 0;

void main ()

{

ipm handle
if (ipm_han
{
printf (
exit(1

int vox_han
if (vox_han

printf(
exit(1

FEATURE_TAB
if (dx_getf
{
printf (
exit(1

if (dx_clos

printf (
exit(1

"TFX_FAXERROR event received.\n");
)i

"Unknown event %d received on fax channel.\n", evttype);

= ipm Open("ipmB1Cl", NULL, EV_SYNC);
dle == -1)

"ipm Open() failed.\n");
)7

dle = dx_open("dxxxB2C1", 0);

dle == -1)
"dx open() failed.\n");
)i

LE feature_table;

eaturelist (vox_handle, &feature table) == -1)
"dx_getfeaturelist () failed.\n");
)7

e(vox_handle) == -1)

"dx_close() failed.\n");
)7

if (feature_table.ft fax & FT_FAX)

if (fea
{

ture_table.ft fax & FT_FAX T38UDP)

fax_handle = fx_open("dxxxB2Cl", 0);

if(
{

}
else
{

fax handle == -1)

printf("fx open() failed.\n");
exit(1);

printf("Not a T.38 fax device.\n");
exit(1);

}

else

{
printf(
exit(1

72

"Not a fax device.\n");
)i

Dialogic® IP Media Library APl Programming Guide and Library Reference

T.38 Fax Server

}
if (sr_enbhdlr(ipm handle, EV_ANYEVT, IpmEventHandler) == -1

{
printf("sr enbhdlr() failed.\n");
exit(1);

if (sr_enbhdlr(fax handle, EV_ANYEVT, FaxEventHandler) == -1
printf("sr enbhdlr() failed.\n");
exit(1);

if (dev_Connect(ipm handle, fax handle, DM FULLDUP, EV_ASYNC) == -1
printf("dev Connect () failed.\n");

exit(1);

while (1)
{
sr waitevt(-1);
printf ("Got an event\n");
if(sr_dishdlr(fax handle, EV_ANYEVT, FaxEventHandler) == -1
printf("sr dishdlr() failed.\n");
exit(1);
if(sr_dishdlr(ipm handle, EV_ANYEVT, IpmEventHandler) == -1
printf("sr dishdlr() failed.\n");
exit(1);
if(fx close(fax_handle) == -1)
printf("fx close() failed.\n");
exit(1);
if(ipm Close(ipm_handle, NULL) == -1

printf("ipm Close() failed.\n");
exit(1);

Dialogic® IP Media Library API Programming Guide and Library Reference 73

Implementing Native T.38 Fax 14
Hairpinning

This chapter discusses native T.38 fax hairpinning and provides implementation guidelines. Topics

include:
e Feature Descriptionottt e e 74
e Implementation Guidelinesttt 75
e Sample SCENATIOS. . . oot v ettt e 78
14.1 Feature Description

Native T.38 fax hairpinning is not supported on all releases. For support information, see
Chapter 2, “Feature Support by Platform”.

Native T.38 fax hairpinning is supported in 3rd Party Call Control (3PCC) SIP.

The native T.38 fax hairpinning feature enables an application to natively route T.38 fax data
between the local UDP ports of two IP media devices with established native T.38 fax sessions.
UDP packets are routed between these ports and only the source port and the destination port of the
UDP header is modified. This means that the T.38 fax payload is not processed in any way and is
routed transparently.

Two IP media devices are used to form a native T.38 fax hairpin connection. Each of the IP media
devices have IP audio sessions established using the ipm_StartMedia() function and the audio
coder type, CODER_TYPE_ UDPTL_NATIVE. Native hairpin connections are formed between
the audio ports of the two IP media devices using the dev_PortConnect() function with the
DMFL_TRANSCODE_NATIVE flag set.

The ipm_GetLocalMedialnfo() function, with the eMediaType field IPM_MEDIA structure) set
to MEDIATYPE_AUDIO_LOCAL_RTP_INFO, is used to retrieve the local IP address and local
port information to be used with the native T.38 hairpinning feature. The RTP port information
returned corresponds to the local UDP port. The RTCP port information returned can be ignored
since no RTCP port or RTCP-related capabilities apply for the native T.38 hairpinning feature.

Note: QoS alarms are not supported when the audio coder type, CODER_TYPE_UDPTL_NATIVE, is
selected.

Dialogic® IP Media Library API Programming Guide and Library Reference 74

14.2

14.2.1

14.2.2

Implementing Native T.38 Fax Hairpinning

Implementation Guidelines

To implement native T.38 hairpinning in your application, follow the guidelines provided in these
sections.

e [Initializing Structures
¢ Connecting Devices

¢ Exchange Media Using ipm_StartMedia()

Initializing Structures

Before calling ipm_StartMedia(), initialize data structures: IPM_MEDIA_INFO, IPM_MEDIA,
and IPM_AUDIO_CODER_INFO.

Connecting Devices

Once SIP calls have been established, connect IPM devices using the Dialogic® Device
Management API. Get device transmit ports and device receive ports for the IPM devices using
dev_GetTransmitPortInfo() and dev_GetReceive PortInfo(). Connect IPM devices to each
other using dev_PortConnect() with the DMFL_TRANSCODE_NATIVE flag set.

The following figure shows a sequence of calls to establish the connection:

Dialogic® IP Media Library API Programming Guide and Library Reference 75

Implementing Native T.38 Fax Hairpinning

14.2.3

76

Port Connection Initialization Sequence

App HMP

| |

l I

dev_GetTransmitPortinfo(ipmB1C1)
»

I i
DMEV_GET_TX_PORT_INFO :: ipmB1C1

de\}_GetTransmitPortlnfo(imeléz)

| »

0 ql
DMEV_GET_TX_PORT_INFO ::ipmB1C2
D l
i I

dev_GetReceivePortinfo(ipmB1C1)

DMEV_GET_RX_PORT_INFO :: ipmB1C1
N I

| |
| |

dev_GetReceivePortinfo(ipmB1C2)
L »

] g
DMEV_GET_RX_PORT_INFO :: ipmB1C2

dev_Pc')rtConnect(ipmB1C1 <to> ipm'Blcz)
I

DMEV_PORT_CONNECT

—dl__¥_

I
|
|
N
|
|

DMEV_PORT_CONNECT

I
I

I

: Connecting Done

I

l

L _ ¥

|
i - {
dev_PortConnect(ipmB1C2 <to=ipmB1C1) :

ipmB1Cl = [0] “ingress”
ipmB1C2 [1] “egress”

DM_PORT_CONNECT_INFO
{

unFlags = DMFL_TRANSCODE_NATIVE
}

DM_PORT_CONNECT_INFO

unFlags = DMFL_TRANSCODE_NATIVE
}

Exchange Media Using ipm_StartMedia()

The following source code demonstrates the API calls required to initiate the transport of T.38
packets between the two IP media devices.

In this example, the ipm_GetLocalMedialnfo() function collects IP address and port data from
each IPM device. Next, the IPM_MEDIA_INFO data structure, passed to ipm_StartMedia(), is
populated. The coder type CODER_TYPE_UDPTL_NATIVE indicates native T.38 fax

hairpinning.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Implementing Native T.38 Fax Hairpinning

#define NUMCHAN 2

class CHANNEL // in pairs
{
int m_ipm ddd;
IPM MEDIA INFO m ReadInfo;
bi
CHANNEL 1 Chan [NUMCHAN] ;

int StartT38Hairpin()
{

int rc;

IPM MEDIA INFO Input;
IPM_MEDIA_INFO Output;

Input.unCount = 0;
Output.unCount = 0;

i=0;

1 Chan[i].m ReadInfo.unCount=1;
1 Chan[i].m_ReadInfo.MediaData[0].eMediaType=MEDIATYPE AUDIO_LOCAL_RTP_INFO;

rc=ipm GetLocalMediaInfo(l_Chan[i].m ipm_ddd ,&(1_Chan[i].m_ReadInfo),EV_SYNC);
if (rc<0)

{

printf ("Error Getting Local Media Info channel %i\n",1i);

return -1;;

}

Input.MediaData[Input.unCount].eMediaType = MEDIATYPE REMOTE RTP INFO;
Input.MediaData[Input.unCount].medialInfo.PortInfo.unPortlId =

1 Chan[i].m _ReadInfo.mediaInfo.PortInfo.unPortId;
strcpy (Input.MediaData[Input.unCount].mediaInfo.PortInfo.cIPAddress,

1 Chan[i].m_ReadInfo.mediaInfo.PortInfo.cIPAddress);
Input.unCount++;

Input.MediaData[Input.unCount].eMediaType = MEDIATYPE REMOTE_RTCP_INFO;
Input.MediaData[Input.unCount].mediaInfo.PortInfo.unPortId =

1 Chan[i].m _ReadInfo.mediaInfo.PortInfo.unPortId;+1;
strcpy (Input.MediaData [Input.unCount].mediaInfo.PortInfo.cIPAddress,

1 Chan[i].m _ReadInfo.mediaInfo.PortInfo.cIPAddress);
Input.unCount++;

Input.MediaData[Input.unCount].eMediaType = MEDIATYPE REMOTE_ CODER INFO;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.eCoderType = CODER TYPE UDPTL_NATIVE;

Input.MediaData[Input.unCount].mediaInfo.CoderInfo.eFrameSize = (eIPM CODER FRAMESIZE) 30;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.unFramesPerPkt = 1;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.unCoderPayloadType = 0;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.unRedPayloadType = 0;

Input.unCount++;

Input.MediaData[Input.unCount].eMediaType = MEDIATYPE LOCAL_CODER_INFO;
Input.MediaData[Input.unCount] .mediaInfo.CoderInfo.eCoderType = CODER_TYPE_UDPTL NATIVE;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.eFrameSize = (eIPM _CODER FRAMESIZE) 30;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.unFramesPerPkt =1;

Input.MediaData[Input.unCount].mediaInfo.CoderInfo.unCoderPayloadType = 0;
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.unRedPayloadType = 0;
Input.unCount++;

i=1;

1.

1.
Input.MediaData[Input.unCount].mediaInfo.CoderInfo.eVadEnable CODER_VAD DISABLE;

1.

1.

l_Chan[i].m_ReadInfo.unCount:l;
1 Chan[i].m_ReadInfo.MediaData[0].eMediaType=MEDIATYPE AUDIO LOCAL RTP INFO;
rc=ipm_GetLocalMediaInfo(l_Chan[i].m ipm ddd, & (1_Chan[i].m ReadInfo),EV_SYNC) ;

Dialogic® IP Media Library API Programming Guide and Library Reference 77

Implementing Native T.38 Fax Hairpinning

14.3

78

if (rc<0)
{
printf ("Error Getting Local Media Info channel %i\n",1i);
return -1;;

}

Output.MediaData[Output.unCount].eMediaType = MEDIATYPE REMOTE_RTP_INFO;
Output.MediaData[Output.unCount] .mediaInfo.PortInfo.unPortId =

1 Chan[i].m_ReadInfo.mediaInfo.PortInfo.unPortId;
strcpy (Output.MediaData [Output.unCount] .mediaInfo.PortInfo.cIPAddress,

1 Chan[i].m_ReadInfo.mediaInfo.PortInfo.cIPAddress);
Output.unCount++;

Output.MediaData[Output.unCount].eMediaType= MEDIATYPE REMOTE RTCP_INFO;
Output.MediaData[Output.unCount].mediaInfo.PortInfo.unPortId =

1 Chan[i].m ReadInfo.mediaInfo.PortInfo.unPortId+l;
strcpy (Output.MediaData[Output.unCount] .mediaInfo.PortInfo.cIPAddress,

1 Chan[i].m ReadInfo.mediaInfo.PortInfo.cIPAddress);
Output.unCount++;

Output.MediaData[Output.unCount].eMediaType= MEDIATYPE REMOTE_CODER INFO;
Output.MediaData[Output.unCount] .mediaInfo.CoderInfo.eCoderType CODER_TYPE UDPTL NATIVE;

Output.MediaData[Output.unCount].mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE) 30;
Output.MediaData[Output.unCount].mediaInfo.CoderInfo.unFramesPerPkt = 1;
Output.MediaData[Output.unCount].mediaInfo.CoderInfo.eVadEnable = CODER_VAD DISABLE;
Output.MediaData[Output.unCount].mediaInfo.CoderInfo.unCoderPayloadType = 0;
Output.MediaData[Output.unCount].mediaInfo.CoderInfo.unRedPayloadType = 0;

Output.unCount++;

Output.MediaData[Output.unCount].eMediaType= MEDIATYPE LOCAL CODER_INFO;

Output.MediaData[Output.unCount] .mediaInfo.CoderInfo.eCoderType = CODER TYPE UDPTL_NATIVE;
Output.MediaData[Output.unCount].medialnfo.CoderInfo.eFrameSize = (eIPM_CODER FRAMESIZE) 30;
Output.MediaData[Output.unCount].mediaInfo.CoderInfo.unFramesPerPkt =1;
Output.MediaData[Output.unCount].mediaInfo.CoderInfo.eVadEnable = CODER_VAD DISABLE;
Output.MediaData[Output.unCount].mediaInfo.CoderInfo.unCoderPayloadType = 0;
Output.MediaData[Output.unCount] .mediaInfo.CoderInfo.unRedPayloadType = 0;

Output.unCount++;

rc = ipm_StartMedia(l_Chan[0].m_ipm ddd, &Output, DATA IP_TDM BIDIRECTIONAL, EV_SYNC);
if (rc == -1)

{

printf ("ipm StartMedia failed: %s\n",ATDV_ERRMSGP (1l Chan[0].m ipm ddd));

exit (1) ;

}

rc = ipm StartMedia(l Chan[1l].m ipm ddd, &Input, DATA IP TDM BIDIRECTIONAL, EV_SYNC);
if (rc == -1)

{

printf ("ipm StartMedia failed: %s\n",ATDV_ERRMSGP(l_Chan[l].m_ipm_ddd));

exit(1);

}

return rc;

Sample Scenarios

Prior to establishing a native T.38 hairpin between two IP media devices, the application needs to
initiate an inbound and outbound SIP call using 3PCC mechanisms. These SIP calls begin as either
T.38 media calls or audio calls. Next the application needs to ensure that both IP media devices
(and their respective endpoints) have established T.38 sessions.

Dialogic® IP Media Library APl Programming Guide and Library Reference

14.3.1

14.3.2

Implementing Native T.38 Fax Hairpinning

The following sections show 3PCC sample scenarios. Each scenario references the concept of a
native audio full-duplex connection and the API call to the ipm_StartMedia() function. See
Section 14.2.2, “Connecting Devices”, on page 75 and Section 14.2.3, “Exchange Media Using
ipm_StartMedia()”, on page 76 for more information.

¢ Scenario 1: INVITE for T.38 Fax Call

e Scenario 2: Re-INVITE for T.38 Fax Call

e Scenario 3: Re-INVITE from Native Hairpin of Audio to Native Hairpin of T.38

¢ Scenario 4: Re-INVITE from Non-native Hairpin of Audio to Native Hairpin of T.38

Scenario 1: INVITE for T.38 Fax Call

The application wants to respond to an incoming T.38 fax call by hairpinning it to another T.38 fax
call. The application initiates an outgoing T.38 fax call and bridges the two calls. Assumptions: the
incoming T.38 FAX-A call media session is established on IPM-A and the outgoing T.38 FAX-B
call media session is established on IPM-B.

The sequence of activities is as follows:

1. An INVITE for the T.38 FAX-A call is received by the application. IPM-A is selected to
receive this call.

2. Native audio full-duplex connections are established between IPM-A and IPM-B using
dev_PortConnect(); see Section 14.2.2, “Connecting Devices”, on page 75.

3. An INVITE for the T.38 FAX-B call is sent for IPM-B.
4. A 200 OK is received for the T.38 FAX-B call.

5. ipm_StartMedia() is called for IPM-B to establish the full-duplex native T.38 session for
call B.

6. ipm_StartMedia() is called for IPM-A to establish the full-duplex native T.38 session for
call A.

7. A 200 OK is sent for the T.38 FAX-A call.

Scenario 2: Re-INVITE for T.38 Fax Call

The application wants to transition from an existing audio session between the media server and a
remote terminal to a T.38 session at the request of the remote terminal. An outgoing T.38 call is
initiated by the application, and the two calls are bridged. Assumptions: the incoming T.38 FAX-A
call media session is established on IPM-A, and the outgoing T.38 FAX-B call media session is
established on IPM-B.

The sequence of activities is as follows:

1. There is an existing audio call on IPM-A.
2. A re-INVITE for the T.38 FAX-A call is received by the application for IPM-A.
3. ipm_Stop() is called for IPM-A to end the full-duplex audio session for call A.

Dialogic® IP Media Library API Programming Guide and Library Reference 79

Implementing Native T.38 Fax Hairpinning

14.3.3

80

4. Previous internal IPM-A connections are broken. Then native audio full-duplex connections
are established between IPM-A and IPM-B using dev_PortConnect(); see Section 14.2.2,
“Connecting Devices”, on page 75.

5. An INVITE for the T.38 FAX-B call is sent for IPM-B.
6. A 200 OK is received for the T.38 FAX-B call.

7. ipm_StartMedia() is called for IPM-B to establish the full-duplex native T.38 session for
call B.

8. ipm_StartMedia() is called for [IPM-A to establish the full-duplex native T.38 session for
call A.

9. A 200 OK is sent for the T.38 FAX-A call.

Scenario 3: Re-INVITE from Native Hairpin of Audio to
Native Hairpin of T.38

Two existing native audio sessions, one on IPM-A and the other on IPM-B, are natively bridged by
the application. The application receives a re-INVITE from the remote terminal associated with the
session on IPM-A to modify the media to T.38; this re-INVITE is passed on to the remote terminal
associated with the session on IPM-B. The remote terminal associated with IPM-B accepts the re-
INVITE. The application stops the audio sessions on both IPM-A and IPM-B, and terminates the
audio bridge connection between IPM-A and IPM-B. The application then establishes native T.38
fax sessions on both IPM-A and IPM-B, and creates a full-duplex native T.38 hairpin connection
between IPM-A and IPM-B. The application then sends the 200 OK to the remote terminal
associated with the session on IPM-A.

The sequence of activities is as follows:

. There is an existing audio call bridged between IPM-A and IPM-B.

. A re-INVITE for the T.38 FAX-A call is received by the application for IPM-A.

. A re-INVITE for the T.38 FAX-B call is sent by the application for IPM-B.

. A 200 OK is received for the T.38 FAX-B call.

. ipm_Stop() is called for IPM-B to end the full-duplex audio session for call B.

. The existing audio bridge connection between IPM-A and IPM-B is disconnected.

. ipm_Stop() is called for IPM-A to end the full-duplex audio session for call A.

(e e R T

. Native audio full-duplex connections are established between IPM-A and IPM-B using
dev_PortConnect(); see Section 14.2.2, “Connecting Devices”, on page 75.

9. ipm_StartMedia() is called for IPM-B to establish the full-duplex native T.38 session for
call B.

10. ipm_StartMedia() is called for IPM-A to establish the full-duplex native T.38 session for
call A.

11. A 200 OK is sent for the T.38 FAX-A call.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Implementing Native T.38 Fax Hairpinning

14.3.4 Scenario 4: Re-INVITE from Non-native Hairpin of Audio to
Native Hairpin of T.38

Two existing non-native audio sessions, one on IPM-A and the other on IPM-B, are bridged by the
application. The application receives a re-INVITE from the remote terminal associated with the
session on IPM-A to modify the media to T.38; this re-INVITE is passed on to the remote terminal
associated with the session on IPM-B. The remote terminal associated with IPM-B accepts the re-
INVITE. The application stops the audio sessions on both IPM-A and IPM-B, and terminates the
audio bridge connection between IPM-A and IPM-B. The application then establishes native T.38
fax sessions on both IPM-A and IPM-B, and creates a full-duplex native T.38 hairpin connection
between IPM-A and IPM-B. The application then sends the 200 OK to the remote terminal
associated with the session on IPM-A.

The sequence of activities is as follows:

. There is an existing audio call bridged between IPM-A and IPM-B.

. A re-INVITE for the T.38 FAX-A call is received by the application for IPM-A.
. A re-INVITE for the T.38 FAX-B call is sent by the application for IPM-B.

. A 200 OK is received for the T.38 FAX-B call.

. Native audio full-duplex connections are established between IPM-A and IPM-B using
dev_PortConnect(); see Section 14.2.2, “Connecting Devices”, on page 75.

N B~ W N =

. ipm_Stop() is called for IPM-B to end the full-duplex audio session for call B.
. The existing audio bridge connection between IPM-A and IPM-B is disconnected.

. ipm_Stop() is called for IPM-A to end the full-duplex audio session for call A.

O 0 9

. Native audio full-duplex connections are established between IPM-A and IPM-B using
dev_PortConnect(); see Section 14.2.2, “Connecting Devices”, on page 75.

10. ipm_StartMedia() is called for IPM-B to establish the full-duplex native T.38 session for
call B.

11. ipm_StartMedia() is called for IPM-A to establish the full-duplex native T.38 session for
call A.

12. A 200 OK is sent for the T.38 FAX-A call.

Dialogic® IP Media Library API Programming Guide and Library Reference 81

Using the Selective Packet 15
Filtration Method

15.1

Caution:

15.2

This chapter describes the selective packet filtration method.
e Feature Descriptionottt e 82

e APILibrary SUPPOIt . . . oottt e e 82

Feature Description

Selective packet filtration method is not supported on all releases. For support information, see
Chapter 2, “Feature Support by Platform”.

With the selective packet filtration method, an application has the ability to filter incoming RTP
data based on the remote IP address and port information specified for the RTP session in use.

This feature allows Dialogic® HMP software to ignore all RTP data which does not originate from
the remote IP address and port specified in the ipm_StartMedia() function. For example,
endpoint A may not stop sending RTP data immediately after receiving a request from the
application to terminate the RTP session. This feature allows Dialogic® HMP software to ignore
those packets from endpoint A.

The selective filtration method (also called remote terminal IP address verification mode) works on
a port and address information pair to either accept or reject a certain RTP packet. If the parameter
is enabled, the filter is applied.

When this mode is enabled, Dialogic® HMP software assumes that the IP address and port agreed
upon in the call-setup phase as the RTP origin is also the source of all of the RTP packets. For
example, if a packet received in the port assigned to this RTP session does not have the origin’s IP
address and port, the Dialogic® HMP software will reject it.

Enabling the selective filtration method violates the requirements of IETF SIP standards, since
RFC 3264 calls for an RTP receiver NOT to tie itself exclusively to the negotiated origin’s IP
address. For this reason, the selective filtration method should only be used when absolutely
necessary.

API Library Support

To specify the selective filtration method on a board basis, use the ipm_SetParm() function and
set the PARMBD_RTP_SOURCE_FILTER parameter in the [IPM_PARM_INFO structure. Use 1
to enable filtration and O to disable filtration.

Dialogic® IP Media Library API Programming Guide and Library Reference 82

Using the Selective Packet Filtration Method

The following example shows how to enable the selective filtration method:

Setting up the parameter int value=1l;
IPM_PARM INFO Parms;
Parms.eParm=PARMBD RTP_SOURCE_FILTER ;
Parms.pvParmValue=&value;

rc:ipm_SetParm(brdl,&Parms,EV_SYNC);

It is possible to set this mode in the Hmp. Uconfig file. For more information, see the Dialogic®
System Configuration Guide.

Dialogic® IP Media Library API Programming Guide and Library Reference

83

Quality of Service (QoS) Alarms 16
and RTCP Reporis

16.1

This chapter describes the QoS alarms and RTCP reports that are supported by the Dialogic® IP
Media Library API software. The following topics are discussed:

® QOS OVEIVIEW . . .ttt et e e e 84
® QOS Alarm TYPES . . . ettt 85
e QoS Threshold Attributesttt e e e 86
® QOS Event Types . . oottt 87
e Implementing Q0S AlArms it 87
* QoS Alarm and Alarm Recovery Mechanisms, 88
e Example Code for QoS Alarm Handling. oL, 92
® RTCP REPOItING. . . . oottt ettt e e e e e e e e e e e 95

QoS Overview

Quality of Service (QoS) alarms are not fully supported on all releases. For support information,
see Chapter 2, “Feature Support by Platform”.

The public switched telephone network (PSTN) defines quality of service as a particular level of
service, for example “toll-like” service. However, quality of service for voice or other media over
the Internet Protocol is defined as a continuum of levels, which are affected by packet delay or loss,
line congestion, and hardware quality such as microphone quality. The Dialogic® IP Media Library
API software is designed to operate along the entire range of quality of service, enabling the
application to retrieve information necessary for correct billing.

All QoS parameters supported by the Dialogic® IP Media Library API software are disabled by
default. That is, QoS monitoring must be enabled by the application. If desired, the application can
set threshold values to monitor the quality of service during sessions. The QoS parameters are
measured during time intervals, starting when a session is established. A fault occurs when the
measurement of a QoS parameter exceeds a predefined threshold. A recovery occurs when the
measurement of a QoS parameter returns to a value that does not exceed the predefined threshold.

To enable and use QoS monitoring in your application, you must follow several steps. Some steps
are optional; others are required. These steps are detailed in Section 16.5, “Implementing QoS
Alarms”, on page 87.

Dialogic® IP Media Library API Programming Guide and Library Reference 84

Quality of Service (QoS) Alarms and RTCP Reports

16.2 QoS Alarm Types

All QoS alarms operate on a per-channel basis. That is, a QoS alarm indicates the status of a
particular channel during a particular session, not the status of an entire Dialogic® IP media
resource board.

The following QoS alarm types are supported in the Dialogic® IP Media Library API software.
These names are used in the IPM_QOS_THRESHOLD_DATA structure when setting parameters
for the alarms, and in the IPM_QOS_ALARM_DATA structure that is associated with the
IPMEV_QOS_ALARM event that is generated when an alarm state transition occurs.

QOSTYPE_JITTER
QoS alarm for excessive average jitter

QOSTYPE_LOSTPACKETS
QoS alarm for excessive percentage of lost packets

QOSTYPE_RTCPTIMEOUT
QoS alarm for RTCP timeout, indicating that RTCP packets are no longer being received. This
alarm can also indicate that the network cable is disconnected.

QOSTYPE_RTPTIMEOUT
QoS alarm for RTP timeout, indicating that RTP packets are no longer being received. This
alarm can also indicate that the network cable is disconnected.

QOSTYPE_RTCP_SCS
QoS alarm for RTCP severely concealed second condition (SCS)

QOSTYPE_RTCP_JB_HIGH
QoS alarm for RTCP jitter buffer above the threshold

QOSTYPE_RTCP_JB_LOW
QoS alarm for RTCP jitter buffer below the threshold

The following QoS alarms have been defined for Secure RTP:

QOSTYPE_SEC_AUTH_FAIL_AUDIO
Secure RTP QoS alarm for authentication failure on RTP audio packets

QOSTYPE_SEC_AUTH_FAIL_VIDEO
Secure RTP QoS alarm for authentication failure on RTP video packets

QOSTYPE_SEC_PKT_REPLAY_AUDIO
Secure RTP QoS alarm for replay detection of audio packets

QOSTYPE_SEC_PKT_REPLAY_VIDEO
Secure RTP QoS alarm for replay detection of video packets

QOSTYPE_SEC_MKI_NOMATCH_AUDIO
Secure RTP QoS alarm for Master Key Identification (MKI) mis-match on audio packets

QOSTYPE_SEC_MKI_NOMATCH_VIDEO
Secure RTP QoS alarm for MKI mis-match on video packets

Dialogic® IP Media Library API Programming Guide and Library Reference 85

Quality of Service (QoS) Alarms and RTCP Reports

16.3

86

Note:

For details on using QoS alarms in your application, see Section 16.5, “Implementing QoS
Alarms”, on page 87. For more information on SRTP QoS alarms, see Chapter 20, “Using Secure
RTP”.

QoS Threshold Attributes

All QoS alarm types have one or more threshold attributes, such as time interval and fault
threshold, which specify how the system determines when to generate a QoS alarm event.

The threshold attributes listed below are specified in [IPM_QOS_THRESHOLD_DATA structures
that are contained in an IPM_QOS_THRESHOLD_INFO structure that is passed to
ipm_SetQoSThreshold():

unTimelnterval
time interval between successive parameter measurements

unDebounceOn
polling interval for detecting potential alarm fault condition. This interval must be a multiple
of unTimelnterval.

unDebounceOff
polling interval for measuring potential alarm non-fault condition. This interval must be a
multiple of unTimelInterval.

unFaultThreshold
fault threshold value. The meaning and value range of this attribute depend on the alarm type.

unPercentSuccessThreshold
percentage of poll instances in unDebounceOff interval that the fault threshold must not be
exceeded before an “alarm off” event is sent. The granularity for this attribute is the ratio of
unTimelnterval to unDebounceOff, expressed as a percentage.

unPercentFail Threshold
percentage of poll instances in unDebounceOn interval that the fault threshold must be
exceeded before an “alarm on” event is set. The granularity for this attribute is the ratio of
unTimelnterval to unDebounceOff, expressed as a percentage.

Not all attributes are supported for all alarm types and products. All attributes that are not
supported should be set to 0.

The Dialogic® IP Media Library API software provides default values for each threshold attribute
that will be used if the application does not specify any threshold values via
ipm_SetQoSThreshold(); the specific default values vary by alarm type. See Table 6, “Quality of
Service (QoS) Parameter Defaults”, on page 274 for details on the attributes supported and the
default values for each QoS alarm type. Note that when an application sets a specific value for a
field, it must explicitly set all fields in the IPM_QOS_THRESHOLD_DATA structure even when
default values are desired for some of the fields.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Quality of Service (QoS) Alarms and RTCP Reports

16.4 QoS Event Types

The following QoS event types are used when calling the ipm_EnableEvents() and
ipm_DisableEvents() functions to enable and disable the corresponding QoS alarms.

EVT_JITTER
event indicating excessive jitter

EVT_LOSTPACKETS
event indicating excessive percentage of lost packets

EVT_RTCPTIMEOUT
timeout event indicating RTCP packets are no longer being received

EVT_RTPTIMEOUT
timeout event indicating RTP packets are no longer being received

EVT_RTCP_SCS
event used to track RTCP severely concealed second condition (SCS)

EVT_RTCP_JB_HIGH
event used to track RTCP excessive jitter buffer

EVT_RTCP_JB_LOW
event used to track RTCP jitter buffer below the threshold

These QoS event types correspond to the QoS alarm types discussed in Section 16.2, “QoS Alarm
Types”, on page 85. For details on enabling QoS alarms in your application, see the following
section, “Implementing QoS Alarms”.

16.5 Implementing QoS Alarms

The following steps provide general guidelines for implementing QoS alarms in your application.
For details on the Dialogic® IP Media Library API functions and data structures that are
mentioned, see Chapter 23, “Function Information” and Chapter 25, “Data Structures”.

Note: These steps do not represent every task that must be performed to create a working application but
are intended as general guidelines.

1. Optional steps before enabling a QoS alarm:

a. Call ipm_GetQoSThreshold() to retrieve the current settings of QoS parameters on the
specified IP channel. QoS parameter default values vary by alarm type and product. For
information on QoS parameter default values, see the table in Section 16.3, “QoS
Threshold Attributes”, on page 86.

b. If you need to change current QoS parameter values, set up the
IPM_QOS_THRESHOLD_INFO structure with desired values. This structure contains
one or more IPM_QOS_THRESHOLD_DATA structures. Note that you must explicitly
specify the value for every parameter in the IPM_QOS_THRESHOLD_DATA structure,
even if you want to use the default value for some of those parameters and non-default
values for other parameters.

c. Call ipm_SetQoSThreshold() to use the QoS parameter values set in step 1b.

Dialogic® IP Media Library API Programming Guide and Library Reference 87

Quality of Service (QoS) Alarms and RTCP Reports

16.6

88

2. Enable QoS alarms and start media streaming:
a. Call ipm_EnableEvents() to enable QoS monitoring for a list of alarm types.
b. Call ipm_StartMedia() to start media streaming and begin QoS monitoring.
3. Monitor QoS alarm notification events:

a. When a QoS alarm has been triggered, an IPMEV_QOS_ALARM event is generated by
the system. Call the Dialogic® Standard Runtime Library function sr_getevttype() to
return the event type.

b. Use Dialogic® Standard Runtime Library API functions such as sr_getevtdatap() to
query the IPM_QOS_ALARM_DATA structure to learn whether the alarm state is on or
off.

Note: For the Dialogic® Host Media Processing (HMP) Software, the system sends a QoS
alarm event containing ALARM_STATE_ON when the fault threshold is exceeded
and sends a QoS alarm event containing ALARM_STATE_OFF when the threshold
returns to the programmed level.

4. Perform clean-up activities:
a. Call ipm_Stop() to stop media streaming.
b. Call ipm_DisableEvents() to stop QoS parameter monitoring.

For example code that illustrates how to implement QoS alarms, see Section 16.7, “Example Code
for QoS Alarm Handling”, on page 92.

QoS Alarm and Alarm Recovery Mechanisms

The information in this section does not apply to the RTP timeout and RTCP timeout alarm types,
which do not support the debounce parameters.

To explain how the system monitors, detects, and clears a QoS alarm condition, three scenarios
will be presented. In the first scenario, a QoS fault condition is detected but an alarm-on event is
not sent to the application. In the second scenario, the QoS fault condition meets all alarm criteria
and an alarm-on event is sent. The third scenario expands on the second scenario and describes
how the alarm-on condition is cleared.

These scenarios are intended to illustrate the concepts. For easier reference, in the figures, time is
shown in seconds rather than in millisecond units.

In the three scenarios, the jitter alarm type is being monitored. The QoS parameters (alarm
threshold attribute values) used in these scenarios are:

e unTimelnterval = 1000 ms (1 second)
¢ unDebounceOn = 4000 ms (4 seconds)
e unDebounceOff = 4000 ms (4 seconds)
¢ unFaultThreshold = 60 milliseconds

¢ unPercentFailThreshold = 50 percent

¢ unPercentSuccessThreshold = 50 percent

Dialogic® IP Media Library APl Programming Guide and Library Reference

Quality of Service (QoS) Alarms and RTCP Reports

From these parameters, the library calculates “count” values for alarm-on and alarm-off
debouncing that represent the number of measurements that must fail (or succeed) within a
unTimelnterval period before an alarm-on (or alarm-off) event is generated.

For alarm-on debouncing:

count = int((unDebounceOn/unTimelnterval) * (unPercentFailThreshold/100))
= int((4000/1000) * (50/100))
=int(4 * 0.5)
=2

For alarm-off debouncing:

count = int((unDebounceOff/unTimelnterval) * (unPercentSuccessThreshold/100))
= int((4000/1000) * (50/100))
=int(4 * 0.5)
=2

For example code that uses these QoS parameter values, see Section 16.7, “Example Code for QoS
Alarm Handling”, on page 92.

Scenario 1: Brief Alarm Condition

This scenario illustrates that a QoS alarm is triggered, but the alarm condition does not meet all of
the specified alarm criteria. An alarm-on event is not sent to the application.

In Figure 14, the time line shows that QoS parameters are measured every time interval
(unTimelnterval parameter), or every 1 second in this case. When the jitter exceeds the 60ms fault
threshold (unFaultThreshold parameter), the debounce on timer is kicked off (unDebounceOn
parameter). In this example, the fault threshold is exceeded at the 4th second.

To determine if this is a true alarm condition, the system continues to monitor the jitter in blocks of
4 seconds (unDebounceOn parameter), the debounce on window. If the jitter is below the 60ms
fault threshold for more than 50 percent of the time (unPercentFailThreshold parameter) in a 4-
second block, an alarm-on event is not sent to the application.

In this example, at the end of the 4-second debounce on window (at the 8th second), the percent
failure threshold measured is 25 percent; that is, the fault threshold only exceeded the desired fault
threshold of 60ms at the 5th second measurement within the 4-second debounce on window. Since
the desired percentage failure threshold of 50 percent was not met or exceeded, no alarm-on event
is sent to the application. At the end of the 8th second, the debounce on timer is reset.

Dialogic® IP Media Library API Programming Guide and Library Reference 89

Quality of Service (QoS) Alarms and RTCP Reports

90

Figure 14. QoS Scenario 1: Brief Alarm Condition

QoS parameters:
time interval = 1 sec
debounce on =4 sec
debounce off = 4 sec
fault threshold = 60ms
% success threshold = 50 %
% fail threshold = 50 %

jitter (ms) % fail threshold not exceeded
4 debounce on debounce on timer reset
timer starts no alarm event sent
100 T | |
80 + !
60 + —
40 +
20 +
}
4 8 12 time
in sec

Scenario 2: True Alarm Condition

This scenario illustrates that a QoS alarm is triggered, and the alarm condition meets all of the
specified alarm criteria. Therefore, an alarm-on event is sent to the application.

In Figure 15, the time line shows that QoS parameters are measured every time interval
(unTimelnterval parameter), or every 1 second in this case. When the jitter exceeds the 60ms fault
threshold (unFaultThreshold parameter), the debounce on timer is kicked off (unDebounceOn
parameter). In this example, the fault threshold is exceeded at the 4th second.

To determine if this is a true alarm condition, the system continues to monitor the jitter in blocks of
4 seconds, the debounce on window (unDebounceOn parameter). If the jitter exceeds the 60ms
fault threshold for more than 50 percent of the time (unPercentFailThreshold parameter) in a 4-
second block, an alarm-on event is sent to the application.

In this example, at the end of the 4-second debounce on window (at the 8th second), the percent
failure threshold measured is 100 percent; that is, the fault threshold exceeded the desired fault
threshold of 60ms at the 5th, 6th, 7th and 8th second measurement within the 4-second debounce
on window. Since the desired percentage failure threshold of 50 percent was exceeded, an alarm-on
event is sent to the application. At the end of the 8th second, the debounce on timer is reset. See
Scenario 3: Alarm Condition Cleared to learn how the system continues to monitor the jitter QoS
alarm.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Quality of Service (QoS) Alarms and RTCP Reports

Figure 15. QoS Scenario 2: True Alarm Condition

QoS parameters:
time interval = 1 sec
debounce on = 4 sec
debounce off = 4 sec
fault threshold = 60 ms
% success threshold = 50 %
% fail threshold = 50 %

jitter (ms) % fail threshold exceeded
4 debounce on debounce on timer reset
timer starts alarm on event sent

100 l =I

80

60 —_—_ = = -

40

20
—tttt
8 12 time

in sec

Scenario 3: Alarm Condition Cleared

Scenario 3 builds on Scenario 2 to illustrate what happens after an alarm-on event is sent to the
application and how the alarm-on condition is cleared.

In Figure 16, an alarm-on event was sent to the application at the 8th second, and the system is now
in a QoS failure condition. To determine how long this condition will last, the system resumes
monitoring the jitter every time interval (unTimelnterval parameter), or every 1 second in this
case. When the jitter is less than the 60ms fault threshold (unFaultThreshold parameter), the
debounce off timer kicks in (unDebounceOff parameter). In this example, this condition occurs at
the13th second.

To determine if this is a true success condition, the system monitors the jitter in blocks of 4
seconds, the debounce off window (unDebounceOff parameter). If the jitter is below the 60ms
fault threshold for more than 50 percent of the time (unPercentSuccessThreshold parameter) in a
4-second block, an alarm-off event is sent to the application.

In this example, at the end of the 4-second debounce off window (at the 17th second), the percent
success threshold measured is 100 percent; that is, the jitter level was below the desired fault
threshold of 60ms at the 14th through 17th second measurement within the 4-second debounce off
window. Since the desired percentage success threshold of 50 percent was exceeded, an alarm-off
event is sent to the application. At the end of the 17th second, the debounce off timer is reset.

Dialogic® IP Media Library API Programming Guide and Library Reference 91

Quality of Service (QoS) Alarms and RTCP Reports

Figure 16. QoS Scenario 3: Alarm Condition Cleared

QoS parameters:
time interval = 1 sec
debounce on =4 sec
debounce off = 4 sec
fault threshold = 60 ms
% success threshold = 50 %
% fail threshold = 50 %

% success

threshold exceeded;
jitter (ms) % fail threshold exceeded; debounce off
1 debounce on debounce on timer reset; debounce off timer reset;
timer starts alarm on event sent timer starts alarm off event sent
100 | o | -
['I
80 |+ L
60 - - - - - - — —\—- - - —
40
20
—t —
8 12 16 time
in sec

16.7

Example Code for QoS Alarm Handling

The following pseudocode illustrates how you might use QoS alarms in an application. The code
enables the following QoS alarm types: jitter, lost packets, RTCP timeout, and RTP timeout.
Because the IPM_QOS_THRESHOLD_INFO structure is not filled in for the lost packets alarm
type, the default QoS parameter values are used for this alarm. The QoS parameter values for jitter

are the same values used in the scenario descriptions in Section 16.6, “QoS Alarm and Alarm

Recovery Mechanisms”, on page 88.

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
int nDeviceHandle;
IPM QOS THRESHOLD INFO mySetQosThresholdInfo;

const int nNumEvent = 4;

eIPM EVENT myEvents [nNumEvent] ={EVT LOSTPACKETS,
EVT JITTER,
EVT_RTPTIMEOUT,

EVT RTCPTIMEOUT};

92 Dialogic® IP Media Library APl Programming Guide and Library Reference

Quality of Service (QoS) Alarms and RTCP Reports

// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent);

/*

Main Processing

*/

/*

The application can call ipm GetQoSThreshold() to check the current
threshold levels for QoS parameters.

Note:
// 1.

For RTP Timeout
//

mySetQosThresholdInfo

mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.
mySetQosThresholdInfo.

if (ipm_SetQoSThreshold (nDeviceHandle, &mySetQosThresholdInfo, EV_SYNC) ==

{

printf ("ipm SetQoSThreshold failed for device name =

Change alarm threshold settings for IP device handle,
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{().

You don't have to change all QoS types.
values are not changed.

and RTCP Timeout,

unCount = 3;

QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData

QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData
QoSThresholdData

.eQoSType =
.unTimeInterval = 1000;
.unDebounceOn =
.unDebounceOff =
.unFaultThreshold = 60;//60ms
.unPercentSuccessThreshold = 50;//50%
.unPercentFailThreshold =
.eQoSType =
.unTimeInterval =
.unDebounceOn = 0
.unDebounceOff = 0;
.unFaultThreshold = 600; //60sec
.unPercentSuccessThreshold = 0;
.unPercentFailThreshold = 0;
.eQoSType = QOSTYPE RTCPTIMEOUT;
.unTimeInterval = 1000;//lsec
.unDebounceOn =
.unDebounceOff =
.unFaultThreshold =
.unPercentSuccessThreshold = 0;
.unPercentFailThreshold =

nDeviceHandle.

In the example below, the lost packet

the values of all parameters EXCEPT
unTimeInterval and unFaultThreshold must be set to ZERO
mySetQosThresholdInfo.
mySetQosThresholdInfo. [0]
mySetQosThresholdInfo. [0]
mySetQosThresholdInfo. [0]
mySetQosThresholdInfo. [0]
mySetQosThresholdInfo. [0]
mySetQosThresholdInfo. [0]
mySetQosThresholdInfo. [0]
mySetQosThresholdInfo. [1]
mySetQosThresholdInfo. [1]
mySetQosThresholdInfo. [1]
.QoSThresholdData[1l]
[1]
[1]
[1]
[2]
[2]
[2]
[2]
[2]
[2]
[2]

QOSTYPE_JITTER;
//1lsec
4000; //4sec
4000;//4sec

50;//50%

QOSTYPE_RTPTIMEOUT;
1000;//1sec

O.

timeout

0;
0;
//15sec

150; timeout

07
-1)

%s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

/*

Perform Error Processing

*/

Dialogic® IP Media Library API Programming Guide and Library Reference

93

Quality of Service (QoS) Alarms and RTCP Reports

// Call ipm EnableEvent to be notified of possible alarm conditions.
if (ipm EnableEvents (nDeviceHandle, myEvents, nNumEvent, EV_SYNC) == -1)
{
printf ("ipm EnableEvents failed for device name %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing
*/

/*
Continue Processing
*/
// Rppplication can disable events if it does not want to be notified.
if (ipm_DisableEvents (nDeviceHandle, myEvents, nNumEvent, EV_SYNC) == -1)
{
printf ("ipm DisableEvents failed for device name $%s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

*/

}

if (ipm Close (nDeviceHandle, NULL) == -1)

{
printf("------—---- >ipm Close() failed for handle = %d\n", nDeviceHandle);
/*

Perform Error Processing
*/

void CheckEvent ()

{
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
void *pVoid = sr_getevtdatap();

switch (nEventType)
{
/*
List of expected events
*/
/* When alarm occurs you get this event. */

case IPMEV_QOS_ALARM:
{

94 Dialogic® IP Media Library APl Programming Guide and Library Reference

Quality of Service (QoS) Alarms and RTCP Reports

printf ("Received IPMEV_QOS_ALARM for device = %s\n",
ATDV_NAMEP (nDevicelID));
IPM QOS_ALARM DATA * 1 pAlarm = (IPM QOS ALARM DATA*)pVoid;
switch (1l _pAlarm->eQoSType)
{
case QOSTYPE JITTER:
printf ("Alarm Type = Jitter\n");
break;
case QOSTYPE LOSTPACKETS:
printf ("Alarm Type = LostPackets\n");
break;
case QOSTYPE RTPTIMEOUT:
printf ("Alarm Type = RTPTimeout\n");
break;
case QOSTYPE RTCPTIMEOUT:
printf ("Alarm Type = RTCPTimeout\n");

break;
}
printf ("Alarm state = %$s\n", (1_pAlarm->eAlarmState? "On": "Off"));
break;
}
/*
process other cases.
*/
default:

printf ("Received unknown event = %d for device = %$s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

16.8 RTCP Reporting

RTCP reporting is discussed in the following topics:

¢ Basic RTCP Reports

¢ Enhanced RTCP Reports

¢ Retrieving an RTCP Report

¢ Enabling RTCP Reporting System-Wide

16.8.1 Basic RTCP Reports

Basic RTCP reports are obtained by calling ipm_GetSessionInfo(). The RTCP information is
represented in the IPM_RTCP_SESSION_INFO portion of the IPM_SESSION_INFO structure
passed to the function. The data returned is parsed into data structure elements.

