
Dialogic® Continuous Speech
Processing API
Library Reference

April 2008

05-1700-007

Dialogic® Continuous Speech Processing API Library Reference – April 2008
Dialogic Corporation

Copyright © 2000-2008 Dialogic Corporation. All rights reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the
document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions
that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor,
Montreal, Quebec, Canada H4M 2V9. The software referred to in this document is provided under a Software License Agreement. Refer to the
Software License Agreement for complete details governing the use of the software.

Dialogic Corporation encourages all users of its products to procure all necessary intellectual property licenses required to implement any
concepts or applications and does not condone or encourage any intellectual property infringement and disclaims any responsibility
related thereto. These intellectual property licenses may differ from country to country and it is the responsibility of those who develop the
concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Brooktrout, Cantata, SnowShore, Eicon, Eicon Networks, Eiconcard, Diva, SIPcontrol, Diva ISDN, TruFax, Realblocs,
Realcomm 100, NetAccess, Instant ISDN, TRXStream, Exnet, Exnet Connect, EXS, ExchangePlus VSE, Switchkit, N20, Powering The Service-
Ready Network, Vantage, Connecting People to Information, Connecting to Growth, Making innovation Thrive, and Shiva, among others as well as
related logos, are either registered trademarks or trademarks of Dialogic. Dialogic's trademarks may be used publicly only with permission from
Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M
2V9. Any authorized use of Dialogic's trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time and
any use of Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other names of actual companies and
products mentioned herein are the trademarks of their respective owners.

Publication Date: April 2008

Document Number: 05-1700-007

Dialogic® Continuous Speech Processing API Library Reference – April 2008 3
Dialogic Corporation

Table of Contents

Revision History . 5

About This Publication . 7

1 Function Summary by Category . 9

1.1 Input/Output Functions . 9
1.2 Configuration Functions. 9
1.3 Routing Functions . 10
1.4 Extended Attribute Functions. 10
1.5 Status Information . 10

2 Function Information . 11

2.1 Function Syntax Conventions . 11
ATEC_TERMMSK() – return the reason for the last CSP I/O function termination. 12
ec_getblkinfo() – get header info for echo-cancelled data. 15
ec_getparm() – retrieve the current parameter settings . 18
ec_getxmitslot() – return the echo-cancelled transmit time slot number 21
ec_listen() – change the echo-reference signal from the default reference 24
ec_rearm() – re-enable the voice activity detector . 27
ec_reciottdata() – start an echo-cancelled record to a file or memory buffer 31
ec_resetch() – reset a channel that is hung . 38
ec_setparm() – configure the parameter of an open and idle device . 41
ec_stopch() – force termination of currently active I/O functions. 50
ec_stream() – stream echo-cancelled data to a callback function. 53
ec_unlisten() – change the echo-reference signal set by ec_listen() . 60

3 Data Structures . 63

EC_BLK_INFO – information for a block of echo-cancelled data. 64

4 Events . 67

Glossary . 69

Index . 73

4 Dialogic® Continuous Speech Processing API Library Reference – April 2008
Dialogic Corporation

Contents

Figures

1 Rearming the Voice Activity Detector (VAD) . 28
2 Example of Data Blocks in EC_BLK_INFO . 65

Dialogic® Continuous Speech Processing API Library Reference — April 2008 5

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-1700-007 April 2008 EC_BLK_INFO data structure: Changed frame size from 10 to 12 milliseconds.

05-1700-006 September 2007 Made global changes to reflect Dialogic brand.

ec_resetch() function: Added this function (not supported by Dialogic® HMP
Software).

05-1700-005 June 2005 ec_reciottdata() function: Added caution for Dialogic® DM3 boards using a flexible
routing configuration.

ec_setparm() function: Added information about setting ECCH_XFERBUFFERSIZE
in increments of 2 kbytes on DM3 boards. (PTR 34244)

ec_setparm() function: Revised valid values for DXCH_EC_TAP_LENGTH on
Springware boards.

ec_stream() function: Added caution for Dialogic® DM3 boards using a flexible
routing configuration.

05-1700-004 October 2004 ATEC_TERMMSK() function reference: Revised to indicate support on Dialogic®
DM3 boards only. Function not supported on Dialogic® Springware boards.

ec_listen() function: Added caution about sharing of time slot algorithm (PTR 32849
and PTR 33174).

ec_reciottdata() function: In the parameter table, revised note about termination
conditions that are supported by Dialogic® DM3 boards.

 ec_setparm() function reference: Revised lower range for
ECCH_XFERBUFFERSIZE define on Dialogic® DM3 boards.

ec_stopch() function reference: In the parameter table, added note about supported
flags for the mode parameter (PTR 32847).

ec_stream() function: In the parameter table, revised note about termination
conditions that are supported by Dialogic® DM3 boards.

ec_unlisten() function: Added caution about sharing of time slot algorithm (PTR
32849 and PTR 33174)

6 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

Revision History

05-1700-003 November 2003 ec_getblkinfo() function reference: New function.

ec_getxmitslot() function reference: Revised caution about multiple threads.

ec_listen() function reference: Revised caution about multiple threads.

ec_rearm() function reference: Added note that this function is no longer supported
and is superseded by the new silence compressed streaming feature.

ec_reciottdata() function reference: Added paragraph about new silence
compressed streaming feature. Revised caution about multiple threads. Added
information about new TF_IMMEDIATE flag (DV_TPT structure).

ec_setparm() function reference: Added new ECCH_SILENCECOMPRESS
parameter. Added note about data formats under DXCH_EC_TAP_LENGTH
description for Springware boards. Revised caution about multiple threads.

ec_stopch() function reference: Revised caution about multiple threads.

ec_stream() function reference: Added paragraph about new silence compressed
streaming feature. Revised caution about multiple threads. Added information
about new TF_IMMEDIATE flag (DV_TPT structure).

Data Structures chapter : New chapter. Added new EC_BLK_INFO data structure.

Supplementary Reference Information chapter : Removed chapter because the
example code no longer applies. New Dialogic® CSP demos now provide
extended example code.

05-1700-002 August 2002 ATEC_TERMMSK() function reference: New function.

ec_getxmitslot() function reference: Revised to state that this function is now
supported on DM3 boards.

ec_reciottdata() function reference: Revised note about DX_MAXTIME termination
condition.

ec_setparm() function reference: Revised description for DXCH_EC_TAP_LENGTH.

ec_stream() function reference: Revised note about DX_MAXTIME termination
condition.

Supplementary Reference Information chapter : New chapter with extended example
code.

05-1700-001 December 2001 Initial version of document. Much of the information in this document was previously
contained in the Continuous Speech Processing Software Reference, document
number 05-1398-003.

Document No. Publication Date Description of Revisions

Dialogic® Continuous Speech Processing API Library Reference — April 2008 7

Dialogic Corporation

About This Publication

The following topics provide information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication provides a reference to functions and parameters in the Dialogic® Continuous
Speech Processing (CSP) library for Dialogic® products. This document supports both Linux and
Windows® operating systems.

This publication is a companion document to the Dialogic® Continuous Speech Processing API
Programming Guide which provides guidelines for developing applications using the Dialogic®
CSP API library.

Applicability

This document version is published for Dialogic® Host Media Processing (HMP) Software Release
3.1LIN.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This information is intended for:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

• Original Equipment Manufacturers (OEMs)

8 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

About This Publication

How to Use This Publication

This guide assumes that you are familiar with the Linux or Windows® operating system and the C
programming language. It may be helpful to keep the voice API documentation handy as you
develop your application.

The information in this publication is organized as follows:

• Chapter 1, “Function Summary by Category” introduces you to the various categories of
functions in the Dialogic® CSP library.

• Chapter 2, “Function Information” provides an alphabetical reference to the Dialogic® CSP
functions.

• Chapter 3, “Data Structures” describes the data structures used by Dialogic® CSP functions.

• Chapter 4, “Events” provides an alphabetical reference to events that may be returned by the
Dialogic® CSP Software.

• Glossary provides a definition of terms used in this guide.

Related Information

See the following for additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://www.dialogic.com/manuals/
http://www.dialogic.com/manuals/
http://www.dialogic.com/support/
http://www.dialogic.com

Dialogic® Continuous Speech Processing API Library Reference — April 2008 9

Dialogic Corporation

11.Function Summary by Category

This chapter describes the categories into which the Continuous Speech Processing (CSP) library
functions can be grouped:

• Input/Output Functions . 9

• Configuration Functions . 9

• Routing Functions . 10

• Extended Attribute Functions . 10

• Status Information . 10

1.1 Input/Output Functions

The following functions are used in the transfer of data to and from a CSP-capable channel:

ec_rearm()
Re-enables the voice activity detector (VAD).

ec_reciottdata()
Records echo-cancelled data to a file or memory buffer.

ec_resetch()
Recovers a channel that is busy or hung.

ec_stopch()
Stops activity on a CSP-capable channel.

ec_stream()
Streams echo-cancelled data to a callback function.

1.2 Configuration Functions

The following functions are used to configure a CSP-capable channel:

ec_getparm()
Returns the current parameter settings on an open CSP-capable channel device.

ec_setparm()
Configures the parameter of an open CSP-capable channel device.

10 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

Function Summary by Category

1.3 Routing Functions

The following functions are used for SCbus or CT Bus routing:

ec_getxmitslot()
Returns the time slot on which echo-cancelled data was transmitted.

ec_listen()
Changes the echo-reference signal from the default reference (that is, the same channel as the
play) to the specified time slot on the TDM bus.

ec_unlisten()
Changes the echo-reference signal set by ec_listen() back to the default reference (that is, the
same channel as the play).

1.4 Extended Attribute Functions

The following function is used to obtain information about the device:

ATEC_TERMMSK()
Returns the reason for the last ec_stream() or ec_reciottdata() function termination on a
CSP-capable channel.

1.5 Status Information

The following function falls under the Status Information category:

ec_getblkinfo()
Returns header information for a block of echo-cancelled data.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 11

Dialogic Corporation

22.Function Information

This chapter provides an alphabetical reference to the functions in the Continuous Speech
Processing (CSP) library.

2.1 Function Syntax Conventions

The Dialogic® CSP functions use the following syntax:

int ec_function(device_handle, parameter1, ... parameterN)

where:

int
refers to the data type integer.

ec_function
represents the function name. All CSP-specific functions begin with “ec”.

device_handle
represents the device handle, which is a numerical reference to a device, obtained when a
device is opened. The device handle is used for all operations on that device.

parameter1
represents the first parameter.

parameterN
represents the last parameter.

12 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ATEC_TERMMSK() — return the reason for the last CSP I/O function termination

ATEC_TERMMSK()

return the reason for the last CSP I/O function termination

Description

The ATEC_TERMMSK() function returns a bitmap containing the reason(s) for the last
ec_stream() or ec_reciottdata() function termination on the channel chdev. The bitmap is set
when one of these functions terminates.

A CSP streaming function terminates when one of the conditions set in the DV_TPT data structure
occurs. For more information on this structure, see the Dialogic® Voice API Library Reference.

For a list of possible return values, see the ATDX_TERMMSK() function description in the
Dialogic® Voice API Library Reference.

Cautions

None.

Errors

This function will fail and return AT_FAILURE if an invalid channel device handle is specified in
chdev.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <fcntl.h>
#include <srllib.h>
#include <dxxxlib.h>

Name: long ATEC_TERMMSK(chdev)

Inputs: int chdev • valid channel device handle

Returns: channel’s last termination bitmap if successful
AT_FAILURE if error

Includes: srllib.h
dxxxlib.h
eclib.h

Category: Extended Attribute

Mode: Synchronous

Dialogic®

Platform:
DM3

Parameter Description

chdev the channel device handle obtained when the CSP-capable device is
opened using dx_open()

Dialogic® Continuous Speech Processing API Library Reference — April 2008 13

Dialogic Corporation

return the reason for the last CSP I/O function termination — ATEC_TERMMSK()

main()
{
 int chdev;
 long term;
 DX_IOTT iott;
 DV_TPT tpt[3];
 static DX_XPB xpb = {
 FILE_FORMAT_VOX,
 DATA_FORMAT_PCM,
 DRT_8KHZ,
 8
 };

 /* Open the channel device */
 if ((chdev = dx_open("dxxxB1C1",NULL)) == -1) {
 /* Process error */
 }

 /* Record a voice file. Terminate on receiving a digit, silence,
 * max time, or reaching a byte count of 50000 bytes.
 */
 /* set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = 50000;

 if((iott.io_fhandle = open("file.vox", O_CREAT | O_RDWR, 0666)) == -1) { (Linux only)
 /* process error */
 }

 if((iott.io_fhandle = dx_fileopen("file.vox", O_RDWR)) == -1) { (Windows only)
 /* process error */
 }

 /* set up DV_TPTs for the required terminating conditions */
 dx_clrtpt(tpt,3);
 tpt[0].tp_type = IO_CONT;
 tpt[0].tp_termno = DX_MAXDTMF; /* Maximum digits */
 tpt[0].tp_length = 1; * terminate on the first digit */
 tpt[0].tp_flags = TF_MAXDTMF; /* Use the default flags */
 tpt[1].tp_type = IO_CONT;
 tpt[1].tp_termno = DX_MAXTIME; /* Maximum time */
 tpt[1].tp_length = 100; /* terminate after 10 secs */
 tpt[1].tp_flags = TF_MAXTIME; /* Use the default flags */
 tpt[2].tp_type = IO_EOT; /* last entry in the table */
 tpt[2].tp_termno = DX_MAXSIL; /* Maximum Silence */
 tpt[2].tp_length = 30; /* terminate on 3 sec silence */
 tpt[2].tp_flags = TF_MAXSIL; /* Use the default flags */

 /* Now record to the file using ec_reciottdata() */
 if (ec_reciottdata(chdev, &iott, tpt, &xpb, EV_SYNC) == -1) {
 /* process error */
 }

 /* Examine bitmap to determine if digits caused termination */
 if((term = ATEC_TERMMSK(chdev)) == AT_FAILURE) {
 /* Process error */
 }

14 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ATEC_TERMMSK() — return the reason for the last CSP I/O function termination

 if(term & TM_MAXDTMF) {
 printf("Terminated on digits\n");
 .
 .
 }
}

See Also

• ATDX_TERMMSK() in the Dialogic® Voice API Library Reference

Dialogic® Continuous Speech Processing API Library Reference — April 2008 15

Dialogic Corporation

get header info for echo-cancelled data — ec_getblkinfo()

ec_getblkinfo()

get header info for echo-cancelled data

Description

The ec_getblkinfo() function returns header information for a block of echo-cancelled data.

