

Dialogic® TX Series SS7 Boards

Health Management Developer’s Reference Manual

July 2009 64-0455-01

 www.dialogic.com

Copyright and legal notices

Copyright © 1999-2009 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in
whole or in part without permission in writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice
and do not represent a commitment on the part of Dialogic Corporation or its subsidiaries (“Dialogic”).
Reasonable effort is made to ensure the accuracy of the information contained in the document. However,
Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors,
inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC
ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL
PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems,
or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual
property licenses with the sale of Dialogic products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a
signed agreement with Dialogic. More detailed information about such intellectual property is available from
Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic
encourages all users of its products to procure all necessary intellectual property licenses required to implement
any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to
country and it is the responsibility of those who develop the concepts or applications to be aware of and comply
with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS
(stylized), Eiconcard, SIPcontrol, Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation Thrive,
Connecting to Growth, Video is the New Voice, Fusion, Vision, PacketMedia, NaturalAccess, NaturalCallControl,
NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either registered
trademarks or trademarks of Dialogic Corporation or its subsidiaries. Dialogic's trademarks may be used publicly
only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800
Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will
be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of
Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other
names of actual companies and product mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible
for your decision to use open source in connection with Dialogic products (including without limitation those
referred to herein), nor is Dialogic responsible for any present or future effects such usage might have, including
without limitation effects on your products, your business, or your intellectual property rights.

Using the AMR-NB resource in connection with one or more Dialogic products mentioned herein does not grant
the right to practice the AMR-NB standard. To seek a patent license agreement to practice the standard, contact
the VoiceAge Corporation at http://www.voiceage.com/licensing.php.

Revision history

Revision Release date Notes

1.0 May, 1999 GJG

1.1 April, 2000 GJG, SS7 3.5

1.2 November, 2000 GJG, SS7 3.6

1.3 August, 2001 GJG, SS7 3.8 Beta

1.4 February, 2002 MVH, SS7 3.8 GA

1.5 November, 2003 LBG/SRG, SS7 4.0 Beta

1.6 April, 2004 LBG, SS7 4.0

1.7 October, 2008 SRG/DEH, SS7 5.0

64-0455-01 July 2009 LBG, SS7 5.1

Last modified: July 7, 2009

Refer to www.dialogic.com or product updates and for information about support policies, warranty
information, and service offerings.

Table Of Contents

Chapter 1: Introduction ...13

Chapter 2: Health management ...15
System overview..15

SS7 layers..16
SIGTRAN layers...16
Signaling..17
System requirements ...18

Software ...18

Chapter 3: Health Management programming model19
Programming model overview ..19
Unsolicited status events ...19
Application requests ...20
ctaOpenServices ..21
Events ..22
Sample setup ..23

Chapter 4: Redundant signaling subsystem architecture25
Reference configurations ...25

Single-node configuration ...25
Dual-node configuration ...26
Standalone configuration ..26

Software architecture..27
Software architecture for a TDM configuration ...27
Software architecture for an IP configuration ...30

Board state model ..32
Initialization ..33

Downloading and configuring the board ..33
Setting the board state...33
Binding the applications and SS7 layers together ...33

Hot Swap support...34
Configuration and management..35

Configuration utilities and functions..35
Control, status, and statistics ..35
Alarms ...35

Chapter 5: Failure detection and recovery ...37
Signaling link failures..37
Signaling board failures...37

Primary board failure ...37
Backup board failure ..38

Signaling node failures..38
Primary signaling node failure ...38
Backup signaling node failure ..38

Signaling board isolation ...39
MTP configurations ..39
SIGTRAN configurations ...39

Planned switchovers ...40

Dialogic 5

Introduction Health Management Developer's Reference Manual

Chapter 6: Function reference ...41
Function summary..41
Using the function reference ..41
hmiBackup ..42
hmiHaltBoard ..43
hmiLoadBoard ...44
hmiPrimary ...45
hmiReset ..46
hmiShutdown ..47
hmiStandalone...48
hmiStart ...49
hmiStatusReq ..50
hmiStop..52

Chapter 7: Developing an ISUP or TUP redundant application53
Checkpointing strategies for ISUP or TUP applications......................................53
Checkpoint information ...53

Backup application...53
Transient state..53
Incremental checkpointing ..54
Batch checkpointing...54

ISUP or TUP application startup..55
ISUP or TUP board failure, halt, or load ...56
ISUP or TUP backup reload ..57
ISUP or TUP switchover...58

Chapter 8: Developing a TCAP redundant application59
TCAP redundancy support..59
Handling TCAP traffic ..59
Redundancy indications...60

TCAP task indications ...60
Health Management indications ...60

TCAP board load...61
TCAP board failure..62
TCAP switchover ..62
TCAP backup reload..63
TCAP backup isolation ...63

Chapter 9: Developing a SCCP redundant application65
SCCP layer overview...65
Connectionless services...65
Connection-oriented services ...66

Message status ...66
Connection information ..66

Redundant application models..67
Single-node redundant application model..67
Dual-node redundant application model ..67

SCCP application considerations ...68
SCCP redundant application startup ..68
SCCP normal operation ...69
SCCP switchovers...70

Single node application...70
Connectionless traffic ...70

6 Dialogic

Health Management Developer's Reference Manual Introduction

Connection-oriented traffic..70
Timing windows ..71
Switchover processing..71

SCCP board failure and reload ..72

Chapter 10: Setting up a redundant system ...73
Board installation and cabling ..73

TDM configuration ...73
IP network configuration...76

Configuring for redundant operation..80
HMI configuration ..80
ss7load script configuration...82
MTP configuration over TDM..82
M3UA and SCTP configuration over IP (SIGTRAN)...84
ISUP, TUP, TCAP, and/or SCCP configuration ...84

Installing and running HMI in Windows..84
Installing and running HMI in UNIX ...85
Bringing up a redundant system...85
Starting txalarm...85
Loading and setting board states ..86

RMG on a single node system..86
RMG on a dual node system..86
RMG startup ...87
Troubleshooting RMG communication ...88
Troubleshooting board communication..88

Starting data traffic ..89
Checking link status...89
Checking the MTP configuration ...89
Checking the association status ...90
Checking the SIGTRAN configuration ..90
ISUP testing ...91
TCAP testing ...91
TUP testing...91
SCCP testing...91

Chapter 11: RMG demonstration program ..93
RMG demonstration program overview ..93
RMG state model..94
RMG initialization ...95
RMG failure detection and recovery...96
Running the RMG demonstration program..96
RMG supported commands ..97
Tracing RMG events..98

Chapter 12: ISUP demonstration program..99
ISUP demonstration program overview..99
isupdemo data structures .. 100
isupdemo threads... 101
ISUP events .. 103

ISUP to circuit... 103
Circuit to circuit... 104
UDP to circuit.. 104
UDP to ISUP ... 104

Dialogic 7

Introduction Health Management Developer's Reference Manual

HMI to ISUP.. 105
isupdemo startup processes... 106

Program startup .. 106
Primary startup ... 106
Backup startup.. 106

isupdemo call setup and release ... 107
Normal incoming call.. 107
Incoming test call .. 108
Outgoing test call .. 108

isupdemo command line options... 109
isupdemo user interface commands .. 110

Chapter 13: TCAP demonstration program ...111
TCAP demonstration program overview ... 111
tcapdemo data structures.. 111
tcapdemo threads .. 111
The commands.800 file ... 112
UDP to TCAP event ... 112
tcapdemo command line options .. 113
Acting as an 800 number server ... 114
Acting as an 800 number client .. 115

Chapter 14: TUP demonstration program ...117
TUP demonstration program overview ... 117
tupdemo data structures ... 117
tupdemo threads.. 118
tupdemo events ... 120

TUP to circuit .. 120
Circuit to circuit... 121
UDP to circuit.. 121
UDP to TUP... 121
HMI to TUP... 122

tupdemo startup processes.. 123
Program startup .. 123
Primary startup ... 123
Backup startup.. 123

tupdemo call setup and release .. 124
Normal incoming call.. 124
Incoming test call .. 125
Outgoing test call .. 125

tupdemo command line options.. 126
tupdemo user interface commands ... 127

8 Dialogic

Dialogic 9

Dialogic 11

11 Introduction
The Dialogic® TX Series SS7 Boards Health Management Developer's Reference
Manual explains how to:

• Develop and set up redundant applications

• Detect and recover from system failures

• Use the Health Management service

This manual defines telephony terms where applicable, but assumes that the reader
is familiar with basic telephony and Internet data communication concepts,
switching, and the C programming language.

Note: The product to which this document pertains is part of the NMS
Communications Platforms business that was sold by NMS Communications
Corporation (“NMS”) to Dialogic Corporation (“Dialogic”) on December 8, 2008.
Accordingly, certain terminology relating to the product has been changed. Below is
a table indicating both terminology that was formerly associated with the product, as
well as the new terminology by which the product is now known. This document is
being published during a transition period; therefore, it may be that some of the
former terminology will appear within the document, in which case the former
terminology should be equated to the new terminology, and vice versa.

Former terminology Current terminology

NMS SS7 Dialogic® NaturalAccess™ Signaling Software

Natural Access Dialogic® NaturalAccess™ Software

Dialogic 13

22 Health management
System overview

The Health Management system is a set of hardware and software components that
supports SS7 redundancy and the development of distributed, highly available call
processing systems that employ SS7 signaling. These systems can detect and
recover from signaling link failures, board failures, and node failures without a total
service outage. The Health Management architecture facilitates the design of
systems whose hardware or software components can be upgraded, or whose call-
handling capacity can be increased or decreased.

The core of the architecture is an extended SS7 software capability that allows two
TX boards to be paired in a primary or backup arrangement. The boards are
connected by a private high speed Ethernet link that allows them to exchange
heartbeats, signaling messages, and state information.

The TX boards can be spread across two signaling nodes (multiple chassis) or be
located in the same signaling node (single chassis). The two boards appear to the
rest of the SS7 network as a single signaling point (SP) with a single point code. In a
SIGTRAN configuration, the two boards appear as a single point code, but each
board has a separate IP address.

The Health Management system can also be used in a non-redundant single board
configuration, known as a standalone configuration, to monitor and control the
board.

Dialogic 15

Health management Health Management Developer's Reference Manual

SS7 layers

The following table describes how the SS7 layers work in a redundant configuration:

Applicable
configurations

SS7
layer

Description

MTP 2 Active on both boards, allowing all configured signaling links to be
active and eliminating the need for provisioning of spare signaling
links.

All redundant
configurations
except SIGTRAN

MTP 3 MTP 3 routing and management functions are operational only on the
primary board. Link and route status changes are checkpointed to the
backup MTP 3 layer to ensure that it has up-to-date network status
information in case of a primary board outage.

ISUP Operates in a primary and backup mode, with all circuit switched
connections managed by the active board. Call state information can
be checkpointed by the local application to the backup ISUP entity,
through extensions to the normal call processing APIs, so that stable
calls can be preserved across a signaling board or node outage.

TUP Preserves stable calls with automated checkpoints between the primary
and backup tasks. The primary and backup application must also
checkpoint call states to facilitate smooth switchovers.

SCCP Operates along with other SS7 layers in a two-board redundant
primary and backup configuration, in addition to the current single-
board standalone configuration.

The objective of the redundant configuration is to maintain the SCCP
service across a failure. The backup SCCP layer can re-synchronize its
internal state with the primary SCCP layer in cases where
communication with the primary board is lost and then re-established,
or when the backup board has been reloaded due to a failure or to
routine maintenance.

All redundant
configurations

TCAP Operates in a primary and backup mode.

To allow a backup TCAP task to immediately take over service, the
primary TCAP task sends checkpoint messages to inform the backup
task of changes in various TCAP transactions.

Additionally, if the primary and backup tasks become disconnected due
to a failure or a reloading of the backup board, the backup task
retrieves the current transaction states for all of the transactions on
the primary task.

SIGTRAN layers

In a SIGTRAN configuration, the private Ethernet between the mate boards is not
used by SCTP or M3UA for data or checkpoint messages. The private Ethernet is
required for TXMON heartbeat messages and higher layer checkpointing.

Both the primary and backup boards establish associations with the remote
endpoints when the boards start up. The association from the backup board remains
in a stand-by state until the primary board fails or a planned switchover occurs. No
data is passed over the association from the backup board until that board becomes
the primary.

16 Dialogic

Health Management Developer's Reference Manual Health management

Signaling

Operation of the signaling subsystem is under complete control of the local signaling
application. The application designates each board as either the primary or backup
board after it is downloaded. During normal operation, applications using SCCP
behave normally. There are no checkpointing responsibilities, other than updating a
backup host in the dual chassis arrangement (if necessary). For class 0
connectionless service, best effort delivery service is maintained across switchovers.
No other state information, other than the accessible or inaccessible status of the
remote SP/SSN, is maintained between primary and backup SCCP layers.

For class 1 connectionless service, SLS values assigned to a sequence are not
retained across switchovers. No checkpointing of SLS assignments (SCLI data
structures) is required. The backup must, however, avoid re-using frozen
segmentation local references (those recently assigned by the primary) for some
period after a switchover, so their usage must be synchronized with the backup
application.

In general, for both classes of connectionless service, messages can be lost on a
switchover. Any detection and recovery of lost messages is the responsibility of the
application-level protocol running above SCCP.

For both classes of service, segmented messages in the process of being transmitted
or received are lost or discarded on a switchover. If the remaining segments of a
partially reassembled incoming message that was lost or discarded due to a
switchover are received by the (new) primary, they are detected and discarded. If
any of these segments has the return option set, it is returned to the sender in an
XUDTS message with a return cause of segmentation failed for ITU or error in
message transport for ANSI.

During normal operation, applications using TCAP behave normally. TCAP transaction
information is checkpointed by the primary TCAP task and is configurable. An
application can configure each user SAP to, by default, checkpoint all transactions,
checkpoint only those initiated by the application, or checkpoint no transactions. The
default checkpoint action can be overridden by an application, which can checkpoint
transactions on an individual basis.

A transaction can be checkpointed at any time during the transaction lifetime. For
example, after a begin message is received, the application sends a continue
message and specifies that the transaction must be checkpointed. Although the
begin message was not checkpointed, the transaction is checkpointed as the
continue message is sent. The TCAP task keeps track of which transactions are
checkpointed and deletes the checkpoints as the transactions are closed.

If using ISUP, the application must checkpoint call status changes to the ISUP layer
on the backup board, as necessary to preserve stable calls. Upon detection of a
failure of the primary signaling board (through the Health Management system) or
failure of the primary application or signaling node (through application-specific
means), the application directs the backup signaling board to become the primary
board and take over signaling operations. When a failed signaling board is restored
to service as the backup, the application can re-synchronize it with the primary
board by checkpointing the state of each circuit through the call processing
extensions.

If using TUP, call states are synchronized automatically between the two TX boards.
The applications must do the same.

Dialogic 17

Health management Health Management Developer's Reference Manual

System requirements

Health Management is supported on all TX boards.

Software

The Health Management system is composed of the following software:

Software Description

txmon Executes on the TX board, monitoring its mate and the SS7 tasks. txmon signals to
a host process every 200 milliseconds. Heartbeats contain the current run state
(for example, primary, backup, task failure) of the board and the current link state
(connected or isolated) of the IBC link.

Health
Management
Interface (HMI)
service

A daemon process running on the host that constantly monitors the status of the
boards. Watches the heartbeats for state changes and for the absence of the
heartbeats. Any change of either state generates an asynchronous event to all
registered applications.

For information on installing the HMI service, refer to Board installation and cabling
on page 73.

Health
Management
service (HM API)

A Natural Access service that allows applications to control the behavior of the
system and to monitor the performance of the Health Management system. Many
events are generated to registered applications. For example, a separate task
failure (HMI_EVN_TASKDEAD) event is passed that is different from the event
generated by the absence of heartbeats (HMI_EVN_BRDDEAD). An application can
ask the HMI service for a status to determine which task failed when the
HMI_EVN_TASKDEAD event is generated. An application can also control the
behavior of the Health Management system using hmiPrimary and hmiBackup.

18 Dialogic

33 Health Management
programming model

Programming model overview

The Health Management system allows applications (call processing, user interface,
or OAM applications) to perform certain requests to control the operation of the
signaling subsystem, as well as monitor for unsolicited system status events.
Separate connections, or handles, are used for the two types of operations.

The Health Management system supports user-supplied call processing applications
that monitor the system status and take appropriate actions, and user interface
applications that display the current system status and statistics as well as initiate
switchovers and resets.

The Health Management system does not distinguish between these two types of
applications. All registered applications can receive unsolicited status events and can
issue any of the supported operation requests. There are a maximum number of
connections (for either type of operation) to the Health Management Interface (HMI)
service available to all the applications. HMI supports up to 16 simultaneous
application connections.

Unsolicited status events

To register for unsolicited status events, the application calls ctaOpenServices. This
call creates a connection to the Health Management Interface service and returns a
Natural Access handle that can be used to wait for incoming messages
(ctaWaitEvent). When ctaWaitEvent returns or completes, the application has
received an event on which to possibly take action. To disconnect from HMI (such as
when the application shuts down), the application calls ctaCloseServices to free up
the connection slot for other applications.

HMI reports the current run state of the boards for which an application registers.
For example, if a board is in the primary state, the HMI_EVN_PRIMARY event is
generated to the registering application.

Dialogic 19

Health Management programming model Health Management Developer's Reference Manual

Application requests

Status, statistics, and control requests are comprised of messages exchanged
between the calling application and the HMI. These functions require a separate
connection to the HMI and operate in a blocking fashion, similar to remote procedure
calls. The function sends a request to the HMI and waits for the response message
(up to 15 seconds), blocking the calling process or thread.

The application calls ctaOpenServices to establish a connection to the HMI. Once
the connection is opened, the application can call any of the other Health
Management functions. Each function request generates a message to the HMI and
waits for the response message - either a confirm response for a successful
operation or a refuse response for an unsuccessful operation. The application
terminates the connection to the HMI by calling ctaCloseServices.

For some request functions, it may take several seconds to receive a response
message. For some applications, blocking for this length of time is not appropriate.
These applications must spawn a separate thread to perform the function call,
ensuring that the main or worker threads are not blocked for an extended period of
time.

Sharing the handle returned from ctaOpenServices among several threads, each of
which might generate independent requests, is not recommended, as the response
messages can get mixed in among the requesting threads. In this case, each thread
must perform its own ctaOpenServices and use its own handle.

Status and statistics requests are acceptable in any state. The appropriate response
message is returned on the connection between the HMI and the application.

Reset requests instruct the HMI to re-read its configuration file. The request is
primarily intended to provide an operational means to address unplanned conditions
or configuration updates. The primary or backup state information is not reset at this
point.

20 Dialogic

Health Management Developer's Reference Manual Health Management programming model

ctaOpenServices

The Health Management service passes parameters to ctaOpenServices in the
svcargs.args element of the CTA_SERVICE_DESC structure, as described in the
following table:

Element Description

args[0] A unique index for each connection made to the Health Management service, 0 - 15. There is
a maximum of 16 open connections.

args[1] Identifies which board this channel manages. If this is a call to open an event channel, this
can be set to HMI_EVENTS_ALL_BOARDS to receive events for all boards managed by the
HMI service.

args[2] Set to HMI_RCV_EVENTS to receive events or set to HMI_DO_COMMANDS to perform
actions.

The Natural Access service name is hmi and the Natural Access service manager
name is hmimgr. These names should be placed in the CTA_SERVICE_DESC
structure when opening the service. These names can also be edited into the cta.cfg
file to facilitate using the tracing service, as shown in the following sample code:
[ctasys]
Service = adi, adimgr
Service = hmi, hmimgr # trace the HM API

TraceMask = 0
StartWebServer = 1 # Change to 0 to disable ctdaemon web server.
StartTraceServer = 1 # Change to 0 to disable ctdaemon trace server.
HttpPort = 1100 # TCP/IP port for web server.
TracePort = 1101 # TCP/IP port for trace server.
TraceMaxControllers = 1 # Num. clients allowed to set tracemask.
TraceMaxMonitors = 10 # Num. clients allowed to monitor trace msgs.
[ctapar]
[eof]

Refer to the Natural Access Developer's Reference Manual for more information.