16.8.2 Enhanced RTCP Reports

Enhanced RTCP reports are not supported on all releases. For support information, see Chapter 2,
“Feature Support by Platform”.

Dialogic® IP Media Library API Programming Guide and Library Reference 95

Quality of Service (QoS) Alarms and RTCP Reports

16.8.3

96

The Dialogic® IP Media library supports Quality of Service (QoS) alarms and enhanced RTCP
reports (RTCP-XR) compliant with RFC 3611 for RTCP Extended Reports and IETF draft RTCP
High Resolution VoIP Metrics Report Blocks (RTCP-HR). The latest IETF draft as of this writing
is at: http://tools.ietf.org/html/draft-ietf-avt-rtcphr-03.

Enhanced RTCP reporting adds extended and high resolution VoIP metrics to the RTCP packets
sent by Dialogic® HMP Software. The new packets convey information beyond that already
contained in the reception report blocks of RTCP’s Sender Report and Receiver Report packets.

Each enhanced RTCP packet consists of the following:

Basic report blocks as defined by RFC 3550
These include Sender Report, Receiver Report, and SDES.

An extended report block (XR) as defined by RFC 3611
This includes the RTCP-XR header block and a set of RTCP-HR defined blocks. The RTCP-
HR block includes sub-blocks such as Concealed Seconds metrics, Basic Loss/Discard
metrics, Delay/PVD metrics, and Playout metrics. No other block types are supported by this
feature.

With enhanced RTCP reporting, it is useful to monitor the following RTCP statistics and raise
alarms when they exceed the allowable threshold:

Severely concealed second condition (SCS)
A severely concealed second condition is defined as a non-overlapping period of one second,
during which the cumulative amount of time that has been subject to frame loss exceeds the
SCS Threshold of 15 percent. In other words, this refers to any one-second period that has
more than 15% of lost data. EVT_RTCP_SCS is the alarm event used to track this condition.

RTCP jitter buffer
An alarm can be raised when jitter buffer exceeds or falls below the threshold.
EVT_RTCP_JB_HIGH and EVT_RTCP_JB_LOW are the alarm events used to track RTCP
jitter buffer.

The ipm_GetSessionInfoEx() function enables an application to retrieve the raw data of
transmitted or received RTCP packets (which include the old and the new blocks). A separate
RTCP parser library is provided and can be used to extract both basic and extended RTCP report
information.

Retrieving an RTCP Report

To retrieve an RTCP report, follow these steps:

1. Enable enhanced RTCP reporting by calling ipm_SetParm() with the parameter PARMCH_
RTCP_ENHANCED_REPORTING.

2. Specify the frequency of enhanced RTCP reporting events using ipm_SetParm() with the
parameter PARMCH_RTCP_ENHANCED_EVENT_FREQ set to a non-zero value.

3. Enable the unsolicited events using the ipm_EnableEvents() function. Enable these event
types: EVT_RTCP_REPORT_RECEIVED and EVT_RTCP_REPORT_SENT.

Dialogic® IP Media Library APl Programming Guide and Library Reference

http://tools.ietf.org/html/draft-ietf-avt-rtcphr-03
http://tools.ietf.org/html/draft-ietf-avt-rtcphr-03
http://tools.ietf.org/html/draft-ietf-avt-rtcphr-03

16.8.4

Note:

Quality of Service (QoS) Alarms and RTCP Reports

4. When one of the unsolicited events, IPMEV_RTCP_NOTIFY_RECEIVED or
IPMEV_RTCP_NOTIFY_SENT, is received by the application, call
ipm_GetSessionInfoEx() with the appropriate direction specified.

5. Analyze the IPM_SESSION_INFOEX data structure associated with the completion event
IPMEV_GET_SESSION_INFOEX.
6. Use the RTCP parser library provided in usr/dialogic/demos/rtcpparser to parse the contents

of the compound RTCP packet into individual packets. How-to information for parsing the
raw data is also provided.

Enabling RTCP Reporting System-Wide

To enable enhanced RTCP reporting on a system-wide basis, set the values in the [IPVSC] section
of the CONFIG file, run fcdgen utility, and then restart the system.

To preserve custom data, it is recommended that you set the custom values in the HMP. Uconfig
file rather than modifying the CONFIG file directly. For details, see the “Preserving Data in User
Configuration Files” topic in the Dialogic® System Configuration Guide.

RTCP Enhanced Reporting

Number: 0x401f

Description: Enables transmission of the RTCP-XR (extended) and RTCP-HR (high
resolution) blocks in RTCP packets.

Values: 0 for off and 1 for on. Default value: 0

RTCP Event Frequency
Number: 0x4020
Description: Controls how often RTCP reporting events are sent to the application. For
example, when set to 5, every fifth RTCP reporting event is sent to the application.
Values: 0 to 255. Default value: 0 (don’t send reporting event).

The following example shows how these parameters are added in the HMP.Uconfig file.
[IPVSC]

SetParm=0x401f, 1 ! turn on RTCP-XR/HR reporting
SetParm=0x4020, 2 ! receive an event on every second RTCP message

See the Dialogic® System Configuration Guide for more information on the CONFIG file.

Dialogic® IP Media Library API Programming Guide and Library Reference 97

Volume Control 17

17.1

17.2

This chapter describes the volume adjustment feature which allows an application to adjust the
volume level on a Dialogic® IP device. The following topics are covered:

¢ Volume Control OVEIVIEWottt e e 98
¢ Volume Control Parameters. 98
e Implementing Volume Control i 99
* Volume Control Hints and TipsS.ottt 99
e Example Code for Volume Control 99

Volume Control Overview

The Dialogic® IP Media Library API provides the ability to adjust the volume of an inbound and
outbound call on a Dialogic® IP device. This volume adjustment value is specified for an IP
channel device through the API; possible values are from -32 dB to +31 dB in increments of 1 dB.

The volume adjustment value is a relative change to the nominal value. For example, if the original
volume level on a call is 20 dB, then to reduce the volume, you could specify an adjustment value
of -6 dB; the volume level on the call would then be 14 dB. To increase the volume, you could
specify an adjustment value of +8 dB; the volume level on the call would then be 28 dB.
Subsequently, to readjust the volume to 26 dB, you must specify +6 dB. This adjustment is relative
to the original nominal value of 20 dB.

Volume Control Parameters

The ipm_SetParm() function is used to specify the volume adjustment for a Dialogic® IP device
in your application. The ipm_GetParm() function returns the value of the volume adjustment for
a given Dialogic® IP device. If no volume adjustment has been made, this function returns a zero
for the volume adjustment parameters. Both of these functions use the IPM_PARM_INFO
structure.

The following parameter types (specified in the IPM_PARM_INFO structure eParm field) are used
to adjust the volume level of a call on a Dialogic® IP device:

e PARMCH_RX_ADJVOLUME to adjust the volume level for the inbound side (from IP) of a
call

e PARMCH_TX_ADJVOLUME to adjust the volume level for the outbound side (to IP) of a
call

Dialogic® IP Media Library API Programming Guide and Library Reference 98

17.3

17.4

17.5

Note:

Volume Control

Implementing Volume Control

To implement volume control for a Dialogic® IP device in your application, follow these steps:
These steps do not represent every task that must be performed to create a working application but
are intended as general guidelines.

1. Determine the volume adjustment necessary for the Dialogic® IP device; for example, based
on your experience with equipment from a particular vendor.

2. Adjust the volume level for the inbound side (from IP) as needed using ipm_SetParm() and
the PARMCH_RX_ADJVOLUME parameter in IPM_PARM_INFO structure.

3. Adjust the volume level for the outbound side (to IP) as needed using ipm_SetParm() and the
PARMCH_TX_ADJVOLUME parameter in [IPM_PARM_INFO structure.
4. Perform streaming activity using ipm_StartMedia().

Note: Typically, you adjust the volume level before performing a streaming activity over
the IP network. However, you can issue the ipm_SetParm() function to change the
volume level during an active call.

5. If desired, check the current value of volume level adjustment for a Dialogic® IP device using
ipm_GetParm().

6. If desired, reset the volume to its original value (that is, no adjustment) at call termination
using ipm_SetParm() and either PARM_RX_ADJVOL_DEFAULT or
PARM_TX_ADJVOL_DEFAULT.

Volume Control Hints and Tips

The following hints and tips are provided to help you use the volume control feature in your
application:

* The volume adjustment value (specified in PARMCH_RX_ADJVOLUME or
PARMCH_TX_ADJVOLUME) is applied per IP channel device.

 The volume adjustment value for a Dialogic® IP device remains in effect until it is explicitly
changed in the application. Terminating the call or closing the device will not reset the volume
level to its default value.

¢ The adjustment levels specified are absolute values. Each invocation will change the
adjustment level to its new value.

Example Code for Volume Control

The following example illustrates the use of the PARMCH_TX_ADJVOLUME value to decrease
the volume by 6 dB for the outbound side of an IP call.

#include <stdio.h>

#include <srllib.h>

#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);

Dialogic® IP Media Library API Programming Guide and Library Reference 99

Volume Control

100

void CheckEvent () ;

void main ()

{

int nDeviceHandle;

// Register even

t handler function with the standard runtime library (SRL)

sr_enbhdlr (EV_ANYDEV, EV_ANYEVT, (HDLR)CheckEvent);

/ *
main processing
*/
/ *
Need to enable
ASSUMPTION: A
*/
IPM PARM INFO
int
parmInfo.eParm

three events for IP device handle, nDeviceHandle.
valid nDeviceHandle was obtained from prior call to ipm Open() .

parmInfo;
parmValue = -6; // decrease nominal volume by 6 dB
= PARMCH TX_ ADJVOLUME;

parmInfo.pvParmValue = &ParmValue;

if ipm SetParm(
{
/*

nDeviceHandle, &parmInfo, EV_ASYNC) == -1)

.Perform error processing

*

/*

Start media streaming with ipm StartMedia()

*/

// Reset Volume adjust to the channel

IPM_PARM INFO
int
parmInfo.eParm

parmInfo;
parmValue = PARM TX_ ADJVOL_DEFAULT;
= PARMCH_ TX ADJVOLUME;

parmInfo.pvParmValue = &ParmValue;
if (ipm SetParm(nDeviceHandle, &parmInfo, EV_ASYNC) == -1)
printf ("%s: ipm_SetParm failed.\n", ATDV_NAMEP (nDeviceHandle)) ;

else

printf (""$s: Transmit Volume adjustment has been Reset successfully.\n",

ATDV_NAMEP (nDeviceHandle)) ;

void CheckEvent ()

{

int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
void* pVoid = sr_getevtdatap();

switch (nEventType)

{

case IPMEV_SET PARM:
IPM PARM INFO parmInfo;
int parmvalue = 0;
parmInfo.eParm = PARMCH TX ADJVOLUME;
parmInfo.pvParmValue = &ParmValue;

Dialogic® IP Media Library APl Programming Guide and Library Reference

Volume Control

ipm_GetParm(nDeviceHandle, &parmInfo, EV_SYNC) ;

printf ("Outbound Volume for device = $%s adjusted",
"by = %d db.\n", ATDV_NAMEP (nDeviceID),
parmInfo.ParmValue) ;

break;

Default:
Printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

Dialogic® IP Media Library API Programming Guide and Library Reference 101

Using Echo Cancellation 18

18.1

This chapter describes the Dialogic® IP Media Library API support for echo cancellation, a feature
that reduces traces of an output signal (echo) from an incoming signal.

e Overview of Echo Cancellation. i 102

e Echo Cancellation Parameters. i 103

Overview of Echo Cancellation

Echo cancellation is not supported on all releases. For support information, see Chapter 2, “Feature
Support by Platform”.

Echo cancellation is a technique used to significantly reduce traces of an outgoing prompt in the
incoming signal. These traces are referred to as echo. The echo canceller is the component in the
Dialogic® Host Media Processing (HMP) Software responsible for performing echo cancellation.

Figure 17 demonstrates how the echo canceller works. After the incoming signal is processed by
the echo canceller, the resulting signal no longer has significant echo and is then sent to the host
application.

Figure 17. Echo Cancellation

Echo Canceller

Incoming Signal with Echo

(for example, with traces of Echo
of a voice prompt) Subtracter Echo-cancelled Signal
> (Incoming Signal) — >

(Echo Estimate) =
Echo cancellation

Reference Signal @

(for example, a Echo
voice prompt) Estimator
> and Other

Control Circuitry

If echo cancellation is not used, the incoming signal usually contains an echo of the outgoing
prompt. Without echo cancellation, an application must ignore all incoming energy until the
prompt and its echo terminate.

Dialogic® IP Media Library API Programming Guide and Library Reference 102

18.2

Using Echo Cancellation

With echo cancellation, the caller may interrupt the prompt, and the incoming speech signal can be
passed to the application.

Echo cancellation may be required when Dialogic® IP media resources receive media streams from
the PSTN via the DTI resources of the T1/E1 single span (DNI300TEPHMP) or the T1/E1 quad
span (DNI1200TEPHMP) boards. Echo cancellation is not required for media streams received
from IP connections, PSTN connections via the T1/E1 dual span (DNI601 TEPHMP) board, which
provides onboard echo cancellation as part of the DTI resources, or via the DSI162 digital station
interface boards.

Echo cancellation on an IP device can be monitored and controlled at run time using the
ipm_GetParm() and ipm_SetParm() functions in the Dialogic® IP Media Library APL

Echo Cancellation Parameters

The ipm_GetParm() and ipm_SetParm() functions use the [IPM_PARM_INFO data structure to
retrieve and set parameters in general. For echo cancellation, the following parameters are
supported:

PARMCH_ECACTIVE
Enables or disables echo cancellation on an IP device. Possible values are:

¢ (- Disable echo cancellation (default)

e] - Enable echo cancellation

PARMCH_ECHOTAIL
Set or retrieve the echo tail length. The duration of an echo is measured in milliseconds. The
echo canceller software can remove some limited number of these milliseconds; this number is
known as the tail length of the echo canceller. The longer the tail length, the more echo is
cancelled from the incoming signal, but this means more processing power is required. When
determining the tail length value, consider the length of the echo delay in the system as well as
the overall system configuration. Possible values are in the range 8 to 64 milliseconds (the
default is 64 milliseconds).

PARMCH_ECNLP_ACTIVE
Set or retrieve the Non-Linear Processing (NLP) value. NLP is a process used to block or
suppress the residual (echo-cancelled) signal, when there is no near end speech. This process
can be used with comfort noise generation (CNG) to produce background noise. Background
noise energy estimation is used to adjust the level of comfort noise generated. This allows the
speaker to listen to the same level of background noise when the non-linear processor is
switched on and off due to double-talk situations or near end speech. A typical usage of this
feature is background noise used in dictation applications to let the user know that the
application is working. Possible values are:

¢ 0- NLP off
e 1 - NLP on (default)

Dialogic® IP Media Library API Programming Guide and Library Reference 103

Using NAT Traversal in SIP Media 19
Session

This chapter describes Network Address Translation (NAT) in a SIP media session, which enables
an application to send RTP/RTCP packets to the correct destination in a NAT environment.

e Feature DesCriptionottt 104

o APILibrary SUPpPOItttt 104

e Example Code 1 for NAT Traversal 105

e Example Code 2 for NAT Traversal, 106
19.1 Feature Description

NAT traversal in SIP media session is not supported on all releases. For support information, see
Chapter 2, “Feature Support by Platform”.

NAT is a well-known feature built into many small office or home office networks for security
purposes and allows multiple host computers to access the internet through a single public IP
address.

In a NAT-enabled environment, the destination information specified in the SDP of the signaling
packet cannot be used to send the RTP packet. This is the internal address/port information of the
endpoint. Currently Dialogic® HMP software applications have no knowledge of the correct
destination information for the RTP/RTCP packets in a NAT-enabled network environment, other
than those that come through the SDP.

When enabled, this feature notifies the application of the correct destination information of the
originating RTP or RTCP packet. The application uses this information to direct the RTP/RTCP
packets appropriately. In order to redirect the packets to the correct destination, the application
issues the ipm_ModifyMedia() function with the correct destination information.

19.2 API Library Support

To use the NAT traversal feature and to receive the IPMEV_NOTIFY_ENDPOINTID event that
contains endpoint information, enable the EVT_ENDPOINTID_NOTIFY event type through the
ipm_EnableEvents() function. The event payload contains the endpoint identification
information of the incoming RTP/RTCP packet. The IPMEV_NOTIFY_ENDPOINTID event data
is contained in the IPM_ENDPOINTID_INFO structure.

Dialogic® IP Media Library API Programming Guide and Library Reference 104

Using NAT Traversal in SIP Media Session

19.3 Example Code 1 for NAT Traversal

This example demonstrates how to enable the EVT_ENDPOINTID_NOTIFY event type.

#include <stdio.h>

#include <stdlib.h>

#include "ipmlib.h"

#include "srllib.h"

typedef long int (*HDLR) (unsigned long) ;
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
eIPM EVENT myEvents([1] ={ EVT_ENDPOINTID NOTIFY };

// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;
/‘k

Main Processing

*/
/*

* Need to enable event for IP device handle, nDeviceHandle.

* ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open().
*/

if (ipm EnableEvents (nDeviceHandle, myEvents, 1, EV_ASYNC) == -1)
{
printf ("ipm EnableEvents failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

}

void CheckEvent ()

{

int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
switch (nEventType)

{

/*

List of expected events

*/
/* Expected reply to ipm EnableEvents() */
case IPMEV_EVENT_ ENABLED:
printf ("Received IPMEV EVENT ENABLED for device = $s\n", ATDV NAMEP (nDevicelID));
break;
default:
printf ("Received unknown event = %d for device = %s\n", nEventType,
ATDV_NAMEP (nDevicelID));
break;

Dialogic® IP Media Library API Programming Guide and Library Reference 105

Using NAT Traversal in SIP Media Session

19.4

106

Example Code 2 for NAT Traversal

This example demonstrates receiving the IPMEV_NOTIFY_ENDPOINTID event and issuing the

ipm_ModifyMedia() function.

#include <stdlib.h>
#include "ipmlib.h"
#include "srllib.h"

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{

/* Main Processing */

/* ipm StartMedia () issued */

/* Media session successfully started */

}

void CheckEvent ()

int nEventType = sr getevttype();

int nDeviceID = sr_getevtdev();

void* pVoid = sr getevtdatap();

IPM _ENDPOINTID INFO* pEndpointIdInfo;
char *temp;

switch (nEventType)

{
/*

List of expected events
*/

/* Expected reply to ipm EnableEvents() */
case IPMEV_EVENT_ ENABLED:

printf ("Received IPMEV_EVENT ENABLED for device = %s\n",

ATDV_NAMEP (nDeviceID)) ;
break;

case IPMEV_NOTIFY ENDPOINTID:
pEndpointIdInfo = (IPM _ENDPOINTID INFO *)pVoid;
printf ("Received IPMEV_ ENDPOINTID NOTIFY for device
%$s\n",ATDV_NAMEP (nDevicelID)) ;

printf ("MediaType is%d\n", pEndpointIdInfo-> eMediaType) ;

printf ("PortId is%d\n", pEndpointIdInfo->unPortId);
printf ("SSRC is%u\n", pEndpointIdInfo->ulSSRC);

/*

* Use network function to convert the IP Address from binary form to

* dotted decimal form
*/
struct in _addr IPADD;

IPADD.S un.S_addr = *((unsigned long *)&pEndpointIdInfo->ucIPAddress);

temp = inet ntoa (IPADD);
printf ("IP Address is %s\n", inet_ntoa (IPADD)) ;

if ((pEndpointIdInfo-> eMediaType == MEDIATYPE AUDIO REMOTE_RTP_ INFO)
|| (pEndpointIdInfo->eMediaType == MEDIATYPE VIDEO REMOTE RTP INFO)

)

Dialogic® IP Media Library APl Programming Guide and Library Reference

Using NAT Traversal in SIP Media Session

printf ("Payload type is%d\n", pEndpointIdInfo->ucPayloadType) ;
printf ("Payload size is%d\n", pEndpointIdInfo->usPayloadSize);
printf ("Sequence Number is%d\n", pEndpointIdInfo->usSequenceNum) ;
printf ("Timestamp is%u\n", pEndpointIdInfo->ulTimeStamp) ;

* Send ipm ModifyMedia () once we have determined that there is a port

* address information change needed for our media session. The

* application has to verify that port and address information has really
* changed before it issues a ipm ModifyMedia ()

*/

* Here the example shows only change in RTP information. The user can also

* change RTCP information in the same ipm ModifyMedia () call by assuming that

* the RTCP port will be 1 + the RTP port or wait for another

* IPMEV_ENDPOINTID NOTIFY with the RTCP information.

*/

IPM_MEDIA_ INFO MedialInfo;

MediaInfo.unCount = 1;

MediaInfo.MediaData[0] .eMediaType = MEDIATYPE AUDIO REMOTE_RTP_INFO;

MediaInfo.MediaData[0] .mediaInfo.PortInfo.unPortId = pEndpointIdInfo->unPortId;
{

printf ("ipm Modify failed for device name = %s with error =

%d\n",ATDV_NAMEP(nDeviceID), ATDV_LASTERR(nDeviceID));
/*

Perform Error Processing

*/
}
break;
default:
printf ("Received unknown event = %d for device = %$s\n",nEventType,
ATDV_NAMEP (nDeviceID)) ;
break;

}

Dialogic® IP Media Library API Programming Guide and Library Reference 107

Using Secure RTP 20

20.1

This chapter describes the Dialogic® IP Media Library API support for Secure RTP, a feature that
provides confidentiality and integrity protection for RTP and RTCP traffic. Topics include:

e Overviewof Secure RTP 108
e Generating Encryption Keys o 109
e Starting and Modifying a Media Session that Uses Secure RTP. 110
¢ Retrieving and Modifying Encryption Key Expiry Notification Interval 112
¢ Retrieving and Resetting Secure RTP Alarms. 112
¢ Retrieving and Setting Threshold Values for Secure RTP Alarms 113
e Events Generated by Secure RTP 113
e UseCaseforSecure RTP. i 115
e Example Code for Secure RTP 115

Overview of Secure RTP

Secure RTP may not be supported on all releases. For support information, see Chapter 2, “Feature
Support by Platform”.

This section gives a high-level summary of the Secure Real-time Transport Protocol (SRTP)
feature. Full details are described in The Secure Real-time Transport Protocol (SRTP) IETF
publication, RFC 3711, available at http://www.ietf.org/rfc/rfc3711.txt.

Real-time Transport Protocol (RTP) is commonly used for the transmission of real-time audio or
video streams in Internet telephony applications. Secure RTP (SRTP) is an enhancement to RTP
that provides confidentiality, message authentication, and replay protection for RTP and the
companion Real Time Control Protocol (RTCP). “Replay protection” provides protection against
an attacker who intercepts and records SRTP packets and later replays them into the packet stream
in an attempt to interfere with or garble secure SRTP communications between two endpoints.

SRTP can be thought of as residing between an RTP application and the transport layer. On the
sending side, SRTP intercepts an RTP packet and forwards an equivalent SRTP packet. At the
receiving side, SRTP receives an SRTP packet and the equivalent RTP packet is passed up the
protocol stack.

In SRTP, the payload (and padding) of RTP packets is encrypted. Many different encryption and
message authentication algorithms exist, but RFC 3711 specifies the following default pre-defined
algorithms:

Dialogic® IP Media Library API Programming Guide and Library Reference 108

http://www.ietf.org/rfc/rfc3711.txt

20.2

Using Secure RTP

* For encryption, the pre-defined cipher is the Advanced Encryption Standard (AES) operating
in Segmented Integer Counter Mode, sometimes known simply as “Counter Mode”. The HMP
software does not support the f8-mode.

¢ For message authentication and integrity, the pre-defined authentication transform is HMAC-
SHAT1 as described in the HMAC: Keyed-Hashing for Message Authentication IETF
publication, RFC 2104, available at http://www.ietf.org/rfc/rfc2104.txt.

Using these pre-defined algorithms, the encrypted (SRTP) payload size is only slightly larger than
the unencrypted (RTP) payload size.

An important part of any encryption scheme is the generation of the keys used to encrypt the
information. This involves the use of master keys and optionally master salt. A master key is a
random bit string from which session keys (used directly in the cryptographic transforms) are
derived. A master salt is also a random bit string used to provide even greater security. The
Dialogic® IP Media Library API includes key generator functionality (the
ipm_SecurityGenMasterKeys() function) to provide these keys if necessary.

SRTP may rely on an external key management system to provide the master key and master salt
(optional). Alternatively, SRTP can be used in conjunction with the following:

¢ SIP TLS (Session Initiated Protocol, Transport Layer Security), as described in The TLS
Protocol IETF publication, RFC 2246, available at http://www.ietf.org/rfc/rfc2246.txt with
ancillary information in the IETF draft available at http://www.ietf.org/internet-drafts/draft-
gurbani-sip-tls-use-00.txt (expires August, 2006). TLS provides for its own authentication and
key management, as well as encryption. TLS can be used to provide a secure way for two
devices using SRTP to exchange the necessary setup information, including SRTP keys (using
SDP Secure Descriptions, see below).

¢ Session Description Protocol (SDP) Secure Descriptions, as described in the IETF draft
available at http://www.ietf.org/internet-drafts/draft-ietf-mmusic-sdescriptions-12.txt (expires
March, 2006). SDP Secure Descriptions are the means by which two endpoints,
communicating via SRTP, exchange the keys that enable decryption and authentication. SDP
Secure Descriptions define an SDP cryptographic attribute for unicast media streams. The
attribute describes a cryptographic key and other parameters that can be used to configure
SRTP for a unicast media stream in either a single message or a round-trip exchange. The
attribute can be used with a variety of SDP media transports. The SDP crypto attribute requires
the services of TLS to secure the SDP message.

SRTP incorporates a “key derivation algorithm” that uses the master key, master salt and packet
index to generate the session keys that are used directly for encryption or message authentication.
The rate at which new keys are applied, that is, the “key derivation rate” can also be defined.

Generating Encryption Keys

To reduce the burden on the application developer when developing applications that use SRTP,
the IP Media Library includes the ipm_SecurityGenMasterKeys() function that generates master
and salt keys. The generated keys can be in one of two formats 1) binary format or 2) Base64-
encoded format. Once a Dialogic® IPM device is open, there are no restrictions on when the
ipm_SecurityGenMasterKeys() function can be called.

Dialogic® IP Media Library API Programming Guide and Library Reference 109

http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-sdescriptions-12.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/internet-drafts/draft-gurbani-sip-tls-use-00.txt
http://www.ietf.org/internet-drafts/draft-gurbani-sip-tls-use-00.txt

Using Secure RTP

20.3

20.3.1

20.3.2

110

Starting and Modifying a Media Session that Uses
Secure RTP

The ipm_StartMedia() function can be used to start a media streaming session on an IP Media
device and the ipm_ModifyMedia() function can be used to modify the properties of an active or
suspended media session. A media session can be started as an SRTP session or it can be changed
from an RTP to SRTP session or vice versa during the session.

At the transmitting side, the order of the keys that are used for SRTP/SRTCP (from the remote
<audio/video> receive list) is the same as the order of the input keys array. Once the lifetime of the
first key expires, then the second key is used, and so on. When the lifetime of a key expires, that
key is no longer in the device’s context.

At the receiving side, a Master Key Identifier (MKI) in each packet indicates the key (from the
local <audio/video> receive list) that needs to be used.

The ipm_ModifyMedia() function can also be used to add or change security keys.

Key About to Expire Indication

One of the following asynchronous event is generated when an encryption key is about to expire:

e IPMEV_SEC_NOTIFY_EXPIRE_KEY_AUDIO - for the audio media type
e IPMEV_SEC_NOTIFY_EXPIRE_KEY_VIDEO - for the video media type

The generation of these events to the application can be enabled or disabled using the
ipm_EnableEvents() and ipm_DisableEvents() functions. The defines used when enabling or
disabling these events are:

e EVT_SEC_NOTIFY_EXPIRE_KEY_AUDIO
e EVT_SEC_NOTIFY_EXPIRE_KEY_VIDEO

The time interval between the generation of the event and the actual expiry of the encryption key is
configurable using the ipm_SetParm() function. See Section 20.4, “Retrieving and Modifying
Encryption Key Expiry Notification Interval”, on page 112.

Maximum Number of Keys

The total number of keys (audio/video, remote receive/local receive) that can be passed via the
ipm_StartMedia() or ipm_ModifyMedia() function is limited to
IPM_SECURITY_MAX_TOTAL_NUM_KEYS, which is currently set to 20.

In addition, the number of keys for any given media type (local audio, local video, remote audio or

remote video) passed along with ipm_StartMedia() or ipm_ModifyMedia() is limited to
IPM_SECURITY_MAX_NUM_KEYS, which is currently set to 10.

Dialogic® IP Media Library APl Programming Guide and Library Reference

20.3.3

20.3.4

20.3.5

Note:

20.3.6

Using Secure RTP

Usage Restrictions

When using the ipm_StartMedia() function, if the SecurityInfo field (IPM_MEDIA structure) is
used, the pParms field IPM_SECURITY_INFO structure) is required. Also, when using the
ipm_StartMedia() function, the eInfoMode field (IPM_SECURITY_INFO structure) must be set
to IPM_SECURITY_INFO_MODE_IMMEDIATE.

When using the ipm_ModifyMedia() function, if the SecurityInfo field (IPM_MEDIA structure)
is used, the pParms field IPM_SECURITY_INFO structure) is optional and can be set to NULL. If
the pParms field is NULL, the values specified using the ipm_StartMedia() function are used.
Also, when using the ipm_ModifyMedia() function, the eInfoMode field
(IPM_SECURITY_INFO structure) can be set to one of the following:

e [PM_SECURITY_INFO_MODE_IMMEDIATE - Force new keys to take effect immediately

e IPM_SECURITY_INFO_MODE_WAITFOREXPIRATION - Wait until all the specified
key’s lifetime has expired before applying new keys

Switching from RTP to SRTP in Mid-session

To switch from RTP to SRTP during a session, use the ipm_ModifyMedia() function and set
SecurityInfo (of type IPM_SECURITY_INFO) fields as follows:

e pParms = a non-NULL value
¢ eInfoMode = IPM_SECURITY_INFO_MODE_IMMEDIATE

¢ unNumKeys = a non-zero value

Switching from SRTP to RTP in Mid-session

To switch from SRTP to RTP during a session, use the ipm_ModifyMedia() function and set
SecurityInfo (of type IPM_SECURITY_INFO) fields as follows:

e pParms = NULL
e cInfoMode = IPM_SECURITY_INFO_MODE_IMMEDIATE
e unNumKeys = 0 (zero)

An alternative way to switch from SRTP to RTP during a session is to use the
ipm_ModifyMedia() function and set the usSrtpUnEncryptedFlag, usSrtcpUnEncryptedFlag and
usSrtpUnAuthenticatefFlag fields in the associated IPM_SRTP_PARMS structure to 1.

Automatic Validation of Keys

When using the ipm_StartMedia() and ipm_ModifyMedia() functions for SRTP, the validity of
the keys is automatically checked against the selected crypto suite
(AES_CM_128_HMAC_SHA1_80 or AES_CM_128_HMAC_SHA1_32). If the key lengths do
not conform to the crypto suite, an EIPM_BADPARM error is generated.

Dialogic® IP Media Library API Programming Guide and Library Reference 111

Using Secure RTP

20.4

20.5

112

Retrieving and Modifying Encryption Key Expiry
Notification Interval

The following SRTP parameter values can be retrieved or modified using the ipm_GetParm() and
ipm_SetParm() functions:

PARMCH_NOTIFY_EXPIRE_KEY_AUDIO
Advanced notification time (in multiples of 100 ms units) that the current encryption key for
the audio media type is about to expire

PARMCH_NOTIFY_EXPIRE_KEY_VIDEO
Advanced notification time (in multiples of 100 ms units) that the current encryption key for
the video media type is about to expire

These parameters represent the pre-notification duration (in 100 ms increments) for each media
type. An asynchronous event is generated that indicates that encryption key will expire in the preset
time interval. See Section 20.7, “Events Generated by Secure RTP”, on page 113 for more
information.

Retrieving and Resetting Secure RTP Alarms

The SRTP feature uses the QoS alarm mechanism to detect conditions such as authentication
failures, packet replay detection and Master Key Identifier (MKI) mismatches. Parameters
characterizing these conditions (such as threshold values) can be defined. When one of the alarm
conditions is detected, an IPM_QOS_ALARM event is generated to the application.

The ipm_GetQoSThreshold() and ipm_ResetQoSAlarmStatus() functions can be used to
retrieve and reset the following alarms related to SRTP:

QOSTYPE_SEC_AUTH_FAIL_AUDIO
Audio packets detection authentication failure; a measure of the number of audio packets that
fail authentication in a given time interval

QOSTYPE_SEC_AUTH_FAIL_VIDEO
Video packets detection authentication failure; a measure of the number of video packets that
fail authentication in a given time interval

QOSTYPE_SEC_PKT_REPLAY_AUDIO
Audio packets replay detection; a measure of the number of audio replay packets that are
detected in a given time interval

QOSTYPE_SEC_PKT_REPLAY_VIDEO
Video packets replay detection; a measure of the number of video replay packets that are
detected in a given time interval

QOSTYPE_SEC_MKI_NOMATCH_AUDIO
No Master Key Identifier (MKI) match in audio stream detection; a measure of the number of
audio packets that have an MKI which does not match the master key in a given time interval

Dialogic® IP Media Library APl Programming Guide and Library Reference

20.6

Note:

Using Secure RTP

QOSTYPE_SEC_MKI_NOMATCH_VIDEO
No MKI match in video stream detection; a measure of the number of video packets that have
an MKI which does not match the master key in a given time interval

The default values that trigger these alarms are given in Table 2, “Secure RTP QoS Alarm
Threshold Values”, on page 113.

The ipm_GetSessionInfo() function can also be used to retrieve information about these SRTP
alarms. The information is retrieve in the same way as other QoS alarm information.

Retrieving and Setting Threshold Values for Secure
RTP Alarms

The ipm_SetQoSThreshold() function can be used to change the threshold values that trigger the
Secure RTP alarms (described in Section 20.5, “Retrieving and Resetting Secure RTP Alarms”, on
page 112). Similarly, the ipm_GetQoSThreshold() function can be used to retrieve the current
threshold values that trigger Secure RTP alarms.

Table 2 shows the SRTP QoS alarm threshold values. See the IPM_QOS_THRESHOLD_DATA
structure description for more information on the threshold values.

Table 2. Secure RTP QoS Alarm Threshold Values

Alarm Type In-::r:al Deboo:nce Debg:nce Fault % Success % Failure

(ms) (ms) (ms) Threshold | Threshold Threshold
Audio Authentication 1000 10000 10000 10 20 20
Video Authentication | 1000 10000 10000 10 20 20
Audio Packet Replay | 1000 10000 10000 10 20 20
Video Packet Replay 1000 10000 10000 10 20 20
Audio MKI match 1000 10000 10000 10 20 20
Video MKI match 1000 10000 10000 10 20 20

20.7

An application may receive the following notification events during SRTP operation:

IPMEV_SEC_NOTIFY_EXPIRE_KEY_AUDIO
The encryption key for the audio media type is about to expire in the predefined time interval

IPMEV_SEC_NOTIFY_EXPIRE_KEY_VIDEO
The encryption key for the video media type is about to expire in the predefined time interval

Events Generated by Secure RTP

Dialogic® IP Media Library API Programming Guide and Library Reference

113

Using Secure RTP

114

See Section 20.4, “Retrieving and Modifying Encryption Key Expiry Notification Interval”, on
page 112 for information on setting the parameter values that trigger the alarms and generate the
above events.

In addition, an application may receive IPMEV_QOS_ALARM events associated with SRTP QoS
alarms. See Section 16.2, “QoS Alarm Types”, on page 85 for more information. The method used
to identify the actual event type is similar to that shown for other QoS events in Section 16.7,
“Example Code for QoS Alarm Handling”, on page 92 (specifically the checkEvent() function).

See Section 20.6, “Retrieving and Setting Threshold Values for Secure RTP Alarms”, on page 113
for information on setting parameter values that define when these SRTP QoS alarm events are
generated.

You can also use the ipm_EnableEvents() and ipm_DisableEvents() functions to enable or

disable the generation of both the notification and QoS alarm events to the application. See
Section 20.3.1, “Key About to Expire Indication”, on page 110.

Dialogic® IP Media Library APl Programming Guide and Library Reference

20.8

Use Case for Secure RTP

Figure 18 shows an example SRTP use case scenario.

Figure 18. SRTP Use Case

20.9

Application

IP Media Library

ipm_SecurityGenMasterKeys() in SYNC mode

Y

Master Keys Generated

ipm_StartMedia() with Master Keys

Y

IPMEV_SECURITY_KEYS_LIFETIMEABOUTEXPIRE

<

ipm_ModifyMedia() with New Master Keys

Y

Example Code for Secure RTP

Using Secure RTP

The following sample application code demonstrates how to generate master and master salt keys
and use the keys in an SRTP media session.

/*the following sample code uses SRTP */

#include
#include
#include
#include

<stdio.h>
<string>
<srllib.h>
<ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
/*

Dialogic® IP Media Library API Programming Guide and Library Reference

115

Using Secure RTP

116

Main Processing

*/

/*

Set the keys for the IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

char Mkeyl[30], bs64Mkeyl[35];
char Msaltl[30];

IPM_SRTP_PARMS srtp parms;

IPM SECURITY_ KEY MasterKeys[2];

IPM SECURITY BASE64 KEY Masterbs64Key;
IPM_SECURITY BINARY KEY MasterbinKey;

INIT_IPM SRTP_ PARMS (&srtp_parms) ;
INIT IPM SECURITY BINARY KEY (&MasterbinKey);

MasterbinKey.pcMasterKey = Mkeyl;
MasterbinKey.pcMasterSaltKey = Msaltl;

INIT IPM SECURITY BASE64 KEY (&Masterbs64Key) ;
Masterbs64Key.pcMasterBase64Key = bs64Mkeyl;

INIT IPM SECURITY KEY (&MasterKeys[0]);
MasterKeys[0].eKeyType = IPM SECURITY KEYTYPE BINARY;
MasterKeys[0] .pvMasterKey = &MasterbinKey;

INIT IPM SECURITY_ KEY (&MasterKeys([1]);

MasterKeys[1l].eKeyType = IPM SECURITY KEYTYPE BASE64;
MasterKeys[1l] .pvMasterKey = &Masterbs64Key;

/* Generate the master Key and Master Salt Key for the device */

if ((ipm_SecurityGenMasterKeys (nDeviceHandle, MasterKeys, 1, EV_SYNC) == -1)

{
printf ("ipm SecurityGenMasterKeys () failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

*/

/* Masterbs64Key can be filled from SDP */

/*

Set the media properties for a remote party using IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{() .

*/

IPM MEDIA INFO MediaInfo;

MediaInfo.unCount = 6;

MediaInfo.MediaData[0].eMediaType = MEDIATYPE AUDIO REMOTE RTP_INFO;
MediaInfo.MediaData[0] .mediaInfo.PortInfo.unPortId = 2328;
strcpy (MediaInfo.MediaData[0] .mediaInfo.PortInfo.cIPAddress, "111.21.0.9\n");

Dialogic® IP Media Library APl Programming Guide and Library Reference

Using Secure RTP

MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO_REMOTE_RTCP_INFO;
MediaInfo.MediaData[l].mediaInfo.PortInfo.unPortId = 2329;
strcpy (MediaInfo.MediaData[l].mediaInfo.PortInfo.cIPAddress, "111.41.0.9\n");

MediaInfo.MediaData[2].eMediaType = MEDIATYPE AUDIO_REMOTE_CODER_INFO;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eCoderType = CODER TYPE G711ULAW64K;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eFrameSize = (eIPM CODER_FRAMESIZE) 30;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unRedPayloadType = 0;
MediaInfo.MediaData[3].eMediaType = MEDIATYPE AUDIO_LOCAL_CODER INFO;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eCoderType = CODER TYPE G711ULAW64K;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eFrameSize = (eIPM CODER_FRAMESIZE) 30;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unRedPayloadType = 0;
MediaInfo.MediaData[4].eMediaType = MEDIATYPE AUDIO REMOTE_SECURITY_ INFO;
MediaInfo.MediaData[4].mediaInfo.SecurityInfo.unVersion = IPM SECURITY_ INFO_VERSION;
MediaInfo.MediaData[4].mediaInfo. SecurityInfo.unNumKeys = 1;
MediaInfo.MediaData[4].mediaInfo. SecurityInfo.pParms = &srtp_parms;
MediaInfo.MediaData[4] .mediaInfo. SecurityInfo.pKeys = &MasterKeys[O0];
MediaInfo.MediaData[4].mediaInfo. SecurityInfo.eInfoMode = IPM SECURITY_ INFO MODE_IMMEDIATE;
MediaInfo.MediaData[5].eMediaType = MEDIATYPE AUDIO_LOCAL_SECURITY_ INFO;
MediaInfo.MediaData[5].mediaInfo. SecurityInfo.unVersion = IPM SECURITY_INFO_ VERSION;
MediaInfo.MediaData[5] .mediaInfo. SecurityInfo.unNumKeys = 1;
MediaInfo.MediaData[5].mediaInfo. SecurityInfo.pParms = &srtp_parms;
MediaInfo.MediaData[5] .mediaInfo. SecurityInfo.pKeys = &MasterKeys[1l];
MediaInfo.MediaData[5] .mediaInfo. SecurityInfo.eInfoMode = IPM SECURITY_ INFO MODE_IMMEDIATE;
if (ipm_StartMedia (nDeviceHandle, &MediaInfo, DATA IP_TDM BIDIRECTIONAL,EV_SYNC) == -1)

{

printf ("ipm StartMediaInfo failed for device name = $%s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

/*

Perform Error Processing

*/
}
/*

Continue processing

*/

Dialogic® IP Media Library API Programming Guide and Library Reference 117

Building Applications 21

21.1

2111

21.1.2

This chapter contains information on how to compile and link your Dialogic® IP Media Library
API applications under the Linux and Windows® operating systems. The information is presented
in the following topics:

¢ Compiling and Linking under Linux. i 118
¢ Compiling and Linking under Windows® oo, 119

Compiling and Linking under Linux

The following topics discuss compiling and linking requirements:

¢ Include Files

* Required Libraries

Include Files

To use Dialogic® IP Media Library API functions in your Linux application, certain include files
(also known as header files) and library files are required. You must add statements for these
include files in your application. The following header files contain equates that are required for
each Linux application that uses the Dialogic® IP Media Library API:

ipmerror.h
Dialogic® IP Media Library API error header file

ipmlib.h
Dialogic® IP Media Library API header file

Required Libraries

The following library files must be linked to the application in the following order:

libipm.so
Linking this file is mandatory. Specify -1ipm in makefile.

libgc.so
Required only if the application uses R4 Global Call library functions directly, for example,
gc_OpenEx(). Specify -1gc in makefile.

libdxxx.so
Required only if the application uses R4 voice library functions directly, for example,
dx_play(). Specify -1dxxx in makefile.

libsrl.so
The Dialogic® Standard Runtime Library (SRL) is mandatory. Specify -1sr1 in makefile.

Dialogic® IP Media Library API Programming Guide and Library Reference 118

Note:

21.2

21.2.1

21.2.2

Building Applications

libpthread.so
POSIX threads system library. Specify -1pthread in makefile.

libdl.so
Dynamic Loader system library. Specify -1d1 in makefile.

When compiling an application, you must list Dialogic® libraries before all other libraries such as
operating system libraries.

Compiling and Linking under Windows®

The following topics discuss compiling and linking requirements:

¢ Include Files

* Required Libraries

Include Files

To use Dialogic® IP Media Library API functions in your Windows®-based application, certain
include files (also known as header files) and library files are required. You must add statements
for these include files in your application. The following header files contain equates that are
required for each Windows® application that uses the Dialogic® IP Media Library API:

ipmerror.h
Dialogic® IP Media Library API error header file

ipmlib.h
Dialogic® IP Media Library API header file

Required Libraries

The following library files must be linked to the application:

libipm.lib
Linking this file is mandatory.

libgc.lib
Required only if the application uses Dialogic® Global Call API library functions directly, for
example, gc_OpenEx(). Use the -1gc argument to the system linker.

libdxxxmt.lib
Required only if the application uses R4 voice library functions directly, for example,

dx_play().

libsrlmt.lib
The Dialogic® Standard Runtime Library (SRL) is mandatory.

Dialogic® IP Media Library API Programming Guide and Library Reference 119

Function Summary by Category 22

The Dialogic® IP Media Library API contains functions which control and monitor media
resources in an IP environment. This chapter contains an overview of the Dialogic® IP Media
Library API functions, which are grouped into the categories listed below. This chapter also
includes a table listing function support on various platforms.

e System Control Functions 120

e [/O (Input/Output) Functions.« i 121

* Media Session Functions. i 121

* Quality of Service (QoS) Functions i, 121

* Dialogic® IP Media Library API Function Support by Platform 122
221 System Control Functions

The following functions are used to manage channel, parameter, and event operations:

ipm_Close()
closes an IP channel

ipm_DisableEvents()
disables IP notification events

ipm_EnableEvents()
enables IP notification events

ipm_GetParm()
returns IP channel parameters

ipm_GetXmitSlot()
returns TDM time slot information for an IP channel

ipm_Listen()
connects an IP channel to a TDM time slot

ipm_Open()
opens an IP channel and returns a handle

ipm_SetParm()
sets IP channel parameters

ipm_UnListen()
disconnects an IP channel from a TDM time slot

Dialogic® IP Media Library API Programming Guide and Library Reference 120

22.2

22.3

22.4

Function Summary by Category

I/0 (Input/Output) Functions

The following functions are used to transfer digits and data:

ipm_ReceiveDigits()
enables the IP channel to receive digits from the TDM bus

ipm_SendDigits()
generates supplied digits to the TDM bus

Media Session Functions

The following functions are used to perform session management:

ipm_GeneratelFrame()
generates an I-frame

ipm_GetCTInfo()
retrieves information about an IPM device voice channel

ipm_GetLocalMedialnfo()
retrieves properties for the local media channel

ipm_GetSessionInfo()
retrieves statistics for a session

ipm_GetSessionInfoEx()
retrieves RTCP data for a session

ipm_InitResponseSend()
sends a response to an IP session

ipm_InitSend()
sends an initialization message to a remote party

ipm_ModifyMedia()
modifies the properties of an active media session

ipm_SecurityGenMasterKeys()
generate master and salt keys

ipm_StartMedia()
sets properties for the local and remote media channels and starts the session

ipm_Stop()
stops operations on an IP channel

Quality of Service (QoS) Functions

The following functions are used to control QoS alarms and alarm thresholds:

ipm_GetQoSAlarmStatus()
retrieves the ON/OFF state of QoS alarms

Dialogic® IP Media Library API Programming Guide and Library Reference 121

Function Summary by Category

ipm_GetQoSThreshold()
retrieves QoS alarm threshold settings

ipm_ResetQoSAlarmStatus()
resets QoS alarm to OFF state once it has been triggered

ipm_SetQoSThreshold()
changes QoS alarm threshold settings

22.5 Dialogic® IP Media Library APl Function Support by

122

Platform

The following table provides an alphabetical listing of Dialogic® IP Media Library API functions.
The table indicates platform support for each function: Dialogic® Host Media Processing (HMP)
Software Release 4.1LIN (HMP 4.1LIN) and Dialogic® Host Media Processing (HMP) Software
Release 3.0WIN (HMP 3.0WIN).