This function is typically used in conjunction with the silence compressed streaming feature. To
enable this feature, set ECCH_SILENCECOMPRESS in ec_setparm(). This feature is disabled
by default.

This function allows you to get information about a block of data and perform various analyses. For
example, by looking at the time stamp information for each block, you can calculate the amount of
silence that was compressed. Or you can retrieve the block of initial data.

Invoke user I/O callback functions in your application to receive unbuffered data blocks. You can
do so using ec_stream() after you have installed user I/O functions. Each block is delivered to the
application write callback function as it is received from the board.

By invoking ec_getblkinfo() from within the write callback function, the EC_BLK_INFO
structure to which it passes a pointer is filled with details regarding the block for which the callback
is executed.

Cautions

• You must call the ec_getblkinfo() function from within the write callback function;
otherwise, an error will occur.

• You cannot use ec_getblkinfo() in conjunction with ec_reciottdata() because the user
application layer does not have access to the internal callback function.

Name: int ec_getblkinfo(blkInfop)

Inputs: EC_BLK_INFO *blkInfop • points to the EC_BLK_INFO data structure

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: Status Information

Mode: Synchronous

Dialogic®

Platform:
DM3

Parameter Description

blkInfop points to the EC_BLK_INFO data structure, which specifies block
information. See EC_BLK_INFO, on page 64 for more information.

16 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_getblkinfo() — get header info for echo-cancelled data

• You should process your data before calling ec_getblkinfo() otherwise bits of noise will be
interjected into the silence compressed recording.

Errors

When this function returns -1 to indicate failure, the most likely reason is that this function was not
called from within a write callback function.

Example

This example code illustrates how a callback function processes streamed data.

int stream_cb(int chDev, char *buffer, UINT length)
{
 int rc;
 /* Silence Compressed Streaming*/
 EC_BLK_INFO *blkInfo;

 /* process data first before calling ec_getblkinfo() so as not to disrupt the transfer
 * of data
 */

 /* Write recorded streaming data to file. */
 rc = _write(RecordFile[ecdev_to_channel[chDev]], buffer, length);
 if (rc <0) {
 printf("[%d]: Error writing streaming data to file.\n", ecdev_to_channel[chDev]);
 }

 if(ChanNum == 1){
 blkInfo = (EC_BLK_INFO *)buffer;

 /* Note: It is not recommended to use of printf(), scanf(),
 * and other similar functions within the callback function.
 * For demonstration purposes output to the screen
 * occurs when using a single channel.
 */

 printtime();
 printf("[%d]:In stream_cb(). Received %d bytes of data. Voice data is
 processed.\n",ecdev_to_channel[chDev], length);
 if(compress == TRUE){

 /* Silence Compressed Streaming */
 rc = ec_getblkinfo(blkInfo);
 if (rc == 0){
 printtime();
 printf("[%d]: type %d: flags %d: size %d: elapsed time %d\n",
 ecdev_to_channel[chDev],blkInfo->type,blkInfo->flags,blkInfo->size,
 blkInfo->timestamp);
 }else{printf("Error in ec_getblkinfo(). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(chDev), ATDV_LASTERR(chDev)); }
 }
 }//end if ChanNum

 return(length);

}

See Also

• ec_reciottdata()

Dialogic® Continuous Speech Processing API Library Reference — April 2008 17

Dialogic Corporation

get header info for echo-cancelled data — ec_getblkinfo()

• ec_stream()

• EC_BLK_INFO data structure

18 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_getparm() — retrieve the current parameter settings

ec_getparm()

retrieve the current parameter settings

Description

The ec_getparm() function returns the current parameter settings for an open device that supports
continuous speech processing (CSP).

The same parameter IDs are available for ec_setparm() and ec_getparm(). For details on these
parameters, see the ec_setparm() function description.

Cautions

• The address of the variable passed to receive the value of the requested parameter must be cast
as void* as shown in the example. It is recommended that you clear this variable prior to
calling ec_getparm().

• Allocate sufficient memory to receive the value of the parameter specified. Note that some
parameters require only two bytes while other parameters may be ASCII strings. The data type
of the variable that will receive the parameter value must match the data type for the specific
parameter being queried.

• On Dialogic® DM3 boards, you must issue ec_getparm() in the same process as
ec_setparm(); otherwise, the values returned for ec_getparm() will be invalid.

Name: int ec_getparm(chdev, parmNo, lpValue)

Inputs: int chdev • valid channel device handle

unsigned long parmNo • parameter value

void *lpValue • pointer to memory where parameter value is stored

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: Configuration

Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chdev the channel device handle obtained when the CSP-capable device is
opened using dx_open()

parmNo the define for the parameter whose value is returned in the variable
pointed to by lpValue

lpValue a pointer to the variable where the parmNo value is stored on return

Dialogic® Continuous Speech Processing API Library Reference — April 2008 19

Dialogic Corporation

retrieve the current parameter settings — ec_getparm()

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Parameter error.

EDX_BUSY
Channel is busy (when channel device handle is specified) or first channel is busy (when board
device handle is specified).

EDX_SYSTEM
Operating system error.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{

int chdev
short parmval; /* DXCH_BARGEIN parameter is 2 bytes long */
int srlmode; /* Standard Runtime Library mode */

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* Open the channel and get channel device handle in chdev */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 /* process error */
 }

 /* Clear parameter variable */
 parmval = 0;

 /* Get parameter settings */
 if (ec_getparm(chdev, DXCH_BARGEIN, (void *)&parmval) == -1) {
 /* process error */
 }
 /* Get additional parameter settings as needed */
 . . .
}

20 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_getparm() — retrieve the current parameter settings

See Also

• ec_setparm()

• dx_setparm() in the Voice API Library Reference

Dialogic® Continuous Speech Processing API Library Reference — April 2008 21

Dialogic Corporation

return the echo-cancelled transmit time slot number — ec_getxmitslot()

ec_getxmitslot()

return the echo-cancelled transmit time slot number

Description

The ec_getxmitslot() function returns the echo-cancelled transmit time slot number of a CSP-
capable full-duplex channel. It returns the number of the TDM bus time slot which transmits the
echo-cancelled data. This information is returned in an SC_TSINFO structure.

This function (together with xx_listen() and xx_unlisten() routing functions such as
dx_getxmitslot() and gc_GetXmitSlot()) allows you to send echo-cancelled data over the TDM
bus to another board, regardless of whether this board is CSP-capable or not.

Note: The ec_getxmitslot() function supports the feature streaming echo-cancelled data to the TDM bus.
This feature is supported on select Dialogic® DM3 boards only. For current information on
hardware support, see the Release Guide for the system release you are using.

The SC_TSINFO structure is declared as follows:

typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
} SC_TSINFO;

The sc_numts field must be initialized with the number of TDM bus time slots requested (1 for a
voice channel). The sc_tsarrayp field must be initialized with a pointer to a valid array. Upon
return from the function, the array contains the time slot on which the voice channel transmits.

Name: int ec_getxmitslot(chDev, lpSlot)

Inputs: int chDev • valid channel device handle

SC_TSINFO *lpSlot • pointer to time slot data structure

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: Routing

Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chDev the channel device handle obtained when the CSP-capable device is opened
using dx_open()

lpSlot a pointer to the SC_TSINFO data structure

22 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_getxmitslot() — return the echo-cancelled transmit time slot number

Cautions

• This function fails if you specify an invalid channel device handle.

• The nr_scroute() and nr_scunroute() convenience functions do not support CSP. To route
echo-cancelled data, use xx_listen() and xx_unlisten() functions where xx represents the
type of device, such as “dx” for voice. See the Dialogic® Voice API Library Reference for
more information.

• On Dialogic® Springware boards, in Linux applications that use multiple threads, you must
avoid having two or more threads call functions that use the same device handle; otherwise, the
replies can be unpredictable and cause those functions to time out or create internal
concurrency that can lead to a segmentation fault. If you must do this, use semaphores to
prevent concurrent access to a particular device handle.

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Time slot pointer information is NULL or invalid.

EDX_SH_BADCMD
Command is not supported in current bus configuration.

EDX_SH_BADINDX
Invalid Switch Handler index number.

EDX_SH_BADLCLTS
Invalid channel number.

EDX_SH_BADMODE
Function is not supported in current bus configuration.

EDX_SH_BADTYPE
Invalid channel type (voice, analog, etc.)

EDX_SH_CMDBLOCK
Blocking command is in progress.

EDX_SH_LCLDSCNCT
Channel is already disconnected from TDM bus.

EDX_SH_LIBBSY
Switch Handler library is busy.

EDX_SH_LIBNOTINIT
Switch Handler library is uninitialized.

EDX_SH_MISSING
Switch Handler is not present.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 23

Dialogic Corporation

return the echo-cancelled transmit time slot number — ec_getxmitslot()

EDX_SH_NOCLK
Switch Handler clock fallback failed.

EDX_SYSTEM
Operating system error.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{
 int chdev; /* Channel device handle */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */
 int srlmode; /* Standard Runtime Library mode */

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* Open board 1 channel 1 device */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1) {
 printf("Cannot open channel dxxxB1C1. Check to see if board is started");
 exit(1);
 }

 /* Fill in the TDM bus time slot information */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;

 /* Get TDM bus time slot connected to transmit of voice channel 1 on board 1 */
 if (ec_getxmitslot(chdev, &sc_tsinfo) == -1) {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }

 printf("%s is transmitting on TDM bus time slot %ld", ATDV_NAMEP(chdev), scts);
}

See Also

• ag_getxmitslot() in the Dialogic® Voice API Library Reference

• dt_getxmitslot() in the Dialogic® Digital Network Interface Software Reference

• dx_getxmitslot() in the Dialogic® Voice API Library Reference

24 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_listen() — change the echo-reference signal from the default reference

ec_listen()

change the echo-reference signal from the default reference

Description

The ec_listen() function changes the echo-reference signal from the default reference (that is, the
same channel as the play) to the specified time slot on the TDM bus.

The SC_TSINFO structure is declared as follows:

typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
} SC_TSINFO;

The sc_numts field must be initialized with a value of 1. The sc_tsarrayp field must be initialized
with a pointer to a long value that holds the time slot number that should be used as reference
signal by the CSP-capable channel. Note that an SC_TSINFO structure populated by one of the
xx_getxmitslot() functions (such as dx_getxmitslot(), dt_getxmitslot(), and gc_GetXmitSlot())
is correctly formatted for use with ec_listen().

Name: int ec_listen(chDev, lpSlot)

Inputs: int chDev • valid channel device handle

SC_TSINFO *lpSlot • pointer to time slot data structure

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: Routing

Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chDev the channel device handle obtained when the CSP-capable device is opened
using dx_open()

lpSlot a pointer to the SC_TSINFO data structure

Dialogic® Continuous Speech Processing API Library Reference — April 2008 25

Dialogic Corporation

change the echo-reference signal from the default reference — ec_listen()

Cautions

• This function fails if you specify an invalid channel device handle.

• On Dialogic® Springware boards, in Linux applications that use multiple threads, you must
avoid having two or more threads call functions that use the same device handle; otherwise, the
replies can be unpredictable and cause those functions to time out or create internal
concurrency that can lead to a segmentation fault. If you must do this, use semaphores to
prevent concurrent access to a particular device handle.