Dialogic 21

Health Management programming model Health Management Developer's Reference Manual

Events

An application can register for asynchronous events. The registering application can
request all events for all configured TX boards or it can register for specific boards,
one at a time. The event and board number are the only relevant elements in events
received by the application, in the event and value fields of the Natural Access
CTA_EVENT structure. The following table lists the possible events:

Event Description

HMI_EVN_BRDDEAD Board is dead, must reload.

HMI_EVN_CONFLICT There is confusion in the state.

HMI_EVN_CONNECTED Mate board is now available from this board.

HMI_EVN_EXTRACT TX board extraction is pending.

HMI_EVN_HALTED Previously requested halt is finished.

HMI_EVN_INSERT TX board was inserted.

HMI_EVN_ISOLATED Mate board is now unavailable from this board.

HMI_EVN_LOADING Previously requested load has started.

HMI_EVN_NETWORK_DOWN Board lost SIGTRAN connectivity with all configured remote nodes.

HMI_EVN_NETWORK_UP Board gained SIGTRAN connectivity to one or more configured remote
nodes.

HMI_EVN_NOWBACKUP Node is now the backup node.

HMI_EVN_NOWPRIMARY Node is now the primary node but the application layers may not yet be
available.

HMI_EVN_NOWSTANDALONE Node is now stand alone.

HMI_EVN_SERVICE_DOWN Node is shutting down. All connections must be closed. The board
number is not relevant for this event.

HMI_EVN_STARTING Node is freshly started.

HMI_EVN_STOP Application must close communications to the TX board (close services).

HMI_EVN_TASKDEAD A task on the board is dead, must reload.

22 Dialogic

Health Management Developer's Reference Manual Health Management programming model

Sample setup

The following code sample opens the service for TX board boardNum and then
registers for events from that boards. In this sample, after opening these services, a
loop watching for events prints out the data from the events as they are received.
/* Service name/manager pair for ctaInitialize */
CTA_SERVICE_NAME HmiServiceNames[] = { { "HMI", "HMIMGR" } };

/* Service list for ctaOpenServices */
CTA_SERVICE_DESC HmiOpenSvcLst[] =
{
 {{"HMI", "HMIMGR"}, {0}, {0}, {0}}
};

hmiInitparms.size = sizeof(CTA_INIT_PARMS);
hmiInitparms.parmflags = CTA_PARM_MGMT_SHARED;
hmiInitparms.ctacompatlevel = CTA_COMPATLEVEL;
ret = ctaInitialize(HmiServiceNames, 1, &hmiInitparms);

/* create a CT Access queue used to pass all events to the application */
ret = ctaCreateQueue(NULL, 0, &AppCtlQueue);

/* create a CT Access context for HMI async events
 * and open the HMI async events service on that context
 */
ret = ctaCreateContext(AppCtlQueue, 0, "APPCTL", &AppCtlAsyncHd);

HmiOpenSvcLst[0].svcargs.args[0] = hmiCtlChan;
HmiOpenSvcLst[0].svcargs.args[1] = boardNum;
HmiOpenSvcLst[0].svcargs.args[2] = HMI_RCV_EVENTS;
ret = ctaOpenServices(&AppCtlAsyncHd, &HmiOpenSvcLst[0], 1);

/* Wait for service open to complete. */
do
{
 ctaWaitEvent(AppCtlQueue, &event, CTA_WAIT_FOREVER);
} while (event.id != CTAEVN_OPEN_SERVICES_DONE);

if (event.value != CTA_REASON_FINISHED)
{
 ctaGetText(event.ctahd, event.value, emsg, sizeof(emsg));
 printf("ERROR opening HMI service [%ld]: %s\n", hmiCtlChan, emsg);
 exit(1);
}

/* create a CT Access context for HMI commands
 * and open the HMI commands service on that context
 */
ret = ctaCreateContext(AppCtlQueue, 0, "APPCMD", &AppCtlCmdHd);

HmiOpenSvcLst[0].svcargs.args[0] = hmiCmdChan;
HmiOpenSvcLst[0].svcargs.args[1] = boardNum;
HmiOpenSvcLst[0].svcargs.args[2] = HMI_RCV_EVENTS;
ret = ctaOpenServices(&AppCtlCmdHd, &HmiOpenSvcLst[0], 1);

/* Wait for service open to complete. */
do
{
 ctaWaitEvent(AppCtlQueue, &event, CTA_WAIT_FOREVER);
} while (event.id != CTAEVN_OPEN_SERVICES_DONE);

if (event.value != CTA_REASON_FINISHED)
{
 ctaGetText(event.ctahd, event.value, emsg, sizeof(emsg));
 printf("ERROR opening HMI service [%ld]: %s\n", hmiCmdChan, emsg);
 exit(1);
}

Dialogic 23

Health Management programming model Health Management Developer's Reference Manual

while (!stop)
{
 ret = ctaWaitEvent(AppCtlQueue, &event, CTA_WAIT_FOREVER);
 if (ret == SUCCESS)
 {
 printf("Received event %x from board %d\n", event.id, event.value);
 if (event.id == HMI_EVN_SERVICE_DOWN)
 stop = TRUE;
 }
 else
 {
 ctaGetText(NULL_CTAHD, ret, emsg, sizeof(emsg));
 printf("ERROR waiting on CTA event: %s\n", emsg);
 stop = TRUE;
 }
}

The application opens the number of HMI service interfaces needed to monitor and
control health management. The following illustration shows the arrangement
between the Natural Access queues and contexts when three opens were performed:

Natural Access

Context ctahd0 Context ctahd2

Event queue
FstQueue

(FstQueue)

HMI
service

Service manager

(ctahd0,HMI service)

HMI
service

Service manager

(ctahd2,HMI service)

HMI service/
daemon

HMI
service

Service manager

Context ctahd1

(ctahd1,HMI service)

3 total connections

Health management application

In a single node system, an application can control both boards by opening HMI
services to each board. This application can take appropriate actions to recover from
board failures (for example, by making backup boards primary, reloading dead
boards). In a dual node system, the applications are responsible for choreographing
failovers and switchovers. Consider these situations when designing the user part
application. Refer to ISUP demonstration program overview on page 99 for an
application that can be run in dual node or single node environments.

24 Dialogic

44 Redundant signaling
subsystem architecture

Reference configurations

The Health Management system can support the following reference configurations:

• Single-node

• Dual-node

• Standalone

In the single-node and dual-node configurations, the signaling application is referred
to as a signaling server, providing service to one or more signaling clients. The
client-server model illustrated here is a common architecture for distributed call-
processing applications, but others are possible. The choice of application model is
up to the system designer.

This topic describes the Health Management system reference configurations. For
SIGTRAN installations, replace the SS7 links with Ethernet links in the configuration
illustrations.

For more information about setting up redundant configurations, refer to Board
installation and cabling on page 73.

Single-node configuration

A single-node configuration uses two TX boards in a single-node (chassis) for board
level redundancy. In this configuration, a single application monitors and controls the
primary and backup boards and performs all other application functions. This is the
simplest migration path for an existing non-redundant application to a redundant
signaling subsystem.

Server
application

(primary)

Host processor

APIs

IBC link

TX HMI

SS7
links

TX board
(primary)

To remote clients

TX board
(backup)

SS7
links

TX device driver

Dialogic 25

Redundant signaling subsystem architecture Health Management Developer's Reference Manual

A single-node redundant signaling subsystem can survive both signaling link and
board failures without a service outage. In addition, one board can be taken out of
service at a time for upgrade or reconfiguration without impacting the service
provided by the application.

Dual-node configuration

A dual-node configuration uses two chassis, each with a single TX board for
signaling. The dual-node model assumes a signaling server application that, like the
TX boards, operates in a primary and backup manner. The primary and backup
server applications communicate call states through an application-specific inter-
process communication (IPC) mechanism.

TX device driver

Voice
card(s)

(optional)

SS7
links

Server
application

(primary)

Host
processor

APIs

IBC link

TX HMI
Voice
card
driver

TX device driver

APIs

Voice
circuits

(optional)

To remote clients

Voice
circuits

(optional)

TX HMI

Application -
specific

interprocess
communication

Client
application
(optional)

APIs Server
application

(backup)

TX board
(primary)

Host
processor

TX board
(backup)

SS7
links

Voice
card(s)

(optional)

Client
application
(optional)

APIs

Voice
card
driver

A dual-node configuration has the reliability attributes of the single-node
configuration but can also survive a failure or planned outage (for upgrade or
reconfiguration) of an entire node without a service outage. The cost of this added
reliability is in the increased complexity of the server applications. In a dual-node
configuration, monitoring and control of the boards must be shared between
applications on each node. If active calls or transactions are to be maintained across
an outage, state information must also be exchanged between nodes.

Standalone configuration

A standalone configuration consists of a single non-redundant signaling board in a
single node. In this configuration, the Health Management service monitors the
board for failures and takes corrective action, such as reloading the failed board or
notifying maintenance personnel.

A standalone configuration does not have the availability properties of a redundant
configuration, but the Health Management service can still be a valuable tool for
quickly detecting failures and minimizing the duration of the service outage that
results.

26 Dialogic

Health Management Developer's Reference Manual Redundant signaling subsystem architecture

Software architecture

This topic shows the functional components and information flows for the following
SS7 configurations:

• TDM

• IP

Although the illustrations show a dual node system, the components for a single
node system are similar. TCAP and SCCP are also similar to this call processing
example.

Software architecture for a TDM configuration

The following illustration shows the functional components and information flows in
the software architecture model for an SS7 TDM configuration:

SS7
links

Host processor

TX board
(primary)

Host processor

ISUP/TUP

MTP3

MTP2

Call state
checkpoints

Call control

Heartbeat

Management
application

HM
API

HMI

Management
application

HM
API

HMI

Call state
checkpoints

Heartbeat

TX board
(backup)

SS7
links

ISUP/TUP

MTP3

MTP2

Link/route state
checkpoints

Server application
(primary)

Server application
(backup)

ISUP/SCCP/TCAP
API

ISUP/SCCP/TCAP
API

Data/status/control

Board status/control TX device driverTX device driver

txmon txmon

Board status/control

Dialogic 27

Redundant signaling subsystem architecture Health Management Developer's Reference Manual

The following table describes each module and its information flows relating to high
availability.

Module Description

SS7 message
transfer part
(MTP)

SS7 MTP layers provide the physical signaling link termination, data link control,
message routing, and network management functions for the signaling nodes. In a
redundant configuration, active signaling links can be terminated on both boards.
Both boards can be active up through MTP layer 2. All traffic received on either
board is forwarded to the MTP 3 layer on the primary board for processing. All
outgoing traffic is routed to the primary board by the application for delivery. The
primary MTP 3 layer distributes outgoing traffic across all available links on both
boards.

Changes in the status of signaling links and routes are checkpointed by the primary
MTP 3 layer to the backup MTP 3 layer so the backup is in the correct state in the
event that it must become the primary.

Refer to the Dialogic® NaturalAccess™ MTP 2 Layer Developer's Reference Manual
and the Dialogic® NaturalAccess™ MTP 3 Layer Developer's Reference Manual for
more information.

SS7 ISUP The SS7 ISUP layer provides for the establishment, supervision, and clearing of all
circuit-switched connections. In a redundant configuration, the primary board
handles all live traffic. The backup ISUP layer remains in a state ready to assume
control when needed. To preserve active calls in the case of a failure of the primary
board, the call processing application can checkpoint updates of circuit states to
the backup ISUP layer (through SS7 ISUP) as calls progress or as circuits become
blocked and unblocked.

SS7 ISUP includes a sample call processing application, isupdemo, which
demonstrates the checkpointing of circuit states in various situations. For more
information, refer to ISUP demonstration program overview on page 99.

Refer to the Dialogic® NaturalAccess™ ISUP Layer Developer's Reference Manual
for more information.

SS7 SCCP SS7 SCCP provides services for routing non-circuit related traffic, including global
title translations. In a redundant configuration, the primary node receives all live
SCCP traffic. The backup SCCP takes over if there is a primary failure or
switchover. The SCCP task checkpoints relevant routing information without any
application involvement.

Refer to the Dialogic® NaturalAccess™ SCCP Layer Developer's Reference Manual
for more information.

SS7 TCAP SS7 TCAP provides services for non-circuit related messaging, often destined for
databases such as local number portability lookups. In a redundant configuration,
the primary node receives all live TCAP traffic. The backup TCAP takes over if there
is a primary failure or switchover. The TCAP task is configured to checkpoint some
or all transactions. This is done automatically without any application
responsibilities.

SS7 TCAP includes a sample redundant application, tcapdemo, which demonstrates
application behavior during transactions and switchovers. For more information on
tcapdemo, refer to TCAP demonstration program overview on page 111.

Refer to the Dialogic® NaturalAccess™ TCAP Layer Developer's Reference Manual
for more information.

28 Dialogic

Health Management Developer's Reference Manual Redundant signaling subsystem architecture

Module Description

SS7 TUP The SS7 TUP layer provides for the establishment, supervision, and clearing of all
circuit-switched connections. In a redundant configuration, the primary board
handles all live traffic. The backup TUP layer remains in a state ready to assume
control when needed. To preserve active calls in the case of a failure of the primary
board, the call processing application can checkpoint updates of circuit states to
the backup TUP layer (through the standard TUP API) as calls progress or as
circuits become blocked and unblocked.

SS7 TUP includes a sample call processing application, tupdemo, which
demonstrates the checkpointing of circuit states in various situations. For more
information on tupdemo, refer to TUP demonstration program overview on page
117.

Refer to the Dialogic® NaturalAccess™ TUP Layer Developer's Reference Manual
for more information.

TX monitor
(txmon)

The TX monitor (txmon) is a board-resident task that provides the health
management functions on the TX boards. txmon functions include:

• Monitoring the status of all registered SS7 tasks on the board and reporting
any failures to the health management interface on the host.

• Distributing and synchronizing the execution of board state requests (SET
backup, SET primary, and so on) from the host.

• Reporting changes in the status (connected, isolated) of the inter-board
communications link to both the registered board-resident tasks and the
health management interface.

• Implementing the board side of the keep alive function that allows the health
management interface to detect a board failure.

Health
Management
Interface (HMI)
service

The Health Management Interface (HMI) is a host-based service (Windows) or
daemon process (UNIX) that provides the actual execution of control functions
requested by applications using the Health Management system. It supports
multiple applications and distributes asynchronous board events to all registered
applications. It also continuously monitors all configured boards to detect board
failures.

Health
Management
service (HM API)

The Health Management service provides functions for applications to monitor and
control the state of TX boards on their local machine. It provides functions to
download a board, halt a board, retrieve the current state of a board, and set a
board into primary or backup state.

In addition, applications can register to receive asynchronous events indicating
changes in the state of a board. These events include notifications that a board has
failed, been downloaded or halted, set into the primary or backup states, or has
become connected to or isolated from its mate board.

The RMG demonstration program, included in the HMI distribution package,
demonstrates the use of the Health Management service. The RMG demonstration
program performs the role of the management application. For more information,
refer to RMG demonstration program overview on page 93.

Dialogic 29

Redundant signaling subsystem architecture Health Management Developer's Reference Manual

Software architecture for an IP configuration

The following illustration shows the functional components and information flows in
the software architecture model for an SS7 IP configuration:

Host processor

TX board
(primary)

Host processor

ISUP/TUP

M3UA

SCTP

Call state
checkpoints

Call control

Heartbeat

Management
application

HM
API

HMI

Management
application

HM
API

HMI

Call state
checkpoints

Heartbeat

TX board
(backup)

ISUP/TUP

M3UA

SCTP

Server application
(primary)

Server application
(backup)

ISUP/SCCP/TCAP
API

ISUP/SCCP/TCAP
API

Board status/control TX device driverTX device driver

txmon txmon

Board status/control

IP network
(SIGTRAN)

IP network
(SIGTRAN)

The following table describes each module and its information flows relating to high
availability.

Module Description

M3UA and SCTP There are no checkpoint or data messages flowing between mate boards. Refer to
the Dialogic® NaturalAccess™ SIGTRAN Stack Developer's Reference Manual for
more information.

SS7 ISUP The SS7 ISUP layer provides for the establishment, supervision, and clearing of all
circuit-switched connections. In a redundant configuration, the primary board
handles all live traffic. The backup ISUP layer remains in a state ready to assume
control when needed. To preserve active calls in the case of a failure of the primary
board, the call processing application can checkpoint updates of circuit states to
the backup ISUP layer (through SS7 ISUP) as calls progress or as circuits become
blocked and unblocked.

SS7 ISUP includes a sample call processing application, isupdemo, which
demonstrates the checkpointing of circuit states in various situations. For more
information, refer to ISUP demonstration program overview on page 99.

Refer to the Dialogic® NaturalAccess™ ISUP Layer Developer's Reference Manual
for more information.

30 Dialogic

Health Management Developer's Reference Manual Redundant signaling subsystem architecture

Module Description

SS7 SCCP SS7 SCCP provides services for routing non-circuit related traffic, including global
title translations. In a redundant configuration, the primary node receives all live
SCCP traffic. The backup SCCP takes over if there is a primary failure or
switchover. The SCCP task checkpoints relevant routing information without any
application involvement.

Refer to the Dialogic® NaturalAccess™ SCCP Layer Developer's Reference Manual
for more information.

SS7 TCAP SS7 TCAP provides services for non-circuit related messaging, often destined for
databases such as local number portability lookups. In a redundant configuration,
the primary node receives all live TCAP traffic. The backup TCAP takes over if there
is a primary failure or switchover. The TCAP task is configured to checkpoint some
or all transactions. This is done automatically without any application
responsibilities.

SS7 TCAP includes a sample redundant application, tcapdemo, which demonstrates
application behavior during transactions and switchovers. For more information on
tcapdemo, refer to TCAP demonstration program overview on page 111.

Refer to the Dialogic® NaturalAccess™ TCAP Layer Developer's Reference Manual
for more information.

SS7 TUP The SS7 TUP layer provides for the establishment, supervision, and clearing of all
circuit-switched connections. In a redundant configuration, the primary board
handles all live traffic. The backup TUP layer remains in a state ready to assume
control when needed. To preserve active calls in the case of a failure of the primary
board, the call processing application can checkpoint updates of circuit states to
the backup TUP layer (through the standard TUP API) as calls progress or as
circuits become blocked and unblocked.

SS7 TUP includes a sample call processing application, tupdemo, which
demonstrates the checkpointing of circuit states in various situations. For more
information on tupdemo, refer to TUP demonstration program overview on page
117.

Refer to the Dialogic® NaturalAccess™ TUP Layer Developer's Reference Manual
for more information.

TX monitor
(txmon)

The TX monitor (txmon) is a board-resident task that provides the health
management functions on the TX boards. txmon functions include:

• Monitoring the status of all registered SS7 tasks on the board and reporting
any failures to the health management interface on the host.

• Distributing and synchronizing the execution of board state requests (SET
backup, SET primary, and so on) from the host.

• Reporting changes in the status (connected, isolated) of the inter-board
communications link to both the registered board-resident tasks and the
health management interface.

• Implementing the board side of the keep alive function that allows the health
management interface to detect a board failure.

Health
Management
Interface (HMI)
service

The Health Management Interface (HMI) is a host-based service (Windows) or
daemon process (UNIX) that provides the actual execution of control functions
requested by applications using the Health Management system. It supports
multiple applications and distributes asynchronous board events to all registered
applications. It also continuously monitors all configured boards to detect board
failures.

Dialogic 31

Redundant signaling subsystem architecture Health Management Developer's Reference Manual

Module Description

Health
Management
service (HM API)

The Health Management service provides functions for applications to monitor and
control the state of TX boards on their local machine. It provides functions to
download a board, halt a board, retrieve the current state of a board, and set a
board into primary or backup state.

In addition, applications can register to receive asynchronous events indicating
changes in the state of a board. These events include notifications that a board has
failed, been downloaded or halted, set into the primary or backup states, or has
become connected to or isolated from its mate board.

The RMG demonstration program, included in the HMI distribution package,
demonstrates the use of the Health Management service. The RMG demonstration
program performs the role of the management application. For more information,
refer to RMG demonstration program overview on page 93.

Board state model

For health management purposes, each board in a redundant pair is in one of several
states, as described in the following table. Boards change state as a result of
application commands issued through the Health Management service or other
external events, such as hardware or software failures on the board.