Although a function may be supported on all platforms, there may be some differences in usage.
For details, see the function reference descriptions in Chapter 23, “Function Information”.

Table 3. Dialogic® IP Media Library API Function Support by Platform

Function HMP HMP
3.0WIN 4.1LIN

ipm_Close() S S
ipm_DisableEvents() S S
ipm_EnableEvents() S S
ipm_GeneratelFrame() NS S
ipm_GetCapabilities() S S
ipm_GetCTInfo() S S
ipm_GetLocalMedialnfo() t S S
ipm_GetParm() t S S
ipm_GetQoSAlarmStatus() S S
ipm_GetQoSThreshold() S S
ipm_GetSessioninfo() S S
ipm_GetSessionInfoEx() NS S
ipm_GetXmitSlot() S S
ipm_InitResponseSend() NS S
ipm_InitSend() NS S
ipm_Listen() S S
Legend:
NS = Not Supported, S = Supported,
1 = Variance between platforms, refer to Function Description for more
information.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Function Summary by Category

Table 3. Dialogic® IP Media Library API Function Support by Platform (Continued)

Function HMP HMP
3.0WIN 4.1LIN
ipm_ModifyMedia() S S
ipm_Open() S S
ipm_ReceiveDigits() S S
ipm_ResetQoSAlarmStatus() S S
ipm_SecurityGenMasterKeys() S S
ipm_SendDigits() S S
ipm_SetParm() t S S
ipm_SetQoSThreshold() S S
ipm_SetRemoteMedialnfo() (use depre- depre-
ipm_StartMedia()) cated cated
ipm_StartMedia() t S S
ipm_Stop() S S
ipm_UnListen() S S
Legend:
NS = Not Supported, S = Supported,
T = Variance between platforms, refer to Function Description for more
information.

Dialogic® IP Media Library API Programming Guide and Library Reference 123

Function Information 23

23.1

Note:

This chapter contains a detailed description of each Dialogic® IP Media Library API function,
presented in alphabetical order.

Function Syntax Conventions

The “Platform” line in the function header table of each function indicates the general platforms
supported. For a list of software releases supported, see Table 3, “Dialogic® IP Media Library API
Function Support by Platform”, on page 122.

The Dialogic® IP Media Library API functions use the following format:

ipm Function (DeviceHandle, Parameterl, Parameter2, .., ParameterN, Mode)

where:

ipm_Function
is the name of the function

DeviceHandle
is an input field that directs the function to a specific line device

Parameterl, Parameter2, ..., ParameterN
are input or output fields
Mode

is an input field indicating how the function is executed. This field is applicable to certain
functions only. For example, ipm_Close() can only be called synchronously, so Mode is not
used. Possible Mode values are:

¢ EV_ASYNC for asynchronous mode execution. When running asynchronously, the
function will return O to indicate it has initiated successfully, and will generate a
termination event to indicate completion.

e EV_SYNC for synchronous mode execution. When running synchronously, the function
will return a 0 to indicate that it has completed successfully.

Dialogic® IP Media Library API Programming Guide and Library Reference 124

close an IP channel device — ipm_Close()

ipm_Close()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_Close(nDeviceHandle, *pCloselnfo)
int nDeviceHandle ¢ |P Media device handle
IPM_CLOSE_INFO *pCloselnfo e set to NULL

0 on success
-1 on failure

srllib.h
ipmlib.h

System Control

synchronous only

Description

The ipm_Close() function closes an IP channel device and disables the generation of all events.

Parameter Description

nDeviceHandle IP Media device handle returned by ipm_Open()

pCloselnfo set to NULL; reserved for future use

Termination Events
None - this function operates in synchronous mode only.

Cautions

¢ The pCloselnfo pointer is reserved for future use and must be set to NULL.

e Issuing a call to ipm_Open() or ipm_Close() while the device is being used by another
process will not affect the current operation of the device. Other handles for that device that
exist in the same process or other processes will still be valid. The only process affected by
ipm_Close() is the process that called the function.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_CONFIG
Configuration error

EIPM_FWERROR
Firmware error

Dialogic® IP Media Library API Programming Guide and Library Reference 125

ipbm_Close() — close an IP channel device

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void main ()
{

int nDeviceHandle;

/*

Main Processing

*/

/*

Application is shutting down.

Need to close IP device handle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{().

*/
if (ipm_Close (nDeviceHandle, NULL) == -1)
{
printf("----------- >ipm Close () failed for handle = %d\n", nDeviceHandle) ;
/‘k
Perform Error Processing
*/
}
/*

Continue cleanup
*/

B See Also

e ipm_Open()

126 Dialogic® IP Media Library APl Programming Guide and Library Reference

disable IP notification events — ipm_DisableEvents()

ipm_DisableEvents()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_DisableEvents(nDeviceHandle, *pEvents, unNumOfEvents, usMode)

int nDeviceHandle e [P Media device handle
elPM_EVENT *pEvents e array of events to disable
unsigned int unNumOfEvents * number of events to disable
unsigned short usMode * async or sync mode setting
0 on success

-1 on failure

srllib.h
ipmlib.h

System Control

asynchronous or synchronous

Description

The ipm_DisableEvents() function disables IP notification events. Some events are used for
Quality of Service (QoS) alarm notifications. Other events are used to indicate status, for example,
if an RFC 2833 event has been detected.

Notification events are different from asynchronous function termination events, such as
IPMEV_OPEN, which cannot be disabled. Once a particular notification event is successfully
disabled, the application is not notified if an event of that type occurs.

Dialogic® IP Media Library API Programming Guide and Library Reference 127

ipm_DisableEvents() — disable IP notification events

Parameter Description
nDeviceHandle handle of the IP Media device
pEvents array of enumerations that specifies the events to disable

The eIPM_EVENT data type is an enumeration that defines the following

values:

e EVT_ENDPOINTID_NOTIFY - Notification containing the
identification of the RTP/RTCP endpoint

e EVT_JITTER - QoS alarm for excessive average jitter

e EVT_LOSTPACKETS - QoS alarm for excessive percentage of lost

packets

e EVT_RTCP_JB_HIGH - QoS alarm used to track RTCP excessive
jitter buffer

e EVT_RTCP_JB_LOW - QoS alarm used to track RTCP jitter buffer
below the threshold

e EVT_RTCP_SCS - QoS alarm used to track RTCP severely concealed
second condition (SCS)

e EVT_RTCPTIMEOUT - QoS alarm for RTCP inactivity

e EVT_RTPTIMEOUT - QoS alarm for RTP inactivity

e EVT_SEC_AUTH_FAIL_AUDIO - Secure RTP QoS alarm for
authentication failure on audio packets

e EVT_SEC_AUTH_FAIL_VIDEO - Secure RTP QoS alarm for
authentication failure on video packets

e EVT_SEC_MKI_NOMATCH_AUDIO - Secure RTP QoS alarm for
MKI mis-match on audio packets

e EVT_SEC_MKI_NOMATCH_VIDEO - Secure RTP QoS alarm for
MKI mis-match on video packets

e EVT_SEC_NOTIFY_EXPIRE_KEY_AUDIO - Secure RTP
notification of encryption key for audio about to expire

e EVT_SEC_NOTIFY_EXPIRE_KEY_VIDEO - Secure RTP
notification of encryption key for video about to expire

e EVT_SEC_PKT_REPLAY_AUDIO - Secure RTP QoS alarm for
replay detection on audio packets

e EVT_SEC_PKT_REPLAY_VIDEO - Secure RTP QoS alarm for
replay detection on video packets

e EVT_TELEPHONY - RFC 2833 event

unNumOfEvents number of events to disable (number of enumerations in pEvents array)
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_EVENT_DISABLED
Indicates successful completion; that is, specified events were disabled. This event does not
return any data.

128 Dialogic® IP Media Library APl Programming Guide and Library Reference

disable IP notification events — ipm_DisableEvents()

IPMEV_ERROR
Indicates that the function failed.

B Cautions

The function fails if nDeviceHandle specifies a board device; notification events are only
supported for channel devices.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_EVT
Invalid event

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

EIPM_UNSUPPORTED
Function unsupported

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
eIPM EVENT myEvents([2] ={EVT LOSTPACKETS, EVT JITTER};
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV, EV ANYEVT, (HDLR)CheckEvent);

/*

Main Processing

*/

/*

Application is shutting down

Need to disable all enabled events for IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() and
The events listed in myEvents were enabled sometime earlier.

Dialogic® IP Media Library API Programming Guide and Library Reference 129

ipm_DisableEvents() — disable IP notification events

*/
if (ipm DisableEvents (nDeviceHandle, myEvents, 2, EV_ASYNC) == -1)
{
printf ("ipm DisableEvents failed for device name = $s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/‘k
Perform Error Processing
*/
}
/*

Continue shut down
*/

void CheckEvent ()

{
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm_DisableEvents */
case IPMEV_EVENT DISABLED:
printf ("Received IPMEV_EVENT_DISABLED for device = %s\n",

ATDV_NAMEP (nDevicelID));
break;

default:
printf ("Received unknown event = %d for device = $s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

e ipm_EnableEvents()

130 Dialogic® IP Media Library APl Programming Guide and Library Reference

enable IP notification events — ipm_EnableEvents()

ipm_EnableEvents()

Name: int ipm_EnableEvents(nDeviceHandle, *pEvents, unNumOfEvents, usMode)

Inputs: int nDeviceHandle ¢ [P Media device handle
elPM_EVENT *pEvents e array of events to enable
unsigned int unNumOfEvents * number of events to enable
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control

Mode: asynchronous or synchronous

B Description

The ipm_EnableEvents() function enables IP notification events. Some events are used for
Quality of Service (QoS) notifications on a particular media channel. Other events are used to
indicate status, for example, if an RFC 2833 event has been detected.

Notification events (solicited events) are different from asynchronous function termination events,
such as IPMEV_OPEN, which cannot be disabled. Once a particular notification event is
successfully enabled, the application is notified via SRL event management functions whenever
the specified event occurs.

Note: A SUCCESS message returned from a set event request in the IPML library is only a notification
that the request was processed, not that all requested events are enabled.

Dialogic® IP Media Library API Programming Guide and Library Reference 131

ipbm_EnableEvents() — enable IP notification events

Parameter Description
nDeviceHandle handle of the IP Media device
pEvents array of enumerations that specifies the events to enable

The eIPM_EVENT data type is an enumeration that defines the following

values:

e EVT_ENDPOINTID_NOTIFY - Notification containing the
identification of the RTP/RTCP endpoint

e EVT_JITTER - QoS alarm for excessive average jitter

e EVT_LOSTPACKETS - QoS alarm for excessive percentage of lost

packets

e EVT_RTCP_JB_HIGH - QoS alarm used to track RTCP excessive
jitter buffer

e EVT_RTCP_JB_LOW - QoS alarm used to track RTCP jitter buffer
below the threshold

e EVT_RTCP_SCS - QoS alarm used to track RTCP severely concealed
second condition (SCS)

e EVT_RTCPTIMEOUT - QoS alarm for RTCP inactivity

e EVT_RTPTIMEOUT - QoS alarm for RTP inactivity

e EVT_SEC_AUTH_FAIL_AUDIO - Secure RTP QoS alarm for
authentication failure on audio packets

e EVT_SEC_AUTH_FAIL_VIDEO - Secure RTP QoS alarm for
authentication failure on video packets

e EVT_SEC_MKI_NOMATCH_AUDIO - Secure RTP QoS alarm for
MKI mis-match on audio packets

e EVT_SEC_MKI_NOMATCH_VIDEO - Secure RTP QoS alarm for
MKI mis-match on video packets

* EVT_SEC_NOTIFY_EXPIRE_KEY_AUDIO - Secure RTP
notification of encryption key for audio about to expire

* EVT_SEC_NOTIFY_EXPIRE_KEY_VIDEO - Secure RTP
notification of encryption key for video about to expire

e EVT_SEC_PKT_REPLAY_AUDIO - Secure RTP QoS alarm for
replay detection on audio packets

e EVT_SEC_PKT_REPLAY_VIDEO - Secure RTP QoS alarm for
replay detection on video packets

e EVT_TELEPHONY - RFC 2833 event

unNumOfEvents number of events to enable (number of enumerations in pEvents array)
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_EVENT_ENABLED
Indicates successful completion; that is, specified events were enabled. This event does not
return any data.

132 Dialogic® IP Media Library APl Programming Guide and Library Reference

enable IP notification events — ipm_EnableEvents()

IPMEV_ERROR
Indicates that the function failed.

B Cautions

The function fails if nDeviceHandle specifies a board device; notification events are only
supported for channel devices.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_EVT_EXIST
Event already enabled

EIPM_EVT_LIST _FULL
Too many events

EIPM_INTERNAL
Internal error

EIPM_INV_EVT
Invalid event

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

EIPM_UNSUPPORTED
Function unsupported

H Example
#include <stdio.h>
#include <srllib.h>

#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);

void CheckEvent () ;

void main ()

{
int nDeviceHandle;
eIPM EVENT myEvents([2] ={EVT LOSTPACKETS, EVT JITTER};
// Register event handler function with srl

sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/‘k
Main Processing
*/

Dialogic® IP Media Library API Programming Guide and Library Reference 133

ipbm_EnableEvents() — enable IP notification events

/*
Need to enable three events for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{().

*/
if (ipm_EnableEvents (nDeviceHandle, myEvents, 2, EV_ASYNC) == -1)
{
printf ("ipm EnableEvents failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*
Perform Error Processing
*/
}
/*

Continue Processing
*/

void CheckEvent ()

{
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();

switch (nEventType)
{
/*

List of expected events

*/
/* Expected reply to ipm EnableEvents() */
case IPMEV_EVENT_ ENABLED:
printf ("Received IPMEV EVENT ENABLED for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

default:
printf ("Received unknown event = $d for device = %$s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_DisableEvents()

134 Dialogic® IP Media Library APl Programming Guide and Library Reference

generate an I-Frame — ipm_GeneratelFrame()

ipm_GeneratelFrame()

Name: int ipm_GenerateIFrame (nDeviceHandle, pFramelnfo, a_usMode)
Inputs: int a_nDeviceHandle ¢ SRL handle of the IP media device
IPM_IFRAME_INFO * pFramelnfo e pointer to define structure

unsigned short a_usMode * async or sync mode setting

Returns: 0 on success
-1 on error

Includes: srllib.h
ipmlib.h

Category: Media Session

Mode: Asynchronous or synchronous

B Description

The ipm_GeneratelFrame() function requests to the IP media device to generate an I-frame for
video fast update.

Note: In order to use this function, the transcoding flag must be ON when connecting an IP media device
to any other device. Refer to the dev_PortConnect() function in the Dialogic® Device
Management API Library Reference for details about turning transcoding ON when connecting an
IP media device to another device.

The application would typically call the ipm_GeneratelFrame() function to generate an I-frame
when it receives a SIP INFO request to do a video fast update.

Parameter Description

a_nDeviceHandle SRL handle of the IP media device

pFramelnfo structure describing the I-frame information. See the
IPM_IFRAME_INFO data structure page for details.

a_usMode specifies operation mode. Set to EV_ASYNC for asynchronous execution

or to EV_SYNC for synchronous execution.

B Termination Events

IPMEV_GENERATEIFRAME
Indicates successful completion.

IPMEV_GENERATEIFRAME_FAIL
Indicates that the function failed.

Dialogic® IP Media Library API Programming Guide and Library Reference 135

ipm_GeneratelFrame() — generate an I-Frame

136

B Cautions

None.

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_GENERATEIFRAME_INCAPABLE
Incapable of generating an I-frame. Example: Transcoding is not turned ON for the connection
between the IP media device and another device.

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Example: Streaming is not active on the channel when the function is called.

EIPM_SYSTEM
System error

EIPM_ GENERATEIFRAME _INCAPABLE
Incapable of generating an I-frame

B Example

#include
#include
#include
#include

<srllib.h>
<ipmlib.h>
<ipmerror.h>
<errno.h>

void call setup ()

{

IPM IFRAME INFO alFramelInfo;
INIT_IPM IFRAME INFO (&alFramelInfo);

IPM_MEDIA INFO MedialInfo;
MediaInfo.unCount = 4;

/* setup coder info */
MediaInfo.MediaData[0].eMediaType = MEDIATYPE AUDIO REMOTE_CODER_ INFO;
MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO_ LOCAL_CODER INFO;
MediaInfo.MediaData[2].eMediaType = MEDIATYPE VIDEO REMOTE_CODER_ INFO;
MediaInfo.MediaData[3].eMediaType = MEDIATYPE VIDEO LOCAL_CODER INFO;
if (ipm StartMedia (DeviceHandle, &éMediaInfo, DATA IP TDM BIDIRECTIONAL, EV_ASYNC) < 0)
{

/*Process error */
}
/* Continue processing */
/* recvd a SIP INFO requesting an I-frame */
printf ("SIP INFO request to generate I-frame");
if ((ipm_GeneratelIFrame (DeviceHandle, &alFramelInfo ,EV_ASYNC) == -1)
{

/*Process error */
boo.
/* Continue processing */

}

Dialogic® IP Media Library APl Programming Guide and Library Reference

generate an I-Frame — ipm_GeneratelFrame()

void CheckEvents ()

{

B See Also

None.

int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
int nError;

switch

{

(nEventType)

/* Expected reply to ipm GenerateIFrame */

case IPMEV_GENERATEIFRAME:

printf ("Received IPMEV_GENERATEIFRAME for device = %s\n",
ATDV_NAMEP (nDeviceID));

break;

case IPMEV_GENERATEIFRAME FAIL:
nError = ATDV_LASTERR (nDevicelID);
printf ("Received IPMEV_GENERATEIFRAME FAIL for device = %s\n",
ATDV_NAMEP (nDeviceID));
switch (nError)
{
case EIPM GENERATEIFRAME INCAPABLE:
printf ("IPM incapable of generating iframe\n");

break;
default:
printf ("Error=%d\n",nError) ;
break;
}
break;
default:

printf ("Received unknown event = %d for device = %s\n", nEventType,
ATDV_NAMEP (nDeviceID)) ;
break;

Dialogic® IP Media Library API Programming Guide and Library Reference 137

ipbm_GetCapabilities() — retrieve capability (for example, coder) information

ipm_GetCapabilities()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

ipm_GetCapabilities(a_nDeviceHandle, a_CapType, a_num, a_CapabilitiesArray[], a_usMode);

int a_nDeviceHandle ¢ JP Media device handle
eCAPABILITY_TYPE a_CapType * capability type to be retrieved
unsigned int a_num * number of entries in the capability array

IPM_CAPABILITIES a_CapabilitiesArray[] e capability array
unsigned short a_usMode * mode of operation

number of capabilities available
-1 on failure

srllib.h
ipmlib.h

Media Session

synchronous

138

Description

The ipm_GetCapabilities() function returns the number of capabilities of the specified type (for
example, coders) and details of each capability supported by an active Dialogic® HMP Software
license. The number of capabilities available may be greater than the number specified by the
a_num input parameter, therefore the following rules apply:

e Ifa_num is zero and/or a_CapabilitiesArray[] is NULL, this function returns only the
number of capabilities available; no capability detail is retrieved.

e Ifa_num is larger than the number of capabilities available (the return value),
a_CapabilitiesArray[] is filled with details of all capabilities and the remaining allocated
memory is unused.

e If a_num is smaller than the number of capabilities available (the return value),
a_CapabilitiesArray[] is filled with details of a_num capabilities (that is, as many as will
fit); details of the remaining capabilities are not retrieved.

Parameter Description
n_DeviceHandle handle of the IP Media device
a_CapType capability type, for example CAPABILITY_CODERLIST

a_num the number of entries in the capability array

a_CapabilitiesArray[] the capability array
a_usMode operation mode

Set to EV_SYNC for synchronous execution

Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve capability (for example, coder) information — ipm_GetCapabilities()

The datatype for the a_CapabilitiesArray[] parameter is a union, [IPM_CAPABILITIES, which is
defined as follows:

typedef struct ipm capabilities_tag
{
unsigned int version;
union
{
IPM CODER _INFO Coder;
// Future types here.
bi
}IPM7CAPABILITIES;

In this union, the IPM_AUDIO_CODER_INFO data structure provides coder details such as coder
type, frame size, number of frames per packet, VAD enable/disable information and payload-
related information.

The datatype for the a_CapType parameter is e€CAPABILITY_TYPE, an enumeration that is
defined as follows:

enum eCAPABILTIY TYPE
{

CAPABILITY CODERLIST;
}

The ipm_GetCapabilities() function is supported in synchronous mode only. If asynchronous
mode (a_usMode = EV_ASYNC) is specified, an error is generated.

B Cautions
None.
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() or ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_ERROR
System error

Dialogic® IP Media Library API Programming Guide and Library Reference 139

ipbm_GetCapabilities() — retrieve capability (for example, coder) information

B Example

In this example, the first ipm_GetCapabilities() call retrieves only number of capabilities
available (count). That number is then used to allocate the right amount of memory and retrieve
details of all the capabilities.

#include <ipmlib.h>
unsigned int count;

IPM CAPABILITIES *caps;
int 1i;

Count=ipm7GetCapabilities(dev,CAPABILITY7CODERLIST,O,NULL,EVﬁSYNC);
caps=(IPM_CAPABILITIES *)malloc(sizeof(IPM_CAPABILITIES)*count);

// check for memory error here
count=ipm GetCapabilities (dev,CAPABILITY CODERLIST, count,caps,EV_SYNC);
for (i=0;i<count;i++)

{
printf ("RFC 1890 Coder Type %ui supported\n”,caps[i].Coder.unCoderPayloadType) ;

}
// Free coder list here

free (caps);
B See Also

None.

140 Dialogic® IP Media Library APl Programming Guide and Library Reference

return information about a voice channel of an IPM device — ipm_GetCTInfo()

ipm_GetCTinfo()

Name: int ipm_GetCTInfo(nDeviceHandle, *pCTInfo, usMode)

Inputs: int nDeviceHandle e valid channel device handle
CT_DEVINFO *pCTInfo e pointer to device information structure
unsigned short usMode ® async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: ipmlib.h
Category: Media Session
Mode: Synchronous

B Description

The ipm_GetCTInfo() function returns information about a voice channel of an IPM device. This
information is contained in a CT_DEVINFO data structure.

Parameter Description

nDeviceHandle specifies the valid IP channel handle obtained when the channel was
opened using ipm_Open()

pCTInfo specifies a pointer to the CT_DEVINFO structure that contains the IP
channel device information

usMode operation mode

Set to EV_SYNC for synchronous execution. Asynchronous mode is not
supported.

B Cautions
This function fails if an invalid IP channel handle is specified.
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return the following error:

EIPM_BADPARM
Invalid parameter
B Example
#include <srllib.h>

#include <ipmlib.h>
#include <errno.h>

Dialogic® IP Media Library API Programming Guide and Library Reference 141

ipbm_GetCTInfo() — return information about a voice channel of an IPM device

main ()

{

int chdev; /* Channel device handle */

CT DEVINFO ct devinfo; /* Device information structure */
/* Open board 1 channel 1 devices */

if ((chdev = ipm Open ("ipmB1Cl", 0)) == -1) {
printf ("Cannot open channel ipmB1Cl. errno = %d", errno);
exit (1) ;

}

/* Get Device Information */

if (ipm_GetCTInfo(chdev, &ct devinfo, EV_SYNC) == -1) {
printf ("Error message = %s", ATDV_ERRMSGP (chdev)) ;
exit (1) ;

}

printf ("$s Product Id = 0x%x, Family = %d, Mode = %d, Network = %d, Bus
mode = %d, Encoding = %d", ATDV_NAMEP(chdev), ct_devinfo.ct_prodid,
ct_devinfo.ct devfamily, ct devinfo.ct devmode, ct_devinfo.ct nettype,
ct devinfo.ct busmode, ct devinfo.ct busencoding);

B See Also

e ipm_Open()

142 Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve properties for the local media channel — ipm_GetLocalMedialnfo()

ipm_GetLocalMedialnfo()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

Note:
Note:

int ipm_GetLocalMedialnfo(nDeviceHandle, *pMedialnfo, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_MEDIA_INFO *pMedialnfo e pointer to media information structure
unsigned short usMode ® async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h
Media Session

asynchronous or synchronous

Description

The ipm_GetLocalMedialnfo() function retrieves properties for the local media channel. This
function retrieves the local IP address and port information for the audio and/or video RTP/RTCP
ports or T.38 port associated with the specified IP channel. These properties are assigned during
firmware download.

The combination of the eMediaType field (in the IPM_MEDIA data structure pointed to by
MediaData[], which in turn is a field of the IPM_MEDIA_INFO data structure pointed to by
pMedialnfo) and the unCount field (in the IPM_MEDIA_INFO data structure pointed to by
pMedialnfo) specifies the media type(s) for which port information is to be retrieved. The allowed
combinations are as follows:

e To retrieve RTP port information for both audio and video in a multimedia session, set the
eMediaType fields to MEDIATYPE_AUDIO_LOCAL_RTP_INFO and
MEDIATYPE_VIDEO_LOCAL_RTP_INFO respectively and unCount to 2. See the code
example.

e To retrieve RTP port information for a video only session, set the eMediaType field to
MEDIATYPE_VIDEO_LOCAL_RTP_INFO and unCount to 1.

e To retrieve RTP port information for an audio only session, set the eMediaType field to
MEDIATYPE_AUDIO_LOCAL_RTP_INFO and unCount to 1.

e To retrieve T.38 fax port information, set the eMediaType field to
MEDIATYPE_LOCAL_UDPTL_T38_INFO and unCount to 1.

For audio and/or video media types, only RTP information needs to be queried. RTCP information
is automatically provided when querying for RTP.
The RTCP port number is the RTP port number + 1.

It is not possible to retrieve T.38 fax port information together with audio and/or video port
information.

Dialogic® IP Media Library API Programming Guide and Library Reference 143

ipbm_GetLocalMedialnfo() — retrieve properties for the local media channel

144

To run this function asynchronously, set mode to EV_ASYNC. The function returns 0 if successful
and the application must wait for the IPMEV_GET_LOCAL_MEDIA_INFO event. Once the
event has been returned, use Dialogic® Standard Runtime Library (SRL) functions to retrieve
IPM_MEDIA_INFO structure fields.

To run this function synchronously, set mode to EV_SYNC. The function returns O if successful
and the IPM_MEDIA_INFO structure fields will be filled in.

Parameter Description
nDeviceHandle handle of the IP Media device
pMedialnfo pointer to structure that contains local IP address and IP channel port

information for audio and/or video RTP / RTCP ports or T.38 port
See the IPM_MEDIA_INFO data structure page for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_GET_LOCAL_MEDIA_INFO
Indicates successful completion, that is, local media information was received. Once the event
has been returned, use Dialogic® SRL functions to retrieve IPM_MEDIA_INFO structure
fields.

IPMEV_ERROR
Indicates that the function failed.

Cautions
None.
Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve properties for the local media channel — ipm_GetLocalMedialnfo()

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/

/*

Get the local IP information for IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{() .
*/

IPM_MEDIA INFO Medialnfo;

MediaInfo.unCount = 2;

MediaInfo.MediaData[0].eMediaType = MEDIATYPE VIDEO_LOCAL_RTP_INFO;

// MediaInfo.MediaData[0].eMediaType = MEDIATYPE LOCAL UDPTL T38 INFO;
MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO_LOCAL_RTP_INFO;

if (ipm GetLocalMedialInfo (nDeviceHandle, &MedialInfo, EV_ASYNC) == -1)

{
printf ("ipm GetLocalMediaInfo failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*

Continue processing
*/

void CheckEvent ()

{
unsigned int i;
int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();
void* pVoid = sr_getevtdatap();
IPM _MEDIA INFO* pMedialInfo;

Dialogic® IP Media Library API Programming Guide and Library Reference 145

ipbm_GetLocalMedialnfo() — retrieve properties for the local media channel

switch (nEventType)
{
/*

Other events

*/
/* Expected reply to ipm GetLocalMediaInfo */
case IPMEV_GET_LOCAL MEDIA INFO:
printf ("Received IPMEV_GET LOCAL MEDIA INFO for device name = %s\n",
ATDV_NAMEP (nDevicelD)) ;
pMediaInfo = (IPM _MEDIA INFO*)pVoid;
for (i=0; i<pMediaInfo->unCount; i++)
{
switch (pMediaInfo->MediaData[i].eMediaType)
{
case MEDIATYPE VIDEO LOCAL RTP_INFO:
printf("MediaType:MEDIATYPE_VIDEO_LOCAL_RTP_INFO\H");
printf ("PortId=%d\n”,pMedialnfo->MediabData[i].mediaInfo.PortInfo.unPortId) ;
printf ("IP=%s\n”,pMediaInfo>MediaData[i].medialnfo.PortInfo.cIPAddress) ;
break;
case MEDIATYPE VIDEO_LOCAL_RTCP_INFO:
printf ("MediaType=MEDIATYPE VIDEO LOCAL RTCP_INFO\n");
printf ("PortId=%d\n",pMediaInfo->MediaData[i].mediaInfo.PortInfo.unPortlId);
printf ("IP=%s\n",pMediaInfo>MediaData[i].mediaInfo.PortInfo.cIPAddress);
break;
case MEDIATYPE AUDIO LOCAL RTP_INFO:
printf("MediaType:MEDIATYPE_AUDIO_LOCAL_RTP_INFO\n");
printf ("PortId=%d\n",pMedialInfo->MediaData[i].mediaInfo.PortInfo.unPortId) ;
printf ("IP=%s\n",pMediaInfo>MediaData[i].mediaInfo.PortInfo.cIPAddress) ;
break;
case MEDIATYPE AUDIO_LOCAL_RTP_INFO:
printf ("MediaType=MEDIATYPE AUDIO LOCAL_RTP INFO\n");
printf ("PortId=%d\n",pMediaInfo->MediaData[i].mediaInfo.PortInfo.unPortlId);
printf ("IP=%s\n",pMediaInfo>MediaData[i].mediaInfo.PortInfo.cIPAddress);
break;
}

break;
default:
printf ("Received unknown event = %d for device name = %s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

None

146 Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve the current value of a parameter — ipm_GetParm()

ipm_GetParm()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_GetParm(nDeviceHandle, *pParmInfo, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_PARM_INFO *pParmInfo e pointer to parameter info structure
unsigned short usMode ® async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

System Control

asynchronous or synchronous

Description
The ipm_GetParm() function retrieves the current value of a parameter.

To run this function asynchronously, set mode to EV_ASYNC. The function returns 0 if successful
and the application must wait for the IPMEV_GETPARM event. Once the event has been returned,
use Dialogic® Standard Runtime Library (SRL) functions to retrieve parameter values.

To run this function synchronously, set mode to EV_SYNC. The function returns 0 if successful
and the IPM_PARM_INFO structure fields will be filled in with the retrieved parameter
information.

Parameter Description
nDeviceHandle handle of the IP media device
*pParmlInfo pointer to structure that contains IP channel parameter values

See the IPM_PARM_INFO data structure page for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_GET_PARM
Indicates successful completion. Use Dialogic® SRL functions to retrieve IPM_PARM_INFO
structure fields.

IPMEV_ERROR
Indicates that the function failed.

Cautions

None

Dialogic® IP Media Library API Programming Guide and Library Reference 147

ipbm_GetParm() — retrieve the current value of a parameter

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long);

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/

/*

ASSUMPTION: A valid nDeviceHandle was obtained from prior

call to ipm Open() .

*/

IPM_PARM_INFO ParmInfo;

unsigned long ulParmValue = 0;

ParmInfo.eParm = PARMCH_ECHOTAIL;

ParmInfo.pvParmValue = &ulParmValue;

if (ipm_GetParm(nDeviceHandle, &ParmInfo, EV_ASYNC)==-1)

{
printf ("ipm GetParm failed for device name %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

/*

Perform Error Processing
*/

ulParmValue = 0;

ParmInfo.eParm PARMCH_ECHOTAIL;

148 Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve the current value of a parameter — ipm_GetParm()

if (imeGetParm(nDeviceHandle, &ParmInfo, EV_SYNC)==-1)
{
printf ("%s: ipm GetParm failed..exiting..!!!\n", ATDV_NAMEP (nDeviceHandle)) ;
}
else
{
printf("%s: ipm GetParm(parm=0x%x,value=0x%x) ok %\n", ATDV_NAMEP (nDeviceHandle),
ParmInfo.eParm, ulParmValue);

/*
continue
*/

void CheckEvent ()

{
int nEventType = sr getevttype();
int nDeviceID = sr_getevtdev();
void* pVoid = sr_getevtdatap();
IPM_PARM INFO* pParmInfo;

switch (nEventType)
{
/*

Other events
*/
/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV_GET PARM:
pParmInfo = (IPM_PARM INFO*) pVoid;
printf ("Received IPMEV_GETPARM for device = %s\n",
ATDV_NAMEP (nDeviceID)) ;

printf ("%$s: parm=0x%x, ok %\n", ATDV_ NAMEP (nDevicelID),
pParmInfo->eParm) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_SetParm()

Dialogic® IP Media Library API Programming Guide and Library Reference 149

ipm_GetQoSAlarmStatus() — retrieve ON/OFF state of QoS alarms

ipm_GetQoSAlarmStatus()

150

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_GetQoSAlarmStatus(nDeviceHandle, *pQoS AlarmInfo, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_QOS_ALARM_STATUS *pQoSAlarmInfo * pointer to QoS alarm status structure
unsigned short usMode * async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

QoS

asynchronous or synchronous

Description

The ipm_GetQoSAlarmStatus() function retrieves the ON/OFF state of Quality of Service (QoS)
alarms that report the status of a media channel.

This function returns the status of media channel QoS alarms that are enumerated in
eIPM_QOS_TYPE. This function does not return the status of board-level alarms.

Use ipm_ResetQoSAlarmStatus() to reset the QoS alarm state.

Parameter Description

nDeviceHandle handle of the IP Media channel device

pQoSAlarmlInfo pointer to structure that contains alarm identifier and alarm status values
See IPM_QOS_ALARM_STATUS for details.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_GET_QOS_ALARM_STATUS
Indicates successful completion. Use SRL functions to retrieve
IPM_QOS_ALARM_STATUS structure fields.

IPMEV_ERROR
Indicates that the function failed.

Cautions

None.

Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve ON/OFF state of QoS alarms — ipm_GetQoSAlarmStatus()

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>

#include <srllib.h>

#include <ipmlib.h>

void CheckEvent () ;

typedef long int (*HDLR) (unsigned long);

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr(EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent);

/‘k
Main Processing

*/

/*

Query the alarm status for IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open({().
*/

IPM QOS_ALARM STATUS AlarmStatus;
AlarmStatus.unAlarmCount = 1;
AlarmStatus.QoSData[0] .eQoSType = QOSTYPE_LOSTPACKETS;

if (ipm_GetQoSAlarmStatus (nDeviceHandle, &AlarmStatus, EV_ASYNC) == -1)
{
printf ("ipm GetQoSAlarmStatus failed for device name %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

*/

Dialogic® IP Media Library API Programming Guide and Library Reference 151

ipm_GetQoSAlarmStatus() — retrieve ON/OFF state of QoS alarms

/*
continue
*/

void CheckEvent ()
{
int i;
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
void* pVoid = sr_getevtdatap();
IPM _QOS_ALARM STATUS* pmyAlarmStatus;
switch (nEventType)
{
/*

Other events

*/
/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV_GET QOS ALARM STATUS:
pmyAlarmStatus = (IPM_QOS ALARM STATUS*)pVoid;
printf ("Received IPMEV_GET QOS_ALARM STATUS for device = %s\n",
ATDV_NAMEP (nDeviceID));
for (i=0; i<pmyAlarmStatus->unAlarmCount; ++i)
{
switch (pmyAlarmStatus->QoSData[i].eQoSType)
{
case QOSTYPE_LOSTPACKETS:

printf (" LOSTPACKETS = %d\n",1 _myAlarmStatus.QoSData[i].eAlarmState);
break;
case QOSTYPE_ JITTER:
printf (" JITTER = %d\n”,l_myAlarmStatus.QoSData[i].eAlarmState);
break;
}
}
break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_ResetQoSAlarmStatus()

152 Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve QoS alarm threshold settings — ipm_GetQoSThreshold()

ipm_GetQoSThreshold()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_GetQoSThreshold(nDeviceHandle, *pQoSThresholdInfo, usMode)

int nDeviceHandle e [P Media device handle

IPM_QOS_THRESHOLD_INFO *pQoSThresholdInfo e pointer to QoS alarm threshold
structure

unsigned short usMode * async or sync mode setting

0 on success

-1 on failure
srllib.h
ipmlib.h
QoS

asynchronous or synchronous

Description

The ipm_GetQoSThreshold() function retrieves alarm threshold settings for Quality of Service
(QoS) alarms that report the status of media channels.

Parameter Description
nDeviceHandle handle of the IP Media device

pQoSThresholdInfo pointer to IPM_QOS_THRESHOLD_INFO structure which contains
one or more [IPM_QOS_THRESHOLD_DATA structures

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_GET_QOS_THRESHOLD_INFO
Indicates successful completion. Use SRL functions to retrieve
IPM_QOS_THRESHOLD_INFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

Cautions

e The IPM_QOS_THRESHOLD_INFO structure specifies the QoS Alarm Identifier thresholds.
The application may use this structure to get statistics for only specified QoS types. Use SRL
functions to retrieve IPM_QOS_THRESHOLD_INFO structure fields.

e Ifipm_GetQoSThreshold() is called synchronously, the IPM_QOS_THRESHOLD_INFO
structure is both an input and output parameter. If ipm_GetQoSThreshold() is called
asynchronously, the structure is used only as an input parameter. To retrieve all the QoS

Dialogic® IP Media Library API Programming Guide and Library Reference 153

ipm_GetQoSThreshold() — retrieve QoS alarm threshold settings

threshold settings, in both synchronous and asynchronous modes, set the unCount field in
IPM_QOS_THRESHOLD_INFO structure to 0.

This function does not apply to board-level alarms because these alarms do not have settable
threshold values.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM

Invalid parameter

EIPM_INTERNAL

Internal error

EIPM_INV_MODE

Invalid mode

EIPM_INV_STATE

Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM

System error

H Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long);

void main ()

{

154

int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr(EV_ANYDEV ,EV ANYEVT , (HDLR)CheckEvent) ;

/‘k

Main Processing

*/

/‘k

Query the alarm threshold settings for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open().
*/

IPM QOS_THRESHOLD INFO myThresholdInfo;

myThresholdInfo.unCount = 0;

if (ipm_GetQoSThreshold (nDeviceHandle, &myThresholdInfo, EV_ASYNC) == -1)

{
printf ("ipm GetQoSThreshold failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;

Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve QoS alarm threshold settings — ipm_GetQoSThreshold()

/*
Perform Error Processing
*/
/‘k
continue
*/
void CheckEvent ()
{
unsigned int i;
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
void* pVoid = sr_getevtdatap();
IPM QOS_THRESHOLD INFO* pThresholdInfo;
switch (nEventType)

{
/*

Other events

*/
/* Expected reply to ipm GetQoSThreshold */

case IPMEV_GET_QOS_THRESHOLD INFO:
pThresholdInfo = (IPM_QOS_THRESHOLD_INFO*)pVoid;

printf ("Received IPMEV_GET QOS THRESHOLD INFO for device =

ATDV_NAMEP (nDeviceID)) ;
for (i=0; i<pThresholdInfo->unCount;
{

++1)

%$s\n",

switch (pThresholdInfo->QoSThresholdData[i].eQoSType)

{

case QOSTYPE_LOSTPACKETS:

printf ("QOSTYPE LOSTPACKETS\n");

printf ("unTimeInterval = %d\n",
pThresholdInfo->QoSThresholdDatal[i]

printf ("unDebounceOn = %d\n",
pThresholdInfo->QoSThresholdDatal[i]

printf ("unDebounceOff = %d\n",
pThresholdInfo->QoSThresholdDatal[i]

printf ("unFaultThreshold = %d\n",
pThresholdInfo->QoSThresholdDatal[i]

printf ("unPercentSuccessThreshold = %d\n",
pThresholdInfo->QoSThresholdDatal[i]

printf ("unPercentFailThreshold = %d\n",
pThresholdInfo->QoSThresholdDatal[i]

break;

case QOSTYPE JITTER:
printf("QOSTYPEiJITTER\n");
printf ("unTimeInterval = %d\n",
pThresholdInfo->QoSThresholdDatal[i]
printf ("unDebounceOn = %d\n",

Dialogic® IP Media Library API Programming Guide and Library Reference

.unTimeInterval) ;

.unDebounceOn) ;

.unDebounceOff) ;

.unFaultThreshold) ;

.unPercentSuccessThreshold) ;

.unPercentFailThreshold) ;

.unTimeInterval) ;

155

ipm_GetQoSThreshold() — retrieve QoS alarm threshold settings

pThresholdInfo->QoSThresholdData[i] .unDebounceOn) ;
printf ("unDebounceOff = %d\n",
pThresholdInfo->QoSThresholdData[i] .unDebounceOff) ;
printf ("unFaultThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unFaultThreshold) ;
printf ("unPercentSuccessThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unPercentSuccessThreshold) ;
printf ("unPercentFailThreshold = %d\n",
pThresholdInfo->QoSThresholdData[i] .unPercentFailThreshold) ;

break;
}
}
break;
default:
printf ("Received unknown event = $d for device = %s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;
}
}
H See Also

e ipm_SetQoSThreshold()

156 Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve statistics for a session — ipm_GetSessioninfo()

ipm_GetSessioninfo()

Name: int ipm_GetSessionInfo(nDeviceHandle, *pSessionInfo, usMode)

Inputs: int nDeviceHandle ¢ [P Media device handle
IPM_SESSION_INFO *pSessionlnfo e pointer to session info structure
unsigned short usMode ® async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h
Category: Media Session

Mode: asynchronous or synchronous

B Description

The ipm_GetSessionInfo() function returns QoS and RTCP statistics for a media session in
progress. The data returned is parsed into data structure elements.

If a media session has been initiated by calling ipm_StartMedia(), the data returned by
ipm_GetSessionInfo() is for the current session. If ipm_GetSessionInfo() is called between
media sessions—that is, after ipm_Stop() terminates the session and before ipm_StartMedia() is
called to start a new session—only RTCP statistics are returned for the previous media session.
QoS statistics are not available between media sessions.

To receive QoS statistics, QoS monitoring must be enabled. For more information, see
ipm_EnableEvents() and Chapter 16, “Quality of Service (QoS) Alarms and RTCP Reports”.

Parameter Description
nDeviceHandle handle of the IP Media device
pSessionInfo pointer to structure that contains Quality of Service (QoS) information

about the previous IP session. This parameter can be NULL if the function
is called in the asynchronous mode.

See IPM_SESSION_INFO for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_GET_SESSION_INFO
Indicates successful completion; that is, the structure containing session statistics was filled in.
Use SRL functions to retrieve IPM_SESSION_INFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

Dialogic® IP Media Library API Programming Guide and Library Reference 157

ipbm_GetSessioninfo() — retrieve statistics for a session

158

B Cautions

e The application can call ipm_GetQoSAlarmStatus() to retrieve alarm information for the
current session.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

H Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
srfenbhdlr(EV_ANYDEV ,EV_ANYEVT , (HDLR) CheckEvent) ;

/*

Main Processing

*/

/*

Get the current session information for IP device handle, nDeviceHandle.
ASSUMPTION: nDeviceHandle was obtained from a prior call to ipm Open().
Also, ipm_StartMedia () was successfully called some time earlier.