• On Dialogic® DM3 boards, in a configuration where a network interface device listens to the
same TDM bus time slot device as a local, on board voice device or other media device, the
sharing of time slot (SOT) algorithm applies. This algorithm imposes limitations on the order
and sequence of “listens” and “unlistens” between network and media devices. For details on
application development rules and guidelines regarding the sharing of time slot (SOT)
algorithm, see the technical note posted on the Dialogic support web site:

http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn043.htm

This caution applies to Dialogic® DMV, DMV/A, DM/IP, and DM/VF boards. This caution
does not apply to Dialogic® DMV/B, DI series, and DMV160LP boards.

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Time slot pointer information is NULL or invalid.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{

 int chdev1,chdev2; /* Channel device handles */
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */

http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn043.htm

26 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_listen() — change the echo-reference signal from the default reference

 /* Open board 1 channel 1 device */
 chdev1 = dx_open("dxxxB1C1", NULL);
 if (chdev1 < 0) {
 printf("Error %d in dx_open(dxxxB1C1)\n",chdev1);
 exit(-1);
 }

 /* Open board 1 channel 2 device */
 chdev2 = dx_open("dxxxB1C2", NULL);
 if (chdev2 < 0) {
 printf("Error %d in dx_open(dxxxB1C1)\n",chdev2);
 exit(-1);
 }

 /* Set DXCH_EC_TAP_LENGTH as needed */
 ret = ec_setparm(...);

 /* Get second channel’s vox transmit time slot */
 sc_tsinfo.sc_numts = 1;
 sc_tsinfo.sc_tsarrayp = &scts;
 if (dx_getxmitslot(chdev2, &sc_tsinfo) == -1) {
 printf("Error in dx_getxmitslot(chdev2, &sc_tsinfo). Err Msg = %s\n",
 ATDV_ERRMSGP(chdev2));
 }

 /* Make first channel's ec listen to second channel's vox transmit time slot */
 if (ec_listen(chdev1, &sc_tsinfo) == -1) {
 printf("Error in ec_listen(chdev1, &sc_tsinfo). Err Msg = %s\n",
 ATDV_ERRMSGP(chdev1));
 }

 /* Set ECCH_NLP off and set other desired parameters */
 ret = ec_setparm(...);
}

See Also

• ag_listen() in the Dialogic® Voice API Library Reference

• dt_listen() in the Dialogic® Digital Network Interface Software Reference

• dx_listen() in the Dialogic® Voice API Library Reference

Dialogic® Continuous Speech Processing API Library Reference — April 2008 27

Dialogic Corporation

re-enable the voice activity detector — ec_rearm()

ec_rearm()

re-enable the voice activity detector

Description

The ec_rearm() function temporarily stops streaming of echo-cancelled data from the board and
rearms or re-enables the voice activity detector (VAD). The prompt is not affected by this function.

 If a VAD event is received and the recognizer determines that the energy was non-speech such as a
cough, use this function to re-activate the VAD for the next burst of energy.

The ec_rearm() function is intended to be used with VAD enabled and barge-in disabled.

Note: In Dialogic® System Release Software 6.0, the ec_rearm() function is not supported. The
rearming functionality is superseded by the silence compressed streaming feature. Use the
ECCH_SILENCECOMPRESS parameter in ec_setparm() to enable this feature.

The following scenario describes how the ec_rearm() function works. After the VAD is triggered,
it starts streaming data to the host application. The host application determines that this is a false
trigger and calls the ec_rearm() function. Streaming is halted and the VAD is rearmed for the next
burst of energy.

Caution: During the time that the VAD is being rearmed, you will not get a VAD event if an energy burst
comes in. The time it takes for the VAD to be rearmed varies depending on hardware and operating
system used.

Figure 1 illustrates the rearming concept.

Name: int ec_rearm(chDev)

Inputs: int chDev • valid channel device handle

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: I/O

Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chDev the channel device handle obtained when the CSP-capable device is opened
using dx_open()

28 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_rearm() — re-enable the voice activity detector

Figure 1. Rearming the Voice Activity Detector (VAD)

Cautions

You must explicitly clear the digit buffer if digits remaining in the buffer will not be processed.
Before calling ec_rearm(), you must call dx_clrdigbuf() to clear the buffer. For more
information on this function, see the Dialogic® Voice API Library Reference.

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Parameter error.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

REAL-TIME PCM DATA

Data Stream
to Host

Application

Stream Function
Sent

False Trigger
Determined

VAD
Rearmed(ASR

Delay)

(Command
Propagation

Delay)VAD
Triggered

t

Rearm Function
Sent

VAD
Triggered

Dialogic® Continuous Speech Processing API Library Reference — April 2008 29

Dialogic Corporation

re-enable the voice activity detector — ec_rearm()

main()
{

 char csp_devname[9];
 int ret, csp_dev, parmval=0;
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */
 int srlmode; /* Standard Runtime Library mode */
 DX_IOTT iott; /* I/O transfer table */
 DV_TPT tptp[1], tpt; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 sprintf(csp_devname,"dxxxB1C1");

 /* Open a voice device. */
 csp_dev = dx_open(csp_devname, 0);
 if (csp_dev < 0) {
 printf("Error %d in dx_open()\n",csp_dev);
 exit(-1);
 }

 /* Set up ec parameters as needed.
 * ECCH_VADINITIATED is enabled by default.
 * Barge-in should be disabled (DXCH_BARGEIN=0) so that prompt
 * continues to play after energy is detected.
 */
 ret = ec_setparm(...);
 if (ret == -1) {
 printf("Error in ec_setparm(). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(csp_dev), ATDV_LASTERR(csp_dev));
 }

 /* Set up DV_TPT for record */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXTIME;
 tpt.tp_length = 60;
 tpt.tp_flags = TF_MAXTIME;

 /* Record data format set to 8-bit PCM, 8KHz sampling rate */
 xpb.wFileFormat = FILE_FORMAT_VOX;
 xpb.wDataFormat = DATA_FORMAT_PCM;
 xpb.nSamplesPerSec = DRT_8KHZ;
 xpb.wBitsPerSample = 8;

 ret = ec_stream(csp_dev, &tpt, &xpb, &stream_cb, EV_ASYNC | MD_NOGAIN);
 if (ret == -1) {
 printf("Error in ec_reciottdata(). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(csp_dev), ATDV_LASTERR(csp_dev));
 }

 /* Set channel off-hook */
 ret = dx_sethook(csp_dev, DX_OFFHOOK, EV_SYNC);
 if (ret == -1) {
 printf("Error in dx_sethook(). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(csp_dev), ATDV_LASTERR(csp_dev));
 }

30 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_rearm() — re-enable the voice activity detector

 /* Set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1;

 /* Set up DV_TPT for play */
 dx_clrtpt(&tptp,1);
 tptp[0].tp_type = IO_EOT;
 tptp[0].tp_termno = DX_MAXDTMF;
 tptp[0].tp_length = 1;
 tptp[0].tp_flags = TF_MAXDTMF;

 /* Open file to be played */
 #ifdef WIN32
 if ((iott.io_fhandle = dx_fileopen("sample.vox",O_RDONLY|O_BINARY)) == -1) {
 printf("Error opening sample.vox.\n");
 exit(1);
 }
 #else
 if ((iott.io_fhandle = open("sample.vox",O_RDONLY)) == -1) {
 printf("File open error\n");
 exit(2);
 }
 #endif

 /* Play prompt message. */
 ret = dx_play(csp_dev, &iott, &tptp, EV_ASYNC);
 if (ret == -1) {
 printf("Error playing sample.vox.\n");
 exit(1);
 }

 /* In the ASR engine section -- pseudocode */
 while (utterance is undesirable) {
 /* Wait for TEC_VAD event */
 while (TEC_VAD event is not received) {
 sr_waitevt(-1);
 ret = sr_getevttype();
 if (ret == TEC_VAD) {
 /* After TEC_VAD event is received, determine if utterance is desirable */
 if (utterance is undesirable) {
 /* Use ec_rearm() to pause streaming and rearm the VAD trigger*/
 ret = ec_rearm(csp_dev);
 if (ret == -1) {
 printf("Error in ec_rearm(). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(csp_dev), ATDV_LASTERR(csp_dev));
 } /* end if (ret == -1) */
 } /* end if (utterance is undesirable) */
 } /* end if (ret == TEC_VAD) */
 } /* end while (TEC_VAD event not received)
 } /* end while (utterance is undesirable) */

.

.

.

See Also

None

Dialogic® Continuous Speech Processing API Library Reference — April 2008 31

Dialogic Corporation

start an echo-cancelled record to a file or memory buffer — ec_reciottdata()

ec_reciottdata()

start an echo-cancelled record to a file or memory buffer

Description

The ec_reciottdata() function starts an echo-cancelled record to a file or memory buffer on a CSP-
capable full-duplex channel.

You can perform a record at all times or a voice-activated record. To perform a voice-activated
record, where recording begins only after speech energy has been detected, use
ECCH_VADINITIATED in ec_setparm(). This parameter is enabled by default.

You can record or stream speech energy with silence removed from the data stream. To use the
silence compressed streaming feature, enable ECCH_SILENCECOMPRESS in ec_setparm().
This parameter is disabled by default.

Name: int ec_reciottdata(chDev, iottp, tptp, xpbp, mode)

Inputs: int chDev • valid channel device handle

DX_IOTT *iottp • pointer to I/O transfer table

DV_TPT *tptp • pointer to termination parameter table

DX_XPB *xpbp • pointer to I/O transfer parameter block table

unsigned short mode • record mode

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: I/O

Mode: Synchronous/Asynchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chDev the channel device handle obtained when the CSP-capable device is opened
using dx_open()

iottp pointer to the DX_IOTT data structure that specifies the order and media on
which the echo-cancelled data is recorded

32 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_reciottdata() — start an echo-cancelled record to a file or memory buffer

Cautions

• This function fails if an unsupported data format is specified. For a list of supported data
formats, see the Dialogic® Continuous Speech Processing API Programming Guide.

• To set the proper parameters, the ec_setparm() function must be called for every
ec_reciottdata() occurrence in your application.

• If you use this function in synchronous mode, you must use multithreading in your application.

• All files specified in the DX_IOTT data structure are of the file format described in DX_XPB.

• All files recorded to have the data encoding and rate as described in DX_XPB.

• The DX_IOTT data area must remain in scope for the duration of the function if running
asynchronously.

• The DX_XPB data area must remain in scope for the duration of the function if running
asynchronously.

• On Dialogic® Springware boards, we recommend that you use the same data format for play
and recording/streaming.

• On Dialogic® Springware boards, in Linux applications that use multiple threads, you must
avoid having two or more threads call functions that use the same device handle; otherwise, the
replies can be unpredictable and cause those functions to time out or create internal
concurrency that can lead to a segmentation fault. If you must do this, use semaphores to
prevent concurrent access to a particular device handle.

tptp pointer to the DV_TPT data structure that sets the termination conditions for
the device handle

Note: Not all termination conditions are supported by all functions. On
Dialogic® Springware boards, the only termination conditions supported
by ec_reciottdata() are DX_MAXTIME, DX_MAXSIL, and
DX_MAXNOSIL. The Voice Activity Detector (VAD) timeout period is
set by the tp_length parameter in the DV_TPT structure. For more
information, see the DV_TPT description in the Voice API Library
Reference.

Note: Not all termination conditions are supported by all functions. On
Dialogic® DM3 boards, see the DV_TPT description in the Dialogic®
Voice API Library Reference for information about supported termination
conditions.

Note: In CSP, DV_TPT terminating conditions are edge-sensitive.

xpbp pointer to the DX_XPB data structure that specifies the file format, data
format, sampling rate and sampling size

mode a logical OR bit mask that specifies the record mode:

• EV_SYNC – synchronous mode

• EV_ASYNC – asynchronous mode

• MD_GAIN – automatic gain control (AGC)

• MD_NOGAIN – no automatic gain control

Note: For ASR applications, turn AGC off.

Parameter Description

Dialogic® Continuous Speech Processing API Library Reference — April 2008 33

Dialogic Corporation

start an echo-cancelled record to a file or memory buffer — ec_reciottdata()

• The DX_MAXSIL and DX_MAXNOSIL termination conditions are not supported on CSP-
enabled boards that have an analog front-end and Japan Caller ID enabled with polarity
reversal. This limitation affects Dialogic® D/120JCT Rev 2 and D/41JCT-LS boards. Thus,
these termination conditions cannot be specified in the DV_TPT structure for
ec_reciottdata() and ec_stream().

• When DX_MAXSIL and DX_MAXNOSIL termination conditions are used, the silence timer
starts after a dx_play() has completed. To start the silence timer immediately after the onset of
ec_stream() or ec_reciottdata(), use the bit flag TF_IMMEDIATE (tp_flags field in the
DV_TPT structure). This flag is not supported on Dialogic® Springware boards.

• On Dialogic® DM3 boards using a flexible routing configuration, CSP channels must be
listening to a TDM bus time slot in order for ec_reciottdata() and ec_stream() functions to
work. In other words, you must issue a dx_listen() function call on the device handle before
calling ec_reciottdata() or ec_stream() function for that device handle. If not, that channel
will be in a stuck state; it can only be cleared by issuing ec_stopch() or dx_listen(). The
actual recording operation will start only after the channel is listening to the proper external
time slot.