State
name

Description

Starting Initial state of each board immediately after download, waiting for a command from the
application to be primary or backup.

Primary Board is active and is the primary member of a redundant board pair.

Backup Board is active and is the backup member of a redundant board pair.

Shutdown Reserved for future use.

Failed Board is not operational due to a hardware or software failure or has been halted by an
application. The application can attempt to reload the board.

Standalone Board is either not equipped or not licensed for redundant operation and is running as a
standalone signaling board.

Stopped Board has been extracted.

32 Dialogic

Health Management Developer's Reference Manual Redundant signaling subsystem architecture

Initialization

The signaling subsystem initialization phase involves:

• Downloading and configuring the board

• Setting it into the appropriate state (either primary or backup)

• Binding the applications and SS7 layers together

Downloading and configuring the board

Call hmiLoadBoard to initiate board download. Once a board download is initiated
(including configuration), a HMI_EVN_LOADING event is sent to all applications
registered with the HMI, including the application that initiated the download. Once
the download is complete and the board is ready for operation, the application
receives a HMI_EVN_STARTING event (or HMI_EVN_STANDALONE event, if the
board is not operating in a redundant configuration).

The HMI cannot detect certain types of board download failures. Applications must
time for the HMI_EVN_STARTING (or HMI_EVN_STANDALONE) event to detect a
failed download. The duration of the timer could be anywhere from five seconds (for
a normal sized configuration) to ten seconds or longer for a large configuration.

Setting the board state

After download, each board is initially in the starting state, waiting for hmiPrimary
or hmiBackup. In the starting state, protocol tasks can be configured and bind
requests can be honored, but links are not enabled and data traffic is not accepted.
During this time, txmon attempts to establish communication with its mate board.

The application determines which board should be primary and which should be
backup. Once determined, the application issues a hmiPrimary [hmiBackup]
command to each board, as appropriate, through the HMI. Once the command is
accepted, an HMI_EVN_NOWPRIMARY [HMI_EVN_NOWBACKUP] event is sent to all
applications registered with the HMI, including the application that initiated the
request.

Binding the applications and SS7 layers together

During this period each application also binds to its service provider layer through
the appropriate function call. For example, call processing applications bind to the
ISUP or TUP layer; direct MTP 3 applications bind to the MTP 3 layer. On a single
node signaling subsystem, the application typically binds to its service provider on
the primary board and the backup board. On a dual node signaling subsystem, the
primary application binds to the primary board and the backup application binds to
the backup board.

Upon a successful bind, the service user (application) is notified of the board status
(primary or backup) through a status indication event. The service user must wait for
the now primary status indication event before starting data traffic. This event
precedes any incoming data traffic delivered to the service user and signals that
normal data transfer can begin in either direction.

Dialogic 33

Redundant signaling subsystem architecture Health Management Developer's Reference Manual

Hot Swap support

The health management system supports Hot Swap for CompactPCI installations.
When the ejector handle is lowered to indicate the board is to be extracted, the HMI
issues an HMI_EVN_EXTRACT event to all applications registered for receipt of
asynchronous events.

A redundancy manager application receiving this event prepares any applications
associated with the board for board removal. The controlling application calls
hmiStop, which causes HMI to send an HMI_EVN_STOP event to all applications
registered for receipt of asynchronous events.

Upon receipt of this event, all applications close their communications channels to
the board and the Hot Swap LED lights, indicating that the board is ready for
extraction.

When a board is inserted into the chassis, the HMI issues an HMI_EVN_INSERT
event to all applications registered for receipt of asynchronous events. When the
redundancy manager application receives this event, it initiates a load of the board.

34 Dialogic

Health Management Developer's Reference Manual Redundant signaling subsystem architecture

Configuration and management

This topic explains how the hardware and software is configured and managed. It
includes information about:

• Configuration utilities and functions

• Control, status, and statistics

• Alarms

Configuration utilities and functions

In general, each signaling board is loaded and configured independently. Each
configuration utility and function call sends configuration packets to the target board.
Configuration requests are not explicitly exchanged between boards. Each node in a
multiple node signaling subsystem must have its own copy of each SS7 configuration
file or database or be able to access a common file or database through networking.
Similarly, each dynamic configuration function call must be executed on both boards.

The configurations downloaded to the SS7 layers are identical on both boards in a
pair. To support configuration changes without a service outage, it is sometimes
necessary to download a backup board with a new configuration, make it the primary
board, and then reload the other board with the new configuration. In this case, the
configurations on the two boards are out of synchronization for some time period.
This is allowed during the checkpointing of state information between boards.

Control, status, and statistics

Control, status, and statistics requests are applied individually to each board in a
mated pair. Control requests (enable or disable signaling links, block or unblock
voice circuits, and so on) can only be issued to the primary board. Control requests
issued to the backup board are rejected with an invalid state indication.

Status type requests can be issued to either the primary or the backup board. The
results returned by a board reflect the status of the entity as currently viewed by
that board. Thus, status requests issued to the backup board can be used to
determine if an event, such as a call being answered, was checkpointed correctly to
the backup.

Statistics requests can also be issued to either the primary or backup board. The
statistics returned reflect events that occurred on that board only; no attempt is
made to collate statistics between the primary and backup boards.

Alarms

Each board generates its own alarms. In a dual node signaling subsystem, the MTP 2
alarms associated with a particular link appear on the node that the link terminates
on, not necessarily the active node. MTP 3, SCTP, M3UA, SCCP, TCAP, TUP, and ISUP
alarms relating to operational events typically appear only on the active node.

The txmon task on each board generates alarms relating to the state of that board:

• Transitions between primary and backup mode

• Failures of tasks on the board

• Changes in the status of the inter-board link

Dialogic 35

55 Failure detection and recovery
Signaling link failures

Signaling link failures are handled within the MTP layers. Applications are not notified
of signaling link failures unless the failure leaves a concerned destination
unreachable (in which case it receives a pause event for the concerned destination)
or the application/user part registered for link status events.

Signaling link recovery is automatic and transparent to MTP user parts and
applications unless it results in a previously unreachable destination becoming
reachable or the application/user part has explicitly registered for link status events.

In SIGTRAN configurations, loss of all associations triggers an
HMI_EVN_NETWORK_DOWN event. A redundancy manager program, such as the
RMG demonstration program, can use this event to switch over to the backup
associations, allowing traffic to quickly resume.

Signaling board failures

A signaling board failure is detected by the HMI on the local signaling node. A failure
can be a software failure on the board detected by the txmon process and reported
to the HMI service, or a hardware failure such that the HMI service loses
communication with the board. Both are reported to registered applications as board
failures so that recovery can take place. Two different recovery scenarios are
distinguished: failure of the primary board and failure of the backup board.

Primary board failure

When the application receives a HMI event indicating a failure of the primary board,
it typically initiates a switchover to the backup signaling board by calling
hmiPrimary. Call processing applications (or applications using other SS7 signaling
services) then wait for the now primary status indication from its service provider
before resuming data traffic.

Once the switchover is initiated, an application reloads the failed board with
hmiLoadBoard. When the download is complete (HMI_EVN_STARTING event is
received), the application sets the reloaded board into the backup state with
hmiBackup. At that point, any SS7 service applications must rebind to their service
providers. Any failed signaling links terminated on the reloaded board are
automatically activated by the primary MTP 3. SIGTRAN associations are
automatically re-established by the reloaded board if M3UA is configured as an ASP
or IPSP client.

After the reload and rebind, the TUP, TCAP, and SCCP tasks automatically
resynchronize with the primary TX board. The backup is then ready to take over
operation. The backup ISUP layer considers all circuits to be idle. The application
must re-synchronize the backup by checkpointing all non-idle circuit states through
the ISUP service. The recovered board is then ready to take over the role of primary
if needed.

Dialogic 37

Failure detection and recovery Health Management Developer's Reference Manual

If the board fails to reload cleanly (the HMI_EVN_STARTING event is not received
within a reasonable time period), as might be the case with a true hardware failure,
use hmiHaltBoard to stop the board. Manual intervention is required to recover the
failed board.

Backup board failure

Failure of a backup board is detected and reported in the same fashion as the
primary board. The board is typically reloaded (if possible) and set into the backup
state. Applications must rebind with their service providers. Any failed signaling links
terminated on the reloaded board are automatically activated by the primary MTP 3.
SIGTRAN associations are automatically re-established by the reloaded board if
M3UA is configured as an ASP or IPSP client.

After a backup with TUP, TCAP and/or SCCP is brought back into service, the
application is ready to take over since TUP, TCAP, and SCCP automatically re-
synchronize with the primary TX board.

Signaling node failures

Detection of signaling node failures in a dual-node configuration is application
specific. No monitoring of the host or application status is done by the signaling
subsystem. Recovery scenarios are similar to the failed board recovery scenarios.

Primary signaling node failure

When a primary signaling node fails, it is up to an application on the backup node to
detect the failure and set the backup board into primary operation with
hmiPrimary. During the primary node outage, messages arriving on signaling links
terminated on the backup node are queued if possible, waiting for the switchover. If
the traffic load is too heavy or the failure detection and recovery takes too long, the
links can be placed in a local processor outage state and the queued messages may
be lost.

After the failed signaling node is restored, the signaling board in the failed node is
reloaded and placed into backup state. The sequence is the same as the recovery of
a failed board except that additional synchronization is required between the
applications on the primary and backup nodes to convey changes in circuit status
that occurred while the failed node was unavailable. This synchronization is
application specific.

Backup signaling node failure

Recovery of a failed backup signaling node is similar to the recovery of a failed
backup board. No disruption of signaling traffic is expected in this case. If there is a
total failure (the primary board detects the failure of the backup board), signaling
links terminating on the failed board are declared failed until the backup board is
restored. Blocking or resetting voice circuits that were terminated on the failed node
is up to the application.

If only the backup host processor fails, the signaling links that terminate on the
backup board remain operational until the backup node is rebooted.

The application is responsible for the synchronization of circuit states that changed
while the backup node was out of service.

If the host fails in a signaling node but the TX board continues working, the TX board
could become stranded. While this is acceptable when the backup node fails, some

38 Dialogic

Health Management Developer's Reference Manual Failure detection and recovery

action is necessary when the primary host fails. The primary TX board automatically
becomes the backup if it sees its mate board become primary, resulting in no
commands received from the Health Management service for approximately one half
of a second.

Signaling board isolation

Signaling board isolation occurs when the inter-board link fails. In this case, neither
board can communicate with the other and cannot distinguish this case from a failure
of its mate board.

During isolation, the primary board keeps running but at (potentially) reduced
capacity since the signaling links on the backup board cannot be accessed. Normal
checkpointing of ISUP circuit states to the backup board from the host can still take
place.

MTP configurations

When isolation is detected on the backup board, the active signaling links are put
into an isolated state, queuing inbound packets but still delivering any queued
outbound packets, and a short isolation timer is set. If the isolation ceases before
the timer expires, normal traffic is resumed starting with the queued packets. If the
isolation timer expires before the isolation condition is corrected, the isolated links
are placed into the local processor outage (LPO) state and the queued inbound
packets are discarded.

Switching the backup board into primary mode (as would be the case if the primary
board failed) clears the isolated/LPO condition on those links and resumes normal
traffic flow.

After the failed inter-board link is restored, the active MTP 3 layer clears the LPO
condition on the isolated links to restore normal traffic and checkpoints any route or
link states that may have changed during the isolation.

SIGTRAN configurations

There is no isolation timer or processor outage-like state associated with SIGTRAN.
No action is taken upon an isolation event other than to log a message and change
the isolatedState status field.

Dialogic 39

Failure detection and recovery Health Management Developer's Reference Manual

Planned switchovers

It may be necessary to remove a primary board from service to upgrade the
software or hardware on the signaling node or the board itself. The recommended
procedure is to manually switch the backup board into primary mode before shutting
down the (now backup) board or node, as described here.

Once the applications have agreed that a switchover is necessary, the primary board
is set into backup mode with hmiBackup. hmiBackup sets all signaling links into a
flow-controlled state, resulting in all inbound packets being queued. Each layer
(starting from MTP 3 or SIGTRAN on up) then sends a status indication (NOW
BACKUP) to each of its service users.

Due to queuing between layers and within the device driver, the application can still
receive some incoming signaling traffic between the issuing of the hmiBackup
request and receipt of the NOW BACKUP status indication.

For ISUP messages, the following procedure is recommended:

• Connect Confirm (answer) and Release Confirm: Accept and checkpoint new
circuit state to mate application/ISUP layer.

• All others: Discard and allow far end to timeout and retry if desired.

For TCAP, TUP, or SCCP messages, the following procedure is recommended:

• For TUP Connect Confirm (answer) and Release Confirm: Accept and
checkpoint new circuit state to mate application.

• The application must ignore the event and wait for the other end to retry or
(especially if the event is a checkpointed TCAP transaction or an SCCP
connectionless) reply on the now primary board.

During this period, the application must not generate any new outbound signaling
traffic.

Once the now backup status indication is received (indicating the end of any in-
progress signaling traffic) the mate board is set to primary mode. This restarts the
flow of signaling traffic to/from the mate board/node, including any messages
queued within layer 2 during the switchover.

Note: Packets can be lost during a switchover. Heavy traffic during a switchover can
result in either or both boards becoming congested due to the queuing of incoming
packets. Planned switchovers are not recommended during periods of heavy load.
Schedule maintenance during off-peak periods whenever possible.

40 Dialogic

66 Function reference
Function summary

Use the following functions with your application:

Function Description

hmiBackup Requests the board to switch to the backup signaling state.

hmiHaltBoard Requests the local HMI to halt the local board.

hmiLoadBoard Requests the local HMI to load the local board.

hmiPrimary Requests the board to switch to the primary signaling state.

hmiReset Requests the local HMI to read the configuration file again.

hmiShutdown Requests the local HMI to shutdown gracefully, but without initiating a go backup
message if active.

hmiStandalone Requests the board to switch to the standalone signaling board.

hmiStart Resumes communications to the TX board.

hmiStatusReq Retrieves the current HMI status and statistics.

hmiStop Disables communications to the TX board and sends an HMI_EVN_STOP event to all
applications that are registered to receive unsolicited status events.

Using the function reference

This section provides an alphabetical reference to the Health Management service
functions. A prototype of each function is shown with the function description and
details of all arguments and return values.

Prototype The prototype is followed by a listing of the function arguments. Data types include:

• DWORD (8-bit unsigned)

• S16 (16-bit signed)

• U32 (32-bit unsigned)

• Bool (8-bit unsigned)

If a function argument is a data structure, the complete data structure is defined.

Note: Not all parameters are applicable to both ANSI and ITU-T (CCITT) networks.

Return
values

The return value for a function is either SUCCESS or an error code. For asynchronous
functions, a return value of SUCCESS (zero) indicates the function was initiated;
subsequent events indicate the status of the operation.

Dialogic 41

Function reference Health Management Developer's Reference Manual

hmiBackup

Requests the board to switch to the backup signaling state. This request can only be
issued to a board in the primary or starting state.

Prototype

DWORD hmiBackup (CTAHD ctahd)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_REFUSED Request failed because the board is in a halted or standalone state.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

42 Dialogic

Health Management Developer's Reference Manual Function reference

hmiHaltBoard

Requests the local HMI to halt the local board.

Prototype

DWORD hmiHaltBoard (CTAHD ctahd)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

Dialogic 43

Function reference Health Management Developer's Reference Manual

hmiLoadBoard

Requests the local HMI to load the local board. For more information, refer to HMI
configuration on page 80.

Prototype

DWORD hmiLoadBoard (CTAHD ctahd)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

44 Dialogic

Health Management Developer's Reference Manual Function reference

hmiPrimary

Requests the board to switch to the primary signaling state. This request can only be
issued to a board in the backup or starting state.

Prototype

DWORD hmiPrimary (CTAHD ctahd)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_REFUSED Request failed because the board is in a halted or standalone state.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

Dialogic 45

Function reference Health Management Developer's Reference Manual

hmiReset

Requests the local HMI to read the configuration file again.

Prototype

DWORD hmiReset (CTAHD ctahd)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

Details

A reset causes the HMI to re-read its configuration file. You can reconfigure by
editing the HMI configuration file and issuing a reset request. However, the ports
assigned to the HMI are not reconfigured on a reset. The HMI must be stopped and
restarted to change ports.

All existing application connections are preserved during a reset.

46 Dialogic

Health Management Developer's Reference Manual Function reference

hmiShutdown

Requests the local HMI to shutdown gracefully, but without initiating a backup
request if active.

Prototype

DWORD hmiShutdown (CTAHD ctahd)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

Details

hmiShutdown causes the HMI service to shutdown immediately. If the board that is
shut down is the primary board, no HMI service backup request is performed, since
shutting down does not change the status of the board. If the user wants to
immediately switchover before the primary board shuts down, the HMI service
backup request must be issued before the shutdown request and an HMI primary
request must be issued for the other board.

All applications registered for unsolicited status events are notified of the pending
shutdown with a HMI_EVN_SERVICE_DOWN event.

Dialogic 47

Function reference Health Management Developer's Reference Manual

hmiStandalone

Requests the board to switch to the standalone signaling board. This request can
only be issued to a board in the starting or standalone state.

Prototype

DWORD hmiStandalone (CTAHD ctahd)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_REFUSED Request failed because the board is in a halted, primary, or backup state.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

48 Dialogic

Health Management Developer's Reference Manual Function reference

hmiStart

Resumes communications to the TX board. This function cancels the affects of a
previous call to hmiStart.

Prototype

DWORD hmiStart (CTAHD ctahd)

Argument Description

ctahd Natural Access handle returned by ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

Dialogic 49

Function reference Health Management Developer's Reference Manual

hmiStatusReq

Retrieves the current HMI status and statistics.

Prototype

DWORD hmiStatusReq (CTAHD ctahd, HmStatsData *pHmStats, U8 reset)

Argument Description

ctahd Natural Access handle from a previous successful call to ctaOpenServices.

pHmStats Pointer to the statistics structure that is local to application memory:

typedef struct hmLnkStats
{
 U32 txHB; /* number of link heartbeat messages transmitted */
 U32 rxHB; /* number of link heartbeat messages received */
 U8 linkState; /* state of the IBC link, see hmidef.h */
 U8 fill[3];
} HmLnkStats;

typedef struct hmTskStats
{
 U32 txLnkStInd; /* number of link state change ind. transmitted */
 U32 txRunStInd; /* number of task state change ind. transmitted */
 U32 rxHB; /* number of link heartbeat mesg recvd from task */
 U8 runState; /* run state of task,incl HMRS_FAILED, see hmidef.h */
 U8 rxSeq; /* RX sequence number */
 U8 txSeq; /* TX sequence number */
 U8 remRunState; /* run state of remote task of same name */
 U8 name[8]; /* task name */
} HmTskStats;

typedef struct hmStatsData
{
 HmLnkStats linkStats; /* statistics for the IBC link */
 U8 numTsks; /* number of tasks with statistics
 reported */
 U8 netState; /* network connectivity state */
 U8 fill[2];
 HmTskStats taskStats[HM_MAXTASKS]; /* task statistics */
} HmStatsData;

reset If set to zero, do not reset counters. If non-zero, reset all counters.

The netState field in the HmStatsData structure applies to SIGTRAN configurations
only. Valid values for netState are:

• HMNS_CONNECTED: Board network connectivity state is UP.

• HMNS_ISOLATED: Board network connectivity state is DOWN.

• HMNS_UNKNOWN: Board has not reported a network connectivity state.

50 Dialogic

Health Management Developer's Reference Manual Function reference

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_REFUSED Request failed because the board is in a halted state.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

Dialogic 51

Function reference Health Management Developer's Reference Manual

hmiStop

Disables communications to the TX board and sends an HMI_EVN_STOP event to all
applications that are registered to receive unsolicited status events. Call this function
upon receipt of an HMI_EVN_EXTRACT event, indicating that a board is to be
removed.

Prototype

DWORD hmiStop (CTAHD ctahd)

Argument Description

ctahd Natural Access handle returned by ctaOpenServices.

Return values

Return value Description

SUCCESS

HMI_ERR_BADCMD Request failed. An event handle was passed to the Health Management service
command.