*/

if (ipm_GetSessionInfo (nDeviceHandle, NULL, EV_ASYNC) == -1)

{

printf ("ipm GetSessionInfo failed for device name = $s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve statistics for a session — ipm_GetSessioninfo()

/*
éerform Error Processing
o
/‘k
Continue processing
Y

void CheckEvent ()

{
unsigned int 1i;
IPM SESSION_ INFO* pIPSessionInfo;
int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();
void* pVoid = sr_getevtdatap();

switch (nEventType)
{
/*

Other events

*/
/* Expected reply to ipm GetSessionInfo */
case IPMEV_GET_SESSION_INFO:
pIPSessionInfo = (IPM_SESSION_INFO*)pVoid;
printf ("Received IPMEV_GET_SESSION_INFO for device = %s\n",
ATDV_NAMEP (nDeviceID)) ;
printf ("RtcpInfo.unLocalSR TimeStamp=%d\n",
pIPSessionInfo->RtcpInfo.unLocalSR_TimeStamp) ;
printf ("RtcpInfo.unLocalSR TxPackets=%d\n",
pIPSessionInfof>thpInfo.unLocalSR_TxPackets);
printf ("RtcpInfo.unLocalSR TxOctets=%d\n",
pIPSessionInfo—>thpInfo.unLocalSR_TxOctets);
printf ("RtcpInfo.unLocalSR SendIndication=%d\n",
pIPSessionInfo->RtcpInfo.unLocalSR _SendIndication);
printf ("RtcpInfo.unLocalRR FractionLost=%d\n",
pIPSessionInfo->RtcpInfo.unLocalRR FractionLost);
printf ("RtcpInfo.unLocalRR CumulativeLost=%d\n",
pIPSessionInfo—>thpInfo.unLocalRR_CumulativeLost);
printf ("RtcpInfo.unLocalRR SegNumber=%d\n",
pIPSessionInfo->RtcpInfo.unLocalRR _SegNumber) ;
printf ("RtcpInfo.unLocalRR ValidInfo=%d\n",
pIPSessionInfo->RtcpInfo.unLocalRR ValidInfo);
printf ("RtcpInfo.unRemoteSR TimeStamp=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteSR TimeStamp) ;
printf("thpInfo.unRemoteSRiTxPackets=%d\n",
pIPSessionInfo—>thpInfo.unRemoteSR_TxPackets);
printf ("RtcpInfo.unRemoteSR TxOctets=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteSR TxOctets) ;
printf ("RtcpInfo.unRemoteSR SendIndication=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteSR_SendIndication) ;
printf ("RtcpInfo.unRemoteRR FractionLost=%d\n",
pIPSessionInfo—>thpInfo.unRemoteRR_FractionLost);

Dialogic® IP Media Library API Programming Guide and Library Reference 159

ipbm_GetSessioninfo() — retrieve statistics for a session

printf ("RtcpInfo.unRemoteRR _CumulativeLost=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteRR CumulativelLost) ;

printf ("RtcpInfo.unRemoteRR_SegNumber=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteRR SegNumber) ;

printf ("RtcpInfo.unRemoteRR ValidInfo=%d\n",
pIPSessionInfo->RtcpInfo.unRemoteRR ValidInfo) ;

for(i = 0; i< pIPSessionInfo->unQoSInfoCount; ++i)

{
printf ("Session Q0S Type=%d\n", pIPSessionInfo->QoSInfo[i].eQoSType) ;

printf ("Session QOS Data=%d\n", pIPSessionInfo->QoSInfo[i].unData);
}

break;
default:
printf ("Received unknown event = %d for device = %$s\n",

nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

e ipm_GetQoSAlarmStatus()
e ipm_GetSessionInfoEx()
e ipm_StartMedia()

160 Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve RTCP data for a session — ipm_GetSessioninfoEx()

ipm_GetSessionIinfoEx()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_GetSessionInfoEx(nDeviceHandle, usDirection)

int nDeviceHandle ¢ JP Media device handle
unsigned short usDirection e direction of RTCP report
0 on success

-1 on failure

srllib.h
ipmlib.h

Media Session

asynchronous

Description

The ipm_GetSessionInfoEx() function retrieves RTCP data for a media session if one is in
progress; otherwise, it retrieves data for the previous session. This function can retrieve both
incoming and outgoing RTCP data that may include extended (RTCP-XR) and high resolution
VoIP metrics (RTCP-HR).

The RTCP packets are in a raw, unrendered format. The RTCP report is returned as an event data
associated with IPMEV_GET_SESSIONINFOEX.

If a media session has been initiated by calling ipm_StartMedia(), the data returned by
ipm_GetSessionInfoEx() is for the current session. If ipm_GetSessionInfoEx() is called
between media sessions—that is, after ipm_Stop() terminates the session and before
ipm_StartMedia() is called to start a new session—the data returned is for that previous media
session.

Before using this function, you can enable events for enhanced RTCP reporting using
ipm_EnableEvents().

Parameter Description
nDeviceHandle handle of the IP Media device
usDirection direction of RTCP report requested. Valid values are:

IPM_RTCP_DIR_INCOMING and IPM_RTCP_DIR_OUTGOING.

Termination Events

IPMEV_GET_SESSION_INFOEX
Indicates successful completion: the IPM_SESSION_INFOEX structure that contains
enhanced RTCP statistics was filled in. Use SRL functions to retrieve event data associated
with the structure.

IPMEV_ERROR
Indicates that the function failed.

Dialogic® IP Media Library API Programming Guide and Library Reference 161

ipbm_GetSessionInfoEx() — retrieve RTCP data for a session

162

B Cautions
None.
H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/
// Enable RTCP reporting

IPM_PARM_INFO ParmInfo;

unsigned long ulParmValue = 1

ParmInfo.eParm = PARMCH_ RTCP_ENHANCED REPORTING;
ParmInfo.pvParmValue = &ulParmValue;

if (ipm_SetParm(nDeviceHandle, &ParmInfo, EV_ASYNC)==-1)
{

// Error Processing
}

// Event Processing
void CheckEvent ()

{
// Set frequency of RICP reporting events

Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve RTCP data for a session — ipm_GetSessioninfoEx()

printf ("Setting Event Rate\n");

Parms.eParm=PARMCH_RTCP ENHANCED EVENT FREQ;
value=5; // send every fifth event
rc=ipm SetParm(l Channels[i].m ipm ddd, &Parms,EV_ASYNC) ;
if (rc<0)
{
printf ("Error setting event rate parm\n");
return -1;

int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
void* pVoid = sr_getevtdatap();
switch (nEventType)

{

/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV_SET PARM:
printf ("Received IPMEV SETPARM for device = %$s\n"ATDV NAMEP (nDeviceID)) ;
break;
case IPMEV_RTCP_NOTIFY RECEIVED:
printf ("%i IPMEV_RTCP_NOTIFY_RECEIVED\n",index);
rc=ipm GetSessionInfoEx(l_Channels[index].m ipm ddd,1);
if (rc == -1) {
printf ("ipm GetSessionInfoEx failed: channel %i
%s\n”,index,ATDV_ERRMSGP(l_Channels[index].m_ipm_ddd)L
}

break;

case IPMEV_RTCP NOTIFY_ SENT:

}

printf ("%i IPMEV_RTCP_NOTIFY SENT\n", index);
rc=ipm GetSessionInfoEx(l_Channels[index].m ipm ddd,2);
if (rc == -1) {
printf ("ipm GetSessionInfoEx failed: channel %i
%$s\n",index, ATDV_ERRMSGP (1 _Channels[index].m ipm ddd));

break;

case IPMEV GET SESSION INFOEX:

printf ("Received IPMEV_GET_ SESSION_INFOEX for device =
%$s\n",ATDV_NAMEP (1 _Channels[index].m ipm ddd));

pSessionInfoEx = (IPM_SESSION_INFOEX *)pVoid;

//pSessionInfoEx = (unsigned char *)pVoid;

if (pSessionInfoEx!=NULL)

int i;

unsigned char *data;
unsigned int version;

printf ("version=%d\n",pSessionInfoEx->unVersion) ;

printf ("direction=%u\n",pSessionInfoEx->unRTCPDirection) ;
printf ("DataLength=%u\n",pSessionInfoEx->unRTCPDatalength) ;
data=(unsigned char*)pSessionInfoEx->pRTCPReport;

if ((pSessionInfoEx->unRTCPDataLength > 0) &&
(pSessionInfoEx->unVersion == IPM SESSION_INFOEX VERSION_0))

data = (unsigned char *)malloc (pSessionInfoEx->unRTCPDatalLength *
sizeof (unsigned char));
memcpy (data, pSessionInfoEx->pRTCPReport, pSessionInfoEx->unRTCPDatalength) ;
for (i=0;i<pSessionInfoEx->unRTCPDatalLength;i++)
{
printf ("$i=%02x\n",1i,datal[i]);

Dialogic® IP Media Library API Programming Guide and Library Reference 163

ipbm_GetSessionInfoEx() — retrieve RTCP data for a session

B See Also

e ipm_GetSessionInfo()

164 Dialogic® IP Media Library APl Programming Guide and Library Reference

return TDM time slot information for an IP channel — ipm_GetXmitSlot()

ipm_GetXmitSlot()

Name: int ipm_GetXmitSlot(nDeviceHandle, *pTimeslotlnfo, usMode)

Inputs: int nDeviceHandle e [P Media device handle
SC_TSINFO *pTimeslotInfo e pointer to time slot info structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control

Mode: asynchronous or synchronous

B Description

The ipm_GetXmitSlot() function returns TDM time slot information for an IP channel.

Parameter Description
nDeviceHandle handle of the IP Media device
pTimeslotInfo pointer to structure that describes the time slot number, time slot type, and

bus encoding format. This parameter can be NULL if the function is
called in the asynchronous mode.

See SC_TSINFO for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_GET_XMITTS_INFO
Indicates successful completion. Use SRL functions to retrieve SC_TSINFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

None

Dialogic® IP Media Library API Programming Guide and Library Reference 165

ipbm_GetXmitSlot() — return TDM time slot information for an IP channel

166

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/
/*
Get the timeslot information for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{().
*/
if (ipm_GetXmitSlot (nDeviceHandle, NULL, EV_ASYNC) == -1)
{
printf ("ipm GetxXmitSlot failed for device name = $%s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

*/

Dialogic® IP Media Library APl Programming Guide and Library Reference

return TDM time slot information for an IP channel — ipm_GetXmitSlot()

/k
. continue
*/

void CheckEvent ()

{
int nEventType = sr _getevttype();
int nDeviceID = sr_getevtdev();
void* pVoid = sr getevtdatap();
SC_TSINFO* pTimeSlotInfo;

switch (nEventType)
{
/*

. Other events

*/

/* Expected reply to ipm GetXmitSlot */

case IPMEV_GET XMITTS_INFO:
pTimeSlotInfo = (SC_TSINFO*)pVoid;

printf ("Received IPMEV_GET XMITTS INFO for device =
ATDV_NAMEP (nDeviceID)) ;

printf ("Timeslot number %d\n", *(pTimeSlotInfo->sc_tsarrayp));

break;

default:

printf ("Received unknown event = %d for device = %s\n",

nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

None

Dialogic® IP Media Library API Programming Guide and Library Reference

167

ipm_InitResponseSend() — send a response to an Nb UP invitation

ipm_InitResponseSend()

Name: int ipm_InitResponseSend (a_nDeviceHandle, pInitRsp)

Inputs: int a_nDeviceHandle ¢ SRL handle of the IPM device
const e structure describing the Nb UP response
PIPM_NBUP_INIT_RESPONSE
a_pInitRsp

Returns: 0 on success
-1 on error

Includes: ipmlib.h
Category: Media Session
Mode: asynchronous

B Description

The ipm_InitResponseSend() function attempts to send a response to an IP session (for example,
Nb UP session) invitation. The ipm_StartMedia() function must have been previously called with
the appropriate connection type, such as Nb UP.

Parameter Description
a_nDeviceHandle SRL handle of the IP media device
a_pInitRsp structure describing the Nb UP response. See

IPM_NBUP_INIT_RESPONSE for details.
B Events

If the function returns 0, it can generate any of the following events:

IPMEV_INIT_RESPONSE_SEND
Indicates successful completion of sending the initialization response message. It does not
indicate whether the event was received by the remote party. If
IPMEV_INIT_RESPONSE_SEND is received, one of the following unsolicited events is
subsequently reported:

e IPMEV_INIT_COMPLETE - Unsolicited event reported when the Nb UP session has
been successfully negotiated with the remote party. Both parties may now begin
exchanging data.

e IPMEV_INIT_FAILED - Unsolicited event reported upon encountering an unexpected
error during initialization. Event Data: [IPM_NBUP_INIT_FAILURE structure.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

None.

168 Dialogic® IP Media Library APl Programming Guide and Library Reference

send a response to an Nb UP invitation — ipm_InitResponseSend()

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_BUSY
Channel is busy

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

#include "srllib.h"
#include "dxxxlib.h"
#include "ipmlib.h"

static int g _hIPM = -1;
static IPM MEDIA INFO g media, g_localMedia;
static bool g mediaStarted;

[/ Kk ok ok ko ok ok ok ok ok ok ok kK ok ok ok ok K ok ok ok K ok ok ok kK ok ok ok K K ok ok ok K ok ok ok kK ok ok ok K o ok ok ok ok ok ok ok kK ok ok ok K ok ok ok K ok ok K

* Dialogic API function callers
***/
bool
GetLocalMediaInfo ()
{
g_localMedia.unCount = 1;
g_localMedia.MediaData[0].eMediaType = MEDIATYPE NBUP LOCAL RTP INFO;
printf("Calling ipm GetLocalMediaInfo()\n");
if (ipm GetLocalMedialInfo (g hIPM, &g localMedia, EV_ASYNC) == -1)
{
printf ("ipm GetLocalMediaInfo failed\n");
return false;
}

return true;

bool
StartMedia ()
{
// Set up remote RTP Media Info
memset (&g _media, 0, sizeof (IPM MEDIA INFO));
g_media.unCount = 2;
g_media.MediaDatal[0].eMediaType = MEDIATYPE NBUP_REMOTE RTP_INFO;
g_media.MediaData[0].mediaInfo.PortInfo.unPortId = 40960;

Dialogic® IP Media Library API Programming Guide and Library Reference 169

ipm_InitResponseSend() — send a response to an Nb UP invitation

170

// g_localMedia.MediaData[0].mediaInfo.PortInfo.unPortId;
strcpy (g media.MediaData[0].mediaInfo.PortInfo.cIPAddress,
g_localMedia.MediaData[0].mediaInfo.PortInfo.cIPAddress);
// Set up NBUP info
g_media.MediaData[l].eMediaType = MEDIATYPE NBUP_PROFILE INFO;
INIT IPM NBUP PROFILE INFO (& (g media.MediaData[l].mediaInfo.NBUPProfileInfo));
g_media.MediaData[l].mediaInfo.NBUPProfileInfo.eProfileType = NBUP_PROFILE_3G324M;
g media.MediaData[l].mediaInfo.NBUPProfileInfo.ucTxPLT = 111;
g_media.MediaData[l].mediaInfo.NBUPProfileInfo.ucRxPLT = 111;
printf ("Remote IP address - $s Remote RTP port - %d\n",
g_media.MediaData[0] .mediaInfo.PortInfo.cIPAddress,
g media.MediaData[0] .mediaInfo.PortInfo.unPortId);
printf("Calling ipm StartMedia()\n");
if (ipm StartMedia (g _hIPM, &g media, DATA IP TDM BIDIRECTIONAL, EV ASYNC) == -1)
{
printf ("ipm StartMedia failed\n");
return false;
}
g _mediaStarted = true;
return true;

bool
InitResponseSend ()

{
IPM _INIT RESPONSE initResp;
IPM NBUP_INIT_ RESPONSE nbupResp;
// Initialize the main structure
INIT _IPM INIT RESPONSE (&initResp);
initResp.eProtocol = RTP_PROTOCOL_NBUP;
initResp.data.pNBUP = &nbupResp;
// Initialize the NBUP specific structure with an ACK response
INIT IPM NBUP INIT RESPONSE (&nbupResp);
nbupResp.eResponse = NBUP_INIT RESPONSE_ACK;
printf("Calling ipm InitResonseSend()\n");
if (ipm InitResponseSend (g _hIPM, &initResp) == -1)
{
printf ("ipm InitResponseSend failed\n");
return false;
}

return true;

bool
EnableEvents ()
{
const int nEvents = 4;
eIPM EVENT events[nEvents] = {

EVT_INIT RECEIVED,
EVT_PROCEDURE_DONE,
EVT_SEND FAILED,
EVT_NACK_SENT
bi
printf ("Calling ipm EnableEvents()\n");
if (ipm_EnableEvents (g_hIPM, events, nEvents, EV_ASYNC) == -1)
{
printf ("ipm EnableEvents failed\n");
return false;
}

return true;

[/ ok kK ok ok ok ok ok ok ok kK ok ok ok K K ok ok ok K ok ok ok K K ok ok ok K o ok ok ok K ok ok ok K K ok ok ok K ok ok ok ok K ok ok ok K K ok ok kK K ok ok ok K ok ok ok K Kk ok ok

Event handler for Inbound IPM device
NOTE: Returning 1 will cause waitevt(-1) to stop blocking

and exit the state machine.
***/

Dialogic® IP Media Library APl Programming Guide and Library Reference

send a response to an Nb UP invitation — ipm_InitResponseSend()

long
IpmEventHandlerInbound (void *dummy)
{
// Get the event info from SRL
int evttype = sr_getevttype ();
int evtdev = sr_getevtdev ();
if (evtdev == -1)
return 0;
printf ("Event rcvd - 0x%x", evttype);

switch (evttype)
{
case IPMEV_EVENT_ ENABLED:
printf (" - IPMEVﬁEVENTiENABLED\n");
// Get local Media Info to be used in ipm StartMedia
if (!GetLocalMediaInfo ())

//return 0;
//return 1;
}
break;
case IPMEV GET LOCAL MEDIA INFO:
printf (" - IPMEV GET LOCAL MEDIA INFO\n");

{
// Search for the local media info in the returned data structure
IPM_MEDIA_ INFO *pMediaInfo = (IPMﬁMEDIAilNFO *) srigetevtdatap ()7
for (unsigned int ii = 0; ii < pMediaInfo->unCount; ii++)
{
switch (pMediaInfo->MediaData[ii].eMediaType)
{
case MEDIATYPE NBUP_LOCAL RTP INFO:
// Found local media info in the returned event, store it away.
memcpy (& (g_localMedia.MediaDatal[0]),
& (pMediaInfo->MediaData[ii]), sizeof (IPM MEDIA));
// Call StartMedia. Should not need this "already started" check...
if (!g_mediaStarted)
if (!StartMedia ())
{

return 1;

break;
default:
printf ("Unexpected media type %0x%x found.\n",
pMediaInfo->MediaData[ii] .eMediaType) ;

break;
}

}

break;
case IPMEV_STARTMEDIA:

printf (" - IPMEV_ STARTMEDIA\n");
// Sit and wait for an inbound NBUP session request
break;

case IPMEV_INIT RECEIVED:
printf (" - IPMEV INIT RECEIVED\n");

{
// Check to see what type of invite we received
PIPM INIT RECEIVED pRecv = (PIPM INIT RECEIVED) sr_getevtdatap ();
if (!pRecv)
{
printf ("Invalid pointer returned from sr getevtdatap()");
return 1;
}
if (pRecv->eProtocol == RTP_PROTOCOL_NBUP)
{
// We've received an NBUP invitation. Send an ACK to start the session
if (!InitResponseSend ()

Dialogic® IP Media Library API Programming Guide and Library Reference 171

ipm_InitResponseSend() — send a response to an Nb UP invitation

return 1;
}
}
else
{
printf ("Unsupported protocol (%d) in init request.",
pRecv->eProtocol) ;

return 1;
}

}
break;

case IPMEV_INIT RESPONSE SEND:
printf (" - IPMEV_INIT_RESPONSE_SEND\n");
// Just the termination event for ipm InitResponseSend
break;

case IPMEV_INIT COMPLETE:
printf (" - IPMEV_INIT_COMPLETE event received"

" - NBUP CONNECTION SUCCESSFUL\n");
// This means all has passed and we have an NBUP session.
// Just exit out of our sample scenario here
return 1;
case IPMEV_INIT FAILED:
// Something prevented us from connecting

printf (" - IPMEVﬁINITiFAILED\n");
{
PIPM INIT FAILURE pInfo = (PIPM_INIT FAILURE) srfgetevtdatap ()7
if (pInfo)
{
if (pInfo->eProtocol == RTP_PROTOCOL_NBUP)

PIPM NBUP_ INIT FAILURE pNBUP =
(PIPMﬁNBUPilNITiFAILURE) (pInfo->data.pNBUP) ;
printf ("Error cause: 0x%X\n", pNBUP->unCause);

else
printf ("Unexpected protocol %d found.\n",

pInfo->eProtocol);

else

{

printf ("Bad pointer returned from sr_getevtdatap()\n");

}

return 1;
case IPMEV_ERROR:
printf (" - IPMEV ERROR %d: %s\n", ATDV _LASTERR (g_hIPM),
ATDV_ERRMSGP (g_hIPM)) ;
return 1;
default:
printf ("WARNING: Unknown event 0x%x received.\n", evttype);
break;
} // end switch

return 0;
}
return 0;

}

[/ ok kK ok ok kK ok ok ok K K ok ok ok K K ok ok ok K ok ok ok K K ok ok ok K o ok ok ok K ok ok ok K K ok ok ok K o ok ok ok K o ok ok K K ok ok kK K ok ok ok K ok ok ok K Kk ok ok

MAIN procedure
***/
int main ()
{

g_mediaStarted = false;

printf("Calling ipm Open() on %s\n", ipmB1C2);

g_hIPM = ipm Open (ipmB1C2, NULL, EV_SYNC);

if (g_hIPM == -1)

172 Dialogic® IP Media Library APl Programming Guide and Library Reference

send a response to an Nb UP invitation — ipm_InitResponseSend()

printf ("ipm Open() failed.\n");
exit (1);
}
if (sr_enbhdlr (g_hIPM, EV_ANYEVT, IpmEventHandlerInbound) == -1)
{
printf ("sr_enbhdlr () failed.\n");
exit (1);
}
// Enable the NBUP events and kick off the state machine
if (!EnableEvents ())
{
exit (1);
}
// Wait for complete
sr _waitevt (-1);

printf ("NbUP data can now be sent\n");
sleep (4);

// Shutdown
printf ("Exiting...\n");
printf("Calling ipm_ Stop () \n");
if (ipm Stop (g hIPM, STOP ALL, EV_SYNC == -1))
{
printf ("ipm Stop failed.\n");
}
if (sr_dishdlr (g_hIPM, EV_ANYEVT, IpmEventHandlerInbound) == -1)
{
printf ("sr dishdlr() failed.\n");
}
printf("Calling ipm Close()\n");
if (ipm Close (g_hIPM, NULL) == -1)
{

printf ("ipm Close() failed.\n");
}

B See Also

e ipm_InitSend()

Dialogic® IP Media Library API Programming Guide and Library Reference 173

ipm_InitSend() — send an Nb UP initialization message to a remote party

ipm_InitSend()

Name: int ipm_InitSend (a_nDeviceHandle, *a_pInitInfo)
Inputs: int a_nDeviceHandle ¢ SRL handle of the IPM device

const IPM_INIT_SEND e structure describing the Nb UP initialization parameters
a_plnitInfo

Returns: 0 on success
-1 on error

Includes: ipmlib.h
Category: Media Session
Mode: asynchronous

B Description

The ipm_InitSend() function attempts to send an IP protocol (for example, Nb UP) message to a
remote party. The ipm_StartMedia() function must have been previously called with the
appropriate connection type, such as Nb UP.

Parameter Description
a_nDeviceHandle SRL handle of the IP media device
a_pInitInfo structure describing the Nb UP initialization parameters. See

IPM_INIT_SEND for details.

H Events

If the function returns 0, it can generate any of the following events:

IPMEV_INIT_SEND
Indicates successful completion of sending the initialization message. It does not indicate
whether the event was received by remote party or what the response was. If
IPMEV_INIT_SEND is received, one of the following unsolicited events is subsequently
reported:

e IPMEV_INIT_COMPLETE - Unsolicited event reported when the Nb UP session has
been successfully negotiated with the remote party. Both parties may now begin
exchanging data.

e IPMEV_INIT_FAILED - Unsolicited event reported upon encountering an unexpected
error or a negative response (NACK) from the remote party. Event Data:
IPM_INIT_FAILURE structure.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

None.

174 Dialogic® IP Media Library APl Programming Guide and Library Reference

send an Nb UP initialization message to a remote party — ipm_InitSend()

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
functions to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_BUSY
Channel is busy

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdlib.h>
#include <string.h>
#include <fcntl.h>

#include "srllib.h"
#include "dxxxlib.h"
#include "ipmlib.h"

static int g hIPM = -1;
static IPM MEDIA INFO g media, g localMedia;
static bool g mediaStarted;

/**‘k‘k‘k********‘k‘k‘k********‘k‘k‘k********‘k‘k‘k********‘k‘k‘k************************
* Dialogic API function callers

ok ok K K K ok kK K ok ok kK K ok ok K K ok ok ok K K ok ok kK ok ok ok K K ok ok ok K K ok kK ok ok ok K K ok ok K K ok kK ok ok K K ok ok K Kk ok ok K Kk ok /

bool GetLocalMediaInfo ()

g_localMedia.unCount = 1;

g_localMedia.MediaData[0] .eMediaType = MEDIATYPE NBUP LOCAL RTP INFO;
printf ("Calling ipm GetLocalMediaInfo()\n");

if (ipm GetLocalMedialInfo (g hIPM, &g localMedia, EV_ASYNC) == -1)

printf ("ipm GetLocalMediaInfo failed\n");
return false;
}

return true;

bool StartMedia ()
{
// Set up remote RTP Media Info
memset (&g _media, 0, sizeof (IPM MEDIA INFO));
g_media.unCount = 2;
g_media.MediaDatal[0].eMediaType = MEDIATYPE NBUP_REMOTE RTP_INFO;
g_media.MediaData[0].mediaInfo.PortInfo.unPortId = 40962;
strcpy (g _media.MediaData[0].mediaInfo.PortInfo.cIPAddress,
g_localMedia.MediaData[0].mediaInfo.PortInfo.cIPAddress);

Dialogic® IP Media Library API Programming Guide and Library Reference 175

ipm_InitSend() — send an Nb UP initialization message to a remote party

176

// Set up NBUP info
g_media.MediaData[l].eMediaType = MEDIATYPE NBUP_PROFILE_ INFO;
INIT IPM NBUP_PROFILE INFO (& (g media.MediaData[l].mediaInfo.NBUPProfileInfo));
g_media.MediaData[l].mediaInfo.NBUPProfileInfo.eProfileType = NBUP_PROFILE_3G324M;
g media.MediaData[l].mediaInfo.NBUPProfileInfo.ucTxPLT = 111;
g_media.MediaData[l].mediaInfo.NBUPProfileInfo.ucRxPLT = 111;
printf ("Remote IP address - $s Remote RTP port - %d\n",
g_media.MediaData[0].mediaInfo.PortInfo.cIPAddress,
g media.MediaData[0].mediaInfo.PortInfo.unPortId);
printf("Calling ipm StartMedia()\n");
if (ipm_StartMedia
(g hIPM, &g media, DATA IP TDM BIDIRECTIONAL, EV ASYNC) == -1)

printf ("ipm StartMedia failed\n");
return false;
}
g _mediaStarted = true;
return true;

bool InitSend ()

{

// Initiate the NBUP session
IPM_INIT_SEND initSend;
IPM NBUP INIT SEND nbupSend;

// Initialize the main structure

INIT IPM INIT SEND (&initSend);
initSend.eProtocol = RTP_PROTOCOL_NBUP;
initSend.data.pNBUP = &nbupSend;

// Initialize the NBUP specific structure
INIT IPM NBUP INIT SEND (&nbupSend, 1, 1);

// Init function handles memory allocation for us
nbupSend.pRFCIs[0].ucID = (unsigned char) 0x44;
nbupSend.pRFCIs [0] .pSubFlows[0] .eFlowSize = NBUP_FLOW_SIZE 320 BITS;
printf("Calling ipm initSend()\n");

if (ipm InitSend (g_hIPM, &initSend) == -1)

// De-allocate memory allocated for us
FREE IPM NBUP INIT SEND (&nbupSend);
printf ("ipm InitSend failed\n");
return false;

// De-allocate memory allocated for us
FREE IPM NBUP INIT SEND (&nbupSend);
return true;

bool EnableEvents ()

{

const int nEvents = 4;
eIPM EVENT events[nEvents] =
{
EVT_INIT RECEIVED, EVT_ PROCEDURE DONE, EVT_SEND FAILED,
EVT NACK SENT };
printf ("Calling ipm EnableEvents()\n");
if (ipm_EnableEvents (g_hIPM, events, nEvents, EV_ASYNC) == -1)

Dialogic® IP Media Library APl Programming Guide and Library Reference

send an Nb UP initialization message to a remote party — ipm_InitSend()

printf ("ipm EnableEvents failed\n");
return false;
}

return true;

[KK kK ok K ok ok K ok K ok ko ok K ok ok K ok K ok ok ok kK ok K ok ok ok Kk ok Kk Kk ok Kk Kk kR kK ok ok k ok Rk Kk kK kK ok ok ok ok Kk kK kK ok ok

Event handler for Outbound IPM device

NOTE: Returning 1 will cause waitevt(-1) to stop blocking

and exit the state machine.
***/
long

IpmEventHandlerOutbound (void *dummy)

{

unsigned long evthandle = sr_getevtdev () ;
// Get the event info from SRL
int evttype = sr_getevttype ();
int evtdev = sr_getevtdev ();
if (evtdev == -1)
return 0;
printf ("Event rcvd - 0x%x", evttype);
switch (evttype)

{
case IPMEV_EVENT_ ENABLED:
printf (" - IPMEV_EVENT_ ENABLED\n");

// Get local Media Info to be used in ipm_StartMedia
if (!GetLocalMediaInfo ())

//return 1;
}
break;
case IPMEV_GET_LOCAL MEDIA INFO:
printf (" - IPMEV_GET LOCAL MEDIA INFO\n");

// Search for the local media info in the returned data structure
{
IPM MEDIA INFO * pMedialnfo = (IPM_MEDIA_ INFO *) sr_getevtdatap ();
for (unsigned int ii = 0; ii < pMedialInfo->unCount; ii++)

switch (pMediaInfo->MediaDatal[ii].eMediaType)

{
case MEDIATYPE NBUP LOCAL RTP INFO:

// Found local media info in the returned event, store it away.
memcpy (&(g_localMedia.MediaDatalO0]),
& (pMediaInfo->MediabData[ii]), sizeof (IPM MEDIA));

// Call StartMedia. Should not need this "already started" check.
if (!g_mediaStarted)
if (!StartMedia ())
{

return 1;

break;
default:
printf ("Unexpected media type 0x%x found.\n",
pMediaInfo->MediaData[ii].eMediaType) ;

Dialogic® IP Media Library API Programming Guide and Library Reference 177

ipm_InitSend() — send an Nb UP initialization message to a remote party

break;
}
}
}
}
break;
case IPMEV_STARTMEDIA:
printf (" - IPMEV STARTMEDIA event received\n");

// Initiate the NBUP session
if (!InitSend ())

return 1;
}
break;
case IPMEV_INIT_ SEND:
printf (" - IPMEV_INIT_SEND\n");

// Just the termination event for ipm InitSend - take no action

break;
case IPMEV_INIT COMPLETE:
printf (" - IPMEV_INIT COMPLETE"

" - NBUP CONNECTION SUCCESSFUL\n");

// This means all has passed and we have an NBUP session.
// Just exit out of our sample scenario here
return 1;
default:
printf ("WARNING: Unknown event 0x%x received.\n", evttype);
break;
}

return 0;

[/ kK ok ok kK ok ok ok kK ok ok kK ok ok ok kK ok ok ok K K ok ok ok K ok ok ok kK ok ok ok K o ok ok ok K ok ok ok kK ok ok ok K K ok ok ok K ok ok K K ok ok kK K ok k ok

MAIN procedure
***/
int main ()
{

g_mediaStarted = false;

printf("Calling ipm Open on %s\n", ipmBIC1);

g_hIPM = ipm Open (ipmB1C1l, NULL, EV_SYNC);

if (g_hIPM == -1)

printf ("ipm Open failed.\n");
exit (1);
}
if (sr_enbhdlr (g_hIPM, EV_ANYEVT, IpmEventHandlerOutbound) == -1)

printf ("sr enbhdlr() failed.\n");
exit (1);

// Enable the NBUP events and kick off the state machine
if (!EnableEvents ())

exit (1);
// Wait for complete

sr_waitevt (-1);

printf ("NbUP data can now be sent\n");
sleep (4);

178 Dialogic® IP Media Library APl Programming Guide and Library Reference

send an Nb UP initialization message to a remote party — ipm_InitSend()

// Shutdown
printf ("Exiting...\n");
printf ("Calling ipm Stop()\n");
if (ipm Stop (g hIPM, STOP ALL, EV_SYNC == -1))

{
printf ("ipm Stop failed.\n");
}
if (sr_dishdlr (g_hIPM, EV_ANYEVT, IpmEventHandlerOutbound) == -1)

{
printf ("sr_dishdlr() failed.\n");
}
printf("Calling ipm Close()\n");
if (ipm Close (g_hIPM, NULL) == -1)

{
printf ("ipm Close() failed.\n");
}

B See Also

e ipm_InitResponseSend()

Dialogic® IP Media Library API Programming Guide and Library Reference 179

ipbm_Listen() — connect an IP channel to a TDM time slot

ipm_Listen()

180

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_Listen(nDeviceHandle, *pTimeslotInfo, usMode)

int nDeviceHandle ¢ [P Media device handle
SC_TSINFO *pTimeslotInfo e pointer to time slot info structure
unsigned short usMode ® async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h
System Control

asynchronous or synchronous

Description

The ipm_Listen() function connects an IP channel to a TDM time slot, enabling data to flow
between the TDM time slot and the IP network or the host.

ipm_Listen() uses the information stored in the SC_TSINFO structure to connect the receive
channel on the device to an available TDM bus time slot in the specified list of time slots. The time
slot number is returned in the SC_TSINFO structure. The receive channel remains connected to the
TDM bus time slot until ipm_UnListen() is called or ipm_Listen() is called with a different time
slot.

If ipm_Listen() is called to connect to a different TDM time slot, the firmware automatically
breaks an existing connection and reconnects it to the new time slot. In this case, the application
does not need to call the ipm_UnListen() function.

Parameter Description
nDeviceHandle handle of the IP Media device
pTimeslotInfo pointer to structure that describes the time slot number, time slot type,

and bus encoding format
See SC_TSINFO for details.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_LISTEN
Indicates successful completion; that is, an IP channel was connected to the specified TDM
time slot. This event does not return any data.

IPMEV_ERROR
Indicates the function failed.

Dialogic® IP Media Library APl Programming Guide and Library Reference

connect an IP channel to a TDM time slot — ipm_Listen()

B Cautions

e The IP Media library allows ipm_Listen() and ipm_UnListen() to be called either
synchronously or asynchronously. Other Dialogic libraries may not support asynchronous
execution of the similar xx_Listen and xx_UnListen functions.

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

H Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
int nDeviceHandle;
SC_TSINFO IPTimeSlotInfo;
long 1TimeSlot;
// Register event handler function with srl
sr_enbhdlr(EV_ANYDEV ,EV ANYEVT , (HDLR)CheckEvent);

/‘k

Main Processing

*/

/‘k

Tell IP device handle, nDeviceHandle, to listen to timeslot 10.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

1TimeSlot = 10;

IPTimeSlotInfo.sc_tsarrayp = &lTimeSlot;
IPTimeSlotInfo.sc_numts = 1;

if (ipm_Listen (nDeviceHandle, &IPTimeSlotInfo, EV_ASYNC) == -1)
{

printf ("ipm Listen failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

Dialogic® IP Media Library API Programming Guide and Library Reference 181

ipbm_Listen() — connect an IP channel to a TDM time slot

/k
éerform Error Processing
“

/*

: Continue processing

.

void CheckEvent ()
{

int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();

switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm Listen */

case IPMEV_LISTEN:
printf ("Received IPMEV_LISTEN for device = %s\n", ATDV NAMEP (nDeviceID));

break;
default:
printf ("Received unknown event = %d for device = %$s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

e ipm_UnListen()

182 Dialogic® IP Media Library APl Programming Guide and Library Reference

modify properties of active media session — ipm_ModifyMedia()

ipm_ModifyMedia()

Name: int ipm_ModifyMedia(nDeviceHandle, *pMedialnfo, eDirection, usMode)

Inputs: int nDeviceHandle e [P Media device handle
IPM_MEDIA_INFO *pMedialnfo e pointer to media information structure
e]PM_DATA_DIRECTION eDirection e data flow direction
unsigned short usMode async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h
Category: Media Session

Mode: asynchronous or synchronous

B Description

The ipm_ModifyMedia() function modifies various properties of an active media session. This
function allows the application to modify the following media session properties:

e direction of the media stream
* remote IP address and port

e codec properties for audio (speech) codecs only

For this function to complete successfully, the stream associated with the IP device must be in
either active or suspended mode.

The media session properties are changed on the local endpoint as soon as the function is called,
and this may result in a perceptible artifact (for example, a click or a brief silence) until the remote
endpoint makes the corresponding change. For example, if the coder is being changed by the
function call, the local endpoint begins transmitting packets using the new coder and stops
accepting packets that it receives which use the old coder as soon as the function executes.

Parameter Description
nDeviceHandle handle of the IP Media device

pMedialnfo pointer to structure that contains local channel RTP/RTCP ports and IP
address information (or T.38 port and IP address information)

See the IPM_MEDIA_INFO data structure page for details.

Dialogic® IP Media Library API Programming Guide and Library Reference 183

ipbm_ModifyMedia() — modify properties of active media session

184

Parameter Description

eDirection media operation enumeration

The eIPM_DATA_DIRECTION data type is an enumeration which

defines the following values:

e DATA_IP_RECEIVEONLY - receive data from the IP network but do
not send data

e DATA_IP_SENDONLY - send data to the IP network but do not
receive data

e DATA_IP_TDM_BIDIRECTIONAL - full duplex data path
(streaming media) between IP network and TDM

e DATA_IP_INACTIVE - allow RTCP while blocking RTP or T.38
packets

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution

B Termination Events

In asynchronous mode, the function returns O if the operation was initiated successfully.
Completion of the operation is indicated by receipt of a termination event:
IPMEV_MODIFYMEDIA

Indicates successful completion; that is, modified media information was set and the session
has been started.

IPMEV_MODIFYMEDIA_FAIL
Indicates that the modify media operation failed. The characteristics of the media session
remain as they were before the function was called.

B Cautions

e An application must ensure that the streaming properties at two endpoints are in sync. For
example, changing coder properties at one endpoint without synchronization with the other
endpoint will cause dropped RTP packets.

e The ipm_ModifyMedia() function does not support the video media types listed for the
IPM_MEDIA data structure in Chapter 25, “Data Structures”. To change the value of a video
media type, you must first call ipm_Stop() followed by ipm_StartMedia() which includes
the value of the new video media type.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter; invalid coder; invalid count of media information; T.38 is in session;
multicast IP address specified; multicast server or client direction.

EIPM_FWERR
error in lower-level software

Dialogic® IP Media Library APl Programming Guide and Library Reference

modify properties of active media session — ipm_ModifyMedia()

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made. Stream
is idle.

EIPM_SYSTEM
System error

The ipm_ModifyMedia() function returns security errors in the following circumstances:

e The total number of keys has exceeded the given limit
(IPM_SECURITY_MAX_TOTAL_NUM_KEYS, which is set to 20).

* The number of keys for any given media type exceeds the given limit
(IPM_SECURITY_MAX NUM_KEYS, which is set to 10).

* The size of a generated key does not match the key size (master key or master salt) in the
specified crypto suite (see Table 7, “Crypto Suite Parameter Values”, on page 286).

e The Secure RTP feature is not available.
e All Secure RTP resources are allocated.

* Any of the structure version fields are invalid.
B Example

The following sample code changes the coder from G.711 mu-law to G.711 A-law and also
changes the direction.

#include <stdio.h>
#include <string>

#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
/*

Main Processing

*/

/‘k

Set the media properties for a remote party using IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .

*/

IPM_MEDIA INFO Medialnfo;
MediaInfo.unCount = 4;

MediaInfo.MediaData[0].eMediaType = MEDIATYPE AUDIO REMOTE RTP_INFO;

MediaInfo.MediaData[0] .mediaInfo.PortInfo.unPortId = 2328;
strcpy (MediaInfo.MediaData[0] .mediaInfo.PortInfo.cIPAddress, "111.21.0.9");

Dialogic® IP Media Library API Programming Guide and Library Reference 185

ipbm_ModifyMedia() — modify properties of active media session

186

MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO REMOTE_RTCP_INFO;
MediaInfo.MediaData[l].mediaInfo.PortInfo.unPortId = 2329;

strcpy (MediaInfo.MediaData[l] .mediaInfo.PortInfo.cIPAddress, "111.41.0.9");
MediaInfo.MediaData[2].eMediaType = MEDIATYPE AUDIO_REMOTE_CODER_INFO;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ULAW64K;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE) 30;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[2].mediaInfo.CoderInfo.eVadEnable = CODER _VAD DISABLE;
MediaInfo.MediaData([2] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unRedPayloadType = 0;
MediaInfo.MediaData[3].eMediaType = MEDIATYPE AUDIO_LOCAL_CODER_INFO;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ULAW64K;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE) 30;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.unRedPayloadType = 0;

if (ipm_StartMedia (nDeviceHandle, &MediaInfo, DATA IP_TDM BIDIRECTIONAL, EV_SYNC)
{
printf ("ipm StartMediaInfo failed for device name = $%s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

Y
}
/*

Continue processing
*/
MediaInfo.unCount =
MediaInfo.MediaData
MediaInfo.MediaData

MediaInfo.MediaData

[.eMediaType = MEDIATYPE AUDIO_REMOTE_CODER_INFO;

[

[
MediaInfo.MediaData [

[

[

[

]

].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ALAW64K;

].mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER_FRAMESIZE) 30;

] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[0]
MediaInfo.MediaData[O0]
MediaInfo.MediaData[0]

2
0
0
0
0
0] .mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
0] .mediaInfo.CoderInfo.unCoderPayloadType = 0;

0] .mediaInfo.CoderInfo.unRedPayloadType = 0;

MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO_LOCAL_CODER_INFO;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.eCoderType = CODER_TYPE_G711ALAW64K;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.eFrameSize = (eIPM CODER FRAMESIZE) 30;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.eVadEnable = CODER VAD DISABLE;
MediaInfo.MediaData[l].mediaInfo.CoderInfo.unCoderPayloadType = 0;

[1]

MediaInfo.MediaData .mediaInfo.CoderInfo.unRedPayloadType = 0;

if (ipm_ModifyMedia (nDeviceHandle, &MediaInfo, DATA_IP_SENDONLY, EV_SYNC) == -1)
{

printf ("ipm Modify failed for device name = %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;

/*

Perform Error Processing
x/

Dialogic® IP Media Library APl Programming Guide and Library Reference

modify properties of active media session — ipm_ModifyMedia()

/‘k
continue processing
*/
}
B See Also

e ipm_StartMedia()

Dialogic® IP Media Library APl Programming Guide and Library Reference 187

ipbm_Open() — open an IP channel device

ipm_Open()

188

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_Open(*szDevName, *pOpenlnfo, usMode)

const char *szDeviceName ¢ device name pointer
IPM_OPEN_INFO *pOpenlnfo e set to NULL

unsigned short usMode ® async or sync mode setting
device handle if successful

-1 on failure

srllib.h
ipmlib.h

System Control

asynchronous or synchronous

Description

The ipm_Open() function opens an IP channel or board device and returns a unique device handle
to identify the physical device that performs the media transfer. All subsequent references to the
opened device must be made using the handle until the device is closed.

The TP Media library allows ipm_Open() to be called either synchronously or asynchronously.

If ipm_Open() is called synchronously and no errors are received, the device handle that is
returned is valid and may be used by the application.

If ipm_Open() is called asynchronously with valid arguments, a device handle is returned
immediately. Before using this device handle in other function calls, the application must wait for
an IPMEV_OPEN event indicating the handle is valid.

If ipm_Open() is called asynchronously and IPMEV_ERROR is returned, a device handle is also
returned. The application must call ipm_Close() using the handle returned by ipm_Open().

Parameter Description

szDeviceName pointer to device name to open

IP Media channel device: ipmBxCy where x is the unique logical board
number and y is the media device channel number.

Board device: ipmBx where x is the unique logical board number.
pOpenlnfo set to NULL; reserved for future use
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Dialogic® IP Media Library APl Programming Guide and Library Reference

open an IP channel device — ipm_Open()

B Termination Events

IPMEV_OPEN
Indicates successful completion; that is, an IP channel was opened and the device handle is
valid. This event does not return any data.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

* Two different applications (running in separate processes) cannot use the same IP media
device (ipmBxCx). In other words, multiple calls to ipm_Open() on the same IP media
device are not allowed.

e The pOpenlnfo pointer is reserved for future use and must be set to NULL.

e If this function is called asynchronously and IPMEV_ERROR is received, the application
must call ipm_Close() using the handle returned by ipm_Open().

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EINVAL
Invalid argument (system-level error)

ENOMEM
Memory allocation failure (system-level error)

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
char cDevName[10];
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV ANYEVT , (HDLR)CheckEvent);

/*

. Create a Thread that waits on srl events, this
. thread will execute the WorkerThread function

*/

/*

Open IP channel ipmB1C1

*/

sprintf (cDevName, "ipmB1C%d", 1);

if ((nDeviceHandle = ipm Open (cDevName, NULL, EV_ASYNC)) == -1)

Dialogic® IP Media Library API Programming Guide and Library Reference 189

ipbm_Open() — open an IP channel device

printf ("ipm Open failed for device name = %s\n", cDevName) ;

/*
Perform Error Processing

*/
/*
. continue Main Processing
*/
void CheckEvent ()
{
int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();
switch (nEventType)

{
/*

. Other events

*/
/* Expected reply to ipm Open */

case IPMEV_OPEN:
printf ("Received IPMEV_OPEN for device = %s\n", ATDV_NAMEP (nDevicelID)) ;

break;
default:
printf ("Received unknown event = $d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_Close()

190 Dialogic® IP Media Library APl Programming Guide and Library Reference

ipm_ReceiveDigits()

Name:
Inputs:

Returns:
Includes:

Category:
Mode:

enable the IP channel to receive digits — ipm_ReceiveDigits()

int ipm_ReceiveDigits(nDeviceHandle, *pDigitInfo, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_DIGIT_INFO *pDigitlnfo e pointer to digit info structure
unsigned short usMode * async or sync mode setting
0 on success

-1 on failure
srllib.h
ipmlib.h

/0

asynchronous or synchronous

Description

The ipm_ReceiveDigits() function enables the IP channel to receive digits from the TDM bus.
The receive operation continues until ipm_Stop() is called with the eSTOP_RECEIVE_DIGITS

flag set.

Note that digits are always received asynchronously, even though this function may be called in
either asynchronous or synchronous mode. If this function is called synchronously and returns 0, it
does not indicate that the digits have been received; instead, it only indicates that the function was
successfully processed by the firmware. The application must enable event reporting and check for
IPMEV_DIGITS_RECEIVED events.

Parameter

Description

nDeviceHandle

pDigitInfo

usMode

handle of the IP Media device

pointer to data structure that contains digit information. The application
must set the direction and type of digits before calling the function. On
return, the function sets the unNumberOfDigits field to indicate how many
IPMEV_DIGITS_RECEIVED events the application must process.

See IPM_DIGIT_INFO for details.