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADIOTT
Invalid DX_IOTT setting.

EDX_BADPARM
Parameter is invalid or not supported.

EDX_BADWAVFILE
Invalid WAVE file.

EDX_BUSY
Channel is busy.

EDX_SH_BADCMD
Unsupported command or WAVE file format.

EDX_SYSTEM
Operating system error.

EDX_XPBPARM
Invalid DX_XPB setting.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

34 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_reciottdata() — start an echo-cancelled record to a file or memory buffer

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main ()
{

 int chdev; /* channel descriptor */
 int fd; /* file descriptor for file to be played */
 DX_IOTT iott, iott1; /* I/O transfer table */
 DV_TPT tpt, tpt1; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */
 int parmval = 1;
 int srlmode; /* Standard Runtime Library mode */

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1)
 {
 /* process error */
 }
 .
 .
 .

 /* Open channel */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1)
 {
 /* process error */
 }

 /* Set event mask to send the VAD events to the application */
 dx_setevtmsk(chdev, DM_VADEVTS);

 /* To use barge-in and voice-activated recording, you must enable
 * ECCH_VADINITIATED (enabled by default) and DXCH_BARGEIN using
 * ec_setparm()
 */
 ec_setparm (chdev, DXCH_BARGEIN, &parmval);
 ec_setparm (chdev, ECCH_VADINITIATED, &parmval);
 .
 .
 .

 /* Set up DV_TPT for record */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXTIME;
 tpt.tp_length = 60; /* max time for record is 6 secs */
 tpt.tp_flags = TF_MAXTIME;

 /* Open file */
 #ifdef WIN32
 if ((iott.io_fhandle = dx_fileopen("MESSAGE.VOX",O_RDWR| O_BINARY| O_CREAT| O_TRUNC,
 0666)) == -1)
 {
 printf("File open error\n");
 exit(2);
 }
 #else
 if ((iott.io_fhandle = open("MESSAGE.VOX",O_RDWR| O_CREAT| O_TRUNC, 0666)) == -1)

Dialogic® Continuous Speech Processing API Library Reference — April 2008 35

Dialogic Corporation

start an echo-cancelled record to a file or memory buffer — ec_reciottdata()

 {
 printf("File open error\n");
 exit(2);
 }
 #endif

 /* Set up DX_IOTT */
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1;
 iott.io_type = IO_DEV | IO_EOT;

 /*
 * Specify VOX file format for mu-law at 8KHz.
 */
 xpb.wFileFormat = FILE_FORMAT_VOX;
 xpb.wDataFormat = DATA_FORMAT_MULAW;
 xpb.nSamplesPerSec = DRT_8KHZ;
 xpb.wBitsPerSample = 8;

 /* Start recording. */
 if (ec_reciottdata(chdev, &iott, &tpt, &xpb, EV_ASYNC | MD_NOGAIN) == -1)
 {
 printf("Error recording file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

 /* Open file to be played */
 #ifdef WIN32
 if ((iott1.io_fhandle = dx_fileopen("SAMPLE.VOX",O_RDONLY|O_BINARY)) == -1)
 {
 printf("Error opening SAMPLE.VOX\n");
 exit(1);
 }
 #else
 if ((iott1.io_fhandle = open("SAMPLE.VOX",O_RDONLY)) == -1)
 {
 printf("File open error\n");
 exit(2);
 }
 #endif

 iott1.io_bufp = 0;
 iott1.io_offset = 0;
 iott1.io_length = -1;
 iott1.io_type = IO_DEV | IO_EOT;

 /* Set up DV_TPT for play */
 tpt1.tp_type = IO_EOT;
 tpt1.tp_termno = DX_MAXDTMF;
 tpt1.tp_length = 1;
 tpt1.tp_flags = TF_MAXDTMF;

 /* Play intro message; use same file format as record */
 if (dx_playiottdata(chdev,&iott1,&tpt1,&xpb,EV_ASYNC) == -1)
 {
 printf("Error playing file - %s\n", ATDV_ERRMSGP(chdev));
 exit(4);
 }

 /* Wait for barge-in and echo-cancelled record to complete */
 while (1)
 {
 sr_waitevt(-1);
 ret = sr_getevttype();
 if (ret == TDX_BARGEIN)
 {

36 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_reciottdata() — start an echo-cancelled record to a file or memory buffer

 printf("TDX_BARGEIN event received\n");
 }
 else if (ret == TDX_PLAY)
 {
 printf("Play Completed event received\n");
 break;
 }
 else if (ret == TEC_STREAM)
 {
 printf("TEC_STREAM – termination event");
 printf("for ec_stream and ec_reciottdata received\n");
 break;
 }
 else if (ret == TDX_ERROR)
 {
 printf("ERROR event received\n");
 }
 else
 {
 printf("Event 0x%x received.\n", ret);
 }

 } /* end while */

 /* Close record file */
 #ifdef WIN32
 if (dx_fileclose(iott.io_fhandle) == -1)
 {
 printf("Error closing MESSAGE.VOX \n");
 exit(1);
 }
 #else
 if (close(iott.io_fhandle) == -1)
 {
 printf("Error closing MESSAGE.VOX \n");
 exit(1);
 }
 #endif

 /* Close play file */
 #ifdef WIN32
 if (dx_fileclose(iott1.io_fhandle) == -1
 {
 printf("Error closing SAMPLE.VOX \n”);
 exit(1);
 }
 #else
 if (close(iott1.io_fhandle) == -1) {
 printf("Error closing SAMPLE.VOX \n");
 exit(1);
 }
 #endif

 /* Close channel */
 dx_close(chdev);

}

See Also

• ec_stream()

• dx_reciottdata() in the Dialogic® Voice API Library Reference

Dialogic® Continuous Speech Processing API Library Reference — April 2008 37

Dialogic Corporation

start an echo-cancelled record to a file or memory buffer — ec_reciottdata()

38 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_resetch() — reset a channel that is hung

ec_resetch()

reset a channel that is hung

Description

The ec_resetch() function recovers a channel that is “stuck” (busy or hung) and in a recoverable
state, and brings it to an idle and usable state. This function blocks all other functions from
operating on the channel until the function completes. This function recovers both the CSP channel
and the voice channel.

In synchronous mode, 0 is returned if the function completes successfully, and -1 is returned in
case of error.

In asynchronous mode, the TDX_RESET and the TEC_RESET events are generated to indicate
that the channel was recovered and is in an idle and usable state. The TDX_RESETERR and the
TEC_RESETERR events are generated to indicate that the channel is not recoverable. Issuing any
other media calls on this channel will result in an error.

Cautions

• The ec_resetch() function is intended for use on channels that are stuck and not responding.
Do not use it in place of ec_stopch(). Use ec_resetch() only if you do not receive an event

Name: ec_resetch (chdev, mode)

Inputs: int chdev • valid channel device handle

int mode • mode of operation

Returns: 0 if success
-1 if failure

Includes: srllib.h
eclib.h

Category: I/O

Mode: asynchronous or synchronous

Dialogic®

Platform:
DM3

Parameter Description

chdev Specifies the valid device handle obtained when the channel was opened
using dx_open()

mode Specifies the mode of operation:
• EV_ASYNC – asynchronous mode. The calling thread returns

immediately so it can process media functionality on other channels.
• EV_SYNC – synchronous mode. The calling thread waits until the

channel is recovered or discovers that the channel is not in a
recoverable state.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 39

Dialogic Corporation

reset a channel that is hung — ec_resetch()

within 30 seconds of when it’s expected. Overuse of this function creates unnecessary
overhead and may affect system performance.

Errors

If the function returns -1, use the Dialogic® Standard Runtime Library (SRL) Standard Attribute
function ATDV_LASTERR() to obtain the error code or use ATDV_ERRMSGP() to obtain a
descriptive error message. One of the following error codes may be returned:

EDX_BADPARM
Invalid parameter

EDX_FWERROR
Firmware error

EDX_NOERROR
No error

Example

#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{
 int chdev, srlmode;
 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* Open the channel using dx_open(). Get channel device descriptor
 * in chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 /* process error */
 }
 /* continue processing */
 . .
 /* Force the channel to idle state. The I/O function that the channel
 * is executing will be terminated, and control passed to the handler
 * function previously enabled, using sr_enbhdlr(), for the
 * termination event corresponding to that I/O function.
 * In the asynchronous mode, ec_stopch() returns immediately,
 * without waiting for the channel to go idle.
 */
 if (ec_stopch(chdev, FULLDUPLEX, EV_ASYNC) == -1) {
 /* process error */
 }

 /* Wait for the termination events (TEC_STREAM and/or TDX_PLAY) */

 /* After waiting for 30 secs, if the channel is still in a busy state,
 * issue ec_resetch() to reset both the CSP channel and the voice channel.
 * When issued in asynchronous mode, it will return both (TEC_RESET/TEC_RESETERR)
 * and (TDX_RESET/TDX_RESETERR) events.
 */

 if (ec_resetch(chdev, EV_ASYNC) == -1) {

40 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_resetch() — reset a channel that is hung

 /* process error */
 }

 /* Wait for TEC_RESET/TEC_RESETERR and TDX_RESET/TDX_RESETERR */

}

See Also

• dx_resetch() in the Dialogic® Voice API Library Reference

Dialogic® Continuous Speech Processing API Library Reference — April 2008 41

Dialogic Corporation

configure the parameter of an open and idle device — ec_setparm()

ec_setparm()

configure the parameter of an open and idle device

Description

The ec_setparm() function configures the parameter of an open device that supports continuous
speech processing (CSP). This function sets one parameter value at a time on an open channel.

The same parameter IDs are available for ec_setparm() and ec_getparm().

The eclib.h contains definitions (#define) for these parameter IDs. All ec_setparm() parameter
IDs have default values. If you don’t use ec_setparm() to change the parameter values, the default
values are used.

Name: int ec_setparm(chDev, parmNo, lpValue)

Inputs: int chDev • valid channel device handle

unsigned long parmNo • parameter value

void *lpValue • pointer to memory where parameter value is stored

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: Configuration

Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chDev the channel device handle obtained when a CSP-capable device is opened
using dx_open()

parmNo the define for the parameter to be set

lpValue a pointer to the variable that specifies the parameter to be set

Note: You must pass the value of the parameter to be set in a variable cast as
(void *) as shown in the example.

42 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_setparm() — configure the parameter of an open and idle device

The following summarizes the parameter IDs and their purpose. The defines for parameter IDs are
described in more detail following this table, in alphabetical order.

Board Level Parameters:

DXBD_RXBUFSIZE

DXBD_TXBUFSIZE

• sets size of firmware record buffer

• sets size of firmware play buffer
Continuous Speech Processing Channel Parameters:

ECCH_XFERBUFFERSIZE

ECCH_VADINITIATED

ECCH_ECHOCANCELLER

DXCH_BARGEIN

DXCH_BARGEINONLY

DXCH_EC_TAP_LENGTH

ECCH_ADAPTMODE

ECCH_NLP

ECCH_SILENCECOMPRESS

• sets size of driver record buffer

• sets VAD-initiated calls

• enables/disables echo canceller

• enables barge-in during prompt play

• enables TDX_BARGEIN and TDX_PLAY events

• sets tap length of echo canceller

• sets adaptation mode (slow or fast convergence)

• turns NLP (comfort noise) on or off

• turn silence compressed streaming (SCS) on or off
Voice Activity Detector (VAD) Parameters:

ECCH_SVAD

DXCH_SPEECHPLAYTHRESH

DXCH_SPEECHNONPLAYTHRESH

DXCH_SPEECHPLAYTRIGG

DXCH_SPEECHNONPLAYTRIGG

DXCH_SPEECHPLAYWINDOW

DXCH_SPEECHNONPLAYWINDOW

DXCH_SPEECHSNR

• enables/disables zero-crossing mode

• energy level that triggers VAD during play

• energy level that triggers VAD during non-play

• energy level greater than speech threshold that triggers VAD
during play

• energy level greater than speech threshold that triggers VAD
during non-play

• window surveyed to detect speech energy during prompt play

• window surveyed to detect speech energy during non-play

• reciprocal signal to noise ratio

Dialogic® Continuous Speech Processing API Library Reference — April 2008 43

Dialogic Corporation

configure the parameter of an open and idle device — ec_setparm()

Define Description

DXBD_RXBUFSIZE
(Springware boards only)

Bytes: 2
Default: 512
Attribute: R/W
Units: bytes
Range: 128-512

Supported on Dialogic® Springware boards only. These buffers are
used to transfer data between the firmware and the driver.

For more information on setting buffer sizes, see the Dialogic®
Continuous Speech Processing API Programming Guide.

Note: Decreasing the size of the buffers increases the number of
interrupts between the host application and the board,
thereby increasing the load on both the host and on-board
control processors.