HMI_ERR_CLOSED Request failed. Connection closed by HMI.

HMI_ERR_INTERROR Request failed. Unknown I/O error occurred.

HMI_ERR_INVHANDLE Handle is not valid.

HMI_ERR_NOMEM No memory available.

HMI_ERR_TIMEOUT Request failed. No response from HMI.

52 Dialogic

77 Developing an ISUP or TUP
redundant application

Checkpointing strategies for ISUP or TUP applications

To preserve stable calls across outages, the primary application needs to checkpoint
circuit and hardware state information to the backup application. The backup
application checkpoints the received circuit state information to the ISUP stack on
the backup board. TUP does not require this update to be sent to the stack on the
board.

This section discusses some of the issues and strategies for maintaining consistent
and accurate circuit state information across primary and backup applications and
ISUP or TUP stacks.

Checkpoint information

This topic describes the checkpointing process, including:

• Backup application

• Transient state

• Incremental checkpointing

• Batch checkpointing

Backup application

The backup application is responsible for checkpointing circuit state information to
the ISUP implementation running on the backup board. This information consists of
the call processing state and circuit blocking state. This is the minimum information
to be checkpointed from the primary application to backup application.

Upon receipt of checkpoint information, the backup application must checkpoint the
circuit state information (call processing and circuit blocking states) to the ISUP
stack on the backup board. This is accomplished through a call to ISUPStatusReq
with an eventType of CIRGRPSET.

Transient state

Optionally, the primary application can checkpoint the transient state of a circuit. A
circuit is in a transient state during call setup and call release. Checkpointing the
transient state of a circuit allows the backup application to identify the circuits that
were in call setup or release at the time of changeover. This information is not
checkpointed to the ISUP stack.

Note: After changeover, the backup (now primary) application resets all circuits in a
transient state.

Dialogic 53

Developing an ISUP or TUP redundant application Health Management Developer's Reference Manual

Incremental checkpointing

Incremental checkpointing refers to the transmission of state information for a single
circuit concurrent with a change in state for the referenced circuit.

This is the recommended checkpoint method for the following reasons:

• Backup application always has up to date information concerning all circuits.

• Transient circuit checkpointing is reasonable due to the timely update of
information.

• Minimum number of circuit resets upon changeover.

• Acceptable for all size configurations.

Batch checkpointing

Batch checkpointing refers to the mass transmission, from primary application to
backup application, of state information for controlled circuits and hardware.

Periodic batch checkpointing refers to the periodic transmission of state information
for all controlled circuits and hardware.

Periodic delta batch checkpointing refers to the periodic transmission of state
information for controlled circuits and hardware that have changed state since the
previous checkpoint. This is more efficient than normal periodic batch checkpointing.

The use of batch checkpointing is discouraged for several reasons:

• Large window of uncertainty; circuit activity between checkpoints is not
visible to backup.

• Depending on the time between checkpoints, transient circuit checkpointing
may not be effective.

• After changeover, transient circuits are unusable until protocol recovery or
until all idle circuits are reset by the new primary.

54 Dialogic

Health Management Developer's Reference Manual Developing an ISUP or TUP redundant application

ISUP or TUP application startup

At startup, the backup and primary applications must open the ISUP or TUP service
with a call to ctaOpenServices:

HMI Primary application

HMI_EVN_NOWPRIMARY

ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

MTPRESUME

Circuit requests/responses

...

NMS ISUP
or

NMS TUP

Note: Circuits default to a flow-controlled state. Until an MTPRESUME indication is
received indicating that circuits are available, requests referencing these circuits
return an error indication with cause 27: no route to destination.

Upon startup, the backup application receives a batch checkpoint from the primary
application. As shown in the following illustration, the backup application checkpoints
this information to the ISUP stack running on the backup board:

HMI Backup application

HMI_EVN_NOWBACKUP

ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

Primary application

Backup application ready

Checkpoint

.

.

.

Checkpoint

.

.

.

ISUPStatusReq (CIRGRPSET)

ISUPStatusReq (CIRGRPSET)

NMS ISUP

Dialogic 55

Developing an ISUP or TUP redundant application Health Management Developer's Reference Manual

ISUP or TUP board failure, halt, or load

Upon notification of board failure, halt, or load, the applications close the ISUP or
TUP service with a call to ctaCloseServices:

HMI Application

ctaCloseServices

CTAEVN_CLOSE_SERVICES_DONE

NMS ISUP
or

NMS TUP

HMI_EVN_BRDDEAD,
HMI_EVN_HALTED,

or HMI_EVN_LOADING

56 Dialogic

Health Management Developer's Reference Manual Developing an ISUP or TUP redundant application

ISUP or TUP backup reload

Upon notification that the backup board was reloaded and set to backup, the backup
application reopens the ISUP or TUP service. In the case of ISUP, the backup
application checkpoints the state of all circuits to the ISUP stack running on the
backup board.

HMI Backup application

HMI_EVN_NOWBACKUP

ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

Primary application

Checkpoint

HMI_EVN_LOADING

ctaCloseServices

CTAEVN_CLOSE_SERVICES_DONE

.

.

.

Checkpoint

.

.

.

ISUPStatusReq (CIRGRPSET)

ISUPStatusReq (CIRGRPSET)

NMS ISUP

Dialogic 57

Developing an ISUP or TUP redundant application Health Management Developer's Reference Manual

ISUP or TUP switchover

At switchover, the backup application (now the primary) resets all transient circuits if
checkpointing of the transient state was implemented. If transient state was not
maintained, the new primary application can either:

• Reset all idle circuits.

• Allow ISUP or TUP to recover transient circuits. This could take considerable
time, depending upon what state the circuit was in at the time of switchover.
Any attempt at using one of these circuits before the protocol has returned
the circuit to idle state results in an error returned from ISUP or TUP.

HMI Backup application

ISUPStatusReq/TUPStatusReq (CIRRESREQ)

HMI_EVN_NOWPRIMARY

.

.

.

ISUPStatusReq/TUPStatusReq (CIRRESREQ)

NMS ISUP
or

NMS TUP

Assume that the instance ID parameters (suInstld and spInstld) are set to 0 after a
switchover.

58 Dialogic

88 Developing a TCAP redundant
application

TCAP redundancy support

Two TX boards can be configured as a redundant pair. In this configuration, one
board is designated as the primary board and the other is designated as the backup.
The TCAP task on the backup board is ready to take over the TCAP service if the
primary board fails or is taken out of service.

To enable redundancy, the primary and backup TX boards are connected by a private
Ethernet connection. The primary TCAP task sends transaction information to the
backup TCAP task. This process is known as transaction checkpointing. If the primary
board fails or is taken out of service, the backup TCAP task has a complete list of
open TCAP transactions so that it can properly handle TCAP traffic.

A TCAP application can control transaction checkpointing by configuring default
checkpoint behavior or by specifying checkpoint behavior for each transaction.

The TCAP application must also monitor several new indications that inform the
application of the underlying board's state. These indications allow an application to
correctly handle board failures, planned outages, and so on.

Refer to the Dialogic® NaturalAccess™ TCAP Layer Developer's Reference Manual for
more information.

Handling TCAP traffic

In a redundant system, the TCAP application calls ctaOpenServices on both the
primary and backup boards. TCAP traffic can only be sent and received on the
primary board. By monitoring the run state indications from the TCAP service, the
TCAP application can always determine which board to send TCAP traffic on.

Dialogic 59

Developing a TCAP redundant application Health Management Developer's Reference Manual

Redundancy indications

Several indications support TCAP redundancy for TCAP applications. Some of these
indications are generated by the TCAP task and are sent to TCAP applications. Others
are generated by the Health Management service.

A TCAP application opens the TCAP service and the Health Management service.

TCAP task indications

Once a TCAP application opens the TCAP service, it receives a run state indication
(primary, backup, or standalone) from the TCAP task. If the board state changes
(from backup to primary), another run state indication is sent to the application from
the TCAP task.

The backup TCAP task sends the backup ready indication only after it reconnects to
the primary board or is reloaded. This indication signifies the backup task has a
complete copy of the primary TCAP task's open transactions.

Health Management indications

The Health Management service provides indications that are useful for monitoring
board status.

Ignore the following HM run state indications:

• Now primary

• Now backup

• Now standalone

A TCAP application waits for the run state indication from the TCAP task before
modifying its behavior. However, the Health Management service run state indication
can be useful as a signal to open the TCAP service after a board loads.

The application closes the TCAP service if any of the following Health Management
service indications are received:

• Board dead

• Board halted

• Board loading

• Task dead

• Stop

The stop indication is only received when a CompactPCI board is removed from its
chassis.

The following indications monitor the state of the primary TX board to the backup TX
board private Ethernet link:

• Connected

• Isolated

If an isolated indication is received, active transactions are not being checkpointed.

Note: The indications listed here are not a complete list of the available Health
Management service indications, but only those applicable to TCAP applications.

60 Dialogic

Health Management Developer's Reference Manual Developing a TCAP redundant application

TCAP board load

After loading a board and receiving a Health Management service run state indication
(primary, backup, or standalone), a TCAP application can open the TCAP service.

Once the TCAP service is successfully opened, a run state indication from the TCAP
task is received. At this point, TCAP traffic can begin on the primary (or standalone)
board.

ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

TCAP application TCAP service

TCAPTransRqst

HMI

Primary/backup/standalone

Primary/backup/standalone

Dialogic 61

Developing a TCAP redundant application Health Management Developer's Reference Manual

TCAP board failure

A TCAP application closes the TCAP service when any of the following indications are
received:

• Board dead

• Board loading

• Board halted

• Task dead

• Stop

In these cases, the TCAP application closes the TCAP service and begins the process
of reloading the board.

The TCAP application only closes the TCAP service once to a TX board. This can be
performed when a failure occurs or when the board is reloaded.

ctaCloseServices

CTAEVN_CLOSE_SERVICES_DONE

TCAP application TCAP serviceHMI
Board dead,
Board halted,
Task dead,

Board loading,
Stop

TCAP switchover

The primary board and backup board can be switched in response to an application
request. This is known as a switchover.

When the primary run state indication is received from the TCAP task, the TCAP
application sends all traffic to the new primary board. In this case, ignore the Health
Management service primary indication.

TCAP application TCAP service

TCAPTransRqst

Primary

HMI

62 Dialogic

Health Management Developer's Reference Manual Developing a TCAP redundant application

TCAP backup reload

When a failed board is reloaded, the TCAP application closes the TCAP service on that
board if it was not already closed when the failure occurred.

When the Health Management service backup indication is received, the TCAP
application can reopen the TCAP service to the board. A backup run state indication
is received from the TCAP service after the open service is completed.

When the backup board is reloaded, it no longer contains a valid set of open
transactions. After the backup board is reloaded, it requests an update of the open
transactions from the primary board. When this process is complete, a backup ready
run state indication is sent to the TCAP application.

ctaCloseServices

CTAEVN_CLOSE_SERVICES_DONE

TCAP application TCAP service

Loading

Backup
ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

Backup

Backup ready

HMI

TCAP backup isolation

If the backup board becomes isolated from the primary board, it no longer contains a
valid set of open transactions. After the backup board is reconnected, it requests an
update of the open transactions from the primary board. When this process is
complete, a backup ready run state indication is sent to the TCAP application.

TCAP application TCAP service

Isolated

Connected

Backup ready

HMI

Dialogic 63

99 Developing a SCCP redundant
application

SCCP layer overview

The SCCP layer can operate in a two-board redundant primary or backup
configuration in addition to the single-board standalone configuration. The boards
can be in the same chassis or they can be in two chassis.

The objective of the redundant configuration is to maintain the SCCP service if any of
the following scenarios occur:

• The primary board fails (hardware or software failure)

• The chassis containing the primary board fails (dual-node configuration)

• A planned outage for maintenance purposes

Sufficient state information regarding the primary SCCP layer must be reflected in
the backup SCCP layer so that operation can continue without a service disruption.
This state information includes the status of remote signaling points and subsystems,
the status of local subsystems, and the state of any active class 2 or class 3
connections.

The SCCP layer automatically maintains the correct state of its backup by
checkpointing state information whenever necessary, such as when the state of a
remote signaling point or subsystem changes or when a new connection is
established (confirmed). It also restores the current state to the backup whenever
the backup is reloaded or recovers from isolation. These operations are transparent
to the application.

Connectionless services

For both class 0 and class 1 connectionless services, best effort delivery service is
maintained across switchovers. No state information is maintained between primary
and backup SCCP layers other than the status of remote signaling points or
subsystems.

It is possible for messages to be lost on a switchover for both classes of
connectionless service. The application-level protocol running above SCCP is
responsible for detecting and recovering lost messages.

For both classes of service, segmented messages in the process of being transmitted
or received are lost or discarded on a switchover. If the remaining segments of a
partially reassembled incoming message that was lost or discarded due to a
switchover are received by the (new) primary, they are detected and discarded. If
any of these segments has the return option set, the segment is returned to the
sender in an XUDTS message with a return cause of Segmentation Failed for ITU or
Error in Message Transport for ANSI.

Dialogic 65

Developing a SCCP redundant application Health Management Developer's Reference Manual

Connection-oriented services

Confirmed connections (class 2 and class 3) are maintained across switchovers. The
following table describes what happens to a connection during connection-oriented
switchover:

Connection type Description Connection status

Transient connection Connection is being established or cleared Dropped on a
switchover

Connections that look
active to the far end but
idle to the local side

A connection confirmation is returned but the
checkpoint did not make it to backup, or a
release was initiated but the far end did not
receive it

Cleared through the
SCCP protocol-level
inactivity timers

The backup SCCP layer maintains the frozen status of each source local reference
(SLR) assigned by the primary SCCP layer, so that the SLR is not re-used for the
appropriate period of time after a switchover.

Message status

The following table describes what happens to messages during connection-oriented
switchover:

Message is... Description The message...

In transit at the time of a
switchover

Can be traveling in either
direction

May be lost

Segmented and being
reassembled at the time of a
switchover

Is incoming Will be dropped

Segmented for class 2
connections

The SCCP layer cannot
detect that subsequent
segments belong to a
previous message.

Is delivered to the application as a
new message.

Detection of the incomplete
message and any recovery is the
responsibility of the application.

Segmented for class 3
connections

The SCCP layer can detect
and discard any subsequent
segments received.

Connection information

Application inactivity control and connection auditing help synchronize connection
information between primary and backup SCCP layers and applications.

Connection information
mechanism

Description

Application inactivity
control

Complements the SCCP protocol level inactivity control by allowing the
SCCP layer to detect that an active connection at the stack is no longer
active at the application level.

Application inactivity control must be enabled by a configuration option.

Connection auditing Allows the application to retrieve a list of all active connections maintained
by the SCCP layer.

This is not recommended to replace application-level checkpointing of
connection information, but can be useful when a backup application has
failed and been restarted or as a general-purpose robustness mechanism.

66 Dialogic

Health Management Developer's Reference Manual Developing a SCCP redundant application

Refer to the Dialogic® NaturalAccess™ SCCP Layer Developer's Reference Manual for
more information.

Redundant application models

The redundant application models are:

• Single-node

• Dual-node (distributed)

Single-node redundant application model

In a single-node application model, both boards reside in the same chassis and a
single application instance opens and simultaneously binds to the same SCCP user
SAPs on both boards.

At any given point in time one board is primary, the other is backup. The single-node
application tracks which board is primary and directs all traffic toward the primary
board.

Because a single application instance handles all traffic to and from both boards, no
external mechanism is required to synchronize state information between application
instances.

Dual-node redundant application model

In a dual-node application two instances of the same application exist, typically on
separate chassis. Each instance of the application binds to a single board and, at any
given point in time, one instance of the application is the primary and one is the
backup (corresponding to the board states).

Only the primary application instance sends and receives network traffic; the backup
monitors the state of the primary, waiting to become primary itself.

In this model, some external mechanism may be needed to synchronize the state of
the primary and backup application instances - this is up to the application. For
example, if connection-oriented services are employed, the primary application
instance may need to checkpoint the connection state to the backup application
instance so the backup can preserve active (confirmed) connections across a
switchover.

Note: It is possible to implement a single-node system employing two application
instances, one for each board. The considerations for this case are the same as for a
dual-node architecture (although the implementation may be different).

In either application model, the application must register for the HMI service and the
SCCP service to fully support redundant operation.

Dialogic 67

Developing a SCCP redundant application Health Management Developer's Reference Manual

SCCP application considerations

There are application considerations for responding to redundancy-related events in
SCCP service applications. In many cases, the considerations are the same for both
single-node and dual-node applications.

Note: The message flow illustrations in these topics show separate application
instances for each board. For a single-node application architecture, this can be
thought of as separate contexts within a single application instance.

The application considerations are:

• SCCP redundant application startup

• SCCP normal operation

• SCCP switchovers

• SCCP board failure and reload

SCCP redundant application startup

Each application instance performs the following operations when starting up an SS7
SCCP redundant application:

Step Action

1 Creates one or more CTA queues on which to receive events.

A single queue can be used for SCCP and HMI service events, or separate queues can be used,
depending on the organization of the application (single-threaded versus multi-threaded).

2 Creates CTA contexts for the HMI service and for each instance of the SCCP service being
opened.

For a single-node application opening both boards in a redundant pair, a separate context must
be created for each SCCP user SAP (SSCP subsystem) being opened on each board. These
contexts can be assigned to the same or to separate queues.

3 Opens the appropriate service (SCCP or HMI) for each context and waits for the
CTAEVN_OPEN_SERVICES_DONE event.

If a single queue is used for multiple contexts, be prepared to process events from other
contexts while waiting for the CTAEVN_OPEN_SERVICES_DONE event; failure to do so may
result in an infinite loop.

4 Waits for the SCCPRUNSTATEIND event from the SCCP service before starting traffic.

If the SCCP layer on the target board is already in the primary or backup state, a
SCCPRUNSTATEIND event is immediately delivered to the application identifying the state
(event type = SPRS_PRIMARY or SPRS_BACKUP).

If still in the starting state (has not yet been designated primary or backup by the system
manager application), a SCCPRUNSTATEIND event is not generated until the board is set to
primary or backup state.

If the board is operating in a standalone (non-redundant) configuration, the application
immediately receives a SCCPRUNSTATEIND event with an event type of SPRS_STANDALONE.

Once the application (instance) receives the SCCPRUNSTATEIND (SPRS_PRIMARY or
SPRS_STANDALONE), normal data traffic through the primary SCCP instance can
begin.

Note: The application also receives NOWPRIMARY/NOWBACKUP events from the HMI
service. These events should be ignored for the purposes of starting data traffic
towards the SCCP service. Only the SCCPRUNSTATEIND (SPRS_PRIMARY or
SPRS_BACKUP) events should be honored for this purpose.

68 Dialogic

Health Management Developer's Reference Manual Developing a SCCP redundant application

The following illustration shows the operations that occur at SCCP application
startup:

Board 1
(primary)

Board 2
(backup)

Instance 1
(primary)

Instance 2
(backup)

SCCP service Application

HMI service

HMI_EVN_NOWPRIMARY
(Board 1)

HMI_EVN_NOWPRIMARY
(Board 2)

Ignore
NOWPRIMARY
events from HMI

Ignore
NOWBACKUP
events from HMI

CTAEVN_OPEN_SVCS_DONE

ctaOpenServices

ctaOpenServices

CTAEVN_OPEN_SVCS_DONE

ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

SCCPRUNSTATEIND (SPRS_PRIMARY)

ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

SCCPRUNSTATEIND (SPRS_BACKUP)

SCCP normal operation

During normal operation, data traffic is transferred between the primary board and
the primary application instance (context) only. This applies to both connectionless
and connection-oriented service classes.

Connectionless data transfer functions issued to the backup board are discarded or
returned to the caller if the return option is selected. Connection-oriented functions
are refused (connection requests) or discarded (all others). Connection audit
requests can be issued to both the primary and backup boards.

Dialogic 69

Developing a SCCP redundant application Health Management Developer's Reference Manual

SCCP switchovers

Switchover processing is initiated when an application receives a SCCPRUNSTATEIND
event with a new state that differs from the previous state of that board.

Single node application

For a single-node application that opens both boards, the application receives a
SCCPRUNSTATEIND event (SPRS_PRIMARY) for the previously backup board and a
SCCPRUNSTATEIND event (SPRS_BACKUP) for the previously primary board. These
event indications can occur in either order, depending on how the switchover was
initiated. For a dual-node architecture, the application instance receives only the new
run state indication for its own board.