Note: The cDigits[MAX_IP_DIGITS] field in the data structure pointed to
by pDigitInfo is not used by the ipm_ReceiveDigits() function in either
SYNC or ASYNC mode. The incoming digit is delivered asynchronously
in the IPM_DIGIT _INFO data structure associated with an
IPMEV_DIGITS_RECEIVED event.

operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Dialogic® IP Media Library API Programming Guide and Library Reference 191

ipm_ReceiveDigits() — enable the IP channel to receive digits

192

Note:

Termination Events

IPMEV_RECEIVE_DIGITS
Indicates function was successfully processed but does not indicate that digits were received.
This event does not return data.

IPMEV_ERROR
Indicates that the function failed.

IPMEV_DIGITS_RECEIVED is an unsolicited event that may be reported after the
ipm_ReceiveDigits() function is called either synchronously or asynchronously. An event is
reported for each digit that was received. The event data indicates the digit origin via the
e]PM_DIGIT_DIRECTION enumeration.

Cautions

® The only supported value for IPM_DIGIT_INFO.eIPM_DIGIT_DIRECTION is to receive
digits from the TDM bus.

e The ipm_ReceiveDigits() function returns valid data only if the digits are being transmitted in
out-of-band mode. For more information on setting DTMF mode, see the Dialogic® IP Media
Library API Programming Guide.

e Digits are only received if there is an active RTP session; if two IPM devices are directly
routed together, you must establish an RTP session before digits can be sent and received.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <ipmlib.h>
#include <srllib.h>
#include <stdio.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
int nDeviceHandle;
IPM DIGIT_INFO myDigitInfo;
// Register event handler function with srl
srienbhdlr(EV_ANYDEV ,EV_ANYEVT , (HDLR) CheckEvent) ;

Dialogic® IP Media Library APl Programming Guide and Library Reference

enable the IP channel to receive digits — ipm_ReceiveDigits()

/9:

Main Processing

*/

/*

Enable an IP device handle, nDeviceHandle, to receive a specified set of digits.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open({().
*/

myDigitInfo.eDigitType = DIGIT ALPHA NUMERIC;
myDigitInfo.eDigitDirection = DIGIT_TDM;

if (ipm ReceiveDigits (nDeviceHandle, &myDigitInfo, EV_ASYNC) == -1)
{

printf ("ipm ReceiveDigits failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

/*
éerform Error Processing
“
/‘k
Continue processing
o
void CheckEvent ()

{

IPM DIGIT INFO *pDigitInfo;

int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();
void* pvVoid = sr_getevtdatap();

switch (nEventType)

{
/*

Other events

*/
//Successful reply to ipm ReceiveDigits ()
case IPMEV_RECEIVE DIGITS:
printf ("Received IPMEV_RECEIVE DIGITS for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

Dialogic® IP Media Library API Programming Guide and Library Reference 193

ipm_ReceiveDigits() — enable the IP channel to receive digits

//Unsolicited event, retrieve digits
case IPMEV_DIGITS RECEIVED:
printf ("Received IPM DIGITS_ RECEIVED for device = %s\n",
ATDV_NAMEP (nDevicelID));
pDigitInfo = (IPM DIGIT_ INFO*)pVoid;
printf ("Number of digits = %d, digit=%s on device %s\n",
pDigitInfo->unNumberOfDigits, pDigitInfo->cDigits,
ATDV_NAMEP (nDevicelID));

break;
default:
printf ("Received unknown event = %d for device = $%$s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

e ipm_SendDigits()

194 Dialogic® IP Media Library APl Programming Guide and Library Reference

reset QoS alarm(s) to the OFF state — ipm_ResetQoSAlarmStatus()

ipm_ResetQoSAlarmStatus()

Name: int ipm_ResetQoSAlarmStatus(nDeviceHandle, *pQoSAlarmInfo, usMode)

Inputs: int nDeviceHandle ¢ [P Media device handle
IPM_QOS_ALARM_STATUS *pQoSAlarmInfo e pointer to QoS alarm structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h
Category: QoS

Mode: asynchronous or synchronous

B Description

The ipm_ResetQoSAlarmStatus() function resets to the OFF state one or more Quality of
Service (QoS) alarms that report the status of a media channel.This function does not apply to

board-level alarms.

Parameter Description
nDeviceHandle handle of the IP Media device

pQoSAlarmlInfo pointer to IPM_QOS_ALARM_STATUS structure which contains one or
more [IPM_QOS_ALARM_DATA structures

usMode operation mode
Set to EV_ASYNC for asynchronous execution or to EV_SYNC for

synchronous execution.
B Termination Events

IPMEV_RESET_QOS_ALARM_STATUS
Indicates successful completion; that is, specified QoS alarm(s) has been reset to OFF. This

event does not return data.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

None

Dialogic® IP Media Library API Programming Guide and Library Reference 195

ipm_ResetQoSAlarmStatus() — reset QoS alarm(s) to the OFF state

196

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
int nDeviceHandle;
IPM QOS ALARM STATUS myAlarmStatus;
// Register event handler function with srl
srienbhdlr(EV_ANYDEV ,EV_ANYEVT , (HDLR) CheckEvent) ;

/*
Main Processing
*/
/*
Reset the QOSTYPE_JITTER alarm for IP device handle, nDeviceHandle.
NOTE: nDeviceHandle was obtained from prior call to ipm Open|()
*/
myAlarmStatus.unAlarmCount = 1;
myAlarmStatus.QoSData[0].eQoSType = QOSTYPE_JITTER;
if (ipm_ResetQoSAlarmStatus (nDeviceHandle, &myAlarmStatus, EV_ASYNC) == -1)
{
printf ("ipm ResetQoSAlarmStatus failed for device name = %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

+/

Dialogic® IP Media Library APl Programming Guide and Library Reference

reset QoS alarm(s) to the OFF state — ipm_ResetQoSAlarmStatus()

/k
Continue Processing

“
}
void CheckEvent ()
{

int nEventType = sr _getevttype();
int nDeviceID = sr_getevtdev();

switch (nEventType)
{
/*

Other events
*/

/* Expected reply to ipm ResetQoSAlarmStatus */
case IPMEV_RESET QOS_ALARM STATUS:
printf ("Received IPMEV_RESET_QOS_ALARM STATUS for device = %s\n",
ATDV_NAMEP (nDeviceID)) ;

break;
default:
printf ("Received unknown event = $d for device = %s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

e ipm_GetQoSAlarmStatus()

Dialogic® IP Media Library API Programming Guide and Library Reference 197

ipm_SecurityGenMasterKeys() — generate master and salt keys

ipm_SecurityGenMasterKeys()

198

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_SecurityGenMasterKeys(nDeviceHandle, *pKeys, usNumKeys, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_SECURITY_KEY *pKeys * pointer to security key structure
unsigned short usNumKeys * number of keys to be generated
unsigned short usMode async or sync mode setting

0 on success

-1 on failure

srllib.h
ipmlib.h

Media Session

synchronous

Description

The ipm_SecurityGenMasterKeys() function generates master and salt keys. The security keys
can be generated either in binary format or Base64-encoded format. This function can be called any
time after opening an IP Media device. The function is supported in synchronous mode only.

Parameter Description
nDeviceHandle handle of the IP Media device
*pKeys A pointer to an array of IPM_SECURITY_KEY structures. Applications

need to allocate the memory for each IPM_SECURITY_KEY structure
and fill in the version of the structures, type of the key that needs to be
generated, pointers to the corresponding key structure, master key length,
and master salt key length. This function does not modify any other fields
of the structure except the keys generated.

usNumKeys indicates the number of keys that need to be generated
usMode operation mode, which must be set to EV_SYNC for synchronous
execution

Termination Events

None.

Cautions

The application is expected to perform all memory allocation for the requested keys, that includes

the array of IPM_SECURITY_KEY structures as well as for the individual keys pointed to by the
pvMasterKey field in each IPM_SECURITY_KEY structure.

Dialogic® IP Media Library APl Programming Guide and Library Reference

generate master and salt keys — ipm_SecurityGenMasterKeys()

B Errors
The function returns an error if:
1. Any of the structure version fields are invalid.

2. The pKeys field in the IPM_SECURITY_INFO structure or the pvMasterKey field in the
IPM_SECURITY_KEY structure is NULL.

3. The pcMasterKey or pcMasterSaltKey fields in the IPM_SECURITY_BINARY_KEY structure
or the pcMasterBase64Key field in the IPM_SECURITY_BASE64_KEY structure is NULL.

4. The key lengths are not valid.
5. The device handle is not valid.
6. The mode is not EV_SYNC.

B Example
/*the following sample code uses SRTP */

#include <stdio.h>

#include <string>

#include <srllib.h>

#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
/*

Main Processing

*/

/*

Set the keys for the IP device handle, nDeviceHandle.

ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

char Mkeyl[30], bs64Mkeyl[40];
char Msaltl[30];

IPM_SRTP_PARMS srtp parms;

IPM SECURITY_KEY MasterKeys[2];

IPM SECURITY BASE64 KEY Masterbs64Key;
IPM_SECURITY_ BINARY KEY MasterbinKey;

INIT_IPM SRTP_PARMS (&srtp_parms) ;
INIT_IPM SECURITY BINARY KEY (&MasterbinKey) ;

MasterbinKey.pcMasterKey = Mkeyl;
MasterbinKey.pcMasterSaltKey = Msaltl;

INIT IPM SECURITY BASE64 KEY (&Masterbs64Key) ;
Masterbs64Key.pcMasterBase64Key = bs64Mkeyl;

INIT IPM SECURITY KEY (&MasterKeys[0]);

Dialogic® IP Media Library API Programming Guide and Library Reference 199

ipm_SecurityGenMasterKeys() — generate master and salt keys

MasterKeys[0].eKeyType = IPM SECURITY KEYTYPE BINARY;
MasterKeys[0] .pvMasterKey = &MasterbinKey;

INIT IPM SECURITY KEY (&MasterKeys([1]);

MasterKeys[1l].eKeyType = IPM SECURITY KEYTYPE BASE64;
MasterKeys|[1l] .pvMasterKey = &Masterbs64Key;

/* Generate the master Key and Master Salt Key for the device */

if ((ipm_SecurityGenMasterKeys (nDeviceHandle, MasterKeys, 1, EV_SYNC) == -1)

{
printf ("ipm SecurityGenMasterKeys () failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

*/
/* Masterbs64Key can be filled from SDP */

/*

Set the media properties for a remote party using IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{().

*/

IPM_MEDIA INFO MediaInfo;
MediaInfo.unCount = 6;

MediaInfo.MediaData[0].eMediaType = MEDIATYPE AUDIO REMOTE RTP_INFO;
MediaInfo.MediaData[0] .mediaInfo.PortInfo.unPortId = 2328;
strcpy (MediaInfo.MediaData[0] .mediaInfo.PortInfo.cIPAddress, "111.21.0.9\n");

MediaInfo.MediaData[l].eMediaType = MEDIATYPE AUDIO REMOTE_RTCP_INFO;
MediaInfo.MediaData[l] .mediaInfo.PortInfo.unPortId = 2329;

strcpy (MediaInfo.MediaData[l] .mediaInfo.PortInfo.cIPAddress, "111.41.0.9\n");
MediaInfo.MediaData[2].eMediaType = MEDIATYPE AUDIO REMOTE CODER_INFO;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eCoderType = CODER TYPE G711ULAW64K;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER FRAMESIZE) 30;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.eVadEnable = CODER VAD_DISABLE;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[2] .mediaInfo.CoderInfo.unRedPayloadType = 0;
MediaInfo.MediaData[3].eMediaType = MEDIATYPE AUDIO LOCAL CODER_INFO;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eCoderType = CODER TYPE G711ULAW64K;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eFrameSize = (eIPM_CODER FRAMESIZE) 30;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.eVadEnable = CODER _VAD_DISABLE;
MediaInfo.MediaData[3].mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[3] .mediaInfo.CoderInfo.unRedPayloadType = 0;

MediaInfo.MediaData
MediaInfo.MediaData
MediaInfo.MediaData

[.eMediaType = MEDIATYPE AUDIO_REMOTE_SECURITY INFO;

[

[
MediaInfo.MediaDatal

[

[

]

] .mediaInfo.SecurityInfo.unVersion = IPM SECURITY INFO VERSION;

] .mediaInfo. SecurityInfo.unNumKeys = 1;

] .mediaInfo. SecurityInfo.pParms = &srtp_parms;

] .mediaInfo. SecurityInfo.pKeys = &MasterKeys[0];

] .mediaInfo. SecurityInfo.eInfoMode = IPM_ SECURITY INFO MODE_ IMMEDIATE;

MediaInfo.MediaData

4
4
4
4
4
MediaInfo.MediaDatal[4

200 Dialogic® IP Media Library APl Programming Guide and Library Reference

MediaInfo
MediaInfo
MediaInfo
MediaInfo
MediaInfo
MediaInfo

generate master and salt keys — ipm_SecurityGenMasterKeys()

.MediaDatal[5]
.MediaData[5].
.MediaDatal[5]
.MediaData[5].
.MediaDatal[5]
.MediaData[5].

.eMediaType

mediaInfo.

.mediaInfo.

mediaInfo.

.mediaInfo.

mediaInfo.

if (ipm_StartMedia (nDeviceHandle,

{

= MEDIATYPE_AUDIO_ LOCAL_SECURITY_INFO;

SecurityInfo
SecurityInfo
SecurityInfo
SecurityInfo
SecurityInfo

&MedialInfo,

.unVersion = IPM_SECURITY_ INFO_VERSION;
.unNumKeys = 1;
.pParms = &srtp parms;

.pKeys = &MasterKeys[1l];
.eInfoMode = IPM_SECURITY_ INFO_MODE IMMEDIATE;

DATA IP _TDM BIDIRECTIONAL,EV_SYNC) == -1)

printf ("ipm StartMediaInfo failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

/*

Perform Error Processing

*/
}
/*

Continue processing

*/

B See Also

e ipm_StartMedia()

e ipm_ModifyMedia()

Dialogic® IP Media Library API Programming Guide and Library Reference 201

ipm_SendDigits() — generate digits to the TDM bus

ipm_SendDigits()

202

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_SendDigits(nDeviceHandle, *pDigitInfo, usMode)

int nDeviceHandle e [P Media device handle
IPM_DIGIT_INFO *pDigitInfo * pointer to digit info structure
unsigned short usMode * async or sync mode setting
0 on success

-1 on failure

srllib.h
ipmlib.h

I/0

asynchronous or synchronous

Description

The ipm_SendDigits() function generates the supplied digits to the TDM bus.

Parameter Description
nDeviceHandle handle of the IP Media device
pDigitInfo pointer to structure that contains digit type, direction, and digits; see

IPM_DIGIT_INFO for details.

Note that the application must fill in the digit type, direction, number of
digits, and the actual digits to be sent.

The maximum number of digits is 16.
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_SEND_DIGITS
Indicates successful completion; that is, the supplied digits were sent. This event does not
return data.

IPMEV_ERROR
Indicates that the function failed.

Cautions

e If this function is called synchronously and returns 0, it does not indicate that the digits have
been sent, but only that the function was successfully processed by the firmware. The
application must enable event reporting and check for the IPMEV_SEND_DIGITS event.

e The only supported value for IPM_DIGIT_INFO.eIPM_DIGIT_DIRECTION is to send digits

toward the TDM bus.

Dialogic® IP Media Library APl Programming Guide and Library Reference

generate digits to the TDM bus — ipm_SendDigits()

e Digits are only exchanged if there is an active RTP session; if two IPM devices are directly
routed together, you must establish an RTP session before digits can be sent and received.

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>

#include <string.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()
{
int nDeviceHandle;
IPM DIGIT_INFO myDigitInfo;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/
/*
Generate a set of digits using IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{() .
*/
myDigitInfo.eDigitType = DIGIT_ALPHA NUMERIC;
myDigitInfo.eDigitDirection = DIGIT_TDM;
strcpy (myDigitInfo.cDigits,"1234567890123456") ;
myDigitInfo.unNumberOfDigits = 16;
if (ipm_SendDigits (nDeviceHandle, &myDigitInfo, EV_ASYNC) == -1)
{
printf ("ipm_ SendDigits failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Dialogic® IP Media Library API Programming Guide and Library Reference 203

ipm_SendDigits() — generate digits to the TDM bus

Perform Error Processing
*/
/*
. Continue Main processing
*/
void CheckEvent ()
{
int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();
void* pVoid = sr_getevtdatap();
switch (nEventType)

{
/*

. Other events

*/
//Successful reply to ipm SendDigits ()

case IPMEV_SEND DIGITS:
printf ("Received IPMEV_SEND DIGITS for device = %s\n", ATDV_NAMEP (nDevicelID)) ;

break;
default:
printf ("Received unknown event = $d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_ReceiveDigits()

204 Dialogic® IP Media Library APl Programming Guide and Library Reference

set value for specified parameter — ipm_SetParm()

ipm_SetParm()

Name: int ipm_SetParm(nDeviceHandle, *pParmInfo, usMode)

Inputs: int nDeviceHandle e [P Media device handle
IPM_PARM_INFO *pParmInfo * pointer to parameter info structure
unsigned short usMode ® async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: System Control

Mode: asynchronous or synchronous

B Description

The ipm_SetParm() function sets values for the specified parameter.

Parameter Description

nDeviceHandle handle of the IP media device

pParmlInfo pointer to structure that contains IP channel parameter values
See the [IPM_PARM_INFO data structure page for details.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_SET_PARM
Indicates successful completion; that is, the supplied IP channel parameter was modified.

IPMEV_ERROR
Indicates that the function failed.

B Cautions
None
B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

Dialogic® IP Media Library API Programming Guide and Library Reference 205

ipm_SetParm() — set value for specified parameter

EIPM_FWERROR
Firmware error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long) ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/

/*

ASSUMPTION: A valid nDeviceHandle was obtained from prior

call to ipm_Open() .

*/

IPM_PARM_INFO ParmInfo;

unsigned long ulParmValue = ECHO TAIL 16;

ParmInfo.eParm = PARMCH_ECHOTAIL;

ParmInfo.pvParmValue = &ulParmValue;

if (ipm_SetParm (nDeviceHandle, &ParmInfo, EV_ASYNC)==-1)

{
printf ("ipm SetParm failed for device name %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

/*

Perform Error Processing

*/

}

/*
continue
*/

void CheckEvent ()

{
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
void* pVoid = sr_getevtdatap();

206 Dialogic® IP Media Library APl Programming Guide and Library Reference

set value for specified parameter — ipm_SetParm()

switch (nEventType)
{
/*

Other events

*/
/* Expected reply to ipm GetQoSAlarmStatus */
case IPMEV SET PARM:

printf ("Received IPMEV_SETPARM for device = %s\n",
ATDV_NAMEP (nDeviceID));

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

e ipm_GetParm()

Dialogic® IP Media Library API Programming Guide and Library Reference 207

ipm_SetQoSThreshold() — change QoS alarm threshold settings

ipm_SetQoSThreshold()

Name: int ipm_SetQoSThreshold(nDeviceHandle, *pQoSThresholdInfo, usMode)

Inputs: int nDeviceHandle e [P Media channel device handle
IPM_QOS_THRESHOLD_INFO *pQoSThresholdInfo e pointer to QoS alarm threshold
structure
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: QoS
Mode: asynchronous or synchronous

B Description

The ipm_SetQoSThreshold() function changes alarm threshold settings for Quality of Service
(QoS) alarms that report the status of a media channel.

This function can be called at any time, including when a session is in progress.

Parameter Description

nDeviceHandle handle of the IP Media channel device

pQoSThresholdInfo pointer to IPM_QOS_THRESHOLD_INFO structure which contains
one or more [IPM_QOS_THRESHOLD_DATA structures with the
threshold settings to be set.

Note that when an application needs to specify any given field in an
IPM_QOS_THRESHOLD_DATA structure, it must populate all fields
in the structure even if those fields are to remain at their default values.

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_SET_QOS_THRESHOLD_INFO
Indicates successful completion; that is, alarm QoS threshold levels were modified. Use SRL
functions to retrieve IPM_QOS_THRESHOLD_INFO structure fields.

IPMEV_ERROR
Indicates that the function failed.

208 Dialogic® IP Media Library APl Programming Guide and Library Reference

change QoS alarm threshold settings — ipm_SetQoSThreshold()

B Cautions

If an application exits without calling ipm_UnListen() to clean up voice device routings, the
ipm_SetQoSThreshold() function may fail if it is called after the application is restarted but
before a new routing of the IPM device to a voice device is established.

Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

void CheckEvent () ;
typedef long int (*HDLR) (unsigned long);

void main ()
{
int nDeviceHandle;
IPM QOS THRESHOLD INFO mySetQosThresholdInfo;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV ANYEVT , (HDLR)CheckEvent);

/*

Main Processing
*/

/*

Change two alarm threshold settings for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .
*/

mySetQosThresholdInfo.unCount = 2;
mySetQosThresholdInfo.QoSThresholdData
mySetQosThresholdInfo.QoSThresholdData

mySetQosThresholdInfo.QoSThresholdData

[0] .eQoSType = QOSTYPE_LOSTPACKETS;

[

[
mySetQosThresholdInfo.QoSThresholdData [

[

[

]

] .unTimeInterval = 100;

] .unDebounceOn = 100;

] .unDebounceOff = 100;

] .unFaultThreshold = 20;

] .unPercentSuccessThreshold = 60;

mySetQosThresholdInfo.QoSThresholdData
mySetQosThresholdInfo.QoSThresholdData

o O O O o o

Dialogic® IP Media Library API Programming Guide and Library Reference 209

ipm_SetQoSThreshold() — change QoS alarm threshold settings

mySetQosThresholdInfo.QoSThresholdDatal[0
mySetQosThresholdInfo.QoSThresholdDatal[l
mySetQosThresholdInfo.QoSThresholdDatal[l
mySetQosThresholdInfo.QoSThresholdDatal[l
mySetQosThresholdInfo.QoSThresholdDatal[l
mySetQosThresholdInfo.QoSThresholdDatal[l
mySetQosThresholdInfo.QoSThresholdDatal[l
mySetQosThresholdInfo.QoSThresholdDatal[l

.unPercentFailThreshold = 40;
.eQoSType = QOSTYPE JITTER;
.unTimeInterval = 100;
.unDebounceOn = 200;
.unDebounceOff = 600;
.unFaultThreshold = 60;
.unPercentSuccessThreshold = 60;
.unPercentFailThreshold = 40;

if (ipm_SetQoSThreshold (nDeviceHandle, &mySetQosThresholdInfo, EV_ASYNC) == -1)
{
printf ("ipm SetQoSThreshold failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing
*/
/*
continue
*/
void CheckEvent ()
{
//Get event type and associated data
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
switch (nEventType)

{
/*

Other events

*/
/* Expected reply to ipm SetQoSThreshold */
case IPMEV_SET_QOS THRESHOLD INFO:
printf ("Received IPMEV_SET QOS THRESHOLD INFO for device = %s\n",

ATDV_NAMEP (nDevicelID)) ;
break;

default:
printf ("Received unknown event = $d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_GetQoSThreshold()

210 Dialogic® IP Media Library APl Programming Guide and Library Reference

set media properties and start the session — ipm_StartMedia()

ipm_StartMedia()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_StartMedia(nDeviceHandle, *pMedialnfo, eDirection, usMode)

int nDeviceHandle ¢ [P Media device handle
IPM_MEDIA_INFO *pMedialnfo * pointer to media information structure
e]PM_DATA_DIRECTION eDirection ¢ data flow direction

unsigned short usMode * async or sync mode setting

0 on success
-1 on failure

srllib.h
ipmlib.h

Media Session

asynchronous or synchronous

Description

The ipm_StartMedia() function sets media properties and starts the session. This function allows
the application to set the remote and local connectivity selections. ipm_StartMedia() also starts
RTP streaming. The remote RTP/ RTCP port information and coder information is provided in the
IPM_MEDIA_INFO structure.

Parameter Description
nDeviceHandle handle of the IP Media device
pMedialnfo media information data structure; see IPM_MEDIA_INFO for details

Applications can define the following:

*]ocal transmit coder and remote transmit coder
¢ remote RTP/RTCP port

¢ remote IP address

¢ remote T.38 port

Note: The application cannot define the local IP address. The IP address
is defined by operating system functions.

Dialogic® IP Media Library API Programming Guide and Library Reference 211

ipm_StartMedia() — set media properties and start the session

212

Parameter Description

eDirection media operation enumeration

The eIPM_DATA_DIRECTION data type is an enumeration which

defines the following values:

e DATA_IP_RECEIVEONLY - receive data from the IP network but do
not send data

e DATA_IP_SENDONLY - send data to the IP network but do not
receive data

e DATA_IP_TDM_BIDIRECTIONAL - full duplex data path
(streaming media) between IP network and TDM

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_STARTMEDIA
Indicates successful completion; that is, media information was set and the session has been
started.

IPMEV_ERROR
Indicates that the function failed.

B Cautions

* Do not set the IP address to 0.0.0.0, because this may lead to a hung port.

* When specifying DATA_IP_RECEIVEONLY, the pMedialnfo list must contain an
IPM_PORT_INFO parameter with type MEDIATYPE_AUDIO_LOCAL_RTP_INFO.
Although this parameter will be ignored, it must be present. (The parameter is ignored because
the local IP address and port are defined by internal functions.)

e In DATA_IP_RECEIVEONLY mode, an IPM_PORT_INFO parameter with type
MEDIATYPE_AUDIO_REMOTE_RTP_INFO will be ignored. The IP media device will
receive and decode RTP packets irrespective of their originating (remote) address, subject to
payload type and receive coder being consistent.

B Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_BUSY
Channel is busy

EIPM_INTERNAL
Internal error

EIPM_INV_MODE
Invalid mode

Dialogic® IP Media Library APl Programming Guide and Library Reference

set media properties and start the session — ipm_StartMedia()

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

The ipm_StartMedia() function returns security errors in the following circumstances:

e The total number of keys has exceeded the given limit
(IPM_SECURITY_MAX_TOTAL_NUM_KEYS, which is set to 20).

¢ The number of keys for any given media type exceeds the given limit
(IPM_SECURITY_MAX NUM_KEYS, which is set to 10).

* The size of a generated key does not match the key size (master key or master salt) in the
specified crypto suite (see Table 7, “Crypto Suite Parameter Values”, on page 286).

e The Secure RTP feature is not available.
e All Secure RTP resources are allocated.

* Any of the structure version fields are invalid.

B Example

#include <stdio.h>
#include <string>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
int nDeviceHandle, nMediaCnt = 0;
// Register event handler function with srl
IPM_MEDIA INFO MediaInfo;

sr_enbhdlr(EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;
/*

Main Processing

*/

/*

Set the media properties for a remote party using IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open() .

*/

/* clear the RemoteMedialInfo structures */
memset (&MediaInfo, 0, sizeof (IPM MEDIA INFO));

/* remote audio */
MediaInfo.MediaData[nMediaCnt].eMediaType = MEDIATYPE AUDIO_REMOTE_CODER_INFO;
MediaInfo.MediaData[nMediaCnt].mediaInfo.CoderInfo.eCoderType = CODER TYPE G711ULAW64K;
MediaInfo.MediaData[nMediaCnt] .mediaInfo.CoderInfo.eFrameSize =

(eIPM CODER _FRAMESIZE)m nAudioFrameSize;
MediaInfo.MediaData[nMediaCnt] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[nMediaCnt].mediaInfo.CoderInfo.eVadEnable = CODER VAD_DISABLE;
MediaInfo.MediaData[nMediaCnt].mediaInfo.CoderInfo.unCoderPayloadType = 0;
MediaInfo.MediaData[nMediaCnt].mediaInfo.CoderInfo.unRedPayloadType = 0;

/* local audio */

Dialogic® IP Media Library API Programming Guide and Library Reference

213

ipm_StartMedia() — set media properties and start the session

214

++nMediaCnt;
MediaInfo.MediaData[nMediaCnt].eMediaType = MEDIATYPE AUDIO LOCAL CODER INFO;

]
MediaInfo.MediaData[nMediaCnt].mediaInfo.CoderInfo.eCoderType = CODER TYPE G711ULAW64K;
]

MediaInfo.MediaData[nMediaCnt] .mediaInfo.CoderInfo.eFrameSize =
(eIPM_CODER_FRAMESIZE)m nAudioFrameSize;
MediaInfo.MediaData[nMediaCnt] .mediaInfo.CoderInfo.unFramesPerPkt = 1;
MediaInfo.MediaData[nMediaCnt
MediaInfo.MediaData[nMediaCnt
MediaInfo.MediaData[nMediaCnt

1.
1.
] .mediaInfo.CoderInfo.unCoderPayloadType = 0;

] .mediaInfo.CoderInfo.unRedPayloadType = 0;

/* remote video */

++nMediaCnt;

MediaInfo.MediaData[nMediaCnt].eMediaType = MEDIATYPE VIDEO_REMOTE CODER_INFO;

INIT IPM VIDEO CODER_INFO (&MediaInfo.MediaData[nMediaCnt].mediaInfo.VideoCoderInfo);
MediaInfo.MediaData[nMediaCnt] .mediaInfo.VideoCoderInfo.eCoderType = VIDEO_CODING_H263;

MediaInfo.MediaData[nMediaCnt] .mediaInfo.VideoCoderInfo.unCoderPayloadType =

/* local video coder */
++nMediaCnt;
MediaInfo.MediaData[nMediaCnt].eMediaType = MEDIATYPE VIDEO_LOCAL_CODER_INFO;

INIT IPM VIDEO CODER_INFO (&MediaInfo.MediaData[nMediaCnt].mediaInfo.VideoCoderInfo);
MediaInfo.MediaData[nMediaCnt].mediaInfo.VideoCoderInfo.eCoderType = VIDEO_CODING_H263;

MediaInfo.MediaData[nMediaCnt] .mediaInfo.VideoCoderInfo.unCoderPayloadType =

/* remote audio port */
++nMediaCnt;
MediaInfo.MediaData[nMediaCnt].eMediaType = MEDIATYPE AUDIO_REMOTE RTP_INFO;

strcpy (MediaInfo.MediaData[nMediaCnt].mediaInfo.PortInfo.cIPAddress,"192.168.0.9");

MediaInfo.MediaData[nMediaCnt] .mediaInfo.PortInfo.unPortId = 2328;

++nMediaCnt;
MediaInfo.MediaData[nMediaCnt] .eMediaType = MEDIATYPE AUDIO REMOTE_RTCP_INFO;

strcpy (MediaInfo.MediaData [nMediaCnt] .mediaInfo.PortInfo.cIPAddress,"192.168.0.9");

MediaInfo.MediaData[nMediaCnt] .mediaInfo.PortInfo.unPortId = 2329;

/* remote video port */
++nMediaCnt;
MediaInfo.MediaData[nMediaCnt] .eMediaType = MEDIATYPE VIDEO REMOTE RTP_INFO;

strcpy (MediaInfo.MediaData [nMediaCnt] .mediaInfo.PortInfo.cIPAddress,"192.168.0.9");

MediaInfo.MediaData[nMediaCnt] .mediaInfo.PortInfo.unPortId = 2340;

++nMediaCnt;

mediaInfo.CoderInfo.eVadEnable = CODER_VAD_DISABLE;

MediaInfo.MediaData[nMediaCnt].eMediaType = MEDIATYPE VIDEO_REMOTE_RTCP_INFO;
strcpy (MediaInfo.MediaData [nMediaCnt] .mediaInfo.PortInfo.cIPAddress,"192.168.0.9");
MediaInfo.MediaData[nMediaCnt] .mediaInfo.PortInfo.unPortId = 2341;

MediaInfo.unCount = nMediaCnt + 1;

if (ipm_StartMedia (nDeviceHandle, &MediaInfo, DATA IP_TDM BIDIRECTIONAL, EV_ASYNC) == -1)

{

/*

printf ("ipm StartMediaInfo failed for device name = $s with error = %d\n",

/*

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));

Perform Error Processing

*

Continue processing

Dialogic® IP Media Library APl Programming Guide and Library Reference

set media properties and start the session — ipm_StartMedia()

*/
void CheckEvent ()

int nDeviceID = sr_getevtdev();
int nEventType = sr_getevttype();
switch (nEventType)

{
/*

Other events

*/
/* Expected reply to ipm StartMedia */
case IPMEV_STARTMEDIA:
printf ("Received IPMEV_STARTMEDIA for device = %s\n", ATDV NAMEP (nDevicelD)) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP(nDeviceID));
break;

B See Also

e ipm_ModifyMedia()
e ipm_Stop()

Dialogic® IP Media Library API Programming Guide and Library Reference 215

ipm_Stop() — stop operations on the specified IP channel

ipm_Stop()

Name: int ipm_Stop(nDeviceHandle, eOperation, usMode)

Inputs: int nDeviceHandle ¢ [P Media device handle
elPM_STOP_OPERATION eOperation * operation to be stopped
unsigned short usMode * async or sync mode setting

Returns: 0 on success
-1 on failure

Includes: srllib.h
ipmlib.h

Category: Media Session

Mode: asynchronous or synchronous

B Description
The ipm_Stop() function stops operations on the specified IP channel.

To run this function asynchronously, set mode to EV_ASYNC. The function returns O if successful
and the application must wait for the IPMEV_STOPPED event.

Parameter Description
nDeviceHandle handle of the IP Media device
eOperation the type of operation(s) to stop; only one value can be set at a time

The eIPM_STOP_OPERATION data type is an enumeration that defines

the following values:

e STOP_RECEIVE_DIGITS - stop receiving digits

e STOP_MEDIA - operation of media streaming session. This
enumeration disconnects the session. The application must call
ipm_StartMedia() to start a new session.

e STOP_ALL - stop all operations

usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

B Termination Events

IPMEV_STOPPED
Indicates that activity of the type specified in eOperation has terminated on this channel. This
event does not return data.

IPMEV_ERROR
Indicates that the function failed.

216 Dialogic® IP Media Library APl Programming Guide and Library Reference

stop operations on the specified IP channel — ipm_Stop()

B Cautions
None
H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/
/*
Application needs to stop a current session on IP device handle, nDeviceHandle
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open ()
and a session has been started by calling ipm StartMedia() some time earlier.
*/
if (ipm_Stop (nDeviceHandle, STOP_ALL, EV_ASYNC) == -1)
{

printf ("ipm Stop failed for device name = %s with error = %d\n",

ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle)) ;
/*

Perform Error Processing

*

Dialogic® IP Media Library API Programming Guide and Library Reference 217

ipm_Stop() — stop operations on the specified IP channel

/*
Continue Processing
*/

void CheckEvent ()

{
int nEventType = sr_getevttype();
int nDeviceID = sr_getevtdev();
switch (nEventType)

{
/*

List of expected events
*/

/* Expected reply from ipm Stop() */
case IPMEV_STOPPED:
printf ("Received IPMEV_STOPPED for device = %s\n", ATDV_NAMEP (nDeviceID)) ;

break;
default:
printf ("Received unknown event = $d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_UnListen()

218 Dialogic® IP Media Library APl Programming Guide and Library Reference

stop listening to the TDM time slot — ipm_UnListen()

ipm_UnListen()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

int ipm_UnListen(nDeviceHandle, usMode)

int nDeviceHandle ¢ [P Media device handle
unsigned short usMode * async or sync mode setting
0 on success

-1 on failure

srllib.h
ipmlib.h

System Control

asynchronous or synchronous

Description

The ipm_UnListen() function stops listening to the TDM time slot specified in a previous call to
ipm_Listen().

If ipm_Listen() is called to connect to a different TDM time slot, the firmware automatically
breaks an existing connection and reconnects it to the new time slot. In this case, the application
does not need to call the ipm_UnListen() function.

Parameter Description
nDeviceHandle handle of the IP Media device
usMode operation mode

Set to EV_ASYNC for asynchronous execution or to EV_SYNC for
synchronous execution.

Termination Events

IPMEV_UNLISTEN
Indicates successful completion; that is, the IP channel was disconnected from the specified
TDM time slot. This event does not return data.

IPMEV_ERROR
Indicates that the function failed.

Cautions

e The IP Media library allows ipm_Listen() and ipm_UnListen() to be called either
synchronously or asynchronously. Other Dialogic libraries may not support asynchronous
execution of the similar xx_Listen and xx_UnListen functions.

Dialogic® IP Media Library API Programming Guide and Library Reference 219

ipm_UnListen() — stop listening to the TDM time slot

H Errors

If the function returns -1 to indicate failure, call ATDV_LASTERR() and ATDV_ERRMSGP()
to return one of the following errors:

EIPM_BADPARM
Invalid parameter

EIPM_FWERROR
Firmware error

EIPM_INTERNAL
Internal error

EIPM_INV_STATE
Invalid state. Initial command did not complete before another function call was made.

EIPM_SYSTEM
System error

B Example

#include <stdio.h>
#include <srllib.h>
#include <ipmlib.h>

typedef long int (*HDLR) (unsigned long);
void CheckEvent () ;

void main ()

{
int nDeviceHandle;
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;

/*
Main Processing

*/
/*
Stop an IP device handle, nDeviceHandle, from listening to a time slot.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{().
*/
if (ipm_UnListen (nDeviceHandle, EV_ASYNC) == -1
{
printf ("ipm UnListen failed for device name = %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/*

Perform Error Processing

*/

220 Dialogic® IP Media Library APl Programming Guide and Library Reference

stop listening to the TDM time slot — ipm_UnListen()

/k
Continue processing

*/
}

void CheckEvent ()

{
int nEventType = sr _getevttype();
int nDeviceID = sr_getevtdev();

switch (nEventType)

{
/*

Other events

*/
/*Expected reply from ipm UnListen*/

case IPMEV_UNLISTEN:
printf ("Received IPMEV_UNLISTEN for device = %s\n", ATDV_NAMEP (nDevicelD)) ;

break;
default:
printf ("Received unknown event = %d for device = %s\n",
nEventType, ATDV_NAMEP (nDevicelID));
break;

B See Also

e ipm_Listen()
e ipm_Stop()

Dialogic® IP Media Library API Programming Guide and Library Reference 221

Events 24

This chapter describes the events that are returned by the Dialogic® IP Media Library API
functions. The function descriptions in Chapter 23, “Function Information” lists the function’s
termination events for asynchronous operations.

There are three types of events returned by the Dialogic® IP Media Library API functions:

e events returned after the termination of a function call, called termination events
¢ unsolicited events triggered by external events

* notification events requested (solicited) by the application

Applications can enable or disable certain notification events for Quality of Service (QoS)
information. The notification events supported by the Dialogic® IP Media Library API are enabled
and disabled via the function calls ipm_EnableEvents() and ipm_DisableEvents(), respectively.

The following events, listed in alphabetical order, may be returned by the Dialogic® IP Media
Library API software. Use sr_waitevt(), sr_enbhdlr() or other SRL functions to collect an event
code, depending on the programming model in use. For more information, see the Dialogic®
Standard Runtime Library API Library Reference.

IPMEV_DIGITS_RECEIVED
Unsolicited event for ipm_ReceiveDigits() in either synchronous or asynchronous mode. One
event is returned for each digit that is received. Event contains digit data in IPM_DIGIT_INFO
data structure.

IPMEV_ERROR
Generic unsuccessful termination event. This event may be generated on any handle when
there is an error. No data is returned in the event.

IPMEV_EVENT_DISABLED
Successful termination event for ipm_DisableEvents(). Indicates that IP notification events
specified in function call have been disabled. No data is returned in the event.

IPMEV_EVENT_ENABLED
Successful termination event for ipm_EnableEvents(). Indicates that IP notification events
specified in the function call have been enabled. No data is returned in the event.

IPMEV_FAXTONE
Unsolicited event enabled via ipm_EnableEvents(). Event is returned when fax tone is
detected on TDM. Contains fax tone information in an IPM_FAX_SIGNAL data structure.

IPMEV_GENERATEIFRAME
Successful termination event for ipm_GeneratelFrame(). Contains I-frame information in
the IPM_IFRAME_INFO structure.

IPMEV_GENERATEIFRAME_FAIL
Termination event for ipm_GenerateIFrame(). Indicates that the application is incapable of
generating an I-frame.

Dialogic® IP Media Library API Programming Guide and Library Reference 222

Events

IPMEV_GET_LOCAL_MEDIA_INFO
Successful termination event for ipm_GetLocalMedialnfo(). Contains requested local media
information in an IPM_MEDIA_INFO structure.

IPMEV_GET_PARM
Successful termination event for ipm_GetParm(). Contains requested IP channel parameters
in an IPM_PARM_INFO structure.

IPMEV_GET_QOS_ALARM_STATUS
Successful termination event for ipm_GetQoSAlarmStatus(). Contains requested alarm
status information in an IPM_QOS_ALARM_STATUS data structure.

IPMEV_GET_QOS_THRESHOLD_INFO
Successful termination event for ipm_GetQoSThreshold(). Contains requested alarm
threshold settings in an IPM_QOS_THRESHOLD_INFO data structure.

IPMEV_GET_SESSION_INFO
Successful termination event for ipm_GetSessionInfo(). Contains QoS and RTCP statistics in
an IPM_SESSION_INFO data structure.

IPMEV_GET_XMITTS_INFO
Successful termination event for ipm_GetXmitSlot(). Contains requested TDM time slot
information in an SC_TSINFO data structure.

IPMEV_INIT_COMPLETE
Unsolicited event for ipm_InitResponseSend() and ipm_InitSend() reported when the Nb
UP session has been successfully negotiated with the remote party. Both parties may now
begin exchanging data. See also IPMEV_INIT_SEND and
IPMEV_INIT_RESPONSE_SEND.

IPMEV_INIT_FAILED
Unsolicited event for ipm_InitResponseSend() and ipm_InitSend() reported upon
encountering an unexpected error during initialization or a negative response (NACK) from the
remote party. Event Data: IPM_INIT_FAILURE structure. See also IPMEV_INIT_SEND and
IPMEV_INIT_RESPONSE_SEND.

IPMEV_INIT_RECEIVED
Unsolicited event telling the application that there is an incoming request for an Nb UP
session. The application may respond to this message by calling ipm_InitResponseSend().

IPMEV_INIT_RESPONSE_SEND
Successful termination event for ipm_InitResponseSend(). Indicates successful completion
of sending the initialization response message. It does not indicate whether the event was
received by the remote party. If IPMEV_INIT_RESPONSE_SEND is received, one of the
following unsolicited events is subsequently reported: IPMEV_INIT_COMPLETE or
IPMEV_INIT_FAILED.

IPMEV_INIT_SEND
Successful termination event for ipm_InitSend(). Indicates successful completion of sending
the initialization message. It does not indicate whether the event was received by remote party
or what the response was. If IPMEV_INIT_SEND is received, one of the following unsolicited
events is subsequently reported: IPMEV_INIT_COMPLETE or IPMEV_INIT_FAILED.

IPMEV_LISTEN
Successful termination event for ipm_Listen(). Indicates time slot routing was successfully
completed. No data is returned in the event.

Dialogic® IP Media Library API Programming Guide and Library Reference 223

Events

224

IPMEV_MODIFYMEDIA
Successful termination event for ipm_ModifyMedia(). Indicates change of media
characteristics was successfully completed. No data is returned in the event.

IPMEV_MODIFYMEDIA_FAIL
Unsuccessful termination event for ipm_ModifyMedia(). Indicates that the media session
was not changed.

IPMEV_NACK_SENT
Unsolicited event telling the application that the IPML library was forced to send a NACK
message to the other end of the connection. An example is if a request comes in that the library
does not understand. This is different from sending a NACK response to an
IPM_INIT_RECEIVED event.

IPMEV_NOTIFY_ENDPOINTID
Unsolicited event enabled via ipm_EnableEvents(). The event payload contains
identification information of the RTP/RTCP endpoint.

IPMEV_OPEN
Successful termination event for ipm_Open(). Indicates IP channel was successfully opened
and device handle is valid. No data is returned in the event.

IPMEV_QOS_ALARM
Unsolicited event enabled via ipm_EnableEvents(). Event is returned when desired QoS
alarm triggers. See the code example (specifically the CheckEvent() function definition) in
Section 16.7, “Example Code for QoS Alarm Handling”, on page 92 for information on
determining which alarm triggered the event.

IPMEV_RECEIVE_DIGITS
Successful termination event for ipm_ReceiveDigits(). Indicates channel has been enabled to
receive digits. No data is returned in the event.

Note: IPMEV_DIGITS_RECEIVED is used to indicate when digit transfer has occurred.

IPMEV_RESET_QOS_ALARM_STATUS
Successful termination event for ipm_ResetQoSAlarmStatus(). Indicates specified QoS
alarms have been reset to OFF state. No data is returned in the event.

IPMEV_RTCP_NOTIFY_RECEIVED
Unsolicited event enabled via ipm_EnableEvents(). Indicates incoming RTCP reporting data.

IPMEV_RTCP_NOTIFY_SENT
Unsolicited event enabled via ipm_EnableEvents(). Indicates outgoing RTCP reporting data.

IPMEV_SEC_NOTIFY_EXPIRE_KEY_AUDIO
Unsolicited event enabled via ipm_EnableEvents(). Provides notification that the encryption
key for the audio media type is about to expire in the predefined time interval. The time
interval can be set using the ipm_SetParm() function and the
PARMCH_NOTIFY_EXPIRE_KEY_AUDIO parameter.

IPMEV_SEC_NOTIFY_EXPIRE_KEY_VIDEO
Unsolicited event enabled via ipm_EnableEvents(). Provides notification that the encryption
key for the video media type is about to expire in the predefined time interval. The time
interval can be set using the ipm_SetParm() function and the
PARMCH_NOTIFY_EXPIRE_KEY_VIDEO parameter.

Dialogic® IP Media Library APl Programming Guide and Library Reference

Events

IPMEV_SEND_DIGITS
Successful termination event for ipm_SendDigits(). Indicates supplied digits were sent
successfully. No data is returned in the event.

IPMEV_SET_PARM
Successful termination event for ipm_SetParm(). Indicates IP channel parameters have been
modified. No data is returned in the event.

IPMEV_SET_QOS_THRESHOLD_INFO
Successful termination event for ipm_SetQoSThreshold(). Indicates requested changes to
QoS alarm threshold levels have been made. The updated threshold information is returned in
an IPM_QOS_THRESHOLD_INFO data structure.

IPMEV_STARTMEDIA
Successful termination event for ipm_StartMedia(). Indicates media channel information has
been set and session has been started. No data is returned in the event.