Note: On Windows®, to modify the default value of 512, you must
edit the voice.prm file. For details, see the configuration
guide. On Linux, the value is fixed at 512.

DXBD_TXBUFSIZE
(Springware boards only)

Bytes: 2
Default: 512
Attribute: R/W
Units: bytes
Range: 128-512

Supported on Dialogic® Springware boards only. Sets the size of
the firmware transmit (or play) buffers in shared RAM. These
buffers are used to transfer data between the firmware and the
driver.

Be sure that all channels on the board are idle before using this
parameter; otherwise, unpredictable behavior may result.

For more information on setting buffer sizes, see the Dialogic®
Continuous Speech Processing API Programming Guide.

Note: Decreasing the size of the buffers increases the number of
interrupts between the host application and the board,
thereby increasing the load on both the host and on-board
control processors.

Note: On Windows®, to modify the default value of 512, you must
edit the voice.prm file. For details, see the configuration
guide. On Linux, the value is fixed at 512.

DXCH_BARGEIN

Bytes: 2
Default: 0
Attribute: R/W
Values: 0 or 1

Enables or disables barge-in in the application during prompt play
when a CSP-supported data format is used. For a list of supported
data formats, see the Dialogic® Continuous Speech Processing
API Programming Guide.

The value 1 turns the feature on, and 0 turns the feature off.

DXCH_BARGEINONLY

Bytes: 2
Default: 1
Attribute: R/W
Values: 0 or 1

Enables or disables generation of TDX_BARGEIN and TDX_PLAY
events when a barge-in condition occurs. See Chapter 4, “Events”
for a list of events.

The value 0 enables generation of both TDX_BARGEIN and
TDX_PLAY events. (In doing so, you receive the TDX_PLAY event
upon barge-in and can simply ignore the TDX_BARGEIN event in
your playback state machine.)

Note: When playing a prompt in synchronous mode, you must set
DXCH_BARGEINONLY to 0.

The value 1, the default, enables generation of TDX_BARGEIN
event only.

This parameter does not affect the setting of barge-in itself; see
DXCH_BARGEIN.

44 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_setparm() — configure the parameter of an open and idle device

DXCH_EC_TAP_LENGTH
(for Springware boards)

Bytes: 2
Default: 48
Attribute: R/W
Units: 0.125 ms
Values: 48 or 128

For Dialogic® Springware boards. Specifies the tap length for the
echo canceller. The longer the tap length, the more echo is
cancelled from the incoming signal. However, this means more
processing power is required.

The default value is 48 taps which corresponds to 6 ms. One tap is
125 microseconds (0.125 ms).

Note: To use CSP in ASR applications, set this value to 128 taps
(16 ms).

Note: If you use this parameter, you must specify this parameter
BEFORE any other CSP parameter. Any time you specify
DXCH_EC_TAP_LENGTH, other CSP parameters are reset
to their default values.

Note: Do not specify ECCH_ECHOCANCELLER and
DXCH_EC_TAP_LENGTH in your application for the same
stream. Each parameter resets the other to its default value.

Note: On Dialogic® Springware boards, after completion of the
CSP section of your application, set
DXCH_EC_TAP_LENGTH to the default value of 48. This
allows you to use other data formats that are not supported
by CSP.

DXCH_EC_TAP_LENGTH
(for DM3 boards)

Bytes: 2
Default: depends on media load
Attribute: R/W
Units: 0.125 ms
Value: depends on media load

For Dialogic® DM3 boards. Specifies the tap length for the echo
canceller. The longer the tap length, the more echo is cancelled
from the incoming signal. However, this means more processing
power is required.

One tap is 125 microseconds (0.125 ms).

The media load determines what values are supported on a
Dialogic® DM3 board. On some Dialogic® DM3 boards, the default
value and only supported value is 128 taps (16 ms). On other
Dialogic® DM3 boards, the default value is 512 taps (64 ms) and
can be modified. To modify this value, you must edit and download
the appropriate PCD/FCD file. For more information, see the
appropriate Configuration Guide.

For information on Dialogic® DM3 boards that support a tap length
greater than 128 taps, see the latest Release Guide.

DXCH_SPEECHNONPLAYTHRESH
(Springware boards only)

Bytes: 2
Default: -40
Attribute: R/W
Units: decibel milliwatts (dBm)
Range: +3 to -54 dBm

Supported on Dialogic® Springware boards only. Specifies the
minimum energy level of incoming speech necessary to trigger the
voice activity detector. This value is used when a prompt has
completed playing. You must supply the plus or minus sign with
this value.

DXCH_SPEECHNONPLAYTRIGG
(Springware boards only)

Bytes: 2
Default: 10
Attribute: R/W
Units: integer of 12 ms blocks
Range: 5-10

Supported on Dialogic® Springware boards only. Specifies the
number of 12 ms blocks whose speech energy is greater than the
speech threshold required to trigger the voice activity detector
(VAD). This value is used when a prompt has completed playing.

Note: This value must be less than or equal to the value of
DXCH_SPEECHNONPLAYWINDOW.

Define Description

Dialogic® Continuous Speech Processing API Library Reference — April 2008 45

Dialogic Corporation

configure the parameter of an open and idle device — ec_setparm()

DXCH_SPEECHNONPLAYWINDOW
(Springware boards only)

Bytes: 2
Default: 10
Attribute: R/W
Units: integer of 12 ms blocks
Range: 5-10

Supported on Dialogic® Springware boards only. Specifies the
number of 12 ms blocks or frames which are surveyed to detect
speech energy. This value is used when a prompt has completed
playing.

Note: This value must be greater than or equal to the value of
DXCH_SPEECHNONPLAYTRIGG.

DXCH_SPEECHPLAYTHRESH

Bytes: 2
Default: -40
Attribute: R/W
Units: decibel milliwatts (dBm)
Range: +3 to -54

Specifies the minimum energy level of incoming speech necessary
to trigger the voice activity detector. This value is used while a
prompt is playing. You must supply the plus or minus sign with
this value.

For more information on modifying these voice activity detector
parameters, see the Dialogic® Continuous Speech Processing API
Programming Guide.

On Dialogic® DM3 boards, specifying this parameter means that
the VAD uses energy mode to determine the start of speech. For
the VAD to use a combination of zero-crossing mode and energy
mode, do not use this parameter; rather, set the ECCH_SVAD
parameter to 0. In this case, the threshold value is set automatically
by the VAD.

Note: On Dialogic® Springware boards and Dialogic® DM3 boards,
you can modify this parameter while recording or streaming
is active.

DXCH_SPEECHPLAYTRIGG
(for Springware boards)

Bytes: 2
Default: 10
Attribute: R/W
Units: integer of 12 ms blocks
Range: 5-10

For Dialogic® DM3 Springware boards. Specifies the number of 12
ms blocks whose speech energy is greater than the speech
threshold required to trigger the voice activity detector. This value is
used while a prompt is playing.

Note: This value must be less than or equal to the value of
DXCH_SPEECHPLAYWINDOW.

Note: You can modify this parameter while recording or streaming
is active.

DXCH_SPEECHPLAYTRIGG
(for DM3 boards)

Bytes: 2
Default: 10
Attribute: R/W
Units: integer of 10 ms blocks
Range: 5-10

For Dialogic® DM3 boards. Specifies the number of 10 ms blocks
whose speech energy is greater than the speech threshold required
to trigger the voice activity detector. This value is used while a
prompt is playing.

Note: This value must be less than or equal to the value of
DXCH_SPEECHPLAYWINDOW.

Note: You can modify this parameter while recording or streaming
is active.

DXCH_SPEECHPLAYWINDOW
(for Springware boards)

Bytes: 2
Default: 10
Attribute: R/W
Units: integer of 12 ms blocks
Range: 5-10

For Dialogic® Springware boards. During the playing of a prompt,
this parameter specifies the number of 12 ms blocks or frames
which are surveyed to detect speech energy.

Note: This value must be greater than or equal to the value of
DXCH_SPEECHPLAYTRIGG.

Note: You can modify this parameter while recording or streaming
is active.

DXCH_SPEECHPLAYWINDOW
(for DM3 boards)

Bytes: 2
Default: 10
Attribute: R/W
Units: integer of 10 ms blocks
Range: 5-10

For Dialogic® DM3 boards. During the playing of a prompt, this
parameter specifies the number of 10 ms blocks or frames which
are surveyed to detect speech energy.

Note: This value must be greater than or equal to the value of
DXCH_SPEECHPLAYTRIGG.

Note: You can modify this parameter while recording or streaming
is active.

Define Description

46 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_setparm() — configure the parameter of an open and idle device

DXCH_SPEECHSNR

Bytes: 2
Default: -12
Attribute: R/W
Units: decibels (dB)
Range: 0 to -20 dB

Specifies the reciprocal of the signal to noise ratio (SNR) between
the incoming speech energy and the estimated residual noise at
the output of the echo canceller circuit.

SNR is the relationship of the magnitude of a transmission signal to
the noise of a channel. It is a measurement of signal strength
compared to error-inducing circuit noise.

In environments where the incoming signal is weak or has residual
noise, you may want to adjust this value higher to reduce noise in
the signal.

You must supply the minus sign with this value.

Note: You can modify this parameter while recording or streaming
is active.

ECCH_ADAPTMODE
(Springware boards only)

Bytes: 2
Default: 0
Attribute: R/W
Values: 0 or 1

Supported on Dialogic® Springware boards only. Specifies the
adaptation mode of operation for the echo canceller.

The echo canceller uses two operating modes, fast mode and slow
mode. Regardless of the parameter value, the echo canceller
always starts in fast mode (higher automatic gain factor) after it is
reset, then switches to a slow mode (lower automatic gain factor).

When this parameter is set to 0, two factors are used in determining
the switch from fast to slow mode: (1) Echo Return Loss
Enhancement (ERLE) and (2) adaptation time.

When this parameter is set to 1, only the adaptation time factor is
used. For more information on the echo canceller and adaptation
mode, see the Dialogic® Continuous Speech Processing API
Programming Guide.

ECCH_ECHOCANCELLER

Bytes: 2
Default: 1
Attribute: R/W
Values: 0 or 1

Enables or disables the echo canceller in the application.

The value 1 turns on the echo canceller, and the value 0 turns it off.

Note: Because the echo canceller is enabled by default, you do
not need to use this parameter to turn on the echo canceller
in your application. Only use this parameter to turn off the
echo canceller. You may want to turn off the echo canceller
for evaluation purposes.

Note: For Dialogic® Springware boards, if you use this parameter,
you must specify this parameter BEFORE any other CSP
parameter. Any time you specify
ECCH_ECHOCANCELLER, the tap length and other
parameters are reset to their default values.

Note: For Dialogic® Springware boards, do not specify
ECCH_ECHOCANCELLER and DXCH_EC_TAP_LENGTH
in your application for the same stream. Each parameter
resets the other to its default value.

ECCH_NLP

Bytes: 2
Default: 0
Attribute: R/W
Values: 0 or 1

Turns non-linear processing (NLP) on or off. The value 0 (not 1)
turns on the NLP feature, and 1 (not 0) turns it off.

NLP refers to comfort noise; that is, a background noise used in
dictation applications to let the user know that the application is
working.

For ASR applications, you must turn this feature off; that is,
set ECCH_NLP = 1.

Define Description

Dialogic® Continuous Speech Processing API Library Reference — April 2008 47

Dialogic Corporation

configure the parameter of an open and idle device — ec_setparm()

ECCH_SILENCECOMPRESS
(DM3 boards only)

Bytes: 2
Default: 0
Attribute: R/W
Values: 0 or 1

Supported on Dialogic® DM3 boards only. This parameter enables
or disables silence compressed streaming (SCS) in the application.

The value 1 turns this feature on, and the value 0 turns it off.

For more information on silence compressed streaming, see the
Dialogic® Continuous Speech Processing API Programming Guide.

When turned on, SCS uses default parameter values that are set in
the configuration file (CONFIG, PCD, FCD files). These values are
downloaded to the board when it is started. Examples of SCS
parameters in the configuration file are: initial data, trailing silence,
speech probability threshold, silence probability threshold, and
background noise thresholds. For more information on these
modifying default parameter values, see the Configuration Guide
for your product or product family.

ECCH_SVAD
(DM3 boards only)

Bytes: 2
Default: 0
Attribute: R/W
Values: 0 or 1

Supported on Dialogic® DM3 boards only. Specifies how the voice
activity detector (VAD) detects the start of speech.

The value 0, the default, means that the VAD uses a combination of
energy and zero-crossing mode (where energy level goes to zero
for a time period) to determine the start of speech. The threshold is
determined automatically by the VAD.

The value 1 means that the VAD uses energy mode only and the
threshold value is set by the DXCH_SPEECHPLAYTHRESH
parameter.

ECCH_VADINITIATED

Bytes: 2
Default: 1
Attribute: R/W
Values: 0 or 1

Enables or disables voice-activated record in the application. If
enabled, recording or streaming of echo-cancelled data to the host
application begins only after speech is detected.

The value 1 turns the feature on, and 0 turns the feature off.