Connectionless traffic

For connectionless traffic, there is no special processing that the application must
undertake other than to redirect its traffic to the new primary board. Connectionless
messages that were in progress prior to the switchover may be lost, so the
application must be able to recover from lost messages.

Connection-oriented traffic

For connection-oriented traffic, only confirmed connections are maintained by the
SCCP layer across a switchover. Any transient connections (those in connecting state
or in releasing state) are discarded. Resources associated with transient connections
are recovered by protocol timers and the SCCP layer inactivity timers, transparently
to the applications.

Therefore, a dual-node application employing connection-oriented services must
implement some mechanism, such as sending checkpoint messages, to reflect the
state of active connections from its primary instance to its backup instance. It is only
necessary to checkpoint connection states when the connection is confirmed and
released. For a single-node application that opens both boards, it may be necessary
to examine connection tables and delete connections that were in the connecting or
releasing states at the time of the switchover.

70 Dialogic

Health Management Developer's Reference Manual Developing a SCCP redundant application

Timing windows

In some switchover cases, due to timing windows, it is possible that the SCCP layer
view of which connections are active differs from the application view. To prevent the
stranding of resources in the SCCP layer due to these timing windows, the
application must implement the SCCP application inactivity timing facility and/or the
connection auditing facility described in the Dialogic® NaturalAccess™ SCCP Layer
Developer's Reference Manual.

Switchover processing

The following illustration shows the operations that occur during SS7 SCCP
switchover processing:

Board 1
(primary)

Board 2
(backup)

Instance 1
(primary)

Instance 2
(backup)

SCCP service Application

HMI service

HMI_EVN_NOWPRIMARY
(Board 2)

HMI_EVN_NOWBACKUP
(Board 1)

Ignore
NOWBACKUP
events from HMI

Ignore
NOWPRIMARY
events from HMI

Connection
checkpoints

if necessary

Switchover
request

Connection
checkpoints

if necessary

Data traffic

SCCPRUNSTATEIND (SPRS_PRIMARY)

SCCPRUNSTATEIND (SPRS_BACKUP)

Data traffic

Dialogic 71

Developing a SCCP redundant application Health Management Developer's Reference Manual

SCCP board failure and reload

A switchover can also be caused by a board failure (hardware or software).
Switchover processing by the backup application instance transitioning to the
primary state is similar to a planned switchover.

However, in a failure case, the failed board must be reloaded and placed into the
backup state. The application must close the SCCP service and destroy the context
associated with the failed board. Once the failed board is reloaded, the application
(instance) must create a new context and re-open the SCCP service on the reloaded
board.

When the board is reloaded and placed into the backup state by the system
manager, the SCCP layers automatically re-synchronize their states so that the
newly reloaded backup is again ready to take over in case of a failure of the primary.
No application action is necessary to trigger this re-synchronization.

Board 1
(primary)

Board 2
(backup)

Instance 1
(primary)

Instance 2
(backup)

SCCP service Application

HMI service

HMI_EVN_NOWPRIMARY
(Board 2)

HMI_EVN_NOWBACKUP
(Board 1)

Create new
context, open
SCCP service

Ignore
NOWPRIMARY
events from HMI

Connection
checkpoints

if necessary
Primary board
failure

Connection
checkpoints

if necessary

Go Primary
command

HMI_EVN_BRDDEAD
(Board 1)

HMI_EVN_ISOLATED
(Board 2)

Restart traffic
on board 2

Reload
board 1 HMI_EVN_BRDLOADING

(Board 1)
Close SCCP
service, destroy
context

SCCP state
Resynch

Backup now
ready to take
over when
needed

Data traffic

SCCPRUNSTATEIND (SPRS_PRIMARY)

Data traffic

Go Backup
command

ctaOpenServices

CTAEVN_OPEN_SERVICES_DONE

SCCPRUNSTATEIND (SPRS_BACKUP)

72 Dialogic

1100 Setting up a redundant system
Board installation and cabling

Use the redundancy feature to enable the system to detect and recover from the
failure of signaling links on a TX board, the failure of a signaling node, or the failure
of the TX board itself.

In a redundant configuration, each pair of TX boards is connected through a private
Ethernet connection. If other devices are connected to the private Ethernet link,
avoid overloading the link. Packets can be lost between the redundant TX boards if
the connection is overloaded.

Both TX boards of a redundant pair must be the same type of board (TX 4000 should
be paired with another TX 4000; TX 5000 Series board should be paired with the
same type of TX 5000 Series board).

This topic describes dual-node redundant signaling and single-node redundant
signaling for the following types of configurations:

• TDM configuration

• IP network configuration

TDM configuration

To connect a TX board to its redundant mate in a TDM configuration, use a Category
5 shielded twisted pair (STP) crossover cable. To connect two TX 5000 Series boards,
use a crossover cable to connect Ethernet 3 on the primary board to Ethernet 3 on
the backup board. To connect two TX 4000 boards, use a crossover cable, connect
Ethernet 1 on the primary board to Ethernet 1 on the backup board.

You must create the IP interface using the ifcreate command in the txconfig utility.
You must also specify the IP address of the TX board’s redundant mate using the
mate command in the txconfig utility. For more information, refer to the Dialogic®
NaturalAccess™ Signaling Software Configuration Manual.

Dialogic 73

Setting up a redundant system Health Management Developer's Reference Manual

Dual-node redundant signaling server

The following illustrations show how to set up two TX 5000E boards based on a dual-
node redundant signaling server in a TDM configuration. The boards are located in
two separate chassis to ensure board-level and system-level redundancy.

The following illustration shows a dual-node redundant signaling server for TX 5000E
boards in a TDM configuration:

Chassis 1 with
TX 5000E
(primary)

Chassis 2 with
TX 5000E
(backup)

SS7 links

Private Ethernet connection

Ethernet 1Ethernet 1

The following illustrations show how to set up two TX 4000 or TX 4000C boards
based on a dual-node redundant signaling server in a TDM configuration. The boards
are located in two separate chassis to ensure board-level and system-level
redundancy.

The following illustration shows a dual-node redundant signaling server for TX 4000
boards:

Chassis 1 with
TX 4000
(primary)

Chassis 2 with
TX 4000
(backup)

SS7 links

Private Ethernet connection

Ethernet 1Ethernet 1

74 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

The following illustration shows a dual-node redundant signaling server for TX 4000C
boards:

Chassis 1 with
TX 4000C
(primary)

Chassis 2 with
TX 4000C
(backup)

SS7 links

Private Ethernet connection

Ethernet 1
Ethernet 1

Single-node redundant signaling server model

The following illustrations show how to set up two TX 5000E boards based on the
single-node signaling server in a TDM configuration. The boards are located in the
same chassis to ensure board-level redundancy.

The following illustration shows a single-node redundant signaling server for TX
5000E boards in a TDM configuration:

Chassis 1 with
TX 5000E
(primary)

Chassis 2 with
TX 5000E
(backup)

SS7 links

Private Ethernet connection

Ethernet 1Ethernet 1

The following illustrations show how to set up two TX 4000 or TX 4000C boards
based on the single-node signaling server in a TDM configuration. The boards are
located in the same chassis to ensure board-level redundancy.

Dialogic 75

Setting up a redundant system Health Management Developer's Reference Manual

The following illustration shows a single-node redundant signaling server for TX 4000
boards:

SS7 links

TX 4000
(primary)

Chassis 1

Private Ethernet connection

Ethernet 1Ethernet 1

TX 4000
(backup)

The following illustration shows a single-node redundant signaling server for TX
4000C boards:

Chassis 1

Private Ethernet connection

Ethernet 1Ethernet 1

SS7 links

TX 4000C
(Backup)

TX 4000C
(Primary)

IP network configuration

To connect a TX board to its redundant mate in an IP network configuration, use a
Category 5 shielded twisted pair (STP) crossover cable. To connect two TX 5000E
boards for redundancy, use the crossover cable to connect Ethernet 3 on the primary
board to Ethernet 3 on the backup board. To connect two TX 4000 boards for
redundancy, use the crossover cable to connect Ethernet 1 on the primary board to
Ethernet 1 on the backup board.

Using standard Ethernet cables, connect the remaining Ethernet connectors on both
boards to the IP network. For a TX 5000E board, each board provides two Ethernet
connectors that can be dedicated to SIGTRAN network access (Ethernet 1 and

76 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

Ethernet 2). For a TX 4000 board, each board provides a single Ethernet connector
for SIGTRAN network access (Ethernet 2, since Ethernet 1 is used for redundancy).

Use a private Ethernet link to connect the redundant boards to avoid loss or delay of
vital checkpoint messages. Since TX 5000E boards provide three physical Ethernet
connectors, it is possible to have a dedicated redundancy connection while still
having redundant physical pathways from each board to the SIGTRAN network. TX
4000 boards provide two Ethernet connectors so if each board in the redundant pair
requires multi-homing, you can use Ethernet 1 for both the redundant pathway and
for SIGTRAN network access. In this configuration, the Ethernet 1 on each board is
connected to what is shown as an IP network cloud in the illustrations that follow
(just as the Ethernet 2 connectors are). Be aware that this greatly increases the
chance of lost or delayed checkpoint messages which can result in the backup having
outdated information.

You must create the IP interface using the ifcreate command in the txconfig utility.
You must also specify the IP address of the TX board’s redundant mate using the
mate command in the txconfig utility. For more information, refer to the Dialogic®
NaturalAccess™ Signaling Software Configuration Manual.

Dual-node redundant signaling server

The following illustrations show how to set up two TX 5000E boards based on a dual-
node redundant signaling server in an IP network configuration. The boards are
located in two separate chassis to ensure board-level and system-level redundancy.

The following illustration shows a dual-node redundant signaling server for TX 5000E
boards in an IP configuration:

Chassis 1 with
TX 5000E board

(primary)

Chassis 2 with
TX 5000E board

(backup)

Ethernet 1Ethernet 1
Ethernet 2Ethernet 2

IP network (SIGTRAN)

3

1
2

Ethernet 3 3

1
2

Ethernet 3

Private Ethernet connection
(redundancy traffic)

The following illustrations show how to set up two TX 4000 or TX 4000C boards
based on a dual-node redundant signaling server in an IP network configuration. The
boards are located in two separate chassis to ensure board-level and system-level
redundancy.

Dialogic 77

Setting up a redundant system Health Management Developer's Reference Manual

The following illustration shows a dual-node redundant signaling server for TX 4000
boards:

Chassis 1 with
TX 4000
(primary)

Chassis 2 with
TX 4000
(backup)

Private Ethernet
connection

Ethernet 1Ethernet 1
Ethernet 2Ethernet 2

IP network (SIGTRAN)

The following illustration shows a dual-node redundant signaling server for TX 4000C
boards:

Chassis 1 with
TX 4000C
(primary)

Chassis 2 with
TX 4000C
(backup)

IP network (SIGTRAN)

Private Ethernet connection

Ethernet 1Ethernet 1
Ethernet 2 Ethernet 2

Single-node redundant signaling server

The following illustration shows how to set up two TX 5000E boards based on a
single-node signaling server in an IP network configuration. The boards are located
in the same chassis to ensure board-level redundancy.

The following illustration shows a single-node redundant signaling server for TX
5000E boards in an IP configuration:

78 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

IP network (SIGTRAN)

Chassis 1

Ethernet 1
Ethernet 2

Ethernet 1
Ethernet 2

3

1

2

3

1

2

Ethernet 3 Ethernet 3

Private Ethernet connection
(redundancy traffic)

TX 5000E board
(primary)

TX 5000E board
(backup)

The following illustration shows how to set up two TX 4000 or TX 4000C boards
based on a single-node signaling server in an IP network configuration. The boards
are located in the same chassis to ensure board-level redundancy.

The following illustration shows a single-node redundant signaling server for TX 4000
boards:

IP network (SIGTRAN)

Chassis 1

Private Ethernet connection

Ethernet 1

TX 4000
(backup)

Ethernet 2

Ethernet 1

Ethernet 2

TX 4000
(primary)

Dialogic 79

Setting up a redundant system Health Management Developer's Reference Manual

The following illustration shows a single-node redundant signaling server for TX
4000C boards:

Chassis 1

Private Ethernet connection

Ethernet 1Ethernet 1

TX 4000C
(Backup)

TX 4000C
(Primary)

Ethernet 2 Ethernet 2

IP network (SIGTRAN)

Configuring for redundant operation

To configure a system for redundant operation, modify the following components:

• HMI configuration

• ss7load script configuration

• MTP configuration over TDM

• M3UA and SCTP configuration over IP (SIGTRAN)

• ISUP, TUP, TCAP, and/or SCCP configuration

HMI configuration

The HMI service requires the hmi.cfg file to identify the boards to be monitored and
other run time parameters. The HMI configuration file is located in the following
directories:

Operating system Directory

Windows \Program Files\Dialogic\tx\config\hmi.cfg

UNIX /opt/dialogic/tx/etc/hmi.cfg

80 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

Sample HMI configuration file

The sample HMI configuration file created by the software installation utility for
Windows is shown in the following example. The UNIX file is identical to the Windows
file except for the format of the path name for the download files.

Windows version
BOARD_NUMBER1 1
SS7LOAD_FILE1 "c:\\Progra~1\\Dialogic\\tx\\bin\\ss7load.bat"
BOARD_NUMBER2 2
SS7LOAD_FILE2 "c:\\Progra~1\\Dialogic\\tx\\bin\\ss7load2.bat"
END

UNIX version
BOARD_NUMBER1 1
SS7LOAD_FILE1 /opt/dialogic/tx/bin/ss7load
BOARD_NUMBER2 2
SS7LOAD_FILE2 /opt/dialogic/tx/bin/ss7load2
END

HMI configuration can be specified in any order. The BOARD_NUMBERn and
SS7LOAD_FILEn can be repeated for up to eight boards:

Parameter
name

Range Default Description

BOARD_NUMBER1 1 - 8 None Board number to manage.

SS7LOAD_FILE1 N/A None File and path name of the batch file used to download the board.
Ensure that the file is board specific.

BOARD_NUMBER2 1 - 8 None Board number to manage.

SS7LOAD_FILE2 N/A None File and path name of the batch file used to download the board.
Ensure that the file is board specific.

Note: HMI cannot pass any arguments (that is, the board number) to the ss7load
script. If multiple boards are configured on a single node, each board must have its
own ss7load script with an explicit board number. The default ss7load script is a
generic script that accepts the board number as an argument and defaults to board
number 1 when the board number is not specified.

Configuring port numbers for the Health Management service

The Health Management service uses one UDP port number for its functions - the
same port for unsolicited events and for conversational requests. By default, port
number 4801 is used for this purpose. Both the HMI service and the Health
Management service libraries check for the appropriate service name/port
assignments with the standard sockets getservbyname function before using the
default values.

The service name is hm_api. For example, the following entry in the services file
changes the UDP ports used to 1750:
hm_api 1750/udp # Tx Series HM API service

This entry is read-only at startup time. To change these values, the HMI service and
all applications using the Health Management service must be stopped and restarted.

Dialogic 81

Setting up a redundant system Health Management Developer's Reference Manual

ss7load script configuration

The ss7load script contains the commands necessary to download a board with the
proper protocol tasks and configuration files. The ss7load script is located in the
following directories:

Operating system Directory

Windows \Program Files\Dialogic\tx\bin\ss7load.bat

UNIX /opt/dialogic/tx/bin/ss7load

For redundant configurations, the ss7load script must download the txmon.elf file.
This is controlled by the value of the environment variable TXMODE. If TXMODE is
set to redundant, then the ss7load script will load the txmon.elf file.

Note: For standalone configurations where the Health Management system is
employed for board monitoring only, the txmon.elf file is required for standalone
configurations.

The ss7load script is called by the HMI process, as shown in the HMI configuration
file. In the sample HMI configuration file, there are two versions of the ss7load script
file, ss7load.bat and ss7load2.bat. The first script loads board 1 and the second
script loads board 2. It is important that both ss7load scripts are modified as shown
earlier in this topic. If the ss7load script file names are changed, ensure that their
references in the HMI configuration file are also changed.

MTP configuration over TDM

Specify the IP address of the local board using the ifcreate command and the IP
address of the TX board’s redundant mate using the mate command in the file read
by the txconfig utility. This is typically specified in the txcfgn.txt file, where n is the
board number. For example:
#---
Ethernet interface number 1:
ifcreate 1 192.168.1.1 255.255.0.0
#---|
Set up this board's redundancy mate board address:
mate 192.168.1.2

For more information, refer to the Dialogic® NaturalAccess™ Signaling Software
Configuration Manual.

82 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

A typical redundant configuration includes signaling links terminated on both boards
in a mated pair. The MTP configuration for each board must include the links
terminated on its own board and the links terminated on the mate board. The
following example shows a simple MTP configuration file for each board of a mated
pair with one link terminated on each board:
Board 1 MTP Configuration # Board 2 MTP Configuration
#----------------------- #-----------------------
#Overall MTP3 Parameters #Overall MTP3 Parameters
#----------------------- #-----------------------

NODE_TYPE SP NODE_TYPE SP
.
 <identical to board 2> <identical to board 1>
.
#------------------------ #------------------------
#Link 0 #Link 0
#------------------------ #------------------------
LINK 0 LINK 0
PORT T1 # Board 1, TDM 1 PORT R # Remote (board 1)
LINK_SET 1 LINK_SET 1
ADJACENT_DPC 2.2.2 # Adjacent STP ADJACENT_DPC 2.2.2 # Adjacent STP
LINK_SLC 0 LINK_SLC 0
TIMER_T31 1 TIMER_T31 1
LSSU_LEN 2 LSSU_LEN 2 # ignored: remote
END END
#------------------------ #------------------------
#Link 1 #Link 1
#------------------------ #------------------------
LINK 1 LINK 1
PORT R # Remote (board 2) PORT T1 # Board 2, TDM 1
LINK_SET 1 LINK_SET 1
ADJACENT_DPC 2.2.2 # Adjacent STP ADJACENT_DPC 2.2.2 # Adjacent STP
LINK_SLC 1 LINK_SLC 1
LSSU_LEN 2 # ignored: remote LSSU_LEN 2
END END
#--------------------------------- #---------------------------------
#User Parameters (NSAP definition) #User Parameters (NSAP definition)
#--------------------------------- #---------------------------------
.
 <identical to board 2> <identical to board 1>
.

The locally terminated links are fully configured with physical port identifiers and all
layer 2 and layer 3 parameters. The links terminated on the mate board contain no
physical port identifiers or other layer 2 parameters; instead, they are specified as
Remote (R).

Note: Each relative link number (link 0, for example) refers to the same link. On
board 1, it is fully configured since it is terminated locally. On board 2, only the layer
3 parameters are specified because the link is not terminated on board 2 (layer 2
parameters can be specified in this case, but they have no affect).

Other sections of the MTP configuration, such as link sets, routes, and service access
points are typically identical on both boards in the mated pair.

For more information on the MTP configuration, refer to the Dialogic®
NaturalAccess™ Signaling Software Configuration Manual.

Dialogic 83

Setting up a redundant system Health Management Developer's Reference Manual

M3UA and SCTP configuration over IP (SIGTRAN)

Specify the IP address of the local board using the ifcreate command and the IP
address of the TX board’s redundant mate using the mate command in the file read
by the txconfig utility. This is typically specified in the ipcfgn.txt file, where n is the
board number. For example:
#---
Ethernet interface number 1 is part of the 10.*.*.* subnet:
ifcreate 1 192.168.1.1 255.255.0.0
#---
Set up this board's redundancy mate board address:
mate 192.168.1.2

There are no specific M3UA or SCTP configuration requirements for redundant board
configurations. Both boards in a mated pair typically have identical configurations.

For more information, refer to the Dialogic® NaturalAccess™ Signaling Software
Configuration Manual.

ISUP, TUP, TCAP, and/or SCCP configuration

There are no specific ISUP, TUP, TCAP, or SCCP configuration requirements for
redundant board configurations. Both boards in a mated pair typically have identical
configurations.

For more information on the ISUP, TUP, TCAP, and SCCP configurations, refer to the
Dialogic® NaturalAccess™ Signaling Software Configuration Manual.