IPMEV_STOPPED
Successful termination event for ipm_Stop(). Indicates all on-going activity on the IP channel
has terminated. No data is returned in the event.

IPMEV_T38CALLSTATE
Unsolicited event enabled via ipm_EnableEvents(). Event is returned when T.38 call state
changes. Event data is an eIPM_T38CALLSTATE enumeration identifying the new call state.

IPMEV_TELEPHONY_EVENT
Unsolicited event enabled via ipm_EnableEvents(). Event is generated when RFC 2833
signal is detected on IP. Event contains signal data in an [IPM_TELEPHONY_EVENT_INFO
data structure, which is a child of the IPM_TELEPHONY _INFO structure.

IPMEV_UNLISTEN
Successful termination event for ipm_UnListen(). Indicates IP channel was disconnected
from TDM time slot. No data is returned in the event.

Dialogic® IP Media Library API Programming Guide and Library Reference 225

Data Structures

25

This chapter describes the data structures and fields used by the Dialogic® IP Media library

(IPML) functions. These structures are used to control the operation of functions and to return

information. The fields are listed in the sequence in which they are defined in the data structure.

CT_DEVINFO. e 228
IPM_AUDIO_CODER_INFO. e 230
IPM_AUDIO_CODER_OPTIONS_INFO i 235
IPM_CLOSE_INFO e 237
IPM_DIGIT_INFO e e e 238
IPM_ENDPOINTID_INFO. e 239
IPM_EVENT_INFO e 241
IPM_FAX _SIGNAL . ..o 242
IPM_IFRAME_INFO 243
IPM_INIT_FAILURE e 244
IPM_INIT_RECEIVED i 245
IPM_INIT_RESPONSE e 246
IPM_INIT_SEND . ..o e e e 247
IPM_MEDIA . .. 248
IPM_MEDIA_INFO 251
IPM_NACK _SENT . .. e 252
IPM_NBUP_INIT_FAILURE. 253
IPM_NBUP_INIT_RECEIVED i 254
IPM_NBUP_INIT_RESPONSE 255
IPM_NBUP_INIT_SEND. e 256
IPM_NBUP_NACK_SENT e 257
IPM_NBUP_PROFILE INFO 259
IPM_NBUP_RFCI_INFO. i 261
IPM_NBUP_SUBFLOW_INFO. 262
IPM_OPEN_INFO 263
IPM_PARM_INFO 264
IPM_PORT_INFO. e 267

Dialogic® IP Media Library API Programming Guide and Library Reference

226

e [IPM_QOS_ALARM_DATA
e [IPM_QOS_ALARM_STATUS
¢ IPM_QOS_SESSION_INFO
e [IPM_QOS_THRESHOLD_DATA
e [IPM_QOS_THRESHOLD_INFO

e [PM_RTCP_SESSION_INFO.
e [PM_SECURITY_BASE64 KEY
e [PM_SECURITY_BINARY KEY
e IPM_SECURITY_INFO. i
e IPM_SECURITY_KEY i

e [PM_SESSION_INFO
e [PM_SESSION_INFOEX
e [PM_SRTP_PARMS
e [PM_TELEPHONY_EVENT_INFO
e [PM_TELEPHONY_INFO
e [IPM_VIDEO_CODER_INFO
e [PM_VIDEO_CODER_INFO_EX

e SC_TSINFO e

Dialogic® IP Media Library API Programming Guide and Library Reference

Data Structures

227

CT_DEVINFO — channel/time slot device information

CT_DEVINFO

typedef struct ct_devinfo {

unsigned long ct prodid; /* product ID */
unsigned char ct_devfamily; /* device family */
unsigned char ct devmode; /* device mode */
unsigned char ct_nettype; /* network interface */
unsigned char ct busmode; /* bus architecture */

unsigned char ct busencoding; /* bus encoding */
union {
unsigned char ct RFU[7]; /* reserved */
struct {
unsigned char ct_prottype;
} ct_net devinfo;
} ct_ext_devinfo;
} CT_DEVINFO;

B Description

The CT_DEVINFO data structure supplies information about a device. This structure is used by
the ipm_GetCTInfo() function. On return from the function, CT_DEVINFO contains the relevant
device and device configuration information.

The valid values for each field of the CT_DEVINFO structure are defined in ctinfo.h, which is
referenced by ipmlib.h. The following descriptions indicate only the values that are relevant when
using this structure with the Dialogic® IP Media library. Note that this same data structure
definition is used in other Dialogic® API libraries where many additional values may be used.

B Field Descriptions

The fields of the CT_DEVINFO data structure are described as follows:

ct_prodid
contains a valid product identification number for the device

ct_devfamily
specifies the device family; possible values are:
e CT_DFHMPDM3 — HMP (Host Media Processing) device

ct_devmode
specifies the device mode; possible values are:
e CT_DMNETWORK — DM3 network device

ct_nettype
specifies the type of network interface for the device; possible values are:
e CT_NTIPT - IP connectivity

ct_busmode
specifies the bus architecture used to communicate with other devices in the system; possible
values are:
e CT_BMSCBUS - TDM bus architecture

228 Dialogic® IP Media Library APl Programming Guide and Library Reference

channel/time slot device information — CT_DEVINFO

ct_busencoding
describes the PCM encoding used on the bus; possible values are:
e CT_BEULAW - mu-law encoding
e CT_BEALAW - A-law encoding

ct.ext_devinfo.ct_RFU
not used

ct_ext_devinfo.ct_net_devinfo.ct_prottype
not used

B Example

See the Example section for ipm_GetCTInfo().

Dialogic® IP Media Library API Programming Guide and Library Reference 229

IPM_AUDIO_CODER_INFO — audio coder properties used in an IP session

IPM_AUDIO_CODER_INFO

230

Note:

Note:

typedef struct ipm_ audio_coder_ info_ tag

{

eIPM_CODER_TYPE eCoderType; /* The coder Type */
eIPM CODER FRAMESIZE eFrameSize; /* Frame size supported */
unsigned int unFramesPerPkt; /* No. of Frames per packet */
eIPM CODER_VAD eVadEnable; /* VAD enable/disable flag */
unsigned int unCoderPayloadType; /* Type of coder payload supported */
unsigned int unRedPayloadType; /* Type of Redundancy Payload */

} IPM AUDIO CODER INFO, *PIPM AUDIO CODER INFO;
typedef IPM AUDIO CODER_INFO IPM CODER_INFO;
typedef PIPM AUDIO CODER INFO PIPM CODER INFO;

Description

This structure contains the coder properties that are used in an audio IP session.
IPM_AUDIO_CODER_INFO is a child of IPM_MEDIA, which is a child of the
IPM_MEDIA_INFO structure. IPM_MEDIA_INFO is used by the ipm_GetLocalMediaInfo()
and ipm_StartMedia() functions.

The IPM_AUDIO_CODER_INFO data structure was previously defined under the name
IPM_CODER_INFO. The ipmlib.h header file includes typedefs that ensure backward
compatibility for application code that uses the older name for the data structure.

Using the AMR-NB resource in connection with one or more Dialogic products does not grant the
right to practice the AMR-NB standard. To seek a license patent agreement to practice the
standard, contact the VoiceAge Corporation at www.voiceage.com/licensing/php.

Field Descriptions

The fields of the IPM_AUDIO_CODER_INFO data structure are described as follows. Refer to
Table 4 for coder-specific guidelines for filling in these fields.

eCoderType
type of coder to be used for streaming media operations. AMR references apply to both AMR-
NB and AMR-WB.

The following values are defined:
* CODER_TYPE_AMRNB_4_75K — GSM AMR-NB, 4.75 kbps, CMR type 0
* CODER_TYPE_AMRNB_4_75K_NATIVE — GSM AMR-NB, 4.75 kbps, CMR type 0
* CODER_TYPE_AMRNB_5_15K — GSM AMR-NB, 5.15 kbps, CMR type 1
* CODER_TYPE_AMRNB_5_15K_NATIVE — GSM AMR-NB, 5.15 kbps, CMR type 1
* CODER_TYPE_AMRNB_5_9K — GSM AMR-NB, 5.9 kbps, CMR type 2
e CODER_TYPE_AMRNB_5_9K_NATIVE — GSM AMR-NB, 5.9 kbps, CMR type 2
* CODER_TYPE_AMRNB_6_7K — GSM AMR-NB, 6.7 kbps, CMR type 3
* CODER_TYPE_AMRNB_6_7K_NATIVE — GSM AMR-NB, 6.7 kbps, CMR type 3
* CODER_TYPE_AMRNB_7_4K — GSM AMR-NB, 7.4 kbps, CMR type 4
* CODER_TYPE_AMRNB_7_4K NATIVE — GSM AMR-NB, 7.4 kbps, CMR type 4
* CODER_TYPE_AMRNB_7_95K — GSM AMR-NB, 7.95 kbps, CMR type 5
¢ CODER_TYPE_AMRNB_7_95K_NATIVE - GSM AMR-NB, 7.95 kbps, CMR type 5
* CODER_TYPE_AMRNB_10_2K - GSM AMR-NB, 10.2 kbps, CMR type 6
* CODER_TYPE_AMRNB_10_2K_ NATIVE — GSM AMR-NB, 10.2 kbps, CMR type 6

Dialogic® IP Media Library APl Programming Guide and Library Reference

www.voiceage.com/licensing/php
www.voiceage.com/licensing/php
www.voiceage.com/licensing/php

audio coder properties used in an IP session — IPM_AUDIO_CODER_INFO

e CODER_TYPE_AMRNB_12_2K - GSM AMR-NB, 12.2 kbps, CMR type 7

e CODER_TYPE_AMRNB_12_2K_NATIVE - GSM AMR-NB, 12.2 kbps, CMR type 7

e CODER_TYPE_AMRNB_NONE - Don’t care, CMR type 15. Indicates that the software
does not care what bit rate it receives; the eCoderType field sets the CMR value in the
transmitted packet. This value is not supported for the
MEDIATYPE_AUDIO_REMOTE_CODER_INFO media type. This value is only
supported for the MEDIATYPE_AUDIO_LOCAL_CODER_INFO media type.

e CODER_TYPE_AMRWB_6_6K — AMR-WB, 6.6 kbps, CMR type 0

e CODER_TYPE_AMRWB_6_6K_NATIVE — AMR-WB, 6.6 kbps, CMR type 0

e CODER_TYPE_AMRWB_8_85K — AMR-WB, 8.85 kbps, CMR type 1

e CODER_TYPE_AMRWB_8_85K_NATIVE - AMR-WB, 8.85 kbps, CMR type 1

e CODER_TYPE_AMRWB_12_65K - AMR-WB, 12.65 kbps, CMR type 2

e CODER_TYPE_AMRWB_12_65K_NATIVE — AMR-WB, 12.65 kbps, CMR type 2

e CODER_TYPE_AMRWB_14_25K - AMR-WB, 14.25 kbps, CMR type 3

e CODER_TYPE_AMRWB_14_25K_NATIVE - AMR-WB, 14.25 kbps, CMR type 3

e CODER_TYPE_AMRWB_15_85K - AMR-WB, 15.85 kbps, CMR type 4

e CODER_TYPE_AMRWB_15_85K_NATIVE — AMR-WB, 15.85 kbps, CMR type 4

e CODER_TYPE_AMRWB_18_25K - AMR-WRB, 18.25 kbps, CMR type 5

e CODER_TYPE_AMRWB_18_25K_NATIVE - AMR-WB, 18.25 kbps, CMR type 5

e CODER_TYPE_AMRWB_19_85K - AMR-WB, 19.25 kbps, CMR type 6

e CODER_TYPE_AMRWB_19_85K_NATIVE — AMR-WB, 19.25 kbps, CMR type 6

e CODER_TYPE_AMRWB_23_05K - AMR-WB, 23.05 kbps, CMR type 7

e CODER_TYPE_AMRWB_23_05K_NATIVE - AMR-WB, 23.05 kbps, CMR type 7

e CODER_TYPE_AMRWB_23_85K - AMR-WB, 23.85 kbps, CMR type 8

e CODER_TYPE_AMRWB_23_85K_NATIVE --AMR-WB, 23.85 kbps, CMR type 8

e CODER_TYPE_AMRWB_NONE - Don’t care, CMR type 15. Indicates that the
software does not care what bit rate it receives; the eCoderType field sets the CMR value
in the transmitted packet. This value is not supported for the
MEDIATYPE_AUDIO_REMOTE_CODER_INFO media type. This value is only
supported for the MEDIATYPE_AUDIO_LOCAL_CODER_INFO media type.

e CODER_TYPE_G711ALAW64K - G.711, A-law, 64 kbps

e CODER_TYPE_G711ALAW64K_NATIVE - G.711, A-law, 64 kbps

e CODER_TYPE_G711ULAW64K — G.711, mu-law, 64 kbps

e CODER_TYPE_G711ULAW64K_NATIVE - G.711, mu-law, 64 kbps

e CODER_TYPE_G722_64K — G.722, 64 kbps

e CODER_TYPE_G722_64K_NATIVE - ¢G.722, 64 kbps —

e CODER_TYPE_G7231_5_3K - G.723.1, 5.3 kbps

e CODER_TYPE_G7231_5_3K_NATIVE - G.723.1, 5.3 kbps

e CODER_TYPE_G7231_6_3K - G.723.1, 6.3 kbps

e CODER_TYPE_G7231_6_3K_NATIVE - G.723.1, 6.3 kbps

e CODER_TYPE_G726_16K — G.726, 16 kbps, 2 bits/sample

e CODER_TYPE_G726_16K_NATIVE — G.726, 16 kbps, 2 bits/sample

e CODER_TYPE_G726_24K — G.726, 24 kbps, 3 bits/sample

e CODER_TYPE_G726_24K_NATIVE — G.726, 24 kbps, 3 bits/sample

e CODER_TYPE_G726_32K - G.726, 32 kbps, 4 bits/sample

e CODER_TYPE_G726_32K_NATIVE — G.726, 32 kbps, 4 bits/sample

e CODER_TYPE_G726_40K — G.726, 40 kbps, 5 bits/sample

e CODER_TYPE_G726_40K_NATIVE — G.726, 40 kbps, 5 bits/sample

e CODER_TYPE_G729 - G.729

e CODER_TYPE_G729_NATIVE - G.729

Dialogic® IP Media Library API Programming Guide and Library Reference 231

IPM_AUDIO_CODER_INFO — audio coder properties used in an IP session

232

e CODER_TYPE_G729ANNEXA - G.729 Annex A

e CODER_TYPE_G729ANNEXA_NATIVE - G.729 Annex A

* CODER_TYPE_G729ANNEXB — G.729 Annex B

e CODER_TYPE_G729ANNEXB_NATIVE - G.729 Annex B

¢ CODER_TYPE_G729ANNEXAWANNEXB — G.729 Annex A with Annex B

¢ CODER_TYPE_G729ANNEXAWANNEXB_NATIVE — G.729 Annex A with Annex B
¢ CODER_TYPE_UDPTL_NATIVE - native T.38 fax hairpin

Note: An IPM device using a coder type that includes _NATIVE as part of the value name
for the audio coder is not capable of transcoding audio and can therefore only be used
in support of native features such as native play and record operations and native
hairpinning. An IPM device using a coder type that does not include _NATIVE as
part of the value name for the audio coder is capable of transcoding audio and also
supports native features.

eFrameSize

size of frame for coders that support multiple frame sizes, such as G.711 and G.726. (Other
coders have a predefined, standard value for the frame size and have a user-programmable
frames per packet field in the IPM_CODER_INFO data structure.) When packets are sent in
both directions (that is, when the call to ipm_StartMedia() or ipm_SetRemoteMedialnfo()
specifies eDirection = DATA_IP_TDM_BIDIRECTIONAL), the application must know the
frame size of incoming packets and use eFrameSize to specify that value.

The eIPM_CODER_FRAMESIZE data type is an enumeration which defines the following
values, and coder-specific values are listed in Table 4:

e CODER_FRAMESIZE_10 — frame size = 10 ms

e CODER_FRAMESIZE_20 - frame size = 20 ms

e CODER_FRAMESIZE_30 - frame size = 30 ms

unFramesPerPkt

number of frames per packet. Coder-specific values are listed in Table 4. This field cannot be
modified for G.711 coders.

eVadEnable

flag for enabling/disabling VAD (Voice Activity Detection)

The eIPM_CODER_VAD data type is an enumeration which defines the following values,
and coder-specific values are listed in Table 4:

e CODER_VAD_DISABLE - VAD is OFF

e CODER_VAD_ENABLE - VAD is ON

unCoderPayloadType

RTP header payload type using RFC 3551 (supersedes RFC 1890) standard definitions. See
RFC 3551 for details of the coder payload types.

The application must set a value that is compatible with the coder type that is specified in the
eCoderType field before calling ipm_StartMedia() or ipm_ModifyMedia(). The
application is responsible for negotiating this value between the two endpoints. This may be
set to any value for non-standard coders or if the application does not require interoperability
with third-party applications.
Values: 0 to 127. 96 to 127 is the dynamic range.
Default value: 0 (specifies G.711 mu-law)

Note: If not using G.711 mu-law, the application must set the appropriate value.

Dialogic® IP Media Library APl Programming Guide and Library Reference

audio coder properties used in an IP session — IPM_AUDIO_CODER_INFO

unRedPayloadType
RTP header redundancy payload type using RFC 2198 definitions for redundant packets. The
application is responsible for negotiating this value between the two endpoints. This may be
set to any value from 96 to 127.

Table 4. Supported Audio Coder Properties

eCoderType Fra?:s?ize ;;2:‘;5(;;:; eVadEnable Value
CODER_TYPE_AMRNB_4_75K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_5_15K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_5_9K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_6_7K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_7_4K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_7_95K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_10_2K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_12_2K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRNB_NONE fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_6_6K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_6_6K_NATIVE fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_8_85K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_8_85K_NATIVE fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_12_65K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_12_65K_NATIVE | fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_14_25K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_14_25K_NATIVE | fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_15_85K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_15_85K_NATIVE | fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_18_25K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_18_25K_NATIVE | fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_19_85K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_19_85K_NATIVE | fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_23_05K fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_23_05K_NATIVE | fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_23_85K fixed at 20 1-10 Must be CODER_VAD_ENABLE
NOTES:
CODER_TYPE_AMRNB_NONE and CODER_TYPE_AMRWB_NONE- Don’t care, CMR type 15. Indicates that the
software does not care what bit rate it receives; the eCoderType field sets the CMR value in the transmitted packet. This
value is not supported for the MEDIATYPE_AUDIO_REMOTE_CODER_INFO media type. This value is only supported for
the MEDIATYPE_AUDIO_LOCAL_CODER_INFO media type.
* Supported on Dialogic® HMP Software 3.0 Windows only.
1 On Dialogic® HMP Software, using fpp value of 1 is not recommended because it requires increased MIPS usage.
1 Applications must explicitly enable VAD even though G.729a+b implicitly supports VAD.

Dialogic® IP Media Library API Programming Guide and Library Reference 233

IPM_AUDIO_CODER_INFO — audio coder properties used in an IP session

234

Table 4. Supported Audio Coder Properties (Continued)

eCoderType Fra;r:s)Size :;Zreets(fﬁ)o?)r) eVadEnable Value

CODER_TYPE_AMRWB_23_85K_NATIVE | fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_AMRWB_NONE fixed at 20 1-10 Must be CODER_VAD_ENABLE
CODER_TYPE_G711ALAW64K 10, 20, or 30 1 Must be CODER_VAD_DISABLE
CODER_TYPE_G711ULAW64K 10, 20, or 30 1 Must be CODER_VAD_DISABLE
CODER_TYPE_G722_64K 20 or 10 1 Must be CODER_VAD_DISABLE
CODER_TYPE_G722_64K_NATIVE 200r10 1 Must be CODER_VAD_DISABLE
CODER_TYPE_G723_1_5_3K 30 1,2,3 Either value
CODER_TYPE_G723_1_6_3K 30 1,2,3 Either value
CODER_TYPE_G726_16K 20 1,2,0r3 Must be CODER_VAD_DISABLE
CODER_TYPE_G726_24K 20 1,2,0r3 Must be CODER_VAD_DISABLE
CODER_TYPE_G726_32K 20 1,2,0r3 Must be CODER_VAD_DISABLE
CODER_TYPE_G726_40K 20 1,2,0r3 Must be CODER_VAD_DISABLE
CODER_TYPE_G729ANNEXA 10 11,2,3,0r4 Must be CODER_VAD_DISABLE
CODER_TYPE_G729ANNEXAWANNEXB 10 11,2,3,0r4 Must be CODER_VAD_ENABLE #
CODER_TYPE_UDPTL_NATIVE * 30 1 Must be CODER_VAD_DISABLE

NOTES:

CODER_TYPE_AMRNB_NONE and CODER_TYPE_AMRWB_NONE- Don’t care, CMR type 15. Indicates that the
software does not care what bit rate it receives; the eCoderType field sets the CMR value in the transmitted packet. This
value is not supported for the MEDIATYPE_AUDIO_REMOTE_CODER_INFO media type. This value is only supported for
the MEDIATYPE_AUDIO_LOCAL_CODER_INFO media type.

* Supported on Dialogic® HMP Software 3.0 Windows only.
1 On Dialogic® HMP Software, using fpp value of 1 is not recommended because it requires increased MIPS usage.
I Applications must explicitly enable VAD even though G.729a+b implicitly supports VAD.

Dialogic® IP Media Library APl Programming Guide and Library Reference

audio coder options — IPM_AUDIO_CODER_OPTIONS_INFO

IPM_AUDIO_CODER_OPTIONS_INFO

Note:
Note:
Note:

typedef struct ipm_audio_coder_ options_info_tag
{

unsigned int unVersion;

unsigned int unCoderOptions;

unsigned int unParml;

int nValuel;

unsigned int unParm2;

int nValue2;
} IPM AUDIO CODER OPTIONS INFO;

Description

This data structure provides additional options for audio coders, such as AMR.
All unused fields in the IPM_AUDIO_CODER_OPTIONS_INFO structure must be set to 0.
AMR references apply to both AMR-NB and AMR-WB.

Using the AMR-NB or AMR-WB resource in connection with one or more Dialogic products does
not grant the right to practice the AMR-NB or AMR-WB standard. To seek a license patent
agreement to practice the standard, contact the VoiceAge Corporation at
www.voiceage.com/licensing/php.

Field Descriptions

The fields of the IPM_AUDIO_CODER_OPTIONS_INFO data structure are described as follows:

unVersion
set to IPM_AUDIO_CODER_OPTIONS_INFO_VERSION

unCoderOptions

For AMR coders where the media type is
MEDIATYPE_AUDIO_LOCAL_CODER_OPTIONS_INFO, valid values are:

e CODER_OPT_AMR_EFFICIENT - Minimize the amount of network bandwidth
or
CODER_OPT_AMR_OCTET - Make packet parsing easier for the AMR application

For AMR coders where the media type is
MEDIATYPE_AUDIO_REMOTE_CODER_OPTIONS_INFO, valid values that can be
ORed together are:

e CODER_OPT _AMR_EFFICIENT - Minimize the amount of network bandwidth
or
CODER_OPT_AMR_OCTET - Make packet parsing easier for the AMR application

e CODER_OPT_AMR_CMR_TRACK - Specify that the transmit bit rate should follow the
CMR value in the received packet
or
CODER_OPT_AMR_CMR_LIMIT - Specify that the transmit bit rate should follow the
CMR value in the received packet with a maximum value specified by the preferred bit
rate.

Dialogic® IP Media Library API Programming Guide and Library Reference 235

www.voiceage.com/licensing/php
www.voiceage.com/licensing/php
www.voiceage.com/licensing/php

IPM_AUDIO_CODER_OPTIONS_INFO — audio coder options

unParm1
set to a value from the eIPM_CODER_OPTION_PARMS enumeration

For AMR, set to O.

nValuel
The value set here is for the parameter specified in unParml.

For AMR, set to 0.

unParm?2
For AMR, set to 0.

nValue2
For AMR, set to 0.

236 Dialogic® IP Media Library APl Programming Guide and Library Reference

reserved for future use — IPM_CLOSE_INFO

IPM_CLOSE_INFO

B Description

This structure is used by the ipm_Close() function.

Note: This structure is reserved for future use. NULL must be passed.

Dialogic® IP Media Library API Programming Guide and Library Reference 237

IPM_DIGIT_INFO — used to transfer digits over IP network and TDM bus

IPM_DIGIT_INFO

238

typedef struct ipm digit info_ tag
{

eIPM DIGIT_TYPE eDigitType; /* Type of digits */

eIPM DIGIT DIRECTION eDigitDirection; /* The direction of flow of digits */
char cDigits[MAX IPM DIGITS]; /* the digits */

unsigned int unNumberOfDigits; /* Number of digits */

unsigned int unTimeStamp;
unsigned int unExpirationTime;
unsigned int unDuration;

} IPM DIGIT INFO, *PIPM DIGIT INFO;
Description

This structure is used to send and receive digits over the TDM bus using the ipm_SendDigits()
and ipm_ReceiveDigits() functions. If your application makes a ipm_SendDigits() call, it must
fill in the digit type, direction, number of digits, and the actual digits to be sent. If your application
makes a ipm_ReceiveDigits() call, all fields are filled in upon successful return.

Field Descriptions

The fields of the IPM_DIGIT_INFO data structure are described as follows:

eDigitType
must be set to DIGIT_ALPHA_NUMERIC
The eIPM_DIGIT_TYPE data type is an enumeration which identifies the type of digit. The
enumeration defines the following value:
¢ DIGIT_ALPHA_NUMERIC - alphanumeric digits

eDigitDirection
must be set to set to DIGIT_TDM
The eIPM_DIGIT_DIRECTION data type is an enumeration which identifies the direction of
digit flow. The enumeration defines the following value:
e DIGIT_TDM - digits are sent to or received from the TDM bus

cDigitst MAX_IPM_DIGITS]
when sending digits, the actual digits to be sent; not used when receiving digits

unNumberOfDigits
number of digits being sent or received. When sending digits via ipm_SendDigits(), this field
indicates the number of digits to be sent; the maximum number of digits that may be sent is 16.
When receiving digits via ipm_ReceiveDigits(), upon return the function sets this field to the
actual number of digits to be received via asynchronous events.

unTimeStamp
reserved for future use; set to 0

unExpirationTime
reserved for future use; set to 0

unDuration
reserved for future use; set to 0

Dialogic® IP Media Library APl Programming Guide and Library Reference

endpoint ID information — IPM_ENDPOINTID_INFO

IPM_ENDPOINTID_INFO

typedef struct
{

unsigned int unVersion;

eIPM MEDIA TYPE eMediaType; /* Type of media */

unsigned short unPortId; /* Port ID */

unsigned char cIPAddress[IP_ADDR SIZE]; /* IP Address */

unsigned long ulSSRC; /* Identifier in the packet */
unsigned char ucPayloadType; /* RTP only */

unsigned short usPayloadSize; /* RTP only */

unsigned short usSequenceNum; /* RTP only */

unsigned long ulTimeStamp; /* RTP only */

} IPM ENDPOINTID INFO;
B Description

The IPM_ENDPOINTID_INFO data structure contains information about the endpoint. This
structure is used by the Network Address Translation (NAT) traversal feature.

B Field Descriptions

The fields of the IPM_ENDPOINTID_INFO data structure are described as follows:

UnVersion
version of the structure. Used to ensure that an application is binary compatible with future
changes to this data structure.

eMediaType
Specifies the type of media type. Valid values are:
¢ MEDIATYPE_AUDIO_REMOTE_RTP_INFO
e MEDIATYPE_AUDIO_REMOTE_RTCP_INFO
¢ MEDIATYPE_VIDEO_REMOTE_RTP_INFO
e MEDIATYPE_VIDEO_REMOTE_RTCP_INFO
unPortld

Specifies the RTP or RTCP port information to be sent to the application. Valid port ranges are
per standards for both RTP and RTCP packets.

cIPAddress
Specifies the IP address of the endpoint. Valid addresses are according to standards. This field
applies to both RTP and RTCP packets.

ulSSRC
Specifies the unique source identifier that appears along with the RTP or RTCP packets.

ucPayloadType
Specifies the payload type. This field applies to RTP packets only. For RTCP packets, the
event data is set to zero.

usPayloadSize
Specifies the size of the RTP payload. This field applies to RTP packets only. For RTCP
packets, the event data is set to zero.

Dialogic® IP Media Library API Programming Guide and Library Reference 239

IPM_ENDPOINTID_INFO — endpoint ID information

ulTimeStamp
Specifies the time stamp indicated in the RTP packet. This field applies to RTP packets only
and is set to zero for RTCP packets.

240 Dialogic® IP Media Library APl Programming Guide and Library Reference

used for IP event notification — IPM_EVENT_INFO

IPM_EVENT_INFO

typedef struct ipm_event_ info_tag
{

unsigned int unCount; /* number of following structures */
void *pEventData; /* Data associated with the event */
} IPM EVENT INFO, *PIPM EVENT INFO;

B Description
This structure is used for IP event notification. See Chapter 24, “Events” for more information.
B Field Descriptions

The fields of the IPM_EVENT_INFO data structure are described as follows:

unCount
number of data structures pointed to

*pEventData
pointer to structure containing event-specific data

Dialogic® IP Media Library API Programming Guide and Library Reference 241

IPM_FAX_SIGNAL — detected tone information definition

IPM_FAX_SIGNAL

242

typedef struct sc_tsinfo {
eIPM TONE eToneType;
unsigned int unToneDuration;

} IPM FAX SIGNAL, *PIPM FAX SIGNAL;
Description

This structure defines the tone information detected by the gateway. IPM_FAX_SIGNAL is a child
of IPM_MEDIA, which is a child of the IPM_MEDIA_INFO structure. The structure is used by
the ipm_GetLocalMedialnfo(), ipm_ModifyMedia() and ipm_StartMedia() functions.

Field Descriptions

The fields of the IPM_FAX_SIGNAL data structure are described as follows:

eToneType
identifies type of tone to generate. The following values are defined for the eIPM_TONE
enumeration:
e TONE_NONE - no tone
* TONE_CNG - calling (CNG) tone. Tone produced by fax machines when calling another
fax machine.
* TONE_CED - called terminal identification (CED) tone. Tone produced by fax machine
when answering a call.

unToneDuration
duration of tone to generate

Dialogic® IP Media Library APl Programming Guide and Library Reference

retrieve I-Frame information — IPM_IFRAME_INFO

IPM_IFRAME_INFO

typedef struct iframeinfo

{
unsigned int unVersion;
} IPM _IFRAME INFO;

B Description

This structure contains the I-frame information and is used by the ipm_GeneratelFrame()
function.

The INIT_IPM_IFRAME_INFO inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_IFRAME_INFO data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

Dialogic® IP Media Library API Programming Guide and Library Reference 243

IPM_INIT_FAILURE — IP failed response initialization message

IPM_INIT_FAILURE

typedef struct IPM INIT_FAILURE_tag
{

unsigned int unVersion;
eIPM RTP_PROTOCOL eProtocol;
union
{

PIPM NBUP_INIT FAILURE PNBUP;
} data;

} IPM _INIT_FAILURE, *PIPM INIT FAILURE;

B Description

The IPM_INIT_FAILURE structure describes a failure. This structure is the wrapper structure
around protocol-specific structures (that is, the structure is a generic structure that contains more
specific data). This structure is used by ipm_InitSend() and ipm_InitResponseSend().

The INIT_IPM_INIT_FAILURE inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_INIT_FAILURE data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eProtocol
type of RTP encapsulation protocol being described. The eIPM_RTP_PROTOCOL data type
is an enumeration that defines the following value:
e RTP_PROTOCOL_NBUP - describes an Nb UP protocol

data

data structure containing information about this initialization message. See
IPM_NBUP_INIT_SEND for details.

244 Dialogic® IP Media Library API Programming Guide and Library Reference

inbound IP initialization request — IPM_INIT_RECEIVED

IPM_INIT_RECEIVED

typedef struct IPM_INIT RECEIVED tag
{

unsigned int unVersion;
eIPM RTP_ PROTOCOL eProtocol;
union
{

IPM NBUP_INIT RECEIVED *pNBUP;
} data;

} IPM INIT RECEIVED, *PIPM INIT RECEIVED;
B Description

The IPM_INIT_RECEIVED structure is the wrapper structure around protocol-specific structures
(that is, the structure is a generic structure that contains more specific data). This structure is
included as part of unsolicited IPMEV_INIT_RECEIVED event (enabled by
EVT_INIT_RECEIVED).

The INIT_IPM_INIT_RECEIVED inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_INIT_RECEIVED data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eProtocol
type of RTP encapsulation protocol being described. The eIPM_RTP_PROTOCOL data type
is an enumeration that defines the following value:
e RTP_PROTOCOL_NBUP — describes an Nb UP protocol

data
data structure containing information about this initialization request. See
IPM_NBUP_INIT_RECEIVED structure for details.

Dialogic® IP Media Library API Programming Guide and Library Reference 245

IPM_INIT_RESPONSE — IP initialization response

IPM_INIT_RESPONSE

246

typedef struct IPM INIT_RESPONSE_tag
{

unsigned int unVersion;
eIPM RTP_PROTOCOL eProtocol;
union
{

PIPM NBUP_INIT RESPONSE PNBUP;
} data;

} IPM _INIT_RESPONSE, *PIPM INIT RESPONSE;
Description

The IPM_INIT_RESPONSE structure is the wrapper structure around protocol-specific structures
(that is, the structure is a generic structure that contains more specific data). This structure is used
by ipm_InitResponseSend().

The INIT_IPM_INIT_RESPONSE inline function is provided to initialize the structure.
Field Descriptions

The fields of the IPM_INIT_RESPONSE data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eProtocol
type of RTP encapsulation protocol being described. The eIPM_RTP_PROTOCOL data type
is an enumeration that defines the following value:
e RTP_PROTOCOL_NBUP - describes an Nb UP protocol

data

data structure containing information about this initialization response. See
IPM_NBUP_INIT_RESPONSE structure for details.

Dialogic® IP Media Library API Programming Guide and Library Reference

IP initialization message — IPM_INIT_SEND

IPM_INIT_SEND

typedef struct IPM_INIT_SEND_ tag
{

unsigned int unVersion;
eIPM RTP_ PROTOCOL eProtocol;
union
{

PIPM NBUP_ INIT SEND PNBUP;
} data;

} IPM INIT_SEND, *PIPM INIT SEND;

B Description

The IPM_INIT_SEND structure is the wrapper structure around protocol-specific structures (that
is, the structure is a generic structure that contains more specific data). This structure is used by
ipm_InitSend().

The INIT_IPM_INIT_SEND inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_INIT_SEND data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eProtocol
type of RTP encapsulation protocol being described. The eIPM_RTP_PROTOCOL data type
is an enumeration that defines the following value:
e RTP_PROTOCOL_NBUP — describes an Nb UP protocol

data

data structure containing information about this initialization message. See
IPM_NBUP_INIT_SEND for details.

Dialogic® IP Media Library API Programming Guide and Library Reference 247

IPM_MEDIA — parent of port and coder info structures

IPM_MEDIA

struct IPM MEDIA tag

{
eIPM MEDIA TYPE eMediaType;
union

{

IPM PORT_INFO PortInfo; /* RTP port information */
IPM_AUDIO CODER INFO AudioCoderInfo; /* Audio coder information */
IPM FAX SIGNAL FaxSignal; /* Fax signal information */
IPM _VIDEO_CODER_INFO VideoCoderInfo /* Video coder information */
IPM SECURITY INFO SecurityInfo /* Security information */

IPM AUDIO CODER _OPTIONS_INFO AudioCoderOptionsInfo;
/* Extended Audio Coder Information */
IPM _NBUP_PROFILE INFO NBUPProfilelInfo; /* NBUP Profile Information */
}medialInfo;
} IPM MEDIA, *PIPM MEDIA;

B Description

This structure contains information about RTP / RTCP ports, coders, security information and fax
signals. It is a parent structure of:

¢ [PM_PORT_INFO
IPM_AUDIO_CODER_INFO
IPM_FAX_SIGNAL
IPM_VIDEO_CODER_INFO
IPM_SECURITY_INFO
IPM_AUDIO_CODER_OPTIONS_INFO
IPM_NBUP_PROFILE_INFO

This structure is a child of the IPM_MEDIA_INFO structure which is used by the
ipm_GetLocalMedialnfo(), ipm_ModifyMedia() and ipm_StartMedia() functions.

Fields and values related to security are not supported on all releases; for support information, see
Chapter 2, “Feature Support by Platform”.

B Field Descriptions

The fields of the IPM_MEDIA data structure are described as follows:

eMediaType
type of media used to start or modify an IP session
The eIPM_MEDIA_TYPE data type is an enumeration which defines the following values:
Audio values:
e MEDIATYPE _AUDIO_LOCAL_CODER_INFO - local receive coder information
e MEDIATYPE_AUDIO_LOCAL_CODER_OPTIONS_INFO - options for audio coders
at the local side
e MEDIATYPE_AUDIO_LOCAL_RTCP_INFO - local RTCP audio port information
e MEDIATYPE_AUDIO_LOCAL_RTP_INFO - local RTP audio port information

248 Dialogic® IP Media Library APl Programming Guide and Library Reference

parent of port and coder info structures — IPM_MEDIA

MEDIATYPE_AUDIO_LOCAL_SECURITY_INFO - local receive security audio
information

MEDIATYPE_AUDIO_REMOTE_CODER_INFO - remote receive coder information
MEDIATYPE_AUDIO_REMOTE_CODER_OPTIONS_INFO - options for audio
coders at the remote side

MEDIATYPE_AUDIO_REMOTE_RTCP_INFO - remote RTCP audio port information
MEDIATYPE_AUDIO_REMOTE_RTP_INFO - remote RTP audio port information
MEDIATYPE_AUDIO_REMOTE_SECURITY_INFO - remote receive audio security
information

Video values:

MEDIATYPE_VIDEO_LOCAL_CODER_INFO - local receive video coder information
MEDIATYPE_VIDEO_LOCAL_RTCP_INFO - local RTCP video port information
MEDIATYPE_VIDEO_LOCAL_RTP_INFO - local RTP video port information
MEDIATYPE_VIDEO_LOCAL_SECURITY_INFO - local receive video security
information

MEDIATYPE_VIDEO_REMOTE_CODER_INFO - remote receive video coder
information

MEDIATYPE_VIDEO_REMOTE_RTCP_INFO - remote RTCP video port information
MEDIATYPE_VIDEO_REMOTE_RTP_INFO - remote RTP video port information
MEDIATYPE_VIDEO_REMOTE_SECURITY_INFO - remote receive video security
information

Nb UP values:

MEDIATYPE_NBUP_REMOTE_RTP_INFO — Nb UP remote RTP information
MEDIATYPE_NBUP_LOCAL_RTP_INFO — Nb UP local RTP information
MEDIATYPE_NBUP_PROFILE_INFO — Nb UP profile information

Fax values:

MEDIATYPE_FAX_SIGNAL - fax signal information to be transmitted to IP during fax
transmissions

MEDIATYPE_LOCAL_UDPTL_T38_INFO — local UDP packet T.38 information
MEDIATYPE_REMOTE_UDPTL_T38_INFO — remote UDP packet T.38 information

Note: The following eMediaType equates are also provided for backward compatibility (the generic
names are equated with audio port values). However, it is recommended that the AUDIO values be

used:

PortInfo

#define MEDIATYPE LOCAL_CODER_INFO MEDIATYPE AUDIO LOCAL_CODER_INFO
#define MEDIATYPE LOCAL RTCP INFO MEDIATYPE AUDIO LOCAL RTCP INFO
#define MEDIATYPE LOCAL RTP_INFO MEDIATYPE AUDIO LOCAL_RTP_INFO
#define MEDIATYPE REMOTE CODER INFO MEDIATYPE AUDIO REMOTE CODER INFO
#define MEDIATYPE REMOTE_RTCP INFO MEDIATYPE AUDIO REMOTE RTCP INFO
#define MEDIATYPE REMOTE RTP INFO MEDIATYPE AUDIO REMOTE RTP INFO

reference to RTP port information data structure, type IPM_PORT_INFO

AudioCoderInfo
reference to audio coder information data structure, type IPM_AUDIO_CODER_INFO

FaxSignal
reference to fax signal data structure, type [IPM_FAX_SIGNAL

VideoCoderInfo
reference to video coder information data structure, type IPM_VIDEO_CODER_INFO

Dialogic® IP Media Library API Programming Guide and Library Reference 249

IPM_MEDIA — parent of port and coder info structures

SecurityInfo
reference to security information data structure, type IPM_SECURITY _INFO

AudioCoderOptionsInfo
reference to extended audio coder information data structure, type
IPM_AUDIO_CODER_OPTIONS_INFO

NBUPProfilelnfo
reference to Nb UP profile information data structure, type IPM_NBUP_PROFILE_INFO

250 Dialogic® IP Media Library APl Programming Guide and Library Reference

parent of IP_MEDIA, contains session info — IPM_MEDIA_INFO

IPM_MEDIA_INFO

typedef struct ipm media_info_tag
{
unsigned int unCount;
IPM MEDIA MediaData[MAXiMEDIAilNFO] ;

} IPM MEDIA INFO, *PIPM MEDIA INFO;
B Description

This structure contains IP media session information for various kinds of media information
elements, for example, RTP, RTCP and TDM. This structure is the parent of the [IPM_MEDIA
structure and is used by the ipm_GetLocalMedialnfo(), ipm_ModifyMedia(), and
ipm_StartMedia() functions.

B Field Descriptions

The fields of the IPM_MEDIA_INFO data structure are described as follows:

unCount
number of media data structures to follow
maximum number of structures = MAX_MEDIA_INFO

MediaData
reference to IPM_MEDIA structures

Dialogic® IP Media Library API Programming Guide and Library Reference 251

IPM_NACK_SENT — NACK response to an IP request

IPM_NACK_SENT

252

typedef struct IPM NACK_SENT_ tag
{
unsigned int unVersion;
eIPM RTP_PROTOCOL eProtocol;
union
{
PIPM NBUP_NACK_SENT pNBUP;
} data;
} IPM NACK SENT, *PIPM NACK SENT;

Description

The IPM_NACK_SENT structure is the wrapper structure around protocol-specific structures (that
is, the structure is a generic structure that contains more specific data). This structure is included as
part of unsolicited IPMEV_NACK_SENT event (enabled by EVT_NACK_SENT).

The INIT_IPM_NACK_SENT inline function is provided to initialize the structure.
Field Descriptions

The fields of the IPM_NACK_SENT data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eProtocol
type of RTP encapsulation protocol being described. The eIPM_RTP_PROTOCOL data type
is an enumeration that defines the following value:
e RTP_PROTOCOL_NBUP - describes an Nb UP protocol

data

data structure containing information about why the NACK response was sent. See
IPM_NBUP_NACK_SENT structure for details.

Dialogic® IP Media Library API Programming Guide and Library Reference

Nb UP protocol failed message — IPM_NBUP_INIT_FAILURE

IPM_NBUP_INIT_FAILURE

typedef struct IPM NBUP_INIT FAILURE_tag

{
unsigned int unVersion;
unsigned int unCause;

} IPM NBUP INIT FAILURE, *PIPM NBUP INIT FAILURE;

B Description

The IPM_NBUP_INIT_FAILURE structure identifies the cause of failure to establish an Nb UP
session. This structure is a child of IPM_INIT_FAILURE.

The INIT_IPM_NBUP_INIT_FAILURE inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_NBUP_INIT _FAILURE data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

unCause
cause values describing possible reasons for failure:
e NBUP_ERR_CRCHDR - CRC error of frame header
e NBUP_ERR_CRCPYLD - CRC error of frame payload
e NBUP_ERR_UNEXP_FRAMENUM - Unexpected frame number
e NBUP_ERR_FRAMELOSS — Frame loss
e NBUP_ERR_UNKNOWN_PDUTYPE - PDU type unknown
e NBUP_ERR_UNKNOWN_PROCEDURE - Unknown procedure
e NBUP_ERR_UNKNOWN_RESERVED — Unknown reserved value
e NBUP_ERR_UNKNOWN_FIELD - Unknown field
e NBUP_ERR_FRAMESHORT - Frame too short
e NBUP_ERR_MISSING_FIELDS - Missing fields
e NBUP_ERR_UNEXP_PDUTYPE - Unexpected PDU type
e NBUP_ERR_UNEXP_PROCEDURE - Unexpected procedure
e NBUP_ERR_UNEXP_RFCI - Unexpected RFCI
e NBUP_ERR_UNEXP_VALUE - Unexpected value
e NBUP_ERR_INITIALISATION_O — Initialization failure
e NBUP_ERR_INITTALISATION_1 — Initialization failure (network error, timer expiry)
e NBUP_ERR_INITIALISATION_2 — Initialization failure (Iu UP function error,
repeated NACK).
e NBUP_ERR_RATECONTROL_FAILURE - Rate control failure
e NBUP_ERR_ERROREVENT FAILURE - Error event failure
e NBUP_ERR_NOTSUP_TIMEALIGN - Time Alignment not supported
e NBUP_ERR_TIMEALIGN_ERROR - Requested Time Alignment not possible
e NBUP_ERR_NOTSUP_VERSION - Iu UP Mode version not supported

Dialogic® IP Media Library API Programming Guide and Library Reference 253

IPM_NBUP_INIT_RECEIVED — Nb UP incoming request parameters

IPM_NBUP_INIT_RECEIVED

B Description

The IPM_NBUP_INIT_RECEIVED structure and related macros are aliases of the
IPM_NBUP_INIT_SEND structure and macros. The data in the incoming Nb UP request will
always be the same as the data in the outbound Nb UP request. They are defined as follows:

#define IPM NBUP_ INIT RECEIVED IPM_NBUP_INIT_ SEND
#define INIT IPM NBUP INIT RECEIVED INIT IPM NBUP INIT SEND
#define FREE_IPM NBUP_INIT RECEIVED FREE_IPM NBUP_INIT SEND

254 Dialogic® IP Media Library API Programming Guide and Library Reference

response to send to an Nb UP request — IPM_NBUP_INIT_RESPONSE

IPM_NBUP_INIT_RESPONSE

typedef struct IPM _NBUP_INIT_ RESPONSE_tag
{

unsigned int unVersion;
eIPM NBUP INIT RESPONSE eResponse; /* Type of response */
} IPM NBUP_ INIT RESPONSE, *PIPM NBUP INIT RESPONSE;

B Description

The IPM_NBUP_INIT_RESPONSE structure identifies the type of response to send to an Nb UP
request. This structure is a child of the IPM_INIT_RESPONSE structure.