ECCH_XFERBUFFERSIZE
(for Springware boards)

Bytes: 2
Default: 16 kbytes
Attribute: R/W
Units: bytes
Range: 128 bytes to 16 kilobytes
 (in multiples of 128)

For Dialogic® Springware boards. The size of the driver buffers on
the receive side of a CSP-capable full-duplex channel. These
buffers are used to transfer data between the driver and the host
application.

This value is configurable per channel at run-time.

For voice-mail applications, the default of 16 kbytes is sufficient.

For ASR applications, you may need to set the buffer size lower to
improve real-time processing and reduce latency. For more
information on setting buffer sizes, see the Continuous Speech
Processing API Programming Guide.

Note: The smaller the buffer size, the more interrupts are
generated to handle the buffers, and consequently the
greater the system load.

In Linux, this parameter has limitations. The possible values are 1,
2, 4, 8 and 16 kbytes. By default, the amount of data passed to the
user-defined callback function is fixed at 16 kbytes. You can only
override this default per process by calling ec_setparm()
BEFORE opening a channel:
int size = 1024; /* or 2, 4, 8, 16 kbytes */
...
ec_setparm(SRL_DEVICE, ECCH_XFERBUFFERSIZE, &size)

Note: You must use SRL_DEVICE as the device name.

For more information on buffers and data flow, see the Continuous
Speech Processing API Programming Guide.

Define Description

48 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_setparm() — configure the parameter of an open and idle device

Cautions

• You must pass the value of the parameter to be set in a variable cast as (void *) as shown in the
example.

• Be sure to use the correct data type when setting the parameter value. Some parameters require
two bytes while other parameters may be ASCII strings. The data type of the variable that will
receive the parameter value must match the data type for the specific parameter being queried.

• Before you use ec_setparm(), the channel must be open.

• On Dialogic® DM3 boards, you must issue ec_getparm() in the same process as
ec_setparm(); otherwise, the values returned for ec_getparm() will be invalid.

• Certain parameters can be modified while an ec_reciottdata() or ec_stream() is in progress.
These parameters are: DXCH_SPEECHPLAYTHRESH, DXCH_SPEECHPLAYTRIGG,
DXCH_SPEECHPLAYWINDOW, DXCH_SPEECHSNR, ECCH_SVAD.

• On Dialogic® Springware boards, in Linux applications that use multiple threads, you must
avoid having two or more threads call functions that use the same device handle; otherwise, the
replies can be unpredictable and cause those functions to time out or create internal
concurrency that can lead to a segmentation fault. If you must do this, use semaphores to
prevent concurrent access to a particular device handle.

ECCH_XFERBUFFERSIZE
(for DM3 boards)

Bytes: 2
Default: 16 kbytes
Attribute: R/W
Units: bytes
Range: 320 bytes to 16 kbytes

For Dialogic® DM3 boards. The size of the host application buffers
on the receive side of a CSP-capable full-duplex channel. These
buffers are used to transfer data between the firmware and the host
application.

On Dialogic® DM3 boards, the firmware buffer size is adjusted
based on the value of ECCH_XFERBUFFERSIZE (the transfer
buffer).

If the transfer buffer is less than or equal to 2 kbytes, then the
firmware buffer is set to the same size as the transfer buffer.

If the transfer buffer is greater than 2 kbytes, then the firmware
buffer is set to 2 kbytes. The content of multiple firmware buffers is
accumulated in the transfer buffer before being written to file or
provided to the application callback function.

The firmware buffer size cannot be greater than 2 kbytes.

For 2 kbytes and up, ECCH_XFERBUFFERSIZE (the transfer
buffer) must be set in increments of 2 kbytes; for example, 2, 4, 6, 8
and so on. Any other value will be rounded down to a multiple of 2
kbytes; for example, 5 kbytes will be rounded down to 4 kbytes.

This value is configurable per channel at run-time.

For ASR applications, you will need to set the buffer size lower to
improve real-time processing and reduce latency.

Note: The smaller the buffer size, the more interrupts are
generated to handle the buffers, and consequently the
greater the system load.

Note: On Dialogic® DM3 boards, ECCH_XFERBUFFERSIZE is a
channel-level parameter for both Linux and Windows®.
Unlike Dialogic® Springware boards, there are no limitations
on its use for Linux.

Define Description

Dialogic® Continuous Speech Processing API Library Reference — April 2008 49

Dialogic Corporation

configure the parameter of an open and idle device — ec_setparm()

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Parameter is invalid or not supported.

EDX_SYSTEM
Operating system error.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{
int chdev;
short parmval;
int srlmode; /* Standard Runtime Library mode */

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

 /* Open the board and get channel device handle in chdev */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 /* process error */
 }

 /* Set up parameters */

 /* Enable barge-in for this channel */
 parmval = 1;
 if (ec_setparm(chdev, DXCH_BARGEIN, (void *)&parmval) == -1) {
 /* process error */
 }
 /* Set up additional parameters as needed */
 . . .
}

See Also

• ec_getparm()

• dx_getparm() in the Dialogic® Voice API Library Reference

• dx_setparm() in the Dialogic® Voice API Library Reference

50 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_stopch() — force termination of currently active I/O functions

ec_stopch()

force termination of currently active I/O functions

Description

The ec_stopch() function forces termination of currently active I/O functions on a CSP-capable
full-duplex channel, as defined by StopType.

This function can terminate CSP or voice library I/O functions.

The StopType value determines whether the play, receive or both sides of the channel are
terminated. By contrast, the dx_stopch() function only terminates the prompt play side.

Name: int ec_stopch(chDev, StopType, mode)

Inputs: int chDev • valid channel device handle

unsigned long StopType • type of channel stop

unsigned short mode • mode flags

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: I/O

Mode: Synchronous/Asynchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chDev the channel device handle obtained when the CSP-capable device is opened
using dx_open()

StopType the type of stop channel to perform:

• SENDING – stops the prompt play side

• RECEIVING – stops the side receiving echo-cancelled data

• FULLDUPLEX – stops both play/receive sides

mode specifies the mode:

• EV_SYNC – synchronous mode

• EV_ASYNC – asynchronous mode

Note: Flags supported for dx_stopch() (such as EV_NOSTOP) cannot be
used for ec_stopch(). The only flags supported for ec_stopch() are listed
in this table.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 51

Dialogic Corporation

force termination of currently active I/O functions — ec_stopch()

Cautions

• The ec_stopch() has no effect on a channel that has either of the following functions issued:
dx_dial() without call progress analysis enabled or dx_wink(). These functions continue to
run normally, and ec_stopch() returns a success. For dx_dial(), the digits specified in the
dialstrp parameter are still dialed.

• If ec_stopch() is called on a channel dialing with call progress analysis enabled, the call
progress analysis process stops but dialing is completed. Any call progress analysis
information collected prior to the stop is returned by extended attribute functions.

• If an I/O function terminates (due to another reason) before ec_stopch() is issued, the reason
for termination does not indicate ec_stopch() was called.

• When calling ec_stopch() from a signal handler, you must set mode to EV_ASYNC.

• On Dialogic® Springware boards, in Linux applications that use multiple threads, you must
avoid having two or more threads call functions that use the same device handle; otherwise, the
replies can be unpredictable and cause those functions to time out or create internal
concurrency that can lead to a segmentation fault. If you must do this, use semaphores to
prevent concurrent access to a particular device handle.

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Stop Type or mode is invalid.

EDX_SYSTEM
Operating system error.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{
 int chdev, srlmode;

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1) {
 /* process error */
 }

52 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_stopch() — force termination of currently active I/O functions

 /* Open the channel using dx_open(). Get channel device descriptor in
 * chdev.
 */
 if ((chdev = dx_open("dxxxB1C1",0)) == -1) {
 /* process error */
 }

 /* continue processing */
 .
 .

 /* Force the channel idle. The I/O function that the channel is
 * executing will be terminated, and control passed to the handler
 * function previously enabled, using sr_enbhdlr(), for the
 * termination event corresponding to that I/O function.
 * In the asynchronous mode, ec_stopch() returns immediately,
 * without waiting for the channel to go idle.
 */
 if (ec_stopch(chdev, FULLDUPLEX, EV_ASYNC) == -1) {
 /* process error */
 }
}

See Also

• dx_stopch() in the Dialogic® Voice API Library Reference

Dialogic® Continuous Speech Processing API Library Reference — April 2008 53

Dialogic Corporation

stream echo-cancelled data to a callback function — ec_stream()

ec_stream()

stream echo-cancelled data to a callback function

Description

The ec_stream() function streams echo-cancelled data to a callback function on a CSP-capable
full-duplex channel. This user-defined callback function is called every time the driver fills the
driver buffer with data. See ECCH_XFERBUFFERSIZE in the ec_setparm() function description
for information on setting the driver buffer size.

This function is designed specifically for use in ASR applications where echo-cancelled data must
be streamed to the host application in real time for further processing, such as comparing the
speech utterance against an employee database and then connecting the caller to the intended
audience.

You can perform voice streaming at all times or voice-activated streaming. The
ECCH_VADINITIATED parameter in ec_setparm() controls voice-activated streaming, where
recording begins only after speech energy has been detected. This parameter is enabled by default.

You can record or stream speech energy with silence removed from the data stream. To use the
silence compressed streaming feature, enable ECCH_SILENCECOMPRESS in ec_setparm().
This parameter is disabled by default.

Name: int ec_stream(chDev, tptp, xpbp, callback, mode)

Inputs: int chDev • valid channel device handle

DV_TPT *tptp • pointer to termination parameter table

DX_XPB *xpbp • pointer to I/O transfer parameter block table

int (*callback) (int, char*, uint) • address of a function to receive recorded data buffers

unsigned short mode • stream mode

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: I/O

Mode: Synchronous/Asynchronous

Dialogic®

Platform:
DM3, Springware

54 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_stream() — stream echo-cancelled data to a callback function

The user-defined callback function is similar to the C library write() function. Its prototype is:

int callback (int chDev, char *buffer, uint length)

The definition of the arguments is:

chDev
CSP channel on which streaming is performed

buffer
the buffer that contains streamed data

length
the length of the data buffer in bytes

This user-defined callback function returns the number of bytes contained in length upon success.
Any other value is viewed as an error and streaming is terminated. We do not recommend
terminating the streaming activity in this way; instead, use ec_stopch().

Parameter Description

chDev the channel device handle obtained when the CSP-capable device is opened
using dx_open()

tptp pointer to the DV_TPT data structure that sets the termination conditions for
the device handle

Note: Not all termination conditions are supported by all functions. On
Dialogic® Springware boards, the only terminating conditions supported by
ec_stream() are DX_MAXTIME, DX_MAXSIL, and DX_MAXNOSIL.
The voice activity detector timeout period is set by the tp_length parameter
in the DV_TPT structure. For more information, see the DV_TPT
description in the Dialogic® Voice API Library Reference.

Note: Not all termination conditions are supported by all functions. On
Dialogic® DM3 boards, see the DV_TPT description in the Dialogic® Voice
API Library Reference for information about supported termination
conditions.

Note: In CSP, DV_TPT terminating conditions are edge-sensitive.

xpbp pointer to the DX_XPB data structure that specifies the file format, data
format, sampling rate and resolution

callback the user-defined callback function that receives the echo-cancelled stream. For
more information on the user-defined callback function, see the description
following this table.

mode a logical OR bit mask that specifies the stream mode:

• EV_SYNC – synchronous mode

• EV_ASYNC – asynchronous mode

• MD_GAIN – automatic gain control (AGC)

• MD_NOGAIN – no automatic gain control

Note: For ASR applications, turn AGC off.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 55

Dialogic Corporation

stream echo-cancelled data to a callback function — ec_stream()

We recommend that inside the user-defined callback function you:

• do not call another Dialogic function

• do not call a blocking function such as sleep

• do not call an I/O function such as printf, scanf, and so on (although you may use these for
debugging purposes)

We recommend that inside the user-defined callback function you do the following:

• Copy the buffer contents for processing in another context.

• Signal the other context to begin processing.

Cautions

• This function fails if an unsupported data format is specified. For a list of supported data
formats, see Dialogic® Continuous Speech Processing API Programming Guide.

• We recommend that you specify the ec_stream() function before a voice play function in
your application.

• To set the proper parameters, the ec_setparm() function must be called for every
ec_stream() occurrence in your application.

• If you use this function in synchronous mode, you must use multithreading in your application.

• All files recorded to have the data encoding and rate as described in DX_XPB.

• The DX_XPB data area must remain in scope for the duration of the function if running
asynchronously.

• On Dialogic® Springware boards, we recommend that you use the same data format for play
and recording/streaming.

• On Dialogic® Springware boards, in Linux applications that use multiple threads, you must
avoid having two or more threads call functions that use the same device handle; otherwise, the
replies can be unpredictable and cause those functions to time out or create internal
concurrency that can lead to a segmentation fault. If you must do this, use semaphores to
prevent concurrent access to a particular device handle.