Installing and running HMI in Windows

The Health Management Interface (HMI) runs as a service under Windows. After
installation of the software, the HMI is installed as a Windows service in a default
state of disabled.

Note: To use Hot Swap, the HMI service must be removed (hmi -remove) and re-
installed with the -hsinstall option..

To start the HMI service, reboot the system or perform the following steps:

Step Action

1 From the Control Panel, select the Services icon.

2 Choose the Dialogic TX HMI service.

3 Click Start.

On subsequent system boots, the service is started automatically.

Note: Before starting the HMI service, the HMI configuration file must be created or
updated. Refer to HMI configuration on page 80.

84 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

Installing and running HMI in UNIX

In UNIX, the HMI service is named hmid and runs as a daemon process.

It can be started manually from a command line prompt or started at boot time from
within a startup script.

The hmid daemon has no command line parameters and generates no output
messages.

Bringing up a redundant system

Once configuration is complete and the HMI service has been started, start the
redundant system by completing the following steps:

Step Action

1 Start the txalarm utility.

2 Load the first board and set it to the primary state. Refer to Loading and setting board states on
page 86 for information.

3 Load the second board and set it to the backup state.

4 Start application traffic.

Starting txalarm

The txalarm utility is the primary source for status information regarding
communication problems between boards in a redundant configuration.

Before starting the redundant system, start the txalarm utility to monitor the startup
and ensure that the system is working correctly. If you are running a dual node
system, start txalarm on both systems.

To run txalarm from an MS-DOS prompt (Windows) or a UNIX shell, type:
txalarm -f alarm.log

Messages display when the boards are first loaded. The -f option saves the output to
a file for later reference.

Dialogic 85

Setting up a redundant system Health Management Developer's Reference Manual

Loading and setting board states

These steps can be performed with the redundancy manager (RMG) demonstration
program or with an application that uses the Health Management service. In this
topic, it is assumed that the RMG demonstration program is used.

The RMG demonstration program (rmg.exe [Windows] or rmg [UNIX]) is located in
the following directories:

Operating system Directory

Windows \Program Files\Dialogic\tx\bin\

UNIX /opt/dialogic/tx/bin/

For more information, refer to the RMG demonstration program overview on page
93.

RMG on a single node system

In a single node system, both boards of the redundant set are in the same machine.
A separate instance of the RMG demonstration program must be invoked for each
board of the redundant set.

One board is arbitrarily designated as node 1 of the redundant set. The other board
is designated as node 2 of the redundant set. In this example, board 1 is node 1 and
board 2 is node 2. Each RMG must also designate a UDP port over which to
communicate with the other RMG. By default, this port number is 1700. However,
when the boards are on the same machine they must use different ports. For this
example, the RMG for board 1 uses port 1700 and the RMG for board 2 uses port
1701.

For the first board, type the following command from an MS-DOS prompt:
rmg -b 1 -n 1 -p 1701

For this example, board 1 (-b 1) is designated as node 1 (-n 1). Its local port is 1700
(default), and the port number of its mate is 1701 (-p 1701).

For the second board, type the following command:
rmg -b 2 -n 2 -l 1701

For this example, board 2 (-b 2) is designated as node 2 (-n 2). Its local port is 1701
(-l 1701), and the port number of its mate is 1700 (default).

RMG on a dual node system

To use RMG in a dual node system, both machines must have an IP network
connection to the other machine. This must be a different connection from the
Ethernet crossover that links the two TX boards.

In a dual node system, each board of the redundant set is in a different machine. A
separate instance of RMG must be invoked for each board of the redundant set.

One board is arbitrarily designated as node 1 of the redundant set. The other board
is designated as node 2 of the redundant set. In this example, board 1 of machine A
is node 1 and board 1 of machine B is node 2. To communicate with its mate, each
RMG must also designate the IP address and UDP port of its mate. Since the boards
are on separate machines, they can both use the default UDP port number, 1700.

86 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

First board, machine A

For the first board, on machine A, type the following from an MS-DOS prompt:
rmg -b 1 -n 1 -m 1.1.1.2

For this example, board 1 (-b 1), of machine A, is designated as node 1 (-n 1). Its
partner is machine B, whose IP address is 1.1.1.2. Its local port is 1700 (default),
and the port number of its mate is 1700 (default).

Alternatively, the host name of machine B is specified with the -m command line
option. Under Windows (with Microsoft Networking) or under UNIX, the host name
can be used.

Second board, machine B

For the second board, on machine B, type:
rmg -b 1 -n 2 -m 1.1.1.1

For this example, board 1 (-b 1) of machine B is designated as node 2 (-n 2). Its
partner is machine A, whose IP address is 1.1.1.1. Its local port is 1700 (default),
and the port number of its mate if 1700 (default).

Alternatively, the host name of machine A is specified with the -m command line
option. Under Windows (with Microsoft Networking) or under UNIX, the host name
can be used.

RMG startup

Each RMG, on startup, attempts to load its designated board if the board has not
already been loaded. The load script used is defined in the HMI configuration file.
Refer to HMI configuration on page 80 for more information.

The first node that starts RMG becomes the primary node. For this example, it is
assumed that node 1 starts RMG first, which loads the board on node 1 first, and
then goes to the primary state. The RMG for node 1 displays:
Board 1, Node 1 Board Loading
Board 1, Node 1 Now Starting
Board 1, Node 1 Board Isolated
Board 1, Node 1 Board Connected
Board 1, Node 1 Now Primary

It is assumed that node 2 starts RMG second. Node 2 goes to the backup state. The
RMG for node 2 displays:
Board 1, Node 2 Board Loading
Board 1, Node 2 Now Starting
Board 1, Node 2 Board Isolated
Board 1, Node 2 Board Connected
Board 1, Node 2 Now Backup

If... Then the... For more information, refer
to...

Both RMG applications display
Now Primary

RMG applications are not
communicating.

Troubleshooting RMG
communication

The board connected event is not
displayed

Boards are not communicating Troubleshooting board
communication

Dialogic 87

Setting up a redundant system Health Management Developer's Reference Manual

Troubleshooting RMG communication

If the RMG demonstration programs are not communicating, both of the boards go to
the primary state (the Now Primary message displays for both boards). If this
occurs, check the following items:

• Physical IP network connection for each node.

• IP addresses (or host names) used when RMG is started.

• The local UDP port number of one RMG application matches the remote UDP
port number of the other RMG application.

Troubleshooting board communication

If a board connected event is not displayed by either RMG, there is a problem with
the board to board connection.

Use the txalarm utility to determine the board communication state. During a
successful system startup, the inter-board communication status should become
connected, as shown in the following sample alarm output:
<05/14/1999 14:53:14> txmon 1 19745 Initialization complete
<05/14/1999 14:53:14> mtp 1 1 Configuring MTP Layer 1
. . .
<05/14/1999 14:53:14> mtp 1 1 MTP3: Ready...
<05/14/1999 14:53:14> txmon 1 19746 Task [mtp] registered
<05/14/1999 14:53:14> txmon 1 19748 Mate board found at IP address
 64.0.21.132
<05/14/1999 14:53:15> mtp 1 1 MTP3 Connected
<05/14/1999 14:53:15> isup 1 1 Registering ISUP Layer
<05/14/1999 14:53:15> isup 1 1 ISUP: Ready...
<05/14/1999 14:53:15> txmon 1 19746 Task [isup] registered
. . .
<05/14/1999 14:53:17> mtp 1 18179 MTP3 Link 0 Up

If the boards cannot communicate after being downloaded, they remain isolated.
During isolation, the signaling links terminated on the backup cannot be brought into
service, and the backup board will not correctly reflect the state of the network. The
most likely causes of isolation during turn-up of a new installation are:

• Ethernet ports on the mated boards are not properly connected with a
crossover cable.

• txmon task was not downloaded when the board was loaded.

• Mate IP addresses are not configured properly for both boards.

Once the boards are properly connected, enter the status (S) command to each
RMG. Each RMG displays the following status:
RMG Board n Status

State :ACTIVE
Network Status : UNKNOWN
Heartbeats Sent: nnn Received: nnn
HMI Board n Status

Heartbeats Sent: nnn Received: nnn
Link State : Connected
Network State : Not Reported
mtp State = Primary
isup State = Primary

Confirm that the state is active and the link state is connected.

88 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

Starting data traffic

Once boards are loaded and successfully communicating, normal data traffic can
begin.

If links are not established and/or data traffic is not successful, there may be a
problem with the redundant MTP or SIGTRAN configuration.

Checking link status

Check the MTP link status to determine if the links are up. Use the mtpmgr
application to determine the link status. MTP configuration provides a sample MTP
configuration for each board having a single link to a third node at point code 2.2.2.
Performing a status link * command for Node 1 for this configuration produces the
following results:
Num Name MTP3 State MTP2 Hi State Low State
0 T1 ACTIVE ENABLED IN_SERVICE
1 R ACTIVE REMOTE

Performing the same command for Node 2 produces the following results:
Num Name MTP3 State MTP2 Hi State Low State
0 R ACTIVE REMOTE
1 T1 ACTIVE ENABLED IN_SERVICE

If the links are expected to be enabled and active, but are not in this state, check the
MTP configuration.

Checking the MTP configuration

Ensure that the proper MTP configuration file is called from the proper ss7load script
listed in the HMI configuration file. Also verify that links are configured with valid
port types on the board they are physically terminated on and are configured as
remote (R) on the mate board. For more information, refer to MTP configuration over
TDM on page 82.

If the port type appears to be configured correctly but the links do not come into
service, other problems may exist. Refer to the Dialogic® NaturalAccess™ Signaling
Software Configuration Manual for information on troubleshooting MTP
configurations.

Dialogic 89

Setting up a redundant system Health Management Developer's Reference Manual

Checking the association status

In a SIGTRAN configuration, check the SIGTRAN association status to determine if
associations were established and M3UA management messages were exchanged
correctly. To check the SIGTRAN association status, use the status psp 1 command,
and check the values for State and ASP State in the output. For example:
m3uamgr[1]>status psp 1

=====================PSP 1 Association Status===================
AssocId = 0 State = ACTIVE ASP State = ACTV Inhibit = NO

=================Active PSs (4)=================
 PsId = 3
 PsId = 4
 PsId = 1
 PsId = 2

=================Registered PSs (0)==============
 None

=====================Current PSP 1 Confuration=================
pspType = IPSP ipspMode = DBL END dynRegAllow = YES
loadShareMode = RNDRBN nwkAppIncl = NO rxTxAspId = NO
selfAspId = 0 nwkId = 1 PriDestAddr = 10.51.1.185
DestPort = 2905 locOutStrms = 2

The following table describes the association states:

Association
state

Description

ACTIVE An association is established.

DOWN No association is established. If M3UA is configured as an ASP or IPSP client, there is
probably a configuration or connectivity problem. For information, refer to Checking
the SIGTRAN configuration on page 90.

The following table describes the ASP states:

ASP
state

Description

ACTV ASPAC messages were exchanged, and traffic can flow.

DOWN No M3UA ASP messages were exchanged. This should only occur if the association State is
also DOWN.

INACTV ASPUP messages were exchanged, but not ASPAC messages. This can occur if an upper
layer has not yet bound to M3UA, or if this is the backup node. The ASPAC messages will be
sent as soon as an upper layer binds to M3UA or the node becomes the primary node, or
both.

Checking the SIGTRAN configuration

Ensure that the proper M3UA and SCTP configuration files are called from the proper
ss7load script listed in the HMI configuration file. Also verify that the primary
destination address specified for each PSP is correct. For more information, refer to
M3UA and SCTP configuration over IP (SIGTRAN) on page 84.

If the configurations seem correct, verify that you have connectivity from each board
to the remote nodes. Use the cpcon utility to send pings from each board to the
destination addresses.

90 Dialogic

Health Management Developer's Reference Manual Setting up a redundant system

If the configuration and connectivity seem OK, other problems may exist. Refer to
the Dialogic® NaturalAccess™ Signaling Software Configuration Manual for more
information about troubleshooting SIGTRAN configurations.

ISUP testing

Once both boards of the redundant set are loaded and communicating and links are
established, ISUP tests can take place using:

• Applications

• orig and term demonstration programs (refer to the Dialogic®
NaturalAccess™ ISUP Layer Developer's Reference Manual)

• isupdemo demonstration program

TCAP testing

Once both boards are loaded and communicating and the links are established, TCAP
tests can take place using:

• Applications

• find800 demonstration program (refer to the Dialogic® NaturalAccess™ TCAP
Layer Developer's Reference Manual)

• tcapdemo demonstration program

TUP testing

Once both boards of the redundant set are loaded and communicating and links are
established, TUP tests can take place using:

• Applications

• tuporig and tupterm demonstration programs (refer to the Dialogic®
NaturalAccess™ TUP Layer Developer's Reference Manual)

• tupdemo demonstration program

SCCP testing

Once both boards are loaded and communicating and the links are established, SCCP
tests can take place using:

• Applications

• sccpdemo demonstration program (refer to the Dialogic® NaturalAccess™
SCCP Layer Developer's Reference Manual).

Dialogic 91

1111 RMG demonstration program
RMG demonstration program overview

The redundancy manager (RMG) demonstration program is a sample management
application for controlling a redundant board pair with the Health Management
service. Each instance of the RMG application controls one member of a board pair
and communicates with a peer RMG process that controls the mate board.

Note: The RMG demonstration program is provided solely as a sample application for
illustrating control of a redundant board-pair through the Health Management service
and as an aid for prototyping redundant configurations. It is not guaranteed to be
complete or failure resilient and is not suitable for live system deployment.

The RMG program operates in either a single-node or dual-node configuration. One
instance of RMG is run for each board. The RMG demonstration program
communicates with its mate RMG demonstration program through UDP/IP using the
sockets interface (even when both processes reside on a single node). Together, the
RMG demonstration programs implement the failure detection and recovery policies
recommended for a redundant configuration.

RMG also provides a command line interface for issuing Health Management service
commands (load a board, halt a board, retrieve board status) and switching control
between the primary and backup boards.

RMG requires TCP/IP networking and a sockets implementation (Windows Sockets
version 1.1 or later for Windows, stands BSD sockets library for UNIX). For dual-
node configurations, a suitable IP connection between nodes, such as a local area
network, is required.

RMG can also be used in a standalone configuration (without the mate process) for
detecting and recovering from board failures without user intervention.

Dialogic 93

RMG demonstration program Health Management Developer's Reference Manual

RMG state model

The behavior of each signaling node, as implemented through the RMG
demonstration program, is modeled as a finite state machine where the state of each
node is determined by external events such as board failures, signaling node failures,
and user commands. The RMG state model is shown in the following illustration.

Note: Some transient states and some events/transitions are not shown.

Initial

Starting

Loading

Primary

Backup

Standalone

Out of
service

Board is
running

Board
halted or
not yet
loaded

Board failed or
load command

Mate not yet
active

Mate is already
primary

Board load
failed

Halt board
command

Switchover
command

Halt board
command

Board failed
or load

command

Board load
complete
(starting)

Board failed
or load

command

Load board
command

Switchover
command or
mate failed

Board load
complete

(standalone)

Board is in
standalone

configuration

94 Dialogic

Health Management Developer's Reference Manual RMG demonstration program

The following table describes the RMG states:

State name Description

Initial Initial state upon starting RMG process; determining if board has already been loaded.

Loading Board is being downloaded.

Starting Board is loaded; determining whether mate node is already active or not.

Standalone Board is in standalone (non-redundant) configuration.

Primary Board is in primary mode.

Backup Board is in backup mode, monitoring status of primary board.

Out of
service

Board has failed and attempt to reload it has failed; or, halt command received; manual
intervention is required to restore board.

RMG initialization

The goal of the initialization phase is to independently start and restart signaling
nodes. This results in a synchronized system (one in which both nodes agree on
which is the primary and which is the backup) that restores signaling functionality as
quickly as possible.

During initialization, an RMG process contacts its mate to determine if the mate is
already primary. If no response is received or a communication error occurs, the
RMG process delays for a short period and retries. If the retry is unsuccessful (or the
mate determines it is the backup node), the restarting board becomes the primary
board. The delay and retry is necessary to avoid having both nodes initialize
simultaneously, unable to contact each other, and both become primary.

To resolve startup glare, where both nodes initialize, each RMG process is assigned a
node number (1 or 2). The lower numbered node (node 1) becomes the primary
node and the higher numbered node becomes the backup when startup glare is
detected.

Dialogic 95

RMG demonstration program Health Management Developer's Reference Manual

RMG failure detection and recovery

To facilitate failure detection and recovery, the primary RMG process monitors the
board through the Health Management service. The primary RMG periodically sends
heartbeat messages to the backup, allowing the backup to monitor the primary's
status.

When the primary RMG process detects board failure or a reload or halt command is
received, it initiates failure recovery by negotiating a switchover to the backup
board. If possible, the failed board is reloaded and brought back into service as the
backup board (unless a halt command was received, in which case the board is
halted and remains out of service).

The RMG process (both primary and backup) also supports a planned changeover
command that causes the primary and backup boards to switch roles.

To detect a failure of the primary RMG process or signaling node, the backup RMG
continuously monitors for the receipt of heartbeat messages from the primary. If no
heartbeat messages are received for five consecutive heartbeat periods, the backup
initiates its own recovery and switches to primary mode.

Running the RMG demonstration program

RMG is started from a Windows command line console or a UNIX command line
prompt:
RMG [-b board] [-l loc_port] [-m mate_addr] [-n node] [-p remote_port] [-t]

All run time parameters are optional and are defined in the following table.

Note: Each instance of RMG monitors and controls a single board.

Parameter Description Default value

-b board Board number to monitor on
this node.

1

-l loc_port Local UDP port for this process
to attach to.

1700

-m mate_addr IP address (in q.x.y.z dotted
notation) or host name of the
mate RMG process.

None.

If omitted, it is assumed that the mate RMG
process exists on the same node.

-n node Node number [1..2] assigned
to this RMG process for
resolving startup glare.

1

-p remote_ port UDP port where the mate RMG
process can be found.

1700

If two RMG processes are executed on the same
node, they must be assigned different UDP port
numbers.

-q Requires operator quit
command before RMG exits.

Automatic exit on certain failure conditions.

-t Enables tracing to the Natural
Access server (ctdaemon).

No tracing.

96 Dialogic

Health Management Developer's Reference Manual RMG demonstration program

Once running, the RMG process displays error messages and status change
messages in the console window where it was started. The following example shows
sample output from the RMG process:
host prompt> rmg -b2 -m node1 -n2 -t
rmg: Redundancy manager version 2.0 Sep 30 2008
Node: 2, Board 2: Board Halted
Node: 2, Board 2: Board Loading
Node: 2, Board 2: Now Starting
Node: 2, Board 2: Board Isolated
Node: 2, Board 2: Now Primary

RMG>

RMG supported commands

The RMG demonstration program includes a command line user interface for issuing
HMI commands.

RMG does not automatically issue a prompt unless the user presses Enter to prevent
scrambling messages being displayed. Enter user commands at any time, with or
without the prompt.

The following table describes the RMG commands and their abbreviations:

Command Quick command Description

Status S Displays current board status and statistics.

Change C Swaps current primary and backup, if possible.

Halt H Halts the board, taking it out of service.

Load L Reloads the board.

Reset R Resets HMI.

Quit Q Quits this process without disturbing the board.

Help ? Displays a list of available commands.

Dialogic 97

RMG demonstration program Health Management Developer's Reference Manual

Tracing RMG events

Tracing events processed by the RMG demonstration program can be enabled by
starting the Natural Access Server (ctdaemon) and running RMG with the -t option.
This can be helpful in understanding the sequence of events in certain scenarios.

Configuring and starting the Natural Access Server (ctdaemon) is described in the
Natural Access Developer's Reference Manual.