The INIT_IPM_NBUP_INIT_RESPONSE inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_NBUP_INIT _RESPONSE data structure is described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eResponse
response to an Nb UP request. The eIPM_NBUP_INIT_RESPONSE_TYPE data type is an
enumeration that defines the following values:
e NBUP_INIT_RESPONSE_ACK - acknowledge the response and accept the invitation
e NBUP_INIT_RESPONSE_NACK - send a NACK response to deny the invitation

Dialogic® IP Media Library API Programming Guide and Library Reference 255

IPM_NBUP_INIT_SEND — Nb UP protocol initialization message

IPM_NBUP_INIT_SEND

256

typedef struct ipm NBUP_INIT SEND_tag
{

unsigned int unVersion;

unsigned int unSubFlowCount; /* Number of subflows per RFCI */
unsigned int unRFCICount; /* Number of RFCI structures */
IPM NBUP RFCI INFO *pPRFCIs; /* RECI structures */

} IPM NBUP INIT SEND, *PIPM NBUP INIT_ SEND;

Description

The IPM_NBUP_INIT_SEND structure describes Nb UP initialization items. Since each RFCI
must have the same number of subflows, the count is maintained here. This structure is a child of
IPM_INIT_SEND structure. The IPM_NBUP_INIT_RECEIVED structure is an alias of the
IPM_NBUP_INIT_SEND.

The INIT_IPM_NBUP_INIT_SEND inline function is provided to initialize any dynamic memory
needed by the structure and to fill in the values provided by the user.

The FREE_IPM_NBUP_INIT_SEND inline function is provided to de-allocate any dynamic
memory allocated by INIT.

Field Descriptions

The fields of the IPM_NBUP_INIT_SEND data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

unSubFlowCount
number of SubFlow structures contained in each RFCI structure

unRFCICount
number of RFCI structures contained in pRFCIs

pRFCIs
pointer to an array of IPM_NBUP_RFCI_INFO structures

Dialogic® IP Media Library API Programming Guide and Library Reference

NACK response to send to an Nb UP request — IPM_NBUP_NACK_SENT

IPM_NBUP_NACK_SENT

typedef struct IPM NBUP_NACK_SENT_tag
{

unsigned int unVersion;
eIPM NBUP NACK PROCEDURE eProcedure;
unsigned int unCause;

} IPM_NBUP_NACK_ SENT, *PIPM NBUP_ NACK_ SENT;
B Description

The IPM_NBUP_NACK_SENT structure identifies the type of NACK response to send to an Nb
UP request. This structure is a child of the IPM_NACK_SENT structure.

The INIT_IPM_NBUP_NACK_SENT inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_NBUP_NACK_SENT data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eProcedure
enumeration describing possible reasons for the NACK response. The
elPM_NBUP_NACK_PROCEDURE data type is an enumeration that defines the following
values:
e NBUP_NACK_INITIALIZE - error during initialization
e NBUP_NACK_RATE_CONTROL - rate control problem
e NBUP_NACK_TIME_ALIGNMENT - time alignment error

unCause

cause values describing possible reasons for NACK cause.
e NBUP_ERR_CRCHDR — CRC error of frame header
e NBUP_ERR_CRCPYLD - CRC error of frame payload
e NBUP_ERR_UNEXP_FRAMENUM - Unexpected frame number
e NBUP_ERR_FRAMELOSS — Frame loss
e NBUP_ERR_UNKNOWN_PDUTYPE - PDU type unknown
e NBUP_ERR_UNKNOWN_PROCEDURE - Unknown procedure
e NBUP_ERR_UNKNOWN_RESERVED - Unknown reserved value
e NBUP_ERR_UNKNOWN_FIELD - Unknown field
e NBUP_ERR_FRAMESHORT - Frame too short
e NBUP_ERR_MISSING_FIELDS - Missing fields
e NBUP_ERR_UNEXP_PDUTYPE — Unexpected PDU type
e NBUP_ERR_UNEXP_PROCEDURE - Unexpected procedure
e NBUP_ERR_UNEXP_RFCI - Unexpected RFCI
e NBUP_ERR_UNEXP_VALUE — Unexpected value
e NBUP_ERR_INITTIALISATION_O — Initialization failure
e NBUP_ERR_INITTALISATION_1 — Initialization failure (network error, timer expiry)

Dialogic® IP Media Library API Programming Guide and Library Reference 257

IPM_NBUP_NACK_SENT — NACK response to send to an Nb UP request

e NBUP_ERR_INITIALISATION_2 — Initialization failure (Iu UP function error,
repeated NACK).

e NBUP_ERR_RATECONTROL_FAILURE — Rate control failure

e NBUP_ERR_ERROREVENT_FAILURE - Error event failure

e NBUP_ERR_NOTSUP_TIMEALIGN - Time Alignment not supported

e NBUP_ERR_TIMEALIGN_ERROR - Requested Time Alignment not possible

e NBUP_ERR_NOTSUP_VERSION - Iu UP Mode version not supported

258 Dialogic® IP Media Library API Programming Guide and Library Reference

type of Nb UP profile being requested — IPM_NBUP_PROFILE_INFO

IPM_NBUP_PROFILE_INFO

typedef struct ipm_nbup profile info_ tag
{

unsigned int unVersion;
eIPM NBUP_ PROFILE TYPE eProfileType;
unsigned char ucTxPLT;
unsigned char UucRxPLT;

eIPM NBUP_ TRANSCODE eTranscode;

} IPM NBUP PROFILE INFO, *PIPM NBUP PROFILE INFO;
B Description

The IPM_NBUP_PROFILE_INFO structure describes the type of Nb UP profile being requested
in the call to ipm_StartMedia(). It is also used to specify the transmit and receive RTP payload
type values and whether the session will be used with transcoded or native audio. This structure is
a child of IPM_MEDIA.

The INIT_IPM_NBUP_PROFILE_INFO inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_NBUP_PROFILE_INFO data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eProfileType
the type of profile to set up in ipm_StartMedia(). The eIPM_NBUP_PROFILE_TYPE data
type is an enumeration that defines the following values:
e NBUP_PROFILE_3G324M - 3G-324M type connection
e NBUP_PROFILE_G711ALAW64K_5MS - G.711 A-law 5 ms type connection
e NBUP_PROFILE_G711ALAW64K_20MS — G.711 A-law 20 ms type connection
e NBUP_PROFILE_G711ULAW64K_5MS — G.711 mu-law 5 ms type connection
e NBUP_PROFILE_G711ULAW64K_20MS — G.711 mu-law 20 ms type connection
e NBUP_PROFILE_AMRNB_4_75K — AMR-NB, 4.75 kbps
e NBUP_PROFILE_AMRNB_5_15K - AMR-NB, 5.15 kbps
e NBUP_PROFILE_AMRNB_5_9K — AMR-NB, 5.9 kbps
e NBUP_PROFILE_AMRNB_6_7K — AMR-NB, 6.7 kbps
e NBUP_PROFILE_AMRNB_7_4K — AMR-NB, 7.4 kbps
e NBUP_PROFILE_AMRNB_7_95K — AMR-NB, 7.95 kbps
e NBUP_PROFILE_AMRNB_10_2K — AMR-NB, 10.2 kbps
e NBUP_PROFILE_AMRNB_12_2K — AMR-NB, 12.2 kbps
e NBUP_PROFILE_AMRWB_6_6K —\AMR-WB, 6.6 kbps
e NBUP_PROFILE_AMRWB_8_85K — AMR-WB, 8.85 kbps
e NBUP_PROFILE_AMRWB_12_65K — AMR-WB, 12.65 kbps
e NBUP_PROFILE_AMRWB_14_25K — AMR-WB, 14.25 kbps
e NBUP_PROFILE_AMRWB_15_85K — AMR-WB, 15.85 kbps
e NBUP_PROFILE_AMRWB_18_25K — AMR-WB, 18.25 kbps
e NBUP_PROFILE_AMRWB_19_85K — AMR-WB, 19.85 kbps

Dialogic® IP Media Library API Programming Guide and Library Reference 259

IPM_NBUP_PROFILE_INFO — type of Nb UP profile being requested

e NBUP_PROFILE_AMRWB_23_05K — AMR-WB, 23.05 kbps
e NBUP_PROFILE_AMRWB_23_85K — AMR-WB, 23.85 kbps

ucTxPLT
The payload type field of each transmitted RTP packet will be set to this value. The
application is responsible for negotiating this value between the two endpoints.
Values: 96 to 127

Default value: 111

ucRxPLT
The expected value in the payload type field of each received RTP packet. The application is
responsible for negotiating this value between the two endpoints.
Values: 96 to 127

Default value: 111

eTranscode
Indicates whether the NbUP session will use audio encoding/decoding. This field serves the
same purpose as the “_NATIVE” codec types described in the IPM_AUDIO_CODER_INFO
section. Possible values are:
e NBUP_TRANSCODE_DISABLE - an audio codec license will not be consumed. Audio
packets will not be encoded or decoded.
e NBUP_TRANSCODE_ENABLE - an audio codec license will be consumed when the
session is started.

Set this field to NBUP_TRANSCODE_DISABLE for eProfileType of
NBUP_PROFILE_3G324M.

260 Dialogic® IP Media Library API Programming Guide and Library Reference

RFCI items in the Nb UP init message — IPM_NBUP_RFCI_INFO

IPM_NBUP_RFCIL_INFO

typedef struct ipm NBUP_RFCI_INFO_tag
{

unsigned int unVersion;
unsigned char uclID;
IPM_NBUP_SUBFLOW_INFO *pSubFlows;

} IPM_NBUP_RFCI_INFO, *PIPM NBUP RFCI_INFO;
B Description

This structure describes the RFCI items in the Nb UP initialization message. This structure is a
child of IPM_NBUP_INIT_SEND structure.

The INIT_IPM_NBUP_RFCI_INFO inline function is provided to initialize any dynamic memory
needed by the structure and to fill in the values provided by the user.

The FREE_IPM_NBUP_RFCI_INFO inline function is provided to de-allocate any dynamic
memory allocated by INIT.

B Field Descriptions

The fields of the IPM_NBUP_RFCI_INFO data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

uclD
RAB subflow combination identifier (RFCI) for this defined subflow combination. Valid
values are:
e 0-62
¢ 63 (RFCI not applicable)

pSubFlows
a list of subflow structures. The count of subflows is maintained by the value in the
IPM_NBUP_SUBFLOW_INFO structure.

Dialogic® IP Media Library API Programming Guide and Library Reference 261

IPM_NBUP_SUBFLOW_INFO — attributes of a subflow

IPM_NBUP_SUBFLOW_INFO

typedef struct IPM NBUP_SUBFLOW_INFO_tag
{

unsigned int unVersion;
eIPM NBUP FLOW_SIZE eFlowSize;
} IPM NBUP SUBFLOW INFO, *PIPM NBUP SUBFLOW INFO;

B Description

This structure describes the attributes of a subflow. This structure is a child of the
IPM_NBUP_RFCI_INFO structure.

The INIT_IPM_NBUP_SUBFLOW_INFO inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_NBUP_SUBFLOW _INFO data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure. Use the inline function to initialize this field to the current
version.

eFlowSize
number of bits to use for each of the flows in the IPM_NBUP_SUBFLOW_INFO data type
structure. The following table shows the number of sub-flow bits to specify for each data
format. This table is derived from Table 2 of 3GPP 26.101 V4.2.0 and Table 2 of 3GPP 26.201
V5.0.0.

Example
Data Format kbps uciD psubFlow[0]psubFlowl1hsubFlow(2 Total Bits
G.7115ms 64 0 320 0 0 320
G6.71120ms 64 1 1280 0 a 1280
AMR-NB &4.75 0 a2 53 0 95
AMR-NB 5.15 1 49 54 0 103
AMR-NB 5.9 2 55 63 il 118
AMR-NB 6.7 3 58 76 0 134
AMR-NB 7.4 4 61 87 0 148
AMR-NB 7.95 5 75 84 0 159
AMR-NB 10.2 6 65 99 40 204
AMR-NB | 12.2 7 81 103 60 244
AMR-NB SID 8 39 0 il 39
AMR-WE 6.6 0 54 78 0 132
AMR-WE £.85 1 64 113 a 177
AMR-WE 12.65 2 72 181 il 253
AMR-WE 14.25 3 72 213 0 285
AMR-WB 15.85 4 72 245 0 317
AMR-WE 18,25 5 72 293 0 365
AMR-WE 19.85 6 72 325 a 397
AMR-WE 23.05 7 72 385 il 461
AMR-WB 23.85 B8 72 405 0 477
AMR-WE SID 9 40 0 0 40

262 Dialogic® IP Media Library API Programming Guide and Library Reference

reserved for future use — IPM_OPEN_INFO

IPM_OPEN_INFO

B Description

This structure is used by the ipm_Open() function.

Note: This structure is reserved for future use.

Dialogic® IP Media Library API Programming Guide and Library Reference 263

IPM_PARM_INFO — used to set or retrieve parameters for an IP channel

IPM_PARM_INFO

typedef struct ipm param info_ tag
{
eIPM_PARM eParm; /* the parameter to set or get */
void *pvParmValue; /* pointer to value of parameter */
} IPM PARM INFO, *PIPM PARM INFO;

B Description

This structure is used to set or retrieve parameters for an IP channel. The structure is used by the
ipm_GetParm() and ipm_SetParm() functions.

B Field Descriptions

The fields of the IPM_PARM_INFO data structure are described as follows:

e]lPM_PARM
type of parameter to set or get. See Table 5 for supported types and corresponding values.

pvParmValue
pointer to the value of the parameter. See Table 5 for supported values for each parameter type.

Table 5. elPM_PARM Parameters and Values

elPM_PARM Define Description and Values

PARMBD_RTCPAUDIO_INTERVAL Specifies the RTCP calculation frequency for audio streams.
Type: integer. Valid values: 1 to 15. Default: 5.
Note: 1. This parameter is a board-level parameter; the
setting is applied to all IP devices on a virtual board.
2. If the value is changed, the new value is immediately
applied to the virtual board.
3. This parameter applies to audio RTP and RTCP
packets only.

PARMBD_RTP_SOURCE_FILTER Supported on Dialogic® HMP Software Windows only.

Specifies the filtering of RTP packets at runtime based on the
remote IP address and port information for the RTP session in
use.

Type: Integer. Valid values: 0 (off) and 1 (on). Default: 0.

PARMBD_RTPAUDIO_PORT_BASE Specifies the RTP base port number for audio streams.
Type: integer. Valid values: 0 to 65535. Default: 49152.

Note: 1. This parameter is a board-level parameter; the
setting is applied to all IP devices on a virtual board.
2. If the RTP base port number is changed while a
virtual board's channels are in an active call
(streaming), the new value does not take effect on the
active channels until the calls end. However, modifying
the RTP base port number on an IP device with active
channels causes unexpected behavior on the active
calls.

3. This parameter applies to audio RTP and RTCP
packets only.

264 Dialogic® IP Media Library API Programming Guide and Library Reference

used to set or retrieve parameters for an IP channel — IPM_PARM_INFO

Table 5. elPM_PARM Parameters and Values (Continued)

elPM_PARM Define

Description and Values

PARMCH_DISABLE_TX_TELEPHONY_
EVENT

Enables/disables transmit RFC 2833 digits.
¢ 1 —disable transmission
* 0 — enable transmission

PARMCH_DTMFXFERMODE

Specifies DTMF transfer mode.

Type: elPM_DTMFXFERMODE (enumeration). Valid values:
* DTMFXFERMODE_INBAND - in-band (default)
* DTMFXFERMODE_OUTOFBAND - out-of-band
* DTMFXFERMODE_RFC2833 — RFC 2833

Note: In order for DTMF event reporting to occur, you must
set out-of-band signaling on the receive side.

PARMCH_ECACTIVE

Enables/disables echo cancellation.

Type: elPM_ACTIVE (enumeration). Valid values:
e ECACTIVE_OFF (default)
e ECACTIVE_ON

PARMCH_ECHOTAIL

Specifies echo tail length value.
Type: elPM_ECHO_TAIL (enumeration)
Valid values:

e ECHO_TAIL_NONE

e ECHO_TAIL_8

e ECHO_TAIL_16 (default)

e ECHO_TAIL_32

e ECHO_TAIL_64

PARMCH_ECNLP_ACTIVE

Enables/disables Non-Linear Processing (NLP) value for echo
cancellation. NLP is a process in which signals that have a
level below a defined threshold are replaced by comfort noise
and signals that have a level above the threshold are passed
unmodified.

Type: Integer. Values: 0 or 1. Default: 1.

PARMCH_NOTIFY_EXPIRE_KEY_AUDIO

For Secure RTP (SRTP), specifies the time before encryption

key expiry at which notification is provided that the encryption

key for the audio media type is about to expire.

Type: Integer. Values: In 100 ms units. Default: 1 (100 ms).

Note: If the default setting for a given device is changed at
any time after download, the new settings for that
device are persistent beyond the lifetime of the
application (even if the device is closed and re-opened).
The settings stay in effect until either the next download
or until the settings are overridden with another
ipm_SetParm() call.

Dialogic® IP Media Library API Programming Guide and Library Reference

265

IPM_PARM_INFO — used to set or retrieve parameters for an IP channel

Table 5. elPM_PARM Parameters and Values (Continued)

elPM_PARM Define Description and Values

PARMCH_NOTIFY_EXPIRE_KEY_VIDEO | For Secure RTP (SRTP), specifies the time before encryption

key expiry at which notification is provided that the encryption

key for the video media type is about to expire.

Type: Integer. Values: In 100 ms units. Default: 1 (100 ms).

Note: If the default setting for a given device is changed at
any time after download, the new settings for that
device are persistent beyond the lifetime of the
application (even if the device is closed and re-opened).
The settings stay in effect until either the next download
or until the settings are overridden with another
ipm_SetParm() call.

PARMCH_RFC2833EVT_RX_PLT Specifies RFC 2833 event receive payload type.

Type: unsigned char. Valid values: 96 to 127. Default: 101.
PARMCH_RFC2833EVT_TX_PLT Specifies RFC 2833 event transmit payload type.

Type: unsigned char. Valid values: 96 to 127. Default: 101.
PARMCH_RTCP_ENHANCED_EVENT_ Controls how often RTCP reporting events are sent to the
FREQ application. For example, when set to 5, every fifth RTCP

reporting event is sent to the application.

Type: integer. Valid values: 0 to 255. Default value: 0 (don’t
send reporting event)

PARMCH_RTCP_ENHANCED_ Enables/disables enhanced RTCP reporting.
REPORTING Type: integer. Valid values: 0 or 1. Default value: 0
PARMCH_RX_ADJVOLUME Specifies volume level adjustment for inbound (from IP) side in

1 dB increments.

Type: integer. Valid values: -32 to 31. Default: 0 (no
adjustment).

PARMCH_TOS Specifies type of service in IPv4 headers. This can be either a
7-bit TOS field or a 6-bit DSCP field for Differentiated Services
per RFC2474.

Type: char. Valid values: 0 to 255. Default: 0.

PARMCH_TTL Specifies time-to-live for multicast.
Type: char. Valid values: 0 to 255. Default: 1.

PARMCH_TX_ADJVOLUME Specifies volume level adjustment for outbound (to IP) side in
1 dB increments.

Type: integer. Valid values: -32 to 31. Default: 0 (no
adjustment).

266 Dialogic® IP Media Library API Programming Guide and Library Reference

RTP and RTCP port properties — IPM_PORT_INFO

IPM_PORT_INFO

typedef struct ipm port_info_ tag

{
unsigned int unPortId; /* The Port ID */
char cIPAddress [IP ADDR SIZE]; /* IP Address */

} IPM PORT INFO, *PIPM PORT INFO;
B Description

This structure contains RTP, RTCP, and T.38 UDP port properties. It is a child of [IPM_MEDIA,
which is a child of the IPM_MEDIA_INFO structure that is used by ipm_GetLocalMedialnfo()
ipm_ModifyMedia() and ipm_StartMedia().

B Field Descriptions

The fields of the IPM_PORT_INFO data structure are described as follows:

unPortld
port identifier

cIPAddress[IP_ADDR_SIZE]
null-terminated IP address of the port in standard dotted decimal string format; for example,
192.168.0.1
Note: Avoid setting IP address 0.0.0.0 when using ipm_StartMedia() because this may
cause a hung port.

Dialogic® IP Media Library API Programming Guide and Library Reference 267

IPM_QOS_ALARM_DATA — data associated with QoS alarms

IPM_QOS_ALARM_DATA

268

typedef struct ipm gos_alarm data_tag

{
eIPM QOS_TYPE eQoSType; /* The QOS parameter type */
eIPM ALARM STATE eAlarmState; /* indicate if On/Off */

} IPM_QOS_ALARM DATA, *PIPM QOS_ALARM DATA;
Description

This structure is used to retrieve data associated with QoS alarms, as reported in
IPMEV_QOS_ALARM events. It is also a child of the IPM_QOS_ALARM_STATUS structure,
which is used by the ipm_GetQoSAlarmStatus() and ipm_ResetQoSAlarmStatus() functions.

The library generates a IPMEV_QOS_ALARM alarm event with ALARM_STATE_ON when a
QoS fault threshold is exceeded, and it generates a generates a QoS alarm event with
ALARM_STATE_OFF when the fault measurement returns to a sub-threshold level.

Field Descriptions

The fields of the IPM_QOS_ALARM_DATA data structure are described as follows:

eQoSType

identifies the alarm event that has occurred

The eIPM_QOS_TYPE data type is an enumeration which defines the following values:
* QOSTYPE_JITTER - QoS alarm for excessive average jitter
* QOSTYPE_LOSTPACKETS — excessive lost packets
* QOSTYPE_RTCP_JB_HIGH - RTCP jitter buffer above the threshold
* QOSTYPE_RTCP_JB_LOW — RTCP jitter buffer below the threshold
* QOSTYPE_RTCP_SCS — RTCP severely concealed second condition
* QOSTYPE_RTCPTIMEOUT — RTCP inactivity
* QOSTYPE_RTPTIMEOUT - RTP inactivity

The following values are defined for Secure RTP (SRTP):

* QOSTYPE_SEC_AUTH_FAIL_AUDIO - excessive number of audio packets failing
authentication in a given time interval

* QOSTYPE_SEC_AUTH_FAIL_VIDEO - excessive number of video packets failing
authentication in a given time interval

* QOSTYPE_SEC_PKT_REPLAY_AUDIO - excessive number of audio replay packets
detected in a given time interval

* QOSTYPE_SEC_PKT_REPLAY_VIDEO - excessive number of video replay packets
detected in the given time interval

* QOSTYPE_SEC_MKI_NOMATCH_AUDIO - excessive number of audio packets with
an MKI that did not match the list of MKI values on the receiving side in a given time
interval

* QOSTYPE_SEC_MKI_NOMATCH_VIDEO - excessive number of video packets with
an MKI that did not match the list of MKI values on the receiving side in a given time
interval

Dialogic® IP Media Library APl Programming Guide and Library Reference

data associated with QoS alarms — IPM_QOS_ALARM_DATA

eAlarmState
alarm on / off flag

The eIPM_ALARM_STATE data type is an enumeration which defines the following values:
e ALARM_STATE_OFF — alarm is OFF
e ALARM_STATE_ON - alarm is ON

Dialogic® IP Media Library API Programming Guide and Library Reference 269

IPM_QOS_ALARM_STATUS — parent of QoS alarm data, contains alarm status

IPM_QOS_ALARM_STATUS

typedef struct ipm gos_alarm status_tag
{
unsigned int unAlarmCount;
IPM QOS_ALARM DATA QoSData [MAXiALARM] ;

} IPM_QOS_ALARM STATUS, *PIPM_QOS_ALARM STATUS;
B Description

This structure contains the status of QoS alarms for an IP channel. It is the parent of
IPM_QOS_ALARM_DATA and is used by ipm_GetQoSAlarmStatus() and
ipm_ResetQoSAlarmStatus().

B Field Descriptions

The fields of the IPM_QOS_ALARM_STATUS data structure are described as follows:

unAlarmCount
number of QoSData structures to follow
maximum number of alarms = MAX_ALARM

QoSData
reference to alarm data information structure IPM_QOS_ALARM_DATA

270 Dialogic® IP Media Library API Programming Guide and Library Reference

QoS statistics for an IP session — IPM_QOS_SESSION_INFO

IPM_QOS_SESSION_INFO

typedef struct ipm_gos_session_info_tag

{
eIPM QOS_TYPE eQoSType;
unsigned int unData;

} IPM QOS SESSION_INFO, *PIPM QOS SESSION_ INFO;
B Description

This structure reports statistical Quality of Service information for an IP session. It is a child of the
IPM_SESSION_INFO structure which is filled in when ipm_GetSessionInfo() returns
successfully.

B Field Descriptions

The fields of the IPM_QOS_SESSION_INFO data structure are described as follows:

eQoSType
identifies the QoS alarm to retrieve statistics for
The eIPM_QOS_TYPE data type is an enumeration which defines the following values:
* QOSTYPE_JITTER - average jitter (in msec) since beginning of call
* QOSTYPE_LOSTPACKETS - percentage of lost packets since beginning of call
QOSTYPE_RTCP_JB_HIGH — RTCP jitter buffer above the threshold
QOSTYPE_RTCP_JB_LOW — RTCP jitter buffer below the threshold
QOSTYPE_RTCP_SCS — RTCP severely concealed second condition
QOSTYPE_RTCPTIMEOUT — RTCP inactivity (in msec)
QOSTYPE_RTPTIMEOUT - RTP inactivity (in msec)

The following values are defined for Secure RTP (SRTP):

* QOSTYPE_SEC_AUTH_FAIL_AUDIO - number of audio packets failing
authentication since the beginning of the call

e QOSTYPE_SEC_AUTH_FAIL_VIDEO — number of video packets failing
authentication since the beginning of the call

¢ QOSTYPE_SEC_PKT_REPLAY_AUDIO — number of audio replay packets detected
since the beginning of the call

* QOSTYPE_SEC_PKT_REPLAY_VIDEO — number of video replay packets detected
since the beginning of the call

* QOSTYPE_SEC_MKI_NOMATCH_AUDIO — number of audio packets with an MKI
that did not match the list of MKI values on the receiving side since the beginning of the
call

* QOSTYPE_SEC_MKI_NOMATCH_VIDEO - number of video packets with an MKI
that did not match the list of MKI values on the receiving side since the beginning of the
call

unData
value of the QoS parameter

Dialogic® IP Media Library API Programming Guide and Library Reference 271

IPM_QOS_THRESHOLD DATA — QoS alarm threshold settings for an IP channel

IPM_QOS_THRESHOLD_DATA

typedef struct ipm gos_threshold data_ tag

{

eIPM QOS_TYPE

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int

eQoSType;

unTimeInterval;
unDebounceOn;
unDebounceOff;
unFaultThreshold;
unPercentSuccessThreshold;
unPercentFailThreshold;

} IPM QOS_THRESHOLD DATA, *PIPM QOS_THRESHOLD_DATA;

B Description

This structure contains the threshold values for QoS alarms for an IP channel. It is a child of the
IPM_QOS_THRESHOLD_INFO structure which is used by ipm_GetQoSThreshold() and
ipm_SetQoSThreshold(). When enabling a QoS alarm, default threshold and timing values as
shown in Table 6 are used unless ipm_SetQoSThreshold() is specified to set non-default values.
Note that when an application sets a specific value for any field of a
IPM_QOS_THRESOLD_DATA structure, it must explicitly set all fields in the structure even
when default values are desired for some of the fields.

B Field Descriptions

The fields of the IPM_QOS_THRESHOLD_DATA data structure are described as follows:

eQoSType

type of QoS parameter to measure

The eIPM_QOS_TYPE data type is an enumeration which defines the following values:
e QOSTYPE_JITTER - jitter
¢ QOSTYPE_LOSTPACKETS - lost packets
* QOSTYPE_RTCP_JB_HIGH — RTCP jitter buffer above the threshold
* QOSTYPE_RTCP_JB_LOW — RTCP jitter buffer below the threshold
* QOSTYPE_RTCP_SCS — RTCP severely concealed second condition (SCS)
¢ QOSTYPE_RTCPTIMEOUT - RTCP inactivity
e QOSTYPE_RTPTIMEOUT - RTP inactivity
* QOSTYPE_SEC_AUTH_FAIL_AUDIO - authentication failure on audio packets
e QOSTYPE_SEC_AUTH_FAIL_VIDEO - authentication failure on video packets
* QOSTYPE_SEC_PKT_REPLAY_AUDIO - detection of audio packet replay
* QOSTYPE_SEC_PKT_REPLAY_VIDEO - detection of video packet replay
* QOSTYPE_SEC_MKI_NOMATCH_AUDIO — unknown MKI value in audio packets
* QOSTYPE_SEC_MKI_NOMATCH_VIDEO — unknown MKI value in video packets

unTimelnterval
time interval (in ms) between successive parameter measurements. Value should be set to a
multiple of 100; other values are rounded to the nearest hundred.

Note: Value must be greater than unFaultThreshold for the jitter QoS type.

272

Dialogic® IP Media Library APl Programming Guide and Library Reference

QoS alarm threshold settings for an IP channel — IPM_QOS_THRESHOLD DATA

unDebounceOn
time interval for detecting potential alarm fault condition. Must be set to a value that is a
multiple of unTimelnterval; other values are rounded down to the next lower multiple of
unTimelnterval.

Note: This field is not used for RTCP and RTP Timeout alarms and must be set to 0.

unDebounceOff
time interval for detecting potential alarm non-fault condition. Must be set to a value that is a
multiple of unTimelnterval; other values are rounded down to the next lower multiple of
unTimelnterval.

Note: This field is not used for RTCP and RTP Timeout alarms and must be set to 0.

unFaultThreshold
fault threshold parameter. The meaning and value range of this field depends on the QoS
Type:
e QOSTYPE_JITTER - allowable average jitter, in ms. Range: 0 to 1000 (ms)
¢ QOSTYPE_LOSTPACKET - allowable percentage of lost packets. Range: 0 to 100 (%)

QOSTYPE_RTCP_JB_HIGH - allowable RTCP jitter buffer above the threshold. Range:

0 to 65535.

e QOSTYPE_RTCP_JB_LOW - allowable RTCP jitter buffer below the threshold. Range:
0 to 65535.

e QOSTYPE_RTCP_SCS - allowable RTCP severely concealed second condition (SCS).
Range: 0 to 65535.

e QOSTYPE_RTCPTIMEOUT - allowable RTCP inactive interval before an alarm is sent,
in units of 100 ms. Range: 50 to 1200 (x100 ms)

e QOSTYPE_RTPTIMEOUT - allowable RTP inactive interval before an alarm is sent, in
units of 100 ms. Range: 50 to 1200 (x100 ms)

e QOSTYPE_SEC_AUTH_FAIL_AUDIO - allowed number of audio packet
authentication failures before an alarm is sent.

¢ QOSTYPE_SEC_AUTH_FAIL_VIDEO - allowed number of video packet
authentication failures before an alarm is sent.

e QOSTYPE_SEC_PKT_REPLAY_AUDIO - allowed number of audio replay packets
detected before an alarm is sent.

e QOSTYPE_SEC_PKT_REPLAY_VIDEO - allowed number of video replay packets
detected before an alarm is sent.

¢ QOSTYPE_SEC_MKI_NOMATCH_AUDIO - allowed number of audio packets with
MKI mismatches detected before an alarm is sent.

* QOSTYPE_SEC_MKI_NOMATCH_VIDEO - allowed number of video packets with
MKI mismatches detected before an alarm is sent.

unPercentSuccessThreshold
percentage of poll instances in unDebounceOff time interval that the fault threshold must not
be exceeded before an “alarm off” event is sent. Allowed values correspond to multiples of the
ratio of unDebounceOff to unTimelnterval (i.e., the inverse of the number of poll instances)
expressed as an integer percentage; other values are truncated to the next lower percentage
multiple.

Note: This parameter is not used for RTCP and RTP Timeout alarms and must be set to 0.

unPercentFailThreshold
percentage of poll instances in unDebounceOn time interval that the fault threshold must be
exceeded before an “alarm on” event is sent. Allowed values correspond to multiples of the
ratio of unDebounceOn to unTimelnterval (i.e., the inverse of the number of poll instances)

Dialogic® IP Media Library API Programming Guide and Library Reference 273

IPM_QOS_THRESHOLD DATA — QoS alarm threshold settings for an IP channel

expressed as a integer percentage; other values are truncated to the next lower percentage
multiple.

Note: This parameter is not used for RTCP and RTP Timeout alarms and must be set to 0.

Table 6. Quality of Service (QoS) Parameter Defaults

QoS Type Time Debounce | Debounce Fault % Success % Fail
yp Interval (ms) | On(ms) | Off (ms) Threshold 1 Threshold | Threshold
Jitter 5000 20000 60000 60 (ms) 25 25
Lost Packets 1000 10000 10000 20 (%) 40 40
RTCP Jitter 1000 10000 10000 10 (ms) 20 20
Buffer High
RTCP Jitter 1000 10000 10000 10 (ms) 20 20
Buffer Low
RTCP SCS 1000 10000 10000 10 (ms) 20 20
RTCP Timeout | 1000 0 0 250 (x100ms 0 0
= 25sec)
RTP Timeout 1000 0 0 1200 (x100ms 0 0
= 120sec)
Audio 1000 10000 10000 10 packets 20 20
Authentication
Failure
Video 1000 10000 10000 10 packets 20 20
Authentication
Failure
Audio Packet 1000 10000 10000 10 packets 20 20
Replay
Video Packet 1000 10000 10000 10 packets 20 20
Replay
Audio MKI No 1000 10000 10000 10 packets 20 20
Match
Video MKI No 1000 10000 10000 10 packets 20 20
Match
Notes:
1. Units for Fault Threshold are different for different QoS Types. See unit indications in table cells.

QoS debouncing is calculated as an integer number of parameter measurements that must exceed
(or fall below) the fault threshold within the debounce interval before an alarm-on (or alarm-off)
event is generated. The calculation uses the following formulas:

For QoS alarm-on debouncing:
count = int(int(tunDebounceOn/unTimelnterval) * (unPercentFailThreshold/100))

For QoS alarm-off debouncing:
count = int(int(unDebounceOff/unTimelnterval) * (unPercentSuccessThreshold/100))

274 Dialogic® IP Media Library APl Programming Guide and Library Reference

parent of threshold data structures — IPM_QOS_THRESHOLD_INFO

IPM_QOS_THRESHOLD_INFO

typedef struct ipm_gos_threshold info_tag
{
unsigned int unCount;
IPM_QOS THRESHOLD_DATA QoSThresholdData [MAXiQosiTHRESHOLD] ;

} IPM_QOS_THRESHOLD_ INFO, *PIPM_QOS_THRESHOLD_INFO;
B Description

This structure is used to set and get the threshold values for QoS alarms for a single IP channel. It is
the parent of IPM_QOS_THRESHOLD_DATA and is used by ipm_GetQoSThreshold() and
ipm_SetQoSThreshold().

B Field Descriptions

The fields of the IPM_QOS_THRESHOLD_INFO data structure are described as follows:

unCount
number of IPM_QOS_THRESHOLD_DATA structures to follow;
maximum = MAX_QOS_THRESHOLD

QosThresholdData
array of structures containing alarm trigger settings

Dialogic® IP Media Library API Programming Guide and Library Reference 275

IPM_RTCP_SESSION_INFO — session information for RTCP

IPM_RTCP_SESSION_INFO

typedef struct ipm rtcp session_info tag

{

unsigned int unLocalSR _TimeStamp;
unsigned int unLocalSR TxPackets;
unsigned int unLocalSR TxOctets;
unsigned int unLocalSR SendIndication;
unsigned int unLocalRR FractionLost;
unsigned int unLocalRR CumulativeLost;
unsigned int unLocalRR_SegNumber;
unsigned int unLocalRR ValidInfo;
unsigned int unRemoteSR_TimeStamp;
unsigned int unRemoteSR TxPackets;
unsigned int unRemoteSR_TxOctets;
unsigned int unRemoteSR_SendIndication;
unsigned int unRemoteRR FractionLost;
unsigned int unRemoteRR CumulativeLost;
unsigned int unRemoteRR_SegNumber;
unsigned int unRemoteRR ValidInfo;

} IPM_RTCP_SESSION_INFO, *PIPM RTCP_SESSION_INFO;
B Description

This structure contains RTCP information for the session. It is a child of the IPM_SESSION_INFO
structure which is filled in when ipm_GetSessionInfo() returns successfully.

B Field Descriptions

The fields of the IPM_RTCP_SESSION_INFO data structure are described as follows:

unLocalSR_TimeStamp
time stamp of the RTCP packet transmission from the local sender

unLocalSR_TxPackets
number of packets sent by the local sender

unLocalSR_TxOctets
number of bytes sent by the local sender

unLocalSR_SendIndication
local sender report has changed since the last transmission. Values may be either:
e FALSE
e TRUE

unLocalRR_FractionLost
percentage of packets lost, as computed by the local receiver

unLocalRR_CumulativeLost
number of packets lost, as computed by the local receiver

unLocalRR_SeqNumber
last sequence number received from the local receiver

unLocalRR_ValidInfo
reserved for future use

276 Dialogic® IP Media Library APl Programming Guide and Library Reference

session information for RTCP — IPM_RTCP_SESSION_INFO

unRemoteSR_TimeStamp
time stamp of the RTCP packet transmission from the remote sender

unRemoteSR_TxPackets
number of packets sent by the remote sender

unRemoteSR_TxOctets
number of bytes sent by the remote sender

unRemoteSR_SendIndication
remote sender report has changed since the last transmission. Values may be either:
e FALSE
¢ TRUE

unRemoteRR_FractionLost
percentage of packets lost, as computed by the remote receiver

unRemoteRR_CumulativeLost
number of packets lost, as computed by the remote receiver

unRemoteRR_SeqNumber
last sequence number received from the remote receiver

unRemoteRR_ValidInfo
reserved for future use

Dialogic® IP Media Library API Programming Guide and Library Reference 277

IPM_SECURITY_BASE64 KEY — Base64-encoded security key information

IPM_SECURITY_BASE64_KEY

typedef struct ipm_ security base64_key tag
{
unsigned int unVersion;
char *pcMasterBase64Key;
} IPM SECURITY BASE64 KEY, *PIPM SECURITY BASE64 KEY;

B Description

This structure contains information relating to Base64-encoded security keys. When the security
key type being used is Base64, this structure is a child of the IPM_SECURITY_KEY structure,
which in turn is a child of the IPM_SECURITY _INFO structure, which in turn is a child of the
IPM_MEDIA structure, which in turn is a child of the IPM_MEDIA_INFO structure used by the
ipm_StartMedia() and ipm_ModifyMedia() functions.

The INIT_IPM_SECURITY_BASE64_KEY inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_SECURITY_BASE64_KEY data structure are described as follows:

unVersion
the version of the data structure

pcMasterBase64Key
a character string that is the Base64-encoded master key

Note: pcMasterBase64Key should point to a character array whose length is at least that defined by
(unMasterKeyLength + unMasterSaltKeyLength)/6 and rounded up.

278 Dialogic® IP Media Library APl Programming Guide and Library Reference

binary security key information — IPM_SECURITY_BINARY_KEY

IPM_SECURITY_BINARY_KEY

Note:

Note:

typedef struct ipm_security binary key tag

{

unsigned int unVersion;
char *pcMasterKey;
char *pcMasterSaltKey;

} IPM SECURITY_ BINARY KEY, *PIPM SECURITY BINARY KEY;
Description

This structure contains information relating to binary security keys. When the security key type
being used is binary, this structure is a child of the IPM_SECURITY_KEY structure, which in turn
is a child of the IPM_SECURITY_INFO structure, which in turn is a child of the IPM_MEDIA
structure, which in turn is a child of the IPM_MEDIA_INFO structure used by the
ipm_StartMedia() and ipm_ModifyMedia() functions.

The IPM_SECURITY_BINARY_KEY inline function is provided to initialize the structure.
Field Descriptions

The fields of the IPM_SECURITY_BINARY_KEY data structure are described as follows:

unVersion
the version of the data structure

pcMasterKey
a character string that is the binary master key

pcMasterKey should point to a character array whose length is at least that defined by
unMasterKeyLength/8.

pcMasterSaltKey
a character string that is the binary master salt key

pcMasterSaltKey should point to a character array whose length is at least that defined by
unMasterSaltKeyLength/8.

Dialogic® IP Media Library API Programming Guide and Library Reference 279

IPM_SECURITY_INFO — security information

IPM_SECURITY_INFO

typedef struct ipm_security info_tag {

unsigned int unVersion;
unsigned int unNumKeys ;
eIPM SECURITY INFO _MODE eInfoMode;
IPM_SECURITY_ KEY *pKeys;
IPM_SRTP_PARMS *pParms;

} IPM_SECURITY_ INFO, *PIPM SECURITY_ INFO;

B Description

This structure contains security information. It is a child of the IPM_MEDIA structure, which in
turn is a child of the [IPM_MEDIA_INFO structure used by the ipm_StartMedia() and
ipm_ModifyMedia() functions.

The INIT_IPM_SECURITY_INFO inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_SECURITY _INFO data structure are described as follows:

unVersion
version of the IPM_SECURITY _INFO structure

unNumKeys
number of keys passed

eInfoMode
specifies the mode of operation. Currently, there are two modes of operation as defined in the
e]PM_SECURITY_INFO_MODE enumeration:

typedef enum eipm_security info_mode_tag
{
IPM_SECURITY_ INFO_MODE IMMEDIATE
IPM_SECURITY_ INFO MODE WAITFOREXPIRATION
} eIPM SECURITY_ INFO_MODE;

o
N

The meaning of each value is as follows:
e [IPM_SECURITY_INFO_MODE_IMMEDIATE (default) — apply new security keys
immediately
¢ I[PM_SECURITY_INFO_MODE_WAITFOREXPIRATION - wait until all the specified
key lifetimes have expired before applying new keys

pKeys
pointer to array of IPM_SECURITY_KEY structures. The number of keys this pointer can
point to is specified in unNumKeys.

pParms
pointer to an IPM_SRTP_PARMS structure. The same secure RTP (SRTP) parameter values
are applied to all the keys specified.

280 Dialogic® IP Media Library APl Programming Guide and Library Reference

contains security key info — IPM_SECURITY_KEY

IPM_SECURITY_KEY

typedef struct ipm_security key_ tag
{

UINT64 unSRTPLifeTime;
unsigned int unVersion;

unsigned int unSRTCPLifeTime;
unsigned int unMkiLength;

unsigned int unMkivValue;

unsigned int unMasterKeyLength;
unsigned int unMasterSaltKeyLength;
eIPM SECURITY KEY TYPE eKeyType;

void *pvMasterKey;

} IPM_SECURITY KEY, *PIPM SECURITY KEY;
B Description

This structure contains security key information. It is used by the ipm_SecurityGenMasterKeys()
function when generating master and salt keys. It is also a child of the IPM_SECURITY_INFO
structure, which in turn is a child of the IPM_MEDIA structure, which in turn is a child of the
IPM_MEDIA_INFO structure used by the ipm_StartMedia() and ipm_ModifyMedia()
functions.

Currently, two types of security keys are supported:

* Binary Keys - the master key and master salt keys are binary and are two separate keys

¢ Base64-Encoded Keys - the master key and master salt key are combined (as specified in the
Session Description Protocol Security Descriptions for Media Streams IETF draft) and
Base64-encoded

The INIT_IPM_SECURITY_KEY inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_SECURITY_KEY data structure are described as follows:

unSRTPLifeTime
The lifetime of the master keys, that is, the maximum number of SRTP packets that need to be
secured with the master key

unVersion
The version of the structure

unSRTCPLifeTime
The lifetime of the master keys, that is, the maximum number of SRTCP packets that need to
be secured with the master key

unMkilLength
The length (in bytes) of the Master Key Identifier (MKI) associated with the SRTP master key.
The maximum value supported is 4. If unMkiLength is specified as 0 (zero), no MKI is
attached to the SRTP packet and the MKI value is ignored.

unMkiValue
The MKI value is the MKI that needs to be attached to the SRTP packets if the MKI length is
non-zero. The maximum value is limited to 4 bytes.

Dialogic® IP Media Library API Programming Guide and Library Reference 281

IPM_SECURITY_KEY — contains security key info

unMasterKeyLength
The length (in bits) of the master key. The only value supported currently is 128.

unMasterSaltKeyLength
The length (in bits) of the master salt key. The only value supported currently is 112.

eKeyType
Identifies the type of key. Two key types are currently supported, binary and Base64-encoded
keys. The eIPM_SECURITY_KEY_TYPE datatype is an enumeration that defines the
supported key types as follows:

typedef enum
{
IPM_SECURITY KEYTYPE BINARY
IPM SECURITY KEYTYPE BASEG64
} el PM_SECURITY KEY TYPE;

N

pvMasterKey
A void pointer to a key structure that corresponds with the key type. Currently, this is a pointer
to an IPM_SECURITY_BINARY_KEY structure or an IPM_SECURITY_BASE64_KEY
structure depending on the key type specified in the eKeyType field.

282 Dialogic® IP Media Library APl Programming Guide and Library Reference

parent structure containing RTCP and QoS info — IPM_SESSION_INFO

IPM_SESSION_INFO

typedef struct ipm_session_info_tag

{
IPM RTCP_SESSION_INFO RtcpInfo;
unsigned int unQoSInfoCount;
IPM_QOS_SESSION_INFO QoSInfo[MAX QOS_SESSION];

} IPM SESSION_INFO, *PIPM SESSION_INFO;
B Description

This structure is a parent structure of the IPM_RTCP_SESSION_INFO and
IPM_QOS_SESSION_INFO structures, and it is used by the ipm_GetSessionInfo() function.