• The DX_MAXSIL and DX_MAXNOSIL termination conditions are not supported on CSP-
enabled boards that have an analog front-end and Japan Caller ID enabled with polarity
reversal. This limitation affects Dialogic® D/120JCT Rev 2 and D/41JCT-LS boards. Thus,
these termination conditions cannot be specified in the DV_TPT structure for
ec_reciottdata() and ec_stream().

• When DX_MAXSIL and DX_MAXNOSIL termination conditions are used, the silence timer
starts after a dx_play() has completed. To start the silence timer immediately after the onset of
ec_stream() or ec_reciottdata(), use the bit flag TF_IMMEDIATE (tp_flags field in the
DV_TPT structure). This flag is not supported on Dialogic® Springware boards.

• On Dialogic® DM3 boards using a flexible routing configuration, CSP channels must be
listening to a TDM bus time slot in order for ec_reciottdata() and ec_stream() functions to
work. In other words, you must issue a dx_listen() function call on the device handle before
calling ec_reciottdata() or ec_stream() function for that device handle. If not, that channel
will be in a stuck state; it can only be cleared by issuing ec_stopch() or dx_listen(). The
actual recording operation will start only after the channel is listening to the proper external
time slot.

56 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_stream() — stream echo-cancelled data to a callback function

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Parameter is invalid.

EDX_SYSTEM
Operating system error.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{

 char csp_devname[9];
 int ret, csp_dev, parmval=0;
 SC_TSINFO sc_tsinfo; /* Time slot information structure */
 long scts; /* TDM bus time slot */
 int srlmode; /* Standard Runtime Library mode */
 DX_IOTT iott; /* I/O transfer table */
 DV_TPT tptp[1], tpt; /* termination parameter table */
 DX_XPB xpb; /* I/O transfer parameter block */

 /* Set SRL to run in polled mode. */
 srlmode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, (void *)&srlmode) == -1)
 {
 /* process error */
 }

 /* Barge-in parameters */
 short BargeIn= 1;

 sprintf(csp_devname,"dxxxB1C1");

 /* Open a voice device. */
 csp_dev = dx_open(csp_devname, 0);
 if (csp_dev < 0)
 {
 printf("Error %d in dx_open()\n",csp_dev);
 exit(-1);
 }

Dialogic® Continuous Speech Processing API Library Reference — April 2008 57

Dialogic Corporation

stream echo-cancelled data to a callback function — ec_stream()

 /* Set up ec parameters (use default if not being set).
 * Enable barge-in. ECCH_VADINITIATED is enabled by default.
 */
 ret = ec_setparm(csp_dev, DXCH_BARGEIN, (void *) &BargeIn);
 if (ret == -1)
 {
 printf("Error in ec_setparm(DXCH_BARGEIN). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(csp_dev), ATDV_LASTERR(csp_dev));
 }

 /* Set up DV_TPT for record */
 tpt.tp_type = IO_EOT;
 tpt.tp_termno = DX_MAXTIME;
 tpt.tp_length = 60;
 tpt.tp_flags = TF_MAXTIME;

 /* Record data format set to 8-bit Mu-Law, 8KHz sampling rate */
 xpb.wFileFormat = FILE_FORMAT_VOX;
 xpb.wDataFormat = DATA_FORMAT_MULAW;
 xpb.nSamplesPerSec = DRT_8KHZ;
 xpb.wBitsPerSample = 8;

 ret = ec_stream(csp_dev, &tpt, &xpb, &stream_cb, EV_ASYNC | MD_NOGAIN);
 if (ret == -1)
 {
 printf("Error in ec_reciottdata(). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(csp_dev), ATDV_LASTERR(csp_dev));
 }

 /* Set channel off-hook */
 ret = dx_sethook(csp_dev, DX_OFFHOOK, EV_SYNC);
 if (ret == -1)
 {
 printf("Error in dx_sethook(). Err Msg = %s, Lasterror = %d\n",
 ATDV_ERRMSGP(csp_dev), ATDV_LASTERR(csp_dev));
 }

 /* Set up DX_IOTT */
 iott.io_type = IO_DEV|IO_EOT;
 iott.io_bufp = 0;
 iott.io_offset = 0;
 iott.io_length = -1;

 /* Set up DV_TPT for play */
 dx_clrtpt(&tptp,1);
 tptp[0].tp_type = IO_EOT;
 tptp[0].tp_termno = DX_MAXDTMF;
 tptp[0].tp_length = 1;
 tptp[0].tp_flags = TF_MAXDTMF;

 /* Open file to be played */
 #ifdef WIN32
 if ((iott.io_fhandle = dx_fileopen("sample.vox",O_RDONLY|O_BINARY)) == -1)
 {
 printf("Error opening sample.vox.\n");
 exit(1);
 }
 #else
 if ((iott.io_fhandle = open("sample.vox",O_RDONLY)) == -1)
 {
 printf("File open error\n");
 exit(2);
 }
 #endif

58 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_stream() — stream echo-cancelled data to a callback function

 /* Play prompt message. */
 ret = dx_play(csp_dev, &iott, &tptp, EV_ASYNC);
 if (ret == -1)
 {
 printf("Error playing sample.vox.\n");
 exit(1);
 }

 /* Wait for barge-in and echo-cancelled record to complete */
 while (1)
 {
 sr_waitevt(-1);
 ret = sr_getevttype();
 if (ret == TDX_BARGEIN)
 {
 printf("TDX_BARGEIN event received\n");
 }
 else if (ret == TDX_PLAY)
 {
 printf("Play Completed event received\n");
 break;
 }
 else if (ret == TEC_STREAM)
 {
 printf("TEC_STREAM - termination event ");
 printf("for ec_stream and ec_reciottdata received.\n");
 break;
 }

 else if (ret == TDX_ERROR)
 {
 printf("ERROR event received\n");
 }
 else
 {
 printf("Event 0x%x received.\n", ret);
 }

 } /* end while */

 // Set channel on hook
 dx_sethook(csp_dev, DX_ONHOOK, EV_SYNC);

 /* Close play file */
 #ifdef WIN32
 if (dx_fileclose(iott.io_fhandle) == -1)
 {
 printf("Error closing file.\n");
 exit(1);
 }
 #else
 if (close(iott.io_fhandle) == -1)
 {
 printf("Error closing file. \n");
 exit(1);
 }
 #endif

 // Close channel
 dx_close(csp_dev);
}

int stream_cb(int chDev, char *buffer, int length)
{
 /* process recorded data here ... */
 return(length);
}

Dialogic® Continuous Speech Processing API Library Reference — April 2008 59

Dialogic Corporation

stream echo-cancelled data to a callback function — ec_stream()

See Also

• ec_reciottdata()

• ec_stopch()

• dx_reciottdata() in the Dialogic® Voice API Library Reference

60 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_unlisten() — change the echo-reference signal set by ec_listen()

ec_unlisten()

change the echo-reference signal set by ec_listen()

Description

The ec_unlisten() function changes the echo-reference signal set by ec_listen() back to the
default reference (that is, the same channel as the play).

Cautions

• This function fails if you specify an invalid channel device handle.

• On Dialogic® DM3 boards, in a configuration where a network interface device listens to the
same TDM bus time slot device as a local, on board voice device or other media device, the
sharing of time slot (SOT) algorithm applies. This algorithm imposes limitations on the order
and sequence of “listens” and “unlistens” between network and media devices. For details on
application development rules and guidelines regarding the sharing of time slot (SOT)
algorithm, see the technical note posted on the Dialogic support web site:

http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn043.htm

This caution applies to Dialogic® DMV, DMV/A, DM/IP, and DM/VF boards. This caution
does not apply to Dialogic® DMV/B, DI series, and DMV160LP boards.

Errors

If the function returns -1, use ATDV_LASTERR() to return the error code and
ATDV_ERRMSGP() to return a descriptive error message.

One of the following error codes may be returned:

Name: int ec_unlisten(chDev)

Inputs: int chDev • valid channel device handle

Returns: 0 for success
-1 for failure

Includes: srllib.h
dxxxlib.h
eclib.h

Category: Routing

Mode: Synchronous

Dialogic®

Platform:
DM3, Springware

Parameter Description

chDev the channel device handle obtained when the CSP-capable device is opened
using dx_open()

http://www.dialogic.com/support/helpweb/dxall/tnotes/legacy/2000/tn043.htm

Dialogic® Continuous Speech Processing API Library Reference — April 2008 61

Dialogic Corporation

change the echo-reference signal set by ec_listen() — ec_unlisten()

EDX_BADDEV
Device handle is NULL or invalid.

EDX_BADPARM
Time slot pointer information is NULL or invalid.

EEC_UNSUPPORTED
Device handle is valid but device does not support CSP.

Example

#include <windows.h> /* include in Windows applications only; exclude in Linux */
#include <stdio.h>
#include <srllib.h>
#include <dxxxlib.h>
#include <eclib.h>
#include <errno.h> /* include in Linux applications only; exclude in Windows */

main()
{
 int chdev; /* voice channel device handle */
 /* Open board 1 channel 1 device */
 if ((chdev = dx_open("dxxxB1C1", 0)) == -1)
 {
 printf("Cannot open channel dxxxB1C1.");
 exit(1);
 }
 /* Disconnect receive of board 1 channel 1 from all TDM bus time slots */
 if (ec_unlisten(chdev) == -1)
 {
 printf("Error message = %s", ATDV_ERRMSGP(chdev));
 exit(1);
 }
}

See Also

• ag_listen() in the Dialogic® Voice API Library Reference

• dt_listen() in the Dialogic® Voice API Library Reference

• dx_listen() in the Dialogic® Voice API Library Reference

62 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

ec_unlisten() — change the echo-reference signal set by ec_listen()

Dialogic® Continuous Speech Processing API Library Reference — April 2008 63

Dialogic Corporation

33.Data Structures

This chapter provides an alphabetical reference to the data structures used by the Continuous
Speech Processing library functions. The following data structure is discussed:

• EC_BLK_INFO. 64

64 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

EC_BLK_INFO — information for a block of echo-cancelled data

EC_BLK_INFO

information for a block of echo-cancelled data
typedef struct EC_BLK_INFO
{
 EC_BlockType type; /* type of block */
 unsigned int flags; /* bit mask with EC_BlockFlags value */
 unsigned int size; /* size of block */
 unsigned long timestamp; /* time stamp of first sample of the block */
} EC_BLK_INFO;

typedef enum {
 EC_INITIAL_BLK, /* A block with the initial data */
 /* (for ASR engine adjustments) [optional] */
 EC_SPEECH_BLK, /* A block with speech */
 EC_SPEECH_LAST_BLK /* Last block of speech before silence. */
 /* The block size could actually be 0, */
 /* in which case the block simply indicates */
 /* that silence is now being compressed until */
 /* EC_SPEECH_BLK blocks are sent again */
} EC_BlockType;

typedef enum {
 EC_LAST_BLK = 0x1 /* Last block of a streaming session */
} EC_BlockFlags;

Description

The EC_BLK_INFO data structure contains information for a block of echo-cancelled data.
Information includes whether this block contains the initial data, whether it contains speech, and
whether it is the last block of speech before silence. This data structure is used by the
ec_getblkinfo() function. This data structure is defined in eclib.h.

Field Descriptions

The fields of the EC_BLK_INFO data structure are described as follows:

type
Specifies whether this is a block with initial data, a block with speech, or the last block of
speech before silence.

The EC_BlockType data type is an enumeration that defines the following values:
• EC_INITIAL_BLK – a block with initial data
• EC_SPEECH_BLK – a block with speech
• EC_SPEECH_LAST_BLK – the last block of speech before a silence period

flags
Specifies a bit mask of EC_BlockFlags values.

The EC_BlockFlags data type is an enumeration that defines the following value:
• EC_LAST_BLK – The last block of speech before streaming ends. The fact that

streaming ends is also indicated by the TEC_STREAM termination event being sent. The
value 1 indicates that this is the last speech block of a streaming session.

size
Specifies the size of the block indicated in the type field. This value is given in bytes. The last
block size may be 0, which indicates that silence is now being compressed until
EC_SPEECH_BLK blocks are sent again.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 65
Dialogic Corporation

information for a block of echo-cancelled data — EC_BLK_INFO

timestamp
Specifies the time stamp of the first sample of the block indicated in the type field. This value
is given as the number of frames, with each frame equal to 12 milliseconds.

The following figure illustrates the concept of the data blocks in the EC_BLK_INFO data structure.

Figure 2. Example of Data Blocks in EC_BLK_INFO

Example

For an example, see the Example section of the ec_getblkinfo() function description.

IB SB SB SLB SB SB SB SLB LB

Termination
Event

BLOCK DEFINITIONS:
IB = EC_INITIAL_BLK
SB = EC_SPEECH_BLK
SLB = EC_SPEECH_LAST_BLK
LB = EC_LAST_BLK

NO
DATA

BLOCKS
SB SB S

66 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

EC_BLK_INFO — information for a block of echo-cancelled data

Dialogic® Continuous Speech Processing API Library Reference — April 2008 67

Dialogic Corporation

44.Events

This chapter provides information on events that can be returned by the Continuous Speech
Processing (CSP) Software.