The following example shows sample trace output from the Natural Access Server
(ctdaemon) when RMG is run with tracing enabled:
CT Access Daemon V.5 (Mar 4 1999)
ctdaemon: Configuration file './cta.cfg':
 [ctasys] section loaded.
ctdaemon: Configuration file './cta.cfg':
 [ctapar] section loaded.
ctdaemon> MESG: Thu May 13 10:31:10 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | DEBUG: RMG Controller FSM started
MESG: Thu May 13 10:31:10 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | RMGC State: INITIAL Event: Board Halted
MESG: Thu May 13 10:31:10 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | RMGC State: LOADING Event: Board Loading
MESG: Thu May 13 10:31:14 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | RMGC State: LOADING Event: Now Starting
MESG: Thu May 13 10:31:14 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | RMGC State: STARTING Event: Board Isolated
MESG: Thu May 13 10:31:17 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | RMGC State: STARTING Event: Timer_T1
MESG: Thu May 13 10:31:20 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | RMGC State: STARTING Event: Timer_T1
MESG: Thu May 13 10:31:20 1999
 | pid=6a tid=75 ctahd=80010002 (RMGCMD) uid=0 tag=4003 sev=0
 | RMGC State: ACTIVE Event: Now Primary

98 Dialogic

1122 ISUP demonstration program
ISUP demonstration program overview

The ISUP demonstration program, isupdemo, is a multi-threaded program that uses
the redundancy features of the SS7 ISUP layer and the Health Management service.
It is a skeletal implementation of a toll switch with a user interface for placing and
receiving test calls and managing circuits.

Dialogic 99

ISUP demonstration program Health Management Developer's Reference Manual

isupdemo data structures

The following data structures are called by isupdemo:

Structure Description

ChkPntMsg The checkpoint message structure transfers circuit state information from the primary
application to the backup application:

typedef struct checkPointMsg
{
 U32 msgId;
 CirId cirId; /* circuit ID of indicated circuit */
 CirId mateId; /* circuit ID of mate circuit */
 U8 transient; /* transient state indicator */
 U8 callState; /* call processing state */
 U8 blkState; /* circuit blocking state */
} ChkPntMsg;

Event The event structure passes information between threads by passing a pointer to an event
in the buffer member of a CTA_EVENT structure:

typedef struct
{
 IsupRcvInfoBlk info; /* ISUP receive information block */
 SiAllSdus sdu; /* union of all ISUP event structures */
 ChkPntMsg chkPntMsg; /* checkpoint message */
} Event;

Circuit The circuit control structure maintains information required by the application to control a
particular circuit:

typedef struct circuit
{
 S16 state; /* thread state */
 CTAQUEUEHD ctaQueue; /* CTA queue for receiving events */
 CTAHD ctaHndl; /* CTA handle for this thread */
 CirId cirId; /* circuit ID of this circuit */
 CirId mateId; /* circuit ID for mate circuit */
 SuId suId; /* service user ID */
 SiInstId suInstId; /* service user instance ID */
 SiInstId spInstId; /* service provider instance ID */
 U8 callState; /* call processing state */
 U8 blkState; /* circuit blocking state */
 U8 transient; /* transient state indicator */
} Circuit;

100 Dialogic

Health Management Developer's Reference Manual ISUP demonstration program

isupdemo threads

The following threads comprise isupdemo:

Thread Description

Main Parses command line arguments, initializes global data, and starts all other threads.

User Accepts input from the keyboard and parses the input. Depending upon the command
entered by the user, this results in either an event to a circuit thread or a call to
NaturalAccess™ ISUP.

Test Receives events regarding a test call from a circuit thread resulting in a printed
message indicating the type of event that was received.

UDP Receives checkpoint messages from the mate application, which result in checkpoint
events generated to circuit threads. It also receives the application ready message
from the mate application, resulting in an application ready event sent to the ISUP
thread.

HMI Receives Natural Access events from the Health Management service and translates
these events into internal events passed to the ISUP thread.

ISUP Receives Natural Access events from NaturalAccess™ ISUP and translates these
events into internal events routed to the appropriate incoming, outgoing, and test
threads.

Incoming circuit Receives events from the ISUP thread and exchanges events with its mate outgoing
thread.

Outgoing circuit Receives events from the ISUP thread and exchanges events with its mate incoming
thread.

Dialogic 101

ISUP demonstration program Health Management Developer's Reference Manual

The following illustration shows the inter-thread communications in the ISUP
demonstration program:

Outgoing

Incoming

Test

User

UDP

HMI

ISUP

102 Dialogic

Health Management Developer's Reference Manual ISUP demonstration program

ISUP events

Threads use Natural Access to pass events between themselves. The Natural Access
event ID values used to identify these events are:

• ISUP to circuit

• Circuit to circuit

• UDP to circuit

• UDP to ISUP

• HMI to ISUP

ISUP to circuit

The following event ID values pass information from the ISUP thread to circuit
threads. They also pass information from the user thread to circuit threads.

Event Description

IAM_MSG Initial address message was received for this circuit.

ACM_MSG Address complete message was received for this circuit.

ANM_MSG Answer message was received for this circuit.

REL_MSG Release message was received for this circuit.

RLC_MSG Release complete message was received for this circuit.

RSC_MSG Reset message was received for this circuit.

BLO_MSG Blocking message was received for this circuit.

BLA_MSG Blocking acknowledgement message was received for this circuit.

UBL_MSG Unblocking message was received for this circuit.

UBA_MSG Unblocking acknowledgement message was received for this circuit.

INF_MSG Information message was received for this circuit.

INR_MSG Information request message was received for this circuit.

CON_MSG Connect message was received for this circuit.

CPG_MSG Call progress message was received for this circuit.

SUS_MSG Suspend message was received for this circuit.

RES_MSG Resume message was received for this circuit.

SAM_MSG Subsequent address message was received for this circuit.

CGB_MSG Circuit group blocking message was received for this circuit.

CGU_MSG Circuit group unblocking message was received for this circuit.

IDLE_EVT Circuit should immediately transition to the idle state with no ISUP interaction.

Dialogic 103

ISUP demonstration program Health Management Developer's Reference Manual

Circuit to circuit

The following event ID values pass information between circuit threads:

Event Description

IAM_EVT Initial address message was received for this circuit's mate.

ACM_EVT Address complete message was received for this circuit's mate.

ANM_EVT Answer message was received for this circuit's mate.

REL_EVT Release message was received for this circuit's mate.

RLC_EVT Release complete message was received for this circuit's mate.

RSC_EVT Reset message was received for this circuit's mate.

BLO_EVT Blocking message was received for this circuit's mate.

BLA_EVT Blocking acknowledgement message was received for this circuit's mate.

UBL_EVT Unblocking message was received for this circuit's mate.

UBA_EVT Unblocking acknowledgement message was received for this circuit's mate.

INF_EVT Information message was received for this circuit's mate.

INR_EVT Information request message was received for this circuit's mate.

CON_EVT Connect message was received for this circuit's mate.

CPG_EVT Call progress message was received for this circuit's mate.

SUS_EVT Suspend message was received for this circuit's mate.

RES_EVT Resume message was received for this circuit's mate.

SAM_EVT Subsequent address message was received for this circuit's mate.

CGB_EVT Circuit group blocking message was received concerning this circuit's mate.

CGU_EVT Circuit group unblocking message was received concerning this circuit's mate.

ERR_EVT Error indication was received for this circuit.

UDP to circuit

This event ID value passes information from the UDP thread to circuit threads:

Event Description

CHKPNT_EVT Checkpoint message was received for this circuit.

UDP to ISUP

This event ID value passes information from the UDP thread and ISUP thread:

Event Description

APPREADY_EVT Ready message was received from the mate application.

104 Dialogic

Health Management Developer's Reference Manual ISUP demonstration program

HMI to ISUP

The following event ID values pass information from the HMI thread to the ISUP
thread:

Event Description

DEAD_EVT Halted, dead, or loading event was received from the Health Management service.

STARTED_EVT Starting event was received from the Health Management service.

BACKUP_EVT A now backup event was received from the Health Management service.

PRIMARY_EVT A now primary event was received from the Health Management service.

STANDALONE_EVT A now standalone event was received from the Health Management service.

Dialogic 105

ISUP demonstration program Health Management Developer's Reference Manual

isupdemo startup processes

The isupdemo startup processes are:

• Program startup

• Primary startup

• Backup startup

Program startup

The following table describes the program startup process for isupdemo:

Step Action

1 At startup, the main thread parses the command line arguments, setting global variables based
on the results of this parsing.

2 The user, test, HMI, UDP, and ISUP threads are started.

3 Incoming and outgoing threads are started.

Primary startup

The following table describes the primary startup process for isupdemo:

Step Action

1 Upon receipt of the HMI_EVN_NOWPRIMARY event from the Health Management service, the
HMI thread issues an EVT_PRIMARY event to the ISUP thread.

2 When the ISUP thread receives this event, it generates an application ready message to the
mate application.

3 When an application ready message is received, the primary application initiates a batch
checkpoint to the backup application.

Backup startup

The following table describes the backup startup process for isupdemo:

Step Action

1 Upon receipt of the HMI_EVN_NOWBACKUP event from the Health Management service, the
HMI thread issues an EVT_BACKUP event to the ISUP thread.

2 When the ISUP thread receives this event, it generates an application ready message to the
mate application.

3 If an application ready message is received, the backup application again sends an application
ready message to the primary application.

106 Dialogic

Health Management Developer's Reference Manual ISUP demonstration program

isupdemo call setup and release

When isupdemo is run, the following call setup and call release processes take place:

• Normal incoming call

• Incoming test call

• Outgoing test call

Normal incoming call

The following illustration shows a normal incoming call setup and release. Brackets
([]) indicate checkpoints, with the checkpointed data contained within the brackets in
the form [<circuit state>, <transient state>].

Incoming thread Outgoing threadISUP thread

EVTSITCONIND

IAM_MSG

IAM_EVT

ISUPConnectReq

EVTSITCNSTIND

ACM_MSG

ACM_EVT

ISUPConnectStatusReq

EVTSITCONCFM
ANM_MSG

ANM_EVT
ISUPConnectResp

EVTSITRELIND

REL_MSG

EVTSITRELCFM

[idle, transient]

[idle, transient]

[incoming busy, not transient]

[outgoing busy, not transient]

[idle, not transient]

[idle, not transient]

ADDRCMPLT

(ADDRCMPLT)

ISUPReleaseResp

ISUPReleaseReq

RLC_MSG

REL_EVT
[idle, transient]

SS7 ISUP service

Dialogic 107

ISUP demonstration program Health Management Developer's Reference Manual

Incoming test call

The following illustration shows an incoming test call setup and release. Braces ({})
indicate commands entered from the keyboard.

Incoming thread Test threadISUP thread

EVTSITCONIND

IAM_MSG

ACM_EVT

ISUPConnectStatusReq

ANM_EVT

ISUPConnectResp

EVTSITRELIND

REL_MSG

REL_EVT
ISUPReleaseResp

User thread

{ACM command}

{ANM command}

(ADDRCMPLT)

SS7 ISUP service

Outgoing test call

The following illustration shows an outgoing test call setup and release. Braces ({})
indicate commands entered from the keyboard.

Outgoing thread Test threadISUP thread

IAM_EVT

ISUPConnectReq

REL_MSG
ISUPReleaseReq

EVTSITCNSTIND

ACM_MSG

User thread

{IAM command}

{REL command}

ADDRCMPLT

EVTSITCONCFM

ANM_MSG

ACM_EVT

ANM_EVT

EVTSITRELCFM

RLC_MSG

SS7 ISUP service

108 Dialogic

Health Management Developer's Reference Manual ISUP demonstration program

isupdemo command line options

isupdemo accepts the following command line options. Options can be entered in any
order.

Option Default Description

-b boardNum 1 Board to which this instance of the application communicates.

-da address Loopback
(127.0.0.1)

Internet address of the mate application in dotted decimal format.

-dn name none Name of the host on which the mate application is running.

-dp port 4096 UDP port number of the mate application.

-lp port 4096 UDP port for this application instance.

-n numCir 64 (64
incoming
circuits,
64
outgoing
circuits)

Number of incoming and outgoing circuits.

-ni numIn 64 Number of incoming circuits.

-no numOut 64 Number of incoming circuits.

Note: Incoming circuits are created first, starting with a circuit ID of
one. Outgoing circuits are then created starting with circuit ID equal to
the last incoming circuit ID plus one.

-s switchType ANSI92 ISUP switch type (ANSI88, ANSI92, ANSI95, ITUBLUE, ITUWHITE,
Q767, or JNTT).

-te Enables event tracing.

-tc Enables checkpoint tracing.

-ta Enables all tracing.

Dialogic 109

ISUP demonstration program Health Management Developer's Reference Manual

isupdemo user interface commands

Use the following commands to manage circuits and place and receive test calls. Test
calls can only be received on incoming circuits and placed on outgoing circuits.

Command Syntax Description

QUIT QUIT Exits the application.

ACM ACM circuit
where circuit is the circuit ID of an incoming circuit.

Sends an address
complete message.

ANM ANM circuit
where circuit is the circuit ID of an incoming circuit.

Sends an answer
message.

BLO BLO circuit
where circuit is the circuit ID of the circuit to be blocked.

Sends a blocking
message.

CGB CGB circuit range
where circuit is the circuit ID of the first circuit in the group to
be blocked, and range is the desired range value.

Sends a circuit group
blocking message.

CGU CGU circuit range
where circuit is the circuit ID of the first circuit in the group to
be unblocked, and range is the desired range value.

Sends a circuit group
unblocking message.

CON CON circuit
where circuit is the circuit ID of an incoming circuit.

Sends a connect
message.

GRS GRS circuit range
where circuit is the circuit ID of the first circuit in the group to
be reset, and range is the desired range value.

Sends a circuit group
reset message.

IAM IAM circuit called [calling]
where circuit is the circuit ID of an outgoing circuit, called is
the called party number, and calling is the optional calling
party number.

Sends an initial address
message.

REL REL circuit [cause]
where circuit is the circuit ID of the circuit to be released, and
cause is an optional cause value.

Sends a release
message.

RSC RSC circuit
where circuit is the circuit ID of the circuit to be reset.

Sends a circuit reset
message.

UBL UBL circuit
where circuit is the circuit ID of the circuit to be unblocked.

Sends an unblocking
message.

110 Dialogic

1133 TCAP demonstration program
TCAP demonstration program overview

The TCAP demonstration program, tcapdemo, is a multiple-threaded program that
uses the redundancy features of the SS7 TCAP layer. It is a skeletal implementation
of a toll switch with a user interface for placing and receiving test calls.

tcapdemo data structures

The following table describes the data structures that are called by tcapdemo:

Structure Description

ChkPntMsg The checkpoint message structure transfers transaction information from the primary
application to the backup application:

typedef struct checkPointMsg
{
 U32 msgId; /* message Id */
 U32 position; /* position in "command.800" file */
 U32 transId; /* transaction Id */
 U8 invokeId; /* invoke Id */
 U8 readFlag; /* flaf for reading "command.800" file */
} ChkPntMsg;

Trans The transaction structure passes information between threads by passing a pointer to an
event in the buffer member of a CTA_EVENT structure:

typedef struct trans
{
 U32 position;
 U32 transId;
 U8 invokeId;
 U8 readFlag;
} Trans;

tcapdemo threads

The following threads comprise tcapdemo:

Thread Description

Main Parses command line arguments, initializes global data, starts UDP thread, and sends or
receives 800 number translation requests according to the transaction sequence defined in the
command.800 file.

It can act as an 800 number server, or as a client requesting an 800 number translation.

UDP Receives checkpoint messages from the mate application that result in checkpoint events
generated to the main thread.

Dialogic 111

TCAP demonstration program Health Management Developer's Reference Manual

The commands.800 file

The transaction file, commands.800, informs the main thread of the transaction
sequence to execute. This file has the following format:

Field Description

qr_nl Begin or query without permission message.

qr_l Begin or query with permission message.

cv_nl Continue or converse without permission message.

cv_l Continue or converse with permission message.

UDP to TCAP event

This event ID value passes information from the UDP thread and main thread:

Event Description

CHKPNT_EVT A checkpoint message was received from the mate application.

112 Dialogic

Health Management Developer's Reference Manual TCAP demonstration program

tcapdemo command line options

The following command line options are accepted by tcapdemo. Options can be
entered in any order. At the command line, enter the following command:
tcapdemo [options] pointcode:subsystem phonenum

where options include:

Option Default Description

-b boardNum 1 TX board number.

-p sapno 0 Service access point ID. Valid range is 0 - 255.

-da address Loopback
(127.0.0.1)

Internet address of mate application in dotted decimal format.

-dn name Host on which mate application is running.

-dp port 4096 UDP port number of mate application.

-lp port 4096 UDP port number for this application instance.

-n number 254 Subsystem number to be used. Valid range is 0 - 255.

-i iterations 1 Number of times transaction is repeated. Valid range is 0 - 32000.

-j delay 1 Delay (in ms) between repetitions. Valid range is 1 - 65536.

-t Uses ITU addressing. The tcapdemo program defaults to ANSI.

-s Causes tcapdemo to act as an 800 number server. The tcapdemo
program acts as a client by default.

The pointcode:subsystem parameter specifies the pointcode and subsystem
number of the 800 number server. The phonenum parameter specifies the 800
number to be translated (only used by clients). Both parameters are used only by
clients.

Note: If multiple instances of tcapdemo are bound to the same TX board, the SAP ID
(-s parameter) and the subsystem number (-n parameter) must be unique for each
instance.

Dialogic 113

TCAP demonstration program Health Management Developer's Reference Manual

Acting as an 800 number server

Enter the following command to start tcapdemo as an 800 number server:
tcapdemo -b 1 -p 0 -n 255 -s

tcapdemo binds to TX board 1, uses SAP ID zero, and uses subsystem number 255.
Since the -s parameter is specified, tcapdemo also acts as a server.

If binding is successful, tcapdemo receives a run state indication event from the
TCAP task. tcapdemo uses the information it receives to determine its run status.
The run status must be one of the following:

Run status Description

Standalone or
primary

tcapdemo waits for an 800 number request to arrive.

Backup tcapdemo stops working as a server and waits for another run state indication
event.

When a request arrives and run status is standalone or primary, tcapdemo compares
the received 800 number to the information in the numbers.800 file.

Note: The numbers.800 file must be in the same directory as the tcapdemo.exe file.

The numbers.800 file looks like this:
[800 Numbers]
8001234567=3122456789
8004561234=8477069700

Additional 800 numbers can be added, as long as they are listed after the [800
Numbers] section header, and conform to the following syntax:
800nnnnnnn=yyyyyyyyyy

If a matching 800 number is found, the tcapdemo server returns the translated
number in a RETURN_RESULT [last] component.

If no matching 800 number is found, the tcapdemo server returns a RETURN_ERROR
component.

The tcapdemo server continues to listen for and respond to requests indefinitely. To
stop the server, press Q.

114 Dialogic

Health Management Developer's Reference Manual TCAP demonstration program

Acting as an 800 number client

Enter the following command to start tcapdemo as a client:
tcapdemo -b 2 -p 1 -j 100 -n 254 1.1.1:255 8001234567

In this case, tcapdemo binds to TX board 2, uses SAP ID one, and uses subsystem
number 254. Because the -s parameter is not specified, tcapdemo acts as a client.

If binding is successful, tcapdemo receives a run state indication event from the
TCAP task. tcapdemo uses the information it receives to determine its run status.
The run status must be one of the following:

Run status Description

Standalone or
primary

tcapdemo sends an 800 number request to the specified pointcode and
subsystem specified.

Backup tcapdemo stops working as a client and waits for another run state indication
event.

After sending the 800 number request, tcapdemo waits for a response.

After a response is received, tcapdemo continues to run, but no further requests are
sent. To stop the client, press Q.