B Field Descriptions

The fields of the IPM_SESSION_INFO data structure are described as follows:

Rtcplnfo
reference to RTCP session information structure IPM_RTCP_SESSION_INFO

unQoSInfoCount
number of IPM_QOS_SESSION_INFO structures to follow;
maximum sessions = MAX_QOS_SESSION

QoSInfo
reference to QoS session information structure IPM_QOS_SESSION_INFO

Dialogic® IP Media Library API Programming Guide and Library Reference 283

IPM_SESSION_INFOEX — RTCP data

IPM_SESSION_INFOEX

284

typedef struct ipm_session_infoex_tag

{

unsigned int unVersion;
unsigned short unRTCPDirection;
unsigned int unRTCPDataLength;
void* PRTCPReport;

} IPM SESSION_ INFOEX, *PIPM SESSION_ INFOEX;

Description

This structure contains RTCP data. It is used by the ipm_GetSessionInfoEx() function.
Field Descriptions

The fields of the IPM_SESSION_INFOEX data structure are described as follows:

unVersion
version of the data structure. Used to ensure that an application is binary compatible with
future changes to this data structure.

unRTCPDirection
direction of the RTCP report requested (incoming or outgoing)

unRTCPDatalength
length of the RTCP report

pRTCPReport
points to the beginning of the RTCP data (that is, the first byte of the UDP payload in an RTCP

packet)

Dialogic® IP Media Library APl Programming Guide and Library Reference

secure RTP parameters — IPM_SRTP_PARMS

IPM_SRTP_PARMS

typedef struct ipm_srtp parm tag {

unsigned int unVersion;

eIPM CRYPTO_ SUITE eCryptoSuite;

unsigned short usKeyDerivationRate;
unsigned short usWindowSizeHint;

unsigned short usSrtpUnEncryptedFlag;
unsigned short usSrtcpUnEncryptedFlag;
unsigned short usSrtpUnAuthenticatedFlag;
unsigned int unSsrc;

unsigned int unRoc;

unsigned int unSegNum;

} IPM SRTP PARMS, * PIPM SRTP_ PARMS;
B Description

This structure contains parameter information for Secure RTP (SRTP). It is a child of the
IPM_SECURITY_INFO structure, which in turn is a child of the IPM_MEDIA structure, which in
turn is a child of the IPM_MEDIA_INFO structure used by the ipm_StartMedia() and
ipm_ModifyMedia() functions.

The INIT_IPM_SRTP_PARMS inline function is provided to initialize the structure.

The default values shown in the inline function equate to the following:

e IPM_SRTP_PARMS_VERSION

e IPM_CRYPTO_SUITE_DEFAULT (IPM_CRYPTO_AES_CM_128_HMAC_SHA1_80)
¢ IPM_KDR_DEFAULT (0)

e IPM_WINDOW_SIZE HINT_DEFAULT (64)

e IPM_SRTP_UNENCRYPTED_DEFAULT (0)

¢ [PM_SRTCP_UNENCRYPTED_DEFAULT (0)

e IPM_SRTP_UNAUTHENTICATED_DEFAULT (0)

e IPM_SSRC_DEFAULT (0)

¢ IPM_ROC_DEFAULT (0)

e [PM_SEQNUM_DEFAULT (0xFFFFFFFF)

B Field Descriptions

The fields of the IPM_SRTP_PARMS data structure are described as follows:

unVersion
version of the IPM_SRTP_PARMS structure

eCryptoSuite
Crypto suite used for authentication. Possible values are defined by the
e]PM_CRYPTO_SUITE enumeration:

Dialogic® IP Media Library API Programming Guide and Library Reference 285

IPM_SRTP_PARMS — secure RTP parameters

typedef enum
{

IPM_CRYPTO_AES_CM 128 HMAC_SHAl 80
IPM CRYPTO AES CM 128 HMAC SHAl 32

} eIPM CRYPTO_ SUITE;

o
N

The enumeration values reflect the following crypto suite parameters as described in the
Session Description Protocol Security Descriptions for Media Streams IETF draft.

Table 7. Crypto Suite Parameter Values

Characteristic AES_CM_128_ HMAC_SHA1_80 | AES_CM_128_HMAC_SHA1_32

Master Key Length 128 bits 128 bits

Salt Value 112 bits 112 bits

Default Lifetime 231 packets 231 packets

Cipher AES counter mode AES counter mode

Encryption Key 128 bits 128 bits

MAC HMAC-SHA1 HMAC-SHAL

Authentication Tag 80 bits 32 bits

SRTP Auth Key Length 160 bits 160 bits

SRTCP Auth Key Length | 160 bits 160 bits
usKeyDerivationRate

defines the Key Derivation Rate (KDR), that is the rate at which session keys are derived from
the master key and master salt key. If KDR is set to O (zero, the default), the key is derived
only once. This field takes an integer value in the range 1 to 24, which corresponds to a KDR

value in the range 2! to 224,

usWindowSizeHint

the SRTP_WINDOW_SIZE parameter that protects against replay attacks (that is, the
capturing of a packet and later reinsertion into a stream). The default value (and minimum

value) is 64.

usSrtpUnEncryptedFlag

flag for enabling or disabling the encryption of SRTP packets or the use of the NULL cipher in
SRTP. Possible values are 1 (SRTP messages are not encrypted) or 0 (SRTP messages are
encrypted). The default value is 0.

usSrtcpUnEncryptedFlag

flag for enabling or disabling the encryption of SRTCP packets or the use of the NULL cipher
in SRTCP. Possible values are 1 (SRTCP messages are not encrypted) or 0 (SRTCP messages
are encrypted). The default value is 0.

usSrtpUnAuthenticatedFlag

flag for enabling or disabling SRTP authentication. Possible values are 1 (SRTP messages are
not authenticated) or O (SRTP messages are authenticated). The default value is 0.

unSsrc

specifies how the Synchronized Source (SSRC) identifier is obtained. Possible values are:

286

Dialogic® IP Media Library APl Programming Guide and Library Reference

secure RTP parameters — IPM_SRTP_PARMS

¢ (, obtain the SSRC that is either automatically generated by HMP software for outgoing
RTP packets or taken from inbound SRTP packets (default)
¢ 1, obtain by negotiation via SDP (passed to IP Media library)

Note: The unSsrc field is not currently supported.

unRoc
specifies how the Rollover Counter (ROC) is obtained. Possible values are:

¢ 0, estimate the ROC from SRTP packets (default)
* 1, obtain by negotiation via SDP (passed to IP Media library)

Note: The unRoc field is not currently supported.

unSeqNum
specifies the starting sequence number for SRTP packets. By default, the sequence number is
taken from the SRTP packet. If the starting sequence number is negotiated, the same value can
be passed to the IP Media library. The default is OxFFFFFFFF.

Note: The unSeqNum field is not currently supported.

Dialogic® IP Media Library API Programming Guide and Library Reference 287

IPM_TELEPHONY_EVENT_INFO — details of a telephony event

IPM_TELEPHONY_EVENT_INFO

288

typedef struct ipm_telephony event info_tag
{

unsigned int unVersion; /* Structure version for library use only */
eIPM TELEPHONY EVENT ID eTelephonyEventID; /* The named event usually DTMF named event */
short sVolume; /* The power level for the DTMF event tone*/
unsigned short usDuration; /* Duration for the DTMF digit in ms*/

} IPM TELEPHONY EVENT_INFO, *PIPM TELEPHONY EVENT_INFO;

Description

The IPM_TELEPHONY_EVENT_INFO data structure contains detailed information about a
telephony event, for example a DTMF event. This structure is a child structure of the
IPM_TELEPHONY_INFO data structure.

Field Descriptions

The fields of the IPM_TELEPHONY_EVENT_INFO data structure are described as follows:

UnVersion
version of the IPM_TELEPHONY_EVENT_INFO structure. This field is used by the IP
Media Library for checking the backward binary compatibility of future versions of the data
structure.

eTelephonyEventID
a named event, typically a DTMF named event. The datatype of the telephony_event field is
an e[PM_TELEPHONY_EVENT_ID enumeration that lists all possible tone signal identifiers
as described in RFC 2833. The eIPM_TELEPHONY_EVENT_ID is an enumeration with
values listed as follows:

¢ SIGNAL_ID_EVENT_DTMEF_0

e SIGNAL_ID_EVENT_DTMEF 1

¢ SIGNAL_ID_EVENT_DTMEF_2

e SIGNAL_ID_EVENT_DTMF_3

e SIGNAL_ID_EVENT_DTMF_4

e SIGNAL_ID_EVENT_DTMF_5

e SIGNAL_ID_EVENT_DTMF _6

e SIGNAL_ID_EVENT_DTMF_7

e SIGNAL_ID_EVENT_DTMF_8

e SIGNAL_ID_EVENT_DTMF_9

e SIGNAL_ID_EVENT_DTMF_STAR
e SIGNAL_ID_EVENT_DTMF_POUND
e SIGNAL_ID_EVENT_DTMF_A

e SIGNAL_ID_EVENT_DTMF_B

e SIGNAL_ID_EVENT_DTMF_C

e SIGNAL_ID_EVENT_DTMF_D

Dialogic® IP Media Library APl Programming Guide and Library Reference

details of a telephony event — IPM_TELEPHONY_EVENT_INFO

sVolume
the power level associated with the DTMF event tone

usDuration
the duration of the DTMF digit in milliseconds

Dialogic® IP Media Library APl Programming Guide and Library Reference 289

IPM_TELEPHONY_INFO — telephony information for transfer over IP network

IPM_TELEPHONY_INFO

typedef struct ipm_telephony info_tag
{

unsigned long UnVersion; /* Structure version for library use only */
eIPM TELEPHONY INFO TYPE eTelInfoType; /* RFC2833 Info type - named event or tone */
union
{

IPM_TELEPHONY EVENT INFO TelEvtInfo; /* RFC2833 named event info eg. DIMF digit * /

IPM TELEPHONY TONE INFO TelToneInfo; /* RFC2833 non-standard tone signal Information */
}TelephonyInfo;

} IPM TELEPHONY INFO, *PIPM TELEPHONY INFO;
B Description

This structure contains telephony information (such as RFC 2833 information) that is to be
transferred over an IP network.

B Field Descriptions

The fields of the IPM_TELEPHONY _INFO data structure are described as follows:

UnVersion
version of the IPM_TELEPHONY_INFO structure. This field is used by the IP Media Library
for checking the backward binary compatibility of future versions of the data structure.

eTellnfoType
the information type; for example, an RFC 2833 named event or tone

The eIPM_TELEPHONY_INFO_TYPE data type is an enumeration which defines the
following values:
e TEL_INFOTYPE_EVENT - indicates that the union in this structure is the
IPM_TELEPHONY_EVENT_INFO structure.
e TEL_INFOTYPE_TONE - indicates that the union in this structure is the
IPM_TELEPHONY_TONE_INFO structure. Reserved for future use.

Telephonylnfo.TelTonelnfo
non-standard tone signal information; for example, an RFC 2833 non-standard tone.
Reserved for future use.

Telephonylnfo.TelEvtInfo
named event information; for example, RFC 2833 DTMF digit. See
IPM_TELEPHONY_EVENT _INFO for more information.

H Example

#include <stdio.h>
#include <string.h>
#include <srllib.h>
#include <ipmlib.h>

void main ()

{
int nDeviceHandle;
eIPM EVENT myEvents[2] ={EVT_TELEPHONY, EVT JITTER};
// Register event handler function with srl
sr_enbhdlr (EV_ANYDEV ,EV_ANYEVT , (HDLR)CheckEvent) ;
/* Main Processing

290 Dialogic® IP Media Library APl Programming Guide and Library Reference

telephony information for transfer over IP network — IPM_TELEPHONY _INFO

*/
/* Need to enable two events for IP device handle, nDeviceHandle.
ASSUMPTION: A valid nDeviceHandle was obtained from prior call to ipm Open{() .
*/
if (ipm_EnableEvents (nDeviceHandle, myEvents, 2, EV_ASYNC) == -1)
{
printf ("ipm EnableEvents failed for device name %s with error = %d\n",
ATDV_NAMEP (nDeviceHandle), ATDV_LASTERR (nDeviceHandle));
/* Perform Error Processing

*/
}

/* Continue Processing */

void CheckEvent ()

{
int nEventType = sr _getevttype();
int nDeviceID = sr_getevtdev();
void *pVoid = sr_getevtdatap();
IPM TELEPHONY INFO *pTelInfo;

switch (nEventType)
{
/* List of expected events */
/* Expected reply to ipm EnableEvents() */
case IPMEV_EVENT_ENABLED:
printf ("Received IPMEV_EVENT ENABLED for device = %s\n", ATDV_NAMEP (nDeviceID));
break;

/* Received unsolicited Telephony event (RFC2833 info). */
case IPMEV_TELEPHONY EVENT:
printf ("Received IPMEV_TELEPHONY EVENT for device name = %s\n",
ATDV_NAMEP (nDevicelD));
pTelInfo = (IPM_TELEPHONY_ INFO*)pVoid;

switch (pTelInfo->eTelInfoType)
{
case TEL INFOTYPE EVENT:
printf ("Telephony Info Type = RFC2833 NAMED EVENT INFO!!\n");
printf ("Telephony Named Event ID = $d\n", pTelInfo-
>TelEvtInfo.eTelephonyEventID) ;
printf ("Named Event Volume = %d dB\n", pTelInfo->TelEvtInfo.sVolume) ;
printf ("Named Event Duration = %d ms\n", pTelInfo->TelEvtInfo.usDuration);
break;
case TEL INFOTYPE TONE:
printf (“Telephony info type TEL_INFOTYPE_TONE is not supported.\n”);
break;
default:
printf (“Unknown telephony info type.\n”);
break;
}

break;

default:
printf ("Received unknown event = %d for device = %s\n", nEventType,
ATDV_NAMEP (nDevicelID)) ;
break;

Dialogic® IP Media Library API Programming Guide and Library Reference 291

IPM_VIDEO_CODER_INFO — video coder properties used in an IP session

IPM_VIDEO_CODER_INFO

292

typedef struct ipm video_coder info_ tag

{

unsigned int unVersion; /* structure version */

eIPM CODER TYPE eCoderType; /* The coder Type */

unsigned int unCoderPayloadType; /* Type of coder payload supported */
PIPM VIDEO CODER INFO_EX pExtraCoderInfo; /* Additional video coder parameters */

} IPM VIDEO CODER INFO, *PIPM VIDEO CODER INFO;

Description

This structure contains the coder properties that will be used in a multimedia (video) IP session.
IPM_VIDEO_CODER_INFO is a child of the IPM_MEDIA union, which is a child of the
IPM_MEDIA_INFO structure that is used by the ipm_GetLocalMediaInfo(),
ipm_ModifyMedia(), and ipm_StartMedia() functions.

The INIT_IPM_VIDEO_CODER_INFO inline function is provided to initialize the structure.
Field Descriptions

The fields of the IPM_VIDEO_CODER_INFO data structure are described as follows.

unVersion
version number of the data structure. Used to ensure that an application is binary compatible
with future changes to this data structure. Use the inline function to initialize this field to the
current version. Do not modify this field after it has been initialized.

eCoderType
type of coder to be used for streaming media operations. The eIPM_CODER_TYPE data type
is an enumeration that defines the following values:
e CODER_TYPE_H263 — H.263 video coder
e CODER_TYPE_H263_1998 — H.263-1998 video coder
e CODER_TYPE_H264 — H.264 video coder
e CODER_TYPE_MP4V_ES — MPEG-4 video coder

unCoderPayloadType
RTP header payload type using RFC 1890 standard definitions. The application is responsible
for negotiating this value between the two endpoints. This may be set to any value for non-
standard coders or if the application does not require interoperability with third-party
applications. Values: 0 to 127; 96 to 127 is the dynamic payload range.

pExtraCoderInfo
pointer to IPM_VIDEO_CODER_INFO_EX structure which specifies additional video coder
properties

Dialogic® IP Media Library APl Programming Guide and Library Reference

additional video coder properties — IPM_VIDEO_CODER_INFO_EX

IPM_VIDEO_CODER_INFO_EX

typedef struct ipm_video_coder_info ex_ tag

{

unsigned int unVersion; /* structure version */

eVIDEO_ PROFILE eProfile; /* Profile ID */

eVIDEO LEVEL elLevel; /* Ignored for MPEG4 */

eVIDEO IMAGE WIDTH eImageWidth; /* Image width */
eVIDEO_IMAGE_HEIGHT eImageHeight; /* Image height */

unsigned int unBitRate; /* Bits per second */
eVIDEO_FRAMESPERSEC eFramesPerSec; /* Frames per second */

eVIDEO SAMPLING RATE eSamplingRate; /* Samples per second */
unsigned int unVisualConfigSize; /* Size of szVisualConfiguration

string in bytes */
unsigned char* szVisualConfiguration; /* Representation of visual
configuration */
eH264_ACCEPT_REDUNDAND_SLICES eH264_AcceptRedundantSlices;

unsigned int eH264_ProfileIOP;
eH264_PACKETIZATION_MODE eH264_PacketizationMode;
unsigned int unH264_MaxNalUnitSize;

}IPM_VIDEO_CODER_INFO_EX, *PIPM_VIDEO CODER_INFO_EX;
B Description

This structure contains additional coder properties that will be used in a multimedia (video) IP
session. This structure is a child of the IPM_VIDEO_CODER_INFO structure. It is used by the
ipm_GetLocalMedialnfo(), ipm_ModifyMedia(), and ipm_StartMedia() functions.

The INIT_IPM_VIDEO_CODER_INFO_EX inline function is provided to initialize the structure.
B Field Descriptions

The fields of the IPM_VIDEO_CODER_INFO_EX data structure are described as follows.

unVersion
version number of the data structure. Used to ensure that an application is binary compatible
with future changes to this data structure. Use the inline function to initialize this field to the
current version. Do not modify this field after it has been initialized.

eProfile

video profile ID for H.263, H.264, and MPEG-4; also level ID for MPEG-4. The

eVIDEO_PROFILE data type is an enumeration that defines the following values:
e VIDEO_PROFILE_0_H263 — H.263
e VIDEO_PROFILE_BASELINE_H264 — H.264
e VIDEO_PROFILE_LEVEL_SP0_MPEG4 — MPEG-4 Simple Profile Level 0
e VIDEO_PROFILE_LEVEL_SP1_MPEG4 — MPEG-4 Simple Profile Level 1
e VIDEO_PROFILE_LEVEL_SP2_MPEG4 — MPEG-4 Simple Profile Level 2
e VIDEO_PROFILE_LEVEL_SP3_MPEG4 — MPEG-4 Simple Profile Level 3

Dialogic® IP Media Library API Programming Guide and Library Reference 293

IPM_VIDEO_CODER_INFO_EX — additional video coder properties

e VIDEO_PROFILE_DEFAULT - default profile: H.263

VIDEO_PROFILE_BASELINE_H264 is the only acceptable profile for H.264. The values
are defined by the H.264 specification and have been enumerated as such in the
eVIDEO_PROFILE, eMM_VIDEO_PROFILE enumerations.

A SIP/H.264 application would typically parse the passed SDP to determine the correct value:

m=video 5108 RTP/AVP 112
a=rtpmap:112 h264/90000
a=fmtp:112 profile-level-id=42E00D; packetization-mode=1

In this case the profile-level-id field specifies the profile of 0x42, which is the baseline profile.

eLevel
video signal level for H.263 and H.264; not applicable to MPEG-4. The eVIDEO_LEVEL
data type is an enumeration that defines the following values:

Note: Set a video signal level that is appropriate for the frame size and frame rate. No field
validation is performed by the software.

e VIDEO_LEVEL_10_H263 — video signal level 10

e VIDEO_LEVEL_20_H263 — video signal level 20

e VIDEO_LEVEL_30_H263 — video signal level 30

e VIDEO_LEVEL_1_H264 - video signal level 1

e VIDEO_LEVEL_1_B_H264 - video signal level 1b

e VIDEO_LEVEL_1_1_H264 - video signal level 1.1

e VIDEO_LEVEL_1_2_H264 - video signal level 1.2

e VIDEO_LEVEL_1_3_H264 - video signal level 1.3

e VIDEO_LEVEL_DEFAULT - default level: video signal level 10

For H.264, the acceptable levels are defined by the H.264 specification and have been
enumerated as such in the eVIDEO_LEVEL, eMM_VIDEO_LEVEL enumerations.

A SIP/H.264 application would typically parse the passed SDP to determine the correct value:

m=video 5108 RTP/AVP 112
a=rtpmap:112 h264/90000
a=fmtp:112 profile-level-id=42E00D; packetization-mode=1

In this case the profile-level-id field specifies the profile of 0x0d, decimal 13, so the correct
value is VIDEO_LEVEL_1_3_H264.

elmageWidth
width of video image, in pixels per line. The eVIDEO_IMAGE_WIDTH data type is an
enumeration that defines the following values:
e VIDEO_IMAGE_WIDTH_128 - 128 pixels per line (sub-QCIF)
¢ VIDEO_IMAGE_WIDTH_176 — 176 pixels per line (QCIF)
e VIDEO_IMAGE_WIDTH_352 — 352 pixels per line (CIF)
e VIDEO_IMAGE_WIDTH_DEFAULT - default image width: 176 pixels per line

elmageHeight
height of video image, in number of lines. The eVIDEO_IMAGE_HEIGHT data type is an
enumeration that defines the following values:
e VIDEO_IMAGE_HEIGHT 96 — 96 lines (sub-QCIF)
e VIDEO_IMAGE_HEIGHT_144 — 144 lines (QCIF)
e VIDEO_IMAGE_HEIGHT_ 288 — 288 lines (CIF)
¢ VIDEO_IMAGE_HEIGHT DEFAULT - default image height: 144 lines

294 Dialogic® IP Media Library APl Programming Guide and Library Reference

additional video coder properties — IPM_VIDEO_CODER_INFO_EX

unBitRate
the output bit rate of the video signal. Valid values depend on whether video transcoding is
enabled or not. (Video transcoding is enabled if the DMFL_TRANSCODE_ON flag is set for
video port connections when dev_PortConnect() is called).

When video transcoding is disabled, valid values include:
e EMM_VIDEO_BITRATE_DEFAULT - output bit rate will match the input bit rate. For
mm_Play(), this value sets the output bit rate to the file bit rate. For mm_Record(), this
value sets the file bit rate to the input bit rate. No transrating is performed.

When video transcoding is enabled, this field is only applicable to the transmitted RTP video
stream and sets the video bit rate for this stream. Valid values include:
e EMM_VIDEO_BITRATE_DEFAULT - Default bit rate will be 50, 000 bits per second.
¢ Greater than zero — Bit rate will be set to specified value.

Note: When the application specifies custom bit rates by using a value greater than zero, the
value may need to be typecast to an eVIDEO_BITRATE data type.

eFramesPerSec

video frame rate in frames per second. The eVIDEO_FRAMESPERSEC data type is an

enumeration that defines the following values:

¢ VIDEO_FRAMESPERSEC_6 — frame rate of 6 fps

VIDEO_FRAMESPERSEC_10 — frame rate of 10 fps
VIDEO_FRAMESPERSEC_15 — frame rate of 15 fps
VIDEO_FRAMESPERSEC_30 — frame rate of 30 fps
VIDEO_FRAMESPERSEC_DEFAULT - default frame rate: 15 fps

eSamplingRate
sampling rate of media stream, in kHz. The eVIDEO_SAMPLING_RATE data type is an
enumeration that defines the following values:
e VIDEO_SAMPLING_RATE_90000 — sampling rate of 90 kHz
e VIDEO_SAMPLING_RATE_DEFAULT - default sampling rate: 90 kHz

unVisualConfigsize
size, in bytes, of the visual configuration data specified in szVisualConfiguration. Set to 0 if no
visual configuration data is to be specified.
In SIP/H.264, the application would set the VisualConfigSize and VisualConfiguration if that
data was passed on the in the SDP. For example:
m=video 49170 RTP/AVP 98
a=rtpmap:98 H264/90000
a=fmtp:98 profile-level-id=42A01E; sprop-parameter-sets=Z0IACpZTBYml,aMljiA==
In this case szVisualConfiguration should be set to “Z0IACpZTBYml,aMljiA==", and
unVisualConfigSize should be set to 21.

szVisualConfiguration
hexadecimal representation of octet string that expresses the visual configuration data (not
null-terminated). Set to NULL if no visual configuration data is to be specified.

See description for unVisualConfigSize for SIP/H.264 information.

eH264_ACCEPT_REDUNDAND_SLICES
Reserved for future use. Applications should set this value to the default, which is
ACCEPT_REDUNDAND_SLICES_FALSE.

Dialogic® IP Media Library API Programming Guide and Library Reference 295

IPM_VIDEO_CODER_INFO_EX — additional video coder properties

296

eH264_ProfilelOP

sets the profile-iop field as defined in RFC 3984. An application which uses SIP to pass H.264
over IP would normally get this value from the SDP passed during the SIP negotiation. For
example:

m=video 5108 RTP/AVP 112

a=rtpmap:112 h264/90000

a=fmtp:112 profile-level-id=42E00D; packetization-mode=1

In this case the profile-level-ld field specifies the profile (0x42), profile-iop (0xEO), and level
(0x0OD). The application should set the value of eH264_ProfileIOP to OxEO.

eH264_PACKETIZATION_MODE

sets the encoders output packetization mode. The Packetization modes are defined in
RFC 3984. Applications can use the new enumeration defined:
typedef enum tagH264 PACKETIZATION MODE

{
H264 PACKETIZATION MODE SINGLE NAL = O,
H264 PACKETIZATION MODE NON INTERLEAVED = 1,
H264 PACKETIZATION MODE INTERLEAVED = 2,
H264 PACKETIZATION MODE DEFAULT =
H264 PACKETIZATION MODE NON_ INTERLEAVED
}eH264 PACKETIZATION MODE;

A SIP/H.264 application would typically parse the passed SDP to determine the correct value:
m=video 5108 RTP/AVP 112

a=rtpmap:112 h264/90000
a=fmtp:112 profile-level-id=42E00D; packetization-mode=1

In this case the correct value is 1, which has an enumeration value of
H264_PACKETIZATION_MODE_NON_INTERLEAVED.

unH264_MaxNalUnitSize

sets the maximum NAL unit size generated by the H.264 encoder. The default is 1400 bytes,
which allows the NAL Unit to easily fit within an Ethernet MTU sized RTP packet without
fragmentation.

Dialogic® IP Media Library APl Programming Guide and Library Reference

TDM bus (CT Bus) time slot information — SC_TSINFO

SC_TSINFO

typedef struct sc_tsinfo {
unsigned long sc_numts;
long *sc_tsarrayp;
} SC_TSINFO;

B Description

This structure defines the TDM bus (CT Bus) time slot information. It is used by
ipm_GetXmitSlot(), ipm_Listen(), ipm_StartMedia(), and ipm_GetLocalMedialnfo().

B Field Descriptions

The fields of the SC_TSINFO data structure are described as follows:

sc_numts
number of time slots to follow; must be set to 1 for this release

sc_tsarrayp
time slot ID number

Dialogic® IP Media Library API Programming Guide and Library Reference 297

Error Codes 26

This chapter describes the error/cause codes supported by the Dialogic® IP Media software error
library, ipmerror.h. All Dialogic® IP Media library functions return a value that indicates the
success or failure of the function call. Success is indicated by a return value of zero or a non-
negative number. Failure is indicated by a value of -1.

If a function fails, call the Standard Attribute functions ATDV_LASTERR() and
ATDV_ERRMSGP() for the reason for failure. These functions are described in the Dialogic®
Standard Runtime Library API Library Reference.

If an error occurs during execution of an asynchronous function, the IPMEV_ERROR event is sent
to the application. No change of state is triggered by this event. Upon receiving the
IPMEV_ERROR event, the application can retrieve the reason for the failure using the SRL
functions ATDV_LASTERR() and ATDV_ERRMSGP().

The IP Media software error library contains the following error codes, listed in alphabetical order.
The list also identifies the functions that may return the particular error code.

EIPM_BADPARM
Bad argument or parameter. All IP Media library functions except ipm_Open().

EIPM_BUSY
Device busy. May be returned by: ipm_InitResponseSend(), ipm_InitSend(),
ipm_StartMedia()

EIPM_CONFIG
Configuration error. May be returned by: ipm_Close()

EIPM_EVT_EXIST
Event already enabled. May be returned by: ipm_EnableEvents()

EIPM_EVT_LIST FULL
Too many events. May be returned by: ipm_EnableEvents()

EIPM_FWERROR
Firmware error. May be returned by: ipm_Close(), ipm_GetParm(), ipm_GetXmitSlot(),
ipm_Listen(), ipm_SetParm(), ipm_Stop(), ipm_UnListen()

EIPM_ GENERATEIFRAME _INCAPABLE
Incapable of generating an I-frame. May be returned by: ipm_GeneratelFrame()

EIPM_INTERNAL
Internal error. May be returned by: ipm_DisableEvents(), ipm_EnableEvents(),
ipm_GetLocalMedialnfo(), ipm_GetQoSAlarmStatus(), ipm_GetQoSThreshold(),
ipm_GetSessionInfo(), ipm_GetXmitSlot(), ipm_InitResponseSend(), ipm_InitSend(),
ipm_Listen(), ipm_ReceiveDigits(), ipm_ResetQoSAlarmStatus(), ipm_SendDigits(),
ipm_SetQoSThreshold(), ipm_StartMedia(), ipm_UnListen()

EIPM_INTERNAL_INIT
Internal initialization error.

Dialogic® IP Media Library API Programming Guide and Library Reference 298

Error Codes

EIPM_INV_DEVNAME
Invalid device name.

EIPM_INV_EVT
Invalid event. May be returned by: ipm_DisableEvents(), ipm_EnableEvents()

EIPM_INV_MODE
Invalid mode. May be returned by: ipm_GetLocalMedialnfo(),
ipm_GetQoSAlarmStatus(), ipm_GetQoSThreshold(), ipm_GetSessionInfo(),
ipm_InitResponseSend(), ipm_InitSend(), ipm_ResetQoSAlarmStatus(),
ipm_SendDigits(), ipm_SetQoSThreshold(), ipm_StartMedia()

EIPM_INV_STATE
Invalid state. Error indicates that initial command did not complete before another function
call was made. May be returned by: ipm_DisableEvents(), ipm_EnableEvents(),
ipm_GetLocalMedialnfo(), ipm_GetQoSAlarmStatus(), ipm_GetQoSThreshold(),
ipm_GetSessionInfo(), ipm_GetXmitSlot(), ipm_InitResponseSend(), ipm_InitSend(),
ipm_Listen(), ipm_ReceiveDigits(), ipm_ResetQoSAlarmStatus(), ipm_SendDigits(),
ipm_SetQoSThreshold(), ipm_StartMedia(), ipm_UnListen()

EIPM_NOERROR
No error.

EIPM_NOMEMORY
Memory allocation error.

EIPM_RESOURCEINUSE
Resource in use or not available.

EIPM_SRL
SRL error.

EIPM_SRL_SYNC_TIMEOUT
SRL timeout.

EIPM_SYSTEM
System error. May be returned by: ipm_DisableEvents(), ipm_EnableEvents(),
ipm_GetLocalMedialnfo(), ipm_GetQoSAlarmStatus(), ipm_GetQoSThreshold(),
ipm_GetSessionInfo(), ipm_GetXmitSlot(), ipm_InitResponseSend(), ipm_InitSend(),
ipm_Listen(), ipm_ReceiveDigits(), ipm_ResetQoSAlarmStatus(), ipm_SendDigits(),
ipm_SetQoSThreshold(), ipm_StartMedia(), ipm_UnListen()

EIPM_TIMEOUT
Timeout.

EIPM_UNSUPPORTED
Function unsupported. May be returned by: ipm_DisableEvents(), ipm_EnableEvents()

Dialogic® IP Media Library API Programming Guide and Library Reference 299

Glossary 27

Codec: see COder/DECoder
COder/DECoder: A circuit used to convert analog voice data to digital and digital voice data to analog audio.

Computer Telephony (CT): Adding computer intelligence to the making, receiving, and managing of
telephone calls.

DTMF: Dual-Tone Multi-Frequency
Dual-Tone Multi-Frequency: A way of signaling consisting of a push-button or touch-tone dial that sends out a
sound consisting of two discrete tones that are picked up and interpreted by telephone switches (either PBXs or

central offices).

Emitting Gateway: called by a G3FE. It initiates IFT service for the calling G3FE and connects to a Receiving
Gateway.

E1: The 2.048 Mbps digital carrier system common in Europe.
FCD file: An ASCII file that lists any non-default parameter settings that are necessary to configure a Dialogic®
DM3 hardware/firmware product for a particular feature set. The downloader utility reads this file, and for each

parameter listed generates and sends the DM3 message necessary to set that parameter value.

Frame: A set of SCbus/CT Bus timeslots which are grouped together for synchronization purposes. The period of
a frame is fixed (at 125 psec) so that the number of time slots per frame depends on the SCbus/CT Bus data rate.

G3FE: Group 3 Fax Equipment. A traditional fax machine with analog PSTN interface.
Gatekeeper: An H.323 entity on the Internet that provides address translation and control access to the network
for H.323 Terminals and Gateways. The Gatekeeper may also provide other services to the H.323 terminals and

Gateways, such as bandwidth management and locating Gateways.

Gateway: A device that converts data into the IP protocol. It often refers to a voice-to-IP device that converts an
analog voice stream, or a digitized version of the voice, into IP packets.

H.323: A set of International Telecommunication Union (ITU) standards that define a framework for the
transmission of real-time voice communications through Internet protocol (IP)-based packet-switched networks.
The H.323 standards define a gateway and a gatekeeper for customers who need their existing IP networks to
support voice communications.

IAF: Internet Aware Fax. The combination of a G3FE and a T.38 gateway.

IFP: Internet Facsimile Protocol

IFT: Internet Facsimile Transfer

Dialogic® IP Media Library API Programming Guide and Library Reference 300

International Telecommunications Union (ITU): An organization established by the United Nations to set
telecommunications standards, allocate frequencies to various uses, and hold trade shows every four years.

Internet: An inter-network of networks interconnected by bridges or routers. LANs described in H.323 may be
considered part of such inter-networks.

Internet Protocol (IP): The network layer protocol of the transmission control protocol/Internet protocol
(TCP/IP) suite. Defined in STD 5, Request for Comments (RFC) 791. It is a connectionless, best-effort packet
switching protocol.

Internet Service Provider (ISP): A vendor who provides direct access to the Internet.

Internet Telephony: The transmission of voice over an Internet Protocol (IP) network. Also called Voice over IP
(VoIP), IP telephony enables users to make telephone calls over the Internet, intranets, or private Local Area
Networks (LANs) and Wide Area Networks (WANSs) that use the Transmission Control Protocol/Internet Protocol
(TCP/1P).

ITU: See International Telecommunications Union.

Jitter: The deviation of a transmission signal in time or phase. It can introduce errors and loss of synchronization
in high-speed synchronous communications.

NIC (Network Interface Card): Adapter card inserted into computer that contains necessary software and
electronics to enable a station to communicate over network.

PCD file: An ASCII text file that contains product or platform configuration description information that is used
by the DM3 downloader utility program. Each of these files identifies the hardware configuration and firmware
modules that make up a specific hardware/firmware product. Each type of Dialogic DM3-based product used in a
system requires a product-specific PCD file.

PSTN: see Public Switched Telephone Network

Public Switched Telephone Network: The telecommunications network commonly accessed by standard
telephones, key systems, Private Branch Exchange (PBX) trunks and data equipment.

Reliable Channel: A transport connection used for reliable transmission of an information stream from its
source to one or more destinations.

Reliable Transmission: Transmission of messages from a sender to a receiver using connection-mode data
transmission. The transmission service guarantees sequenced, error-free, flow-controlled transmission of messages
to the receiver for the duration of the transport connection.

RTCP: Real Time Control Protocol

RTP: Real Time Protocol

SIP: Session Initiation Protocol: an Internet standard specified by the Internet Engineering Task Force (IETF) in

RFC 3261. SIP is used to initiate, manage, and terminate interactive sessions between one or more users on the
Internet.

Dialogic® IP Media Library API Programming Guide and Library Reference 301

T1: A digital transmission link with a capacity of 1.544 Mbps used in North America. Typically channeled into 24
digital subscriber level zeros (DSO0s), each capable of carrying a single voice conversation or data stream. T1 uses
two pairs of twisted pair wires.

TCP: see Transmission Control Protocol

Terminal: An H.323 Terminal is an endpoint on the local area network which provides for real-time, two-way
communications with another H.323 terminal, Gateway, or Multipoint Control Unit. This communication consists
of control, indications, audio, moving color video pictures, and/or data between the two terminals. A terminal may
provide speech only, speech and data, speech and video, or speech, data, and video.

Transmission Control Protocol: The TCP/IP standard transport level protocol that provides the reliable, full
duplex, stream service on which many application protocols depend. TCP allows a process on one machine to send
a stream of data to a process on another. It is connection-oriented in the sense that before transmitting data,
participants must establish a connection.

UDP: see User Datagram Protocol

UDPTL: Facsimile UDP Transport Layer protocol

User Datagram Protocol: The TCP/IP standard protocol that allows an application program on one machine to
send a datagram to an application program on another machine. Conceptually, the important difference between
UDP datagrams and IP datagrams is that UDP includes a protocol port number, allowing the sender to distinguish

among multiple destinations on the remote machine.

VAD: Voice Activity Detection

302 Dialogic® IP Media Library APl Programming Guide and Library Reference

	Copyright and Legal Notice
	Contents
	Figures
	Tables
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Features
	1.2 Architecture
	1.3 Introduction to the Dialogic® IP Media Library API
	1.4 Relationship with Dialogic® Global Call API Library
	1.5 Dialogic® Standard Runtime Library API Support
	1.6 Media Channel Device Naming

	2. Feature Support by Platform
	3. Programming Models
	4. State Models
	5. Event Handling
	5.1 Dialogic® Standard Runtime Library Event Management Functions
	5.2 Dialogic® Standard Runtime Library Standard Attribute Functions

	6. Error Handling
	7. Reserving Resources for Audio Coders
	7.1 Feature Description
	7.2 Reserve Resources for Outbound Call
	7.3 Reserve Resources for Inbound Call
	7.4 Release Resources Implicitly by a Subsequent Reservation Call
	7.5 Handling a Resource Reservation Failure
	7.6 Reservation State after a Subsequent Call to Resource Reservation Fails

	8. Using the AMR-NB and AMR-WB Audio Coder
	8.1 Feature Description
	8.2 API Library Support
	8.2.1 CMR Value (Preferred Receive Bit Rate)
	8.2.2 Preferred Transmit Bit Rate
	8.2.3 CMR Rules
	8.2.4 RTP Payload Format

	8.3 Sample Scenarios
	8.3.1 Sample Scenario: Transmit at Bit Rate Requested by Remote Side
	8.3.2 Sample Scenario: Transmit at Bit Rate Less Than Preferred Value

	9. Using AMR-NB, AMR-WB, and G.711 Audio Over Nb UP
	9.1 Feature Description
	9.2 API Library Support
	9.3 Guidelines for Streaming Audio Over Nb UP
	9.4 Guidelines for Streaming AMR-NB Over Nb UP
	9.5 Guidelines for Streaming G.711 (5 ms) over Nb UP
	9.6 Guidelines for Streaming G.711 (20 ms) over Nb UP

	10. H.263 Using RFC 2429 (RFC 4629) Packetization
	10.1 Feature Description
	10.1.1 Streaming from IP to 3G-324M Calls
	10.1.2 Streaming Between One IP Call (using RFC 2429) and a Second IP Call (using RFC 2190)

	10.2 API Library Support
	10.3 Usage Guidelines

	11. Configuring for Half- or Full- Duplex Media Streams
	11.1 Overview of Half- and Full-Duplex Stream Support
	11.2 API Library Support
	11.3 Sample Scenario
	11.4 Example Code

	12. DTMF Handling
	12.1 Feature Description
	12.2 Setting DTMF Parameters
	12.2.1 DTMF Transfer Modes
	12.2.2 Setting In-Band Mode
	12.2.3 Setting Full-Duplex RFC 2833 Mode
	12.2.4 Setting Out-of-Band Mode
	12.2.5 Setting Receive-only RFC 2833 Mode

	12.3 Notification of DTMF Detection
	12.4 Generating DTMF

	13. T.38 Fax Server
	13.1 Feature Description
	13.2 Sample Scenario for T.38 Fax Server
	13.3 Example Code for T.38 Fax Server

	14. Implementing Native T.38 Fax Hairpinning
	14.1 Feature Description
	14.2 Implementation Guidelines
	14.2.1 Initializing Structures
	14.2.2 Connecting Devices
	14.2.3 Exchange Media Using ipm_StartMedia()

	14.3 Sample Scenarios
	14.3.1 Scenario 1: INVITE for T.38 Fax Call
	14.3.2 Scenario 2: Re-INVITE for T.38 Fax Call
	14.3.3 Scenario 3: Re-INVITE from Native Hairpin of Audio to Native Hairpin of T.38
	14.3.4 Scenario 4: Re-INVITE from Non-native Hairpin of Audio to Native Hairpin of T.38

	15. Using the Selective Packet Filtration Method
	15.1 Feature Description
	15.2 API Library Support

	16. Quality of Service (QoS) Alarms and RTCP Reports
	16.1 QoS Overview
	16.2 QoS Alarm Types
	16.3 QoS Threshold Attributes
	16.4 QoS Event Types
	16.5 Implementing QoS Alarms
	16.6 QoS Alarm and Alarm Recovery Mechanisms
	16.7 Example Code for QoS Alarm Handling
	16.8 RTCP Reporting
	16.8.1 Basic RTCP Reports
	16.8.2 Enhanced RTCP Reports
	16.8.3 Retrieving an RTCP Report
	16.8.4 Enabling RTCP Reporting System-Wide

	17. Volume Control
	17.1 Volume Control Overview
	17.2 Volume Control Parameters
	17.3 Implementing Volume Control
	17.4 Volume Control Hints and Tips
	17.5 Example Code for Volume Control

	18. Using Echo Cancellation
	18.1 Overview of Echo Cancellation
	18.2 Echo Cancellation Parameters

	19. Using NAT Traversal in SIP Media Session
	19.1 Feature Description
	19.2 API Library Support
	19.3 Example Code 1 for NAT Traversal
	19.4 Example Code 2 for NAT Traversal

	20. Using Secure RTP
	20.1 Overview of Secure RTP
	20.2 Generating Encryption Keys
	20.3 Starting and Modifying a Media Session that Uses Secure RTP
	20.3.1 Key About to Expire Indication
	20.3.2 Maximum Number of Keys
	20.3.3 Usage Restrictions
	20.3.4 Switching from RTP to SRTP in Mid-session
	20.3.5 Switching from SRTP to RTP in Mid-session
	20.3.6 Automatic Validation of Keys

	20.4 Retrieving and Modifying Encryption Key Expiry Notification Interval
	20.5 Retrieving and Resetting Secure RTP Alarms
	20.6 Retrieving and Setting Threshold Values for Secure RTP Alarms
	20.7 Events Generated by Secure RTP
	20.8 Use Case for Secure RTP
	20.9 Example Code for Secure RTP

	21. Building Applications
	21.1 Compiling and Linking under Linux
	21.1.1 Include Files
	21.1.2 Required Libraries

	21.2 Compiling and Linking under Windows®
	21.2.1 Include Files
	21.2.2 Required Libraries

	22. Function Summary by Category
	22.1 System Control Functions
	22.2 I/O (Input/Output) Functions
	22.3 Media Session Functions
	22.4 Quality of Service (QoS) Functions
	22.5 Dialogic® IP Media Library API Function Support by Platform

	23. Function Information
	23.1 Function Syntax Conventions
	ipm_Close()
	ipm_DisableEvents()
	ipm_EnableEvents()
	ipm_GenerateIFrame()
	ipm_GetCapabilities()
	ipm_GetCTInfo()
	ipm_GetLocalMediaInfo()
	ipm_GetParm()
	ipm_GetQoSAlarmStatus()
	ipm_GetQoSThreshold()
	ipm_GetSessionInfo()
	ipm_GetSessionInfoEx()
	ipm_GetXmitSlot()
	ipm_InitResponseSend()
	ipm_InitSend()
	ipm_Listen()
	ipm_ModifyMedia()
	ipm_Open()
	ipm_ReceiveDigits()
	ipm_ResetQoSAlarmStatus()
	ipm_SecurityGenMasterKeys()
	ipm_SendDigits()
	ipm_SetParm()
	ipm_SetQoSThreshold()
	ipm_StartMedia()
	ipm_Stop()
	ipm_UnListen()

	24. Events
	25. Data Structures
	CT_DEVINFO
	IPM_AUDIO_CODER_INFO
	IPM_AUDIO_CODER_OPTIONS_INFO
	IPM_CLOSE_INFO
	IPM_DIGIT_INFO
	IPM_ENDPOINTID_INFO
	IPM_EVENT_INFO
	IPM_FAX_SIGNAL
	IPM_IFRAME_INFO
	IPM_INIT_FAILURE
	IPM_INIT_RECEIVED
	IPM_INIT_RESPONSE
	IPM_INIT_SEND
	IPM_MEDIA
	IPM_MEDIA_INFO
	IPM_NACK_SENT
	IPM_NBUP_INIT_FAILURE
	IPM_NBUP_INIT_RECEIVED
	IPM_NBUP_INIT_RESPONSE
	IPM_NBUP_INIT_SEND
	IPM_NBUP_NACK_SENT
	IPM_NBUP_PROFILE_INFO
	IPM_NBUP_RFCI_INFO
	IPM_NBUP_SUBFLOW_INFO
	IPM_OPEN_INFO
	IPM_PARM_INFO
	IPM_PORT_INFO
	IPM_QOS_ALARM_DATA
	IPM_QOS_ALARM_STATUS
	IPM_QOS_SESSION_INFO
	IPM_QOS_THRESHOLD_DATA
	IPM_QOS_THRESHOLD_INFO
	IPM_RTCP_SESSION_INFO
	IPM_SECURITY_BASE64_KEY
	IPM_SECURITY_BINARY_KEY
	IPM_SECURITY_INFO
	IPM_SECURITY_KEY
	IPM_SESSION_INFO
	IPM_SESSION_INFOEX
	IPM_SRTP_PARMS
	IPM_TELEPHONY_EVENT_INFO
	IPM_TELEPHONY_INFO
	IPM_VIDEO_CODER_INFO
	IPM_VIDEO_CODER_INFO_EX
	SC_TSINFO

	26. Error Codes
	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