An event indicates that a specific activity has occurred on a channel. The voice driver reports
channel activity to the application program in the form of events, which allows the program to
identify and respond to a specific occurrence on a channel. Events provide feedback on the
progress and completion of functions and indicate the occurrence of other channel activities.
Events are sometimes referred to in general as termination events, because most of them indicate
the end of an operation.

The following events, listed in alphabetical order, can be returned by the Dialogic® CSP Software.
Use sr_waitevt(), sr_enbhdlr() or other Dialogic® Standard Runtime Library (SRL) functions to
collect an event code, depending on the programming model in use. For more information, see the
Dialogic® Standard Runtime Library API Library Reference and the Dialogic® Standard Runtime
Library API Programming Guide.

TEC_CONVERGED
Termination event. Occurs when the echo canceller sends a message to the host application
that the incoming signal has been echo-cancelled (converged). Echo-cancelled convergence
notification is enabled using the DM_CONVERGED parameter in dx_setevtmsk().

TEC_RESET
Termination event. Together with TDX_RESET, indicates that ec_resetch() was successful.

TEC_RESETERR
Termination event. Together with TDX_RESETERR, indicates that ec_resetch() failed.

TEC_STREAM
Termination event. Indicates that an echo-cancelled record function, ec_reciottdata(), or
echo-cancelled stream function, ec_stream(), has ended.

TEC_VAD
Termination event. Occurs when the voice activity detector (VAD) sends a message to the host
application that significant speech energy has been detected. VAD event notification is enabled
using the DM_VADEVTS parameter in dx_setevtmsk().

TDX_BARGEIN
Termination event. Indicates that play was terminated by the VAD due to barge-in. Barge-in is
enabled using the DXCH_BARGEIN parameter in ec_setparm().

TDX_CST
Unsolicited event. Indicates a firmware buffer overrun when the event appears with the
REC_BUF_OVERFLOW subcode. To retrieve the DX_CST structure and this code, use
sr_getevtdatap().

68 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

Events

TDX_PLAY
Termination event. Can optionally be received (in addition to TDX_BARGEIN) to indicate
that play was terminated by the VAD. Specify using DXCH_BARGEINONLY parameter in
ec_setparm().

Note: When the VAD is not enabled, the TDX_PLAY event indicates termination for
dx_play() in asynchronous mode. For more information, see the Dialogic® Voice
API Library Reference.

TDX_RESET
Termination event. Together with TEC_RESET, indicates that ec_resetch() was successful.

TDX_RESETERR
Termination event. Together with TEC_RESETERR, indicates that ec_resetch() failed.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 69
Dialogic Corporation

Glossary

application programming interface (API): A set of standard software interrupts, calls, and data formats that
application programs use to initiate contact with network services or other program-to-program communications.

asynchronous function: A function that allows program execution to continue without waiting for a task to
complete. To implement an asynchronous function, an application-defined event handler must be enabled to trap
and process the completed event. See synchronous function.

automatic speech recognition (ASR): A set of algorithms that processes speech utterances.

barge-in: The act of a party beginning to speak while a prompt is being played. When the VAD detects significant
energy in the voice channel, CSP can optionally terminate prompts playing on that channel. Thus the party on the
other end of the line is said to have “barged in” on the prompt.

buffer: A block of memory or temporary storage device that holds data until it can be processed. It is used to
compensate for the difference in the rate of the flow of information when transmitting data from one device to
another.

comfort noise generation (CNG): The ability to produce a background noise when there is no speech on the
telephone line.

convergence: The point at which the echo canceller processes enough data to be able to identify the echo
component in the incoming signal and thereby reduce it to provide echo-cancelled data to the host.

device: A computer peripheral or component controlled through a software device driver. A voice and/or network
interface expansion board is considered a physical board containing one or more logical board devices, where each
channel or time slot on the board is a device.

DM3: Refers to Dialogic® Mediastream processing architecture. It is open, layered, and flexible, encompassing
hardware as well as software components. A set of products are built on Dialogic® DM3 architecture.

driver: A software module that provides a defined interface between a program and the hardware.

echo: The component of an outgoing signal (that is, the play prompt) reflected in the incoming signal. The echo
occurs when the signal passes through an analog device or other interface somewhere in the circuit.

echo-cancelled signal: The incoming signal whose echo component has been significantly reduced by the echo
canceller.

echo cancellation (EC): A technique used to significantly reduce traces of an outgoing prompt in the incoming
signal. These traces are referred to as echo. The echo canceller is the component in CSP responsible for performing
echo cancellation.

firmware: A set of program instructions that are resident (usually in EPROM) on an expansion board.

70 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

fixed routing: In this configuration, the resource devices (voice/fax) and network interface devices are
permanently coupled together in a fixed configuration. Only the network interface time slot device has access to the
CT Bus.

flexible routing: In this configuration, the resource devices (voice/fax) and network interface devices are
independent, which allows exporting and sharing of the resources. All resources have access to the CT Bus.

incoming signal or incoming speech signal: The speech uttered by the caller, or the DTMF tone entered by
the caller. Also known as the echo-carrying signal. This signal contains an echo component only if an outgoing
prompt is played while the incoming signal is generated.

latency: The lag time experienced as a result of audio energy traveling over the telephone or data network from
the sender to the receiver.

library: A collection of precompiled routines that a program can use. The routines, sometimes called modules, are
stored in object format. Libraries are particularly useful for storing frequently used routines because you do not
need to explicitly link them to every program that uses them. The linker automatically looks in libraries for routines
that it does not find elsewhere.

non-linear processing (NLP): A process used to block or suppress the residual (echo-cancelled) signal, when
there is no near end speech. This process can be used with comfort noise generation (CNG) to produce
background noise. Background noise energy estimation is used to adjust the level of comfort noise generated. This
allows the speaker to listen to the same level of background noise when the non-linear processor is switched on and
off due to double-talk situations or near end speech. A typical usage of this feature is background noise used in
dictation applications to let the user know that the application is working.

outgoing prompt or outgoing signal: The speech in a computer telephony application that is played to a
caller. Also known as the echo-generating signal.

pre-speech buffer: A circular buffer that stores the incoming speech signal and is used to reduce the problem of
clipped speech. This data, which includes the incoming speech signal prior to the VAD trigger, is then sent to the
host application for processing. This action ensures that minimal incoming data is lost due to VAD latency.

reference signal or echo-reference signal: The outgoing signal that is free of echo before it is passed to the
network device. This signal is used by the echo canceller to characterize the echo to be removed from the incoming
signal.

Standard Attribute functions: Class of functions that take one input parameter (a valid device handle) and
return generic information about the device. For instance, Standard Attribute functions return IRQ and error
information for all device types. Standard Attribute function names are case-sensitive and must be in capital letters.
Standard Attribute functions for all devices are contained in the SRL. See Standard Runtime Library.

Springware: Downloadable signal- and call-processing firmware from Dialogic. Also refers to boards whose
device family is not DM3.

Standard Runtime Library (SRL): Software resource containing Event Management and Standard Attribute
functions and data structures used by all devices, but which return data unique to the device.

synchronous function: A function that blocks program execution until a value is returned by the device. Also
called a blocking function. See asynchronous function.

Dialogic® Continuous Speech Processing API Library Reference — April 2008 71
Dialogic Corporation

tap length: Also called tail length or length. Refers to the number of milliseconds of echo that is eliminated from
the incoming signal. The length of an echo canceller is sometimes given as “taps,” where each tap is 125
microseconds long.

TDM bus: time division multiplexing bus. A resource sharing bus such as the SCbus or CT Bus that allows
information to be transmitted and received among resources over multiple data lines.

utterance: Speech made by the user.

voice activity detector (VAD): Also called voice energy detector. This detector identifies the presence of
speech energy and determines when significant energy is detected in the voice channel. It notifies the host
application that speech energy is detected.

zero-crossing: Refers to energy that crosses over the zero mark many times over a short period of time and thus
has a high probability of being speech.

72 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

Dialogic® Continuous Speech Processing API Library Reference — April 2008 73

Dialogic Corporation

Index

A
adaptation modes, configuring 46

API function reference 11

ATEC_TERMMSK() 12

automatic gain control (AGC) 32, 54

automatic speech recognition applications, tap length
guideline 44

B
barge-in events, enabling 43

barge-in, enabling 43

block of echo-cancelled data 15

board level parameters, list 42

busy channel 38

C
call progress analysis, stopping 51

conventions, function reference 11

CSP channel parameters, list 42

D
data blocks, illustrated 65

DM3 buffers, configuring 48

driver buffers
and user-defined callback function 53
configuring 47

DV_TPT 32, 54

dx_dial() 51

DX_LCOFF 32, 54

DX_MAXNOSIL 32, 54

DX_MAXSIL 32, 54

DX_MAXTIME 32, 54

DX_PMOFF 32, 54

DX_PMON 32, 54

DX_XPB 32, 54

DXBD_RXBUFSIZE 43

DXBD_TXBUFSIZE 43

DXCH_BARGEIN 43

DXCH_BARGEINONLY 43

DXCH_EC_TAP_LENGTH

on DM3 boards 44
on Springware boards 44

DXCH_SPEECHNONPLAYTHRESH 44

DXCH_SPEECHNONPLAYTRIGG 44

DXCH_SPEECHNONPLAYWINDOW 45

DXCH_SPEECHPLAYTHRESH 45

DXCH_SPEECHPLAYTRIGG 45

DXCH_SPEECHPLAYWINDOW 45

DXCH_SPEECHSNR 46

E
EC_BLK_INFO structure 64

ec_getblkinfo() 15, 64

ec_getparm() 18

ec_getxmitslot() 21

ec_listen() 24

ec_rearm() 27

ec_reciottdata() 31

ec_resetch() 38

ec_setparm() 41

ec_stop() 50

ec_stream() 53

ec_unlisten() 60

ECCH_ADAPTMODE 46

ECCH_ECHOCANCELLER 46

ECCH_NLP 46

ECCH_SILENCECOMPRESS 47

ECCH_SVAD 47

ECCH_VADINITIATED 47

ECCH_XFERBUFFERSIZE
on DM3 boards 48
on Springware boards 47

echo canceller, adaptation modes 46

energy mode 47

extended attribute functions 12

F
fast mode 46

firmware buffers
configuring 43

function reference, conventions used 11

74 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

functions, categorized 9

H
hung channel 38

L
library of functions 9, 11

Linux
multithreading 48, 51, 55

M
MD_GAIN 32, 54

MD_NOGAIN 32, 54

multithreading
Linux 48, 51, 55

N
non-linear processing (NLP), configuring 46

P
parameter settings, returning 18

parameters
configuring 41
types of 42

R
rearming VAD 27

recording echo-cancelled data 31

recording echo-cancelled data with silence removed 47

re-enabling VAD 27

S
SC_TSINFO structure 21, 24

silence compressed streaming
block structure 64
enabling and disabling 47
getting block info 15

slow mode, echo canceller 46

speech threshold 44, 45

speech trigger 44, 45

speech window 45

stop I/O functions
dial 51

wink 51

stopping call progress analysis 51

stopping I/O activity 50

streaming echo-cancelled data 53

streaming echo-cancelled data with silence removed 47

stuck channel 38

SVAD 47

synchronous operation, stopping I/O functions 51

T
tap length

configuring on DM3 boards 44
configuring on Springware boards 44

TDX_BARGEIN event 67

TDX_CST event 67

TDX_PLAY event 68

TDX_RESET event 38

TDX_RESETERR event 38

TEC_CONVERGED event 67

TEC_RESET event 38

TEC_RESETERR event 38

TEC_STREAM event 64, 67

TEC_VAD event 67

terminating I/O activity 50

termination reason for I/O function, returning 12

time stamp, data blocks 65

transmit time slot number, returning 21

U
user-defined callback function 53, 54

prototype 54
usage tips 55

V
voice activity detector (VAD)

parameters 42
rearming 27
reinitializing 27

voice.prm 43

voice-activated recording
enabling 47

voice-activated streaming
enabling 47

Dialogic® Continuous Speech Processing API Library Reference — April 2008 75

Dialogic Corporation

Z
zero-crossing mode 47

76 Dialogic® Continuous Speech Processing API Library Reference — April 2008
Dialogic Corporation

	Table of Contents
	Figures
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Function Summary by Category
	1.1 Input/Output Functions
	1.2 Configuration Functions
	1.3 Routing Functions
	1.4 Extended Attribute Functions
	1.5 Status Information

	2. Function Information
	2.1 Function Syntax Conventions
	ATEC_TERMMSK()
	ec_getblkinfo()
	ec_getparm()
	ec_getxmitslot()
	ec_listen()
	ec_rearm()
	ec_reciottdata()
	ec_resetch()
	ec_setparm()
	ec_stopch()
	ec_stream()
	ec_unlisten()

	3. Data Structures
	EC_BLK_INFO

	4. Events
	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