Dialogic 115

1144 TUP demonstration program
TUP demonstration program overview

The TUP demonstration program, tupdemo, is a multiple-threaded program that uses
the redundancy features of the SS7 TUP layer and the Health Management service. It
is a skeletal implementation of a toll switch with a simple user interface for placing
and receiving test calls and managing circuits.

tupdemo data structures

The following table describes the data structures:

Structure Description

ChkPntMsg The checkpoint message structure transfers circuit state information from the primary
application to the backup application:

typedef struct checkPointMsg
{
 U32 msgId;
 CirIdx cirId; /* circuit ID of indicated circuit */
 CirIdx mateId; /* circuit ID of mate circuit */
 U16 state; /* transient state indicator */
 U16 callState; /* call processing state */
 U16 circuitState; /* circuit blocking state */
} ChkPntMsg;

Event The event structure passes information between threads by passing a pointer to an event
in the buffer member of a CTA_EVENT structure:

typedef struct
{
 TupRcvInfoBlk info; /* TUP receive information block */
 SiAllSdus sdu; /* union of all TUP event structures */
 ChkPntMsg chkPntMsg; /* checkpoint message */
} Event;

Circuit The circuit control structure maintains information required by the application to control a
particular circuit:

typedef struct circuit
{
 CTAQUEUEHD ctaQueue; /* CTA queue for receiving events */
 CTAHD ctaHndl; /* CTA handle for this thread */
 CirIdx cirId; /* circuit ID of this circuit */
 CirIdx mateId; /* circuit ID for mate circuit */
 U16 state; /* thread state */
 U16 callState; /* call processing state */
 U16 circuitState; /* circuit blocking state */
 } Circuit;

Dialogic 117

TUP demonstration program Health Management Developer's Reference Manual

tupdemo threads

The following threads comprise tupdemo:

Thread Description

Main Parses command line arguments, initializes global data, and starts all other threads.

User Accepts input from the keyboard and parses the input. Depending upon the command
entered by the user, this results in an event to a circuit thread or a call to SS7 TUP.

Test Receives events regarding a test call from a circuit thread. This results in a printed
message indicating the type of event that was received.

UDP Receives checkpoint messages from the mate application that result in checkpoint events
generated to circuit threads. It also receives the application ready message from the mate
application, resulting in an application ready event sent to the TUP thread.

HMI Receives Natural Access events from the Health Management service and translates these
events into internal events passed to the TUP thread.

TUP Receives Natural Access events from SS7 TUP and translates these events into internal
events routed to the appropriate incoming, outgoing, and test threads.

Incoming
circuit

Receives events from the TUP thread and exchanges events with its mate outgoing thread.

Outgoing
circuit

Receives events from the TUP thread and exchanges events with its mate incoming thread.

118 Dialogic

Health Management Developer's Reference Manual TUP demonstration program

The following illustration shows the inter-thread communications in the TUP
demonstration program:

Outgoing

Incoming

Test

User

UDP

HMI

TUP

Dialogic 119

TUP demonstration program Health Management Developer's Reference Manual

tupdemo events

Threads use Natural Access to pass events between themselves. The topic describes
the Natural Access event ID values used to identify these events.

• TUP to circuit

• Circuit to circuit

• UDP to circuit

• UDP to TUP

• HMI to TUP

TUP to circuit

The following event ID values pass information from the TUP thread to circuit
threads. They also pass information from the user thread to circuit threads.

Event Description

IAM_MSG Initial address message was received for this circuit.

ACM_MSG Address complete message was received for this circuit.

ANC_MSG Answer message was received for this circuit.

CLF_MSG Release (clear forward) message was received for this circuit.

RLG_MSG Release guard message was received for this circuit.

CBK_MSG Clear backward message was received for this circuit.

RSC_MSG Reset message was received for this circuit.

BLO_MSG Blocking message was received for this circuit.

BLA_MSG Blocking acknowledgement message was received for this circuit.

UBL_MSG Unblocking message was received for this circuit.

UBA_MSG Unblocking acknowledgement message was received for this circuit.

RES_MSG Resume message was received for this circuit.

MGB_MSG Circuit group blocking message was received concerning this circuit.

MGU_MSG Circuit group unblocking message was received concerning this circuit.

GRS_MSG Circuit group reset message was received concerning this circuit.

IDLE_EVT Circuit should immediately transition to the idle state with no TUP interaction.

120 Dialogic

Health Management Developer's Reference Manual TUP demonstration program

Circuit to circuit

The following event ID values pass information between circuit threads:

Event Description

IAM_EVT Initial address message was received for this circuit's mate.

ACM_EVT Address complete message was received for this circuit's mate.

ANC_EVT Answer message was received for this circuit's mate.

CLF_EVT Release (clear forward) message was received for this circuit's mate.

RLG_EVT Release guard message was received for this circuit's mate.

CBK_EVT Clear backward message was received for this circuit.

RSC_EVT Reset message was received for this circuit's mate.

BLO_EVT Blocking message was received for this circuit's mate.

BLA_EVT Blocking acknowledgement message was received for this circuit's mate.

UBL_EVT Unblocking message was received for this circuit's mate.

UBA_EVT Unblocking acknowledgement message was received for this circuit's mate.

RES_EVT Resume message was received for this circuit's mate.

MGB_EVT Circuit group blocking message was received for this circuit's mate.

MGU_EVT Circuit group unblocking message was received for this circuit's mate.

GRS_EVT Circuit group reset message was received for this circuit.

ERR_EVT Error indication was received for this circuit.

UDP to circuit

This event ID value passes information from the UDP thread to circuit threads:

Event Description

CHKPNT_EVT Checkpoint message was received for this circuit.

UDP to TUP

This event ID value passes information from the UDP thread and TUP thread:

Event Description

APPREADY_EVT A ready message was received from the mate application.

Dialogic 121

TUP demonstration program Health Management Developer's Reference Manual

HMI to TUP

The following event ID values pass information from the HMI thread to the TUP
thread:

Event Description

DEAD_EVT A halted, dead, or loading event was received from the Health Management service.

STARTED_EVT A starting event was received from the Health Management service.

BACKUP_EVT A now backup event was received from the Health Management service.

PRIMARY_EVT A now primary event was received from the Health Management service.

STANDALONE_EVT A now standalone event was received from the Health Management service.

122 Dialogic

Health Management Developer's Reference Manual TUP demonstration program

tupdemo startup processes

The tupdemo startup processes are:

• Program startup

• Primary startup

• Backup startup

Program startup

The following table describes the program startup process for tupdemo:

Step Action

1 At startup, the main thread parses the command line arguments, setting global variables based
on the results of this parsing.

2 The user, test, HMI, UDP, and TUP threads are started.

3 Incoming and outgoing threads are started.

Primary startup

The following table describes the primary startup process for tupdemo:

Step Action

1 Upon receipt of the HMI_EVN_NOWPRIMARY event from the Health Management service, the
HMI thread issues an EVT_PRIMARY event to the TUP thread.

2 When the TUP thread receives this event, it generates an application ready message to the mate
application.

3 When an application ready message is received, the primary application initiates a batch
checkpoint to the backup application.

Backup startup

The following table describes the backup startup process for tupdemo:

Step Action

1 Upon receipt of the HMI_EVN_NOWBACKUP event from the Health Management service, the
HMI thread issues an EVT_BACKUP event to the TUP thread.

2 When the TUP thread receives this event, it generates an application ready message to the mate
application.

3 If an application ready message is received, the backup application again sends an application
ready message to the primary application.

Dialogic 123

TUP demonstration program Health Management Developer's Reference Manual

tupdemo call setup and release

When tupdemo is run, the following call setup and call release processes take place:

• Normal incoming call

• Incoming test call

• Outgoing test call

Normal incoming call

The following illustration shows a normal incoming call setup and release. Brackets
([]) indicate checkpoints, with the checkpointed data contained within the brackets in
the form [<circuit state>, <transient state>].

Incoming thread Outgoing threadTUP thread

EVTTUPCONIND

IAM_MSG

IAM_EVT

TUPConnectReq

EVTTUPCNSTIND

ACM_MSG

ACM_EVT

TUPConnectStatusReq

EVTTUPCONCFM
ANM_MSG, ANC_MSG, or ANU_MSG

ANM_EVT
TUPConnectResp

EVTTUPRELIND

CLF_MSG

EVTTUPRELCFM

CBK_MSG

[idle, transient]

[idle, transient]

[incoming busy, not transient]

[outgoing busy, not transient]

[idle, not transient]

[idle, not transient]

TUPADDRCMPLT

(TUPADDRCMPLT)

TUPReleaseResp

[wait for RLG, transient]
TUPReleaseReq

RLG_MSG

SS7 TUP service

124 Dialogic

Health Management Developer's Reference Manual TUP demonstration program

Incoming test call

The following illustration shows an incoming test call setup and release. Braces ({})
indicate commands entered from the keyboard.

Incoming thread Test threadTUP thread

EVTTUPCONIND

IAM_MSG

ACM_EVT

TUPConnectStatusReq

ANM_EVT

TUPConnectResp

EVTTUPRELIND

REL_MSG

REL_EVT
TUPReleaseResp

User thread

{ACM command}

{ANM command}

(TUPADDRCMPLT)

SS7 TUP service

Outgoing test call

The following illustration shows an outgoing test call setup and release. Braces ({})
indicate commands entered from the keyboard.

Outgoing thread Test threadTUP thread

IAM_EVT

TUPConnectReq

CLF_EVTTUPReleaseReq

EVTTUPCNSTIND

ACM_MSG

User thread

{IAM command}

{CLF command}

TUPADDRCMPLT

EVTTUPCONCFM

ANC_MSG

ACM_EVT

ANC_EVT

EVTTUPRELCFM

RLG_MSG

SS7 TUP service

Dialogic 125

TUP demonstration program Health Management Developer's Reference Manual

tupdemo command line options

The following command line options are accepted by the tupdemo demonstration
program. Options can be entered in any order.

Option Default Description

-b boardNum 1 Board to which this instance of the application communicates.

-da address Loopback
(127.0.0.1)

Internet address of the mate application in dotted decimal format.

-dn name none Name of the host on which the mate application is running.

-dp port 4096 UDP port number of the mate application.

-lp port 4096 UDP port for this application instance.

-n numCir 12 (12 incoming
circuits,
12 outgoing
circuits)

Number of incoming and outgoing circuits.

-ni numIn 12 Number of incoming circuits.

-no numOut 12 Number of incoming circuits.

Note: Incoming circuits are created first, starting with a circuit ID
of one. Outgoing circuits are then created starting with circuit ID
equal to the last incoming circuit ID plus one.

-s switchType ITU TUP switch type (ITU, CTW).

-te Enables event tracing.

-tc Enables checkpoint tracing.

-ta Enables all tracing.

126 Dialogic

Health Management Developer's Reference Manual TUP demonstration program

tupdemo user interface commands

Use the following commands to manage circuits and place and receive test calls. Test
calls can only be received on incoming circuits and placed on outgoing circuits.

Command Syntax Description

QUIT QUIT Exits the application.

ACM ACM circuit
where circuit is the circuit ID of an incoming circuit.

Sends an address
complete message.

ANC ANC circuit
where circuit is the circuit ID of an incoming circuit.

Sends an answer
message.

BLO BLO circuit
where circuit is the circuit ID of the circuit to be blocked.

Sends a blocking
message.

MGB MGB circuit range
where circuit is the circuit ID of the first circuit in the group to
be blocked, and range is the desired range value

Sends a circuit group
blocking message.

MGU MGU circuit range
where circuit is the circuit ID of the first circuit in the group to
be unblocked, and range is the desired range value.

Sends a circuit group
unblocking message.

GRS GRS circuit range
where circuit is the circuit ID of the first circuit in the group to
be reset, and range is the desired range value.

Sends a circuit group
reset message.

IAM IAM circuit called [calling]
where circuit is the circuit ID of an outgoing circuit, called is
the called party number, and calling is the optional calling
party number.

Sends an initial address
message.

CLF CLF circuit [cause]
where circuit is the circuit ID of the circuit to be released, and
cause is an optional cause value.

Sends a CLF (clear
forward) message.

RSC RSC circuit
where circuit is the circuit ID of the circuit to be reset.

Sends a circuit reset
message.

UBL UBL circuit
where circuit is the circuit ID of the circuit to be unblocked.

Sends an unblocking
message.

Dialogic 127

Index

A

arp.elf 82

association status 90

B

backup board failure 38

backup signaling node failure 38

batch checkpointing 54

board failure 37

ISUP or TUP 56

TCAP 62, 63

board installation and cabling 73

C

checkpointing 53

ISUP or TUP 53

TCAP 59

commands.800 file 112

connectionless services (SCCP) 65

connection-oriented services (SCCP)
66

CTA_SERVICE_DESC 21

ctaOpenServices 21

D

demonstration programs 93, 99, 111,
117

dual-node configuration 26

E

events 22

F

failures 37, 37, 38, 39, 40

functions 41

H

Health Management (HM) service 18

Health Management Interface (HMI)
service 18

health management system 15, 18, 19

HMI configuration 80

HMI service 18, 84, 85

hmi.cfg 80

HMI_EVN_XXX 22

hmiBackup 42

hmiHaltBoard 43

hmiLoadBoard 44

hmiPrimary 45

hmiReset 46

hmiShutdown 47

hmiStandalone 48

hmiStart 49

hmiStatusReq 50

hmiStop 52

HmStatsData 50

Hot Swap 34

I

incremental checkpointing 54

isolation 39, 63

ISUP 16

application startup 55

backup application 53, 55

backup reload 57

board failure 56

checkpointing 53, 53

demonstration program 99

switchover 58

isupdemo 99

call setup and release 107

command line options 109

data structures 100

events 103

startup process 106

threads 101

Dialogic 129

Index Health Management Developer's Reference Manual

user interface commands 110

L

layers 16

M

M3UA 84

MTP configuration 82

P

planned switchovers 40

primary board failure 37

primary signaling node failure 38

programming model 19

application requests 20

ctaOpenServices 21

events 22

example 23

unsolicited status events 19

R

recovery from failure 37, 37, 38, 39,
40

redundant system architecture 67

alarms 35

board states 32

configuration utilities and functions
35

control, status, statistics 35

demonstration program 93

dual-node configuration 26

Hot Swap support 34

initialization 33

single-node configuration 25

software architecture 27

standalone configuration 26

redundant system establishment 85

board installation and cabling 73

board states 86

configuration 80

data traffic 89

txalarm 85

UNIX installation 85

Windows installation 84

reference configurations 25

RMG demonstration program 93

failure detection 96

initialization 95

recovery 96

running 96

state model 94

supported commands 97

tracing events 98

S

SCCP 65

application startup 68

board failure and reload 72

connectionless services 65

connection-oriented services 66

dual-node application model 67

normal operation 69

single-node application model 67

switchovers 70

SCTP 84

signaling 16

signaling board failures 37

signaling board isolation 39

signaling link failures 37

signaling node failures 38

SIGTRAN configuration 15, 16, 84, 90,
90

single-node configuration 25

software 18

SS7 layers 16

ss7load 82

standalone configuration 26

switchovers 40, 58, 62, 70

system requirements 17

T

TCAP 16

130 Dialogic

Health Management Developer's Reference Manual Index

backup isolation 63

backup reload 63

board failure 62

demonstration program 111

loading a board 61

redundancy 59, 60

switchover 62

traffic 59

tcapdemo 111

800 number client 115

800 number server 114

command line options 113

commands.800 file 112

data structures 111

threads 111

UDP to TCAP event 112

tracing 98

transient state 53

troubleshooting 86

TUP 16

application startup 55

backup reload 57

board failure 56

checkpointing 53, 53

demonstration program 117

switchover 58

tupdemo 117

call setup and release 124

command line options 126

data structures 117

events 120

startup process 123

threads 118

user interface commands 127

TX boards and redundancy 73

txalarm 85

txmon.elf 82

U

UDP to TCAP event 112

Dialogic 131

	Copyright and legal notices
	Introduction
	Health management
	System overview
	SS7 layers
	SIGTRAN layers
	Signaling
	System requirements

	Software

	Health Management programming model
	Programming model overview
	Unsolicited status events
	Application requests
	ctaOpenServices
	Events
	Sample setup

	Redundant signaling subsystem architecture
	Reference configurations
	Single-node configuration
	Dual-node configuration
	Standalone configuration

	Software architecture
	Software architecture for a TDM configuration
	Software architecture for an IP configuration

	Board state model
	Initialization
	Downloading and configuring the board
	Setting the board state
	Binding the applications and SS7 layers together

	Hot Swap support
	Configuration and management
	Configuration utilities and functions
	Control, status, and statistics
	Alarms

	Failure detection and recovery
	Signaling link failures
	Signaling board failures
	Primary board failure
	Backup board failure

	Signaling node failures
	Primary signaling node failure
	Backup signaling node failure

	Signaling board isolation
	MTP configurations
	SIGTRAN configurations

	Planned switchovers

	Function reference
	Function summary
	Using the function reference
	hmiBackup
	
	
	Prototype
	Return values

	hmiHaltBoard
	
	
	Prototype
	Return values

	hmiLoadBoard
	
	
	Prototype
	Return values

	hmiPrimary
	
	
	Prototype
	Return values

	hmiReset
	
	
	Prototype
	Return values
	Details

	hmiShutdown
	
	
	Prototype
	Return values
	Details

	hmiStandalone
	
	
	Prototype
	Return values

	hmiStart
	
	
	Prototype
	Return values

	hmiStatusReq
	
	
	Prototype
	Return values

	hmiStop
	
	
	Prototype
	Return values

	Developing an ISUP or TUP redundant application
	Checkpointing strategies for ISUP or TUP applications
	Checkpoint information
	Backup application
	Transient state
	Incremental checkpointing
	Batch checkpointing

	ISUP or TUP application startup
	ISUP or TUP board failure, halt, or load
	ISUP or TUP backup reload
	ISUP or TUP switchover

	Developing a TCAP redundant application
	TCAP redundancy support
	Handling TCAP traffic
	Redundancy indications
	TCAP task indications
	Health Management indications

	TCAP board load
	TCAP board failure
	TCAP switchover
	TCAP backup reload
	TCAP backup isolation

	Developing a SCCP redundant application
	SCCP layer overview
	Connectionless services
	Connection-oriented services
	Message status
	Connection information

	Redundant application models
	Single-node redundant application model
	Dual-node redundant application model

	SCCP application considerations
	SCCP redundant application startup
	SCCP normal operation
	SCCP switchovers
	Single node application
	Connectionless traffic
	Connection-oriented traffic
	Timing windows
	Switchover processing

	SCCP board failure and reload

	Setting up a redundant system
	Board installation and cabling
	TDM configuration
	Dual-node redundant signaling server
	Single-node redundant signaling server model

	IP network configuration
	Dual-node redundant signaling server
	Single-node redundant signaling server

	Configuring for redundant operation
	HMI configuration
	Sample HMI configuration file
	Windows version
	UNIX version

	Configuring port numbers for the Health Management service

	ss7load script configuration
	MTP configuration over TDM
	M3UA and SCTP configuration over IP (SIGTRAN)
	ISUP, TUP, TCAP, and/or SCCP configuration

	Installing and running HMI in Windows
	Installing and running HMI in UNIX
	Bringing up a redundant system
	Starting txalarm
	Loading and setting board states
	RMG on a single node system
	RMG on a dual node system
	First board, machine A
	Second board, machine B

	RMG startup
	Troubleshooting RMG communication
	Troubleshooting board communication

	Starting data traffic
	Checking link status
	Checking the MTP configuration
	Checking the association status
	Checking the SIGTRAN configuration
	ISUP testing
	TCAP testing
	TUP testing
	SCCP testing

	RMG demonstration program
	RMG demonstration program overview
	RMG state model
	RMG initialization
	RMG failure detection and recovery
	Running the RMG demonstration program
	RMG supported commands
	Tracing RMG events

	ISUP demonstration program
	ISUP demonstration program overview
	isupdemo data structures
	isupdemo threads
	ISUP events
	ISUP to circuit
	Circuit to circuit
	UDP to circuit
	UDP to ISUP
	HMI to ISUP

	isupdemo startup processes
	Program startup
	Primary startup
	Backup startup

	isupdemo call setup and release
	Normal incoming call
	Incoming test call
	Outgoing test call

	isupdemo command line options
	isupdemo user interface commands

	TCAP demonstration program
	TCAP demonstration program overview
	tcapdemo data structures
	tcapdemo threads
	The commands.800 file
	UDP to TCAP event
	tcapdemo command line options
	Acting as an 800 number server
	Acting as an 800 number client

	TUP demonstration program
	TUP demonstration program overview
	tupdemo data structures
	tupdemo threads
	tupdemo events
	TUP to circuit
	Circuit to circuit
	UDP to circuit
	UDP to TUP
	HMI to TUP

	tupdemo startup processes
	Program startup
	Primary startup
	Backup startup

	tupdemo call setup and release
	Normal incoming call
	Incoming test call
	Outgoing test call

	tupdemo command line options
	tupdemo user interface commands

