

Dialogic® TX Series SS7 Boards

CPI Library Developer’s Reference Manual

July 2009 64-0458-01

 www.dialogic.com

 CPI Library Developer's Reference Manual

Copyright and legal notices

Copyright © 1999-2009 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in
whole or in part without permission in writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice
and do not represent a commitment on the part of Dialogic Corporation or its subsidiaries (“Dialogic”).
Reasonable effort is made to ensure the accuracy of the information contained in the document. However,
Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors,
inaccuracies or omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC
ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL
PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems,
or in nuclear facility applications.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use
only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring
that your use of such products occurs only in the countries where such use is suitable. For information on specific
products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this
document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more
patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual
property licenses with the sale of Dialogic products other than a license to use such product in accordance with
intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a
signed agreement with Dialogic. More detailed information about such intellectual property is available from
Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Dialogic
encourages all users of its products to procure all necessary intellectual property licenses required to implement
any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to
country and it is the responsibility of those who develop the concepts or applications to be aware of and comply
with different national license requirements.

Any use case(s) shown and/or described herein represent one or more examples of the various ways, scenarios
or environments in which Dialogic® products can be used. Such use case(s) are non-limiting and do not
represent recommendations of Dialogic as to whether or how to use Dialogic products.

Dialogic, Dialogic Pro, Brooktrout, Diva, Cantata, SnowShore, Eicon, Eicon Networks, NMS Communications, NMS
(stylized), Eiconcard, SIPcontrol, Diva ISDN, TruFax, Exnet, EXS, SwitchKit, N20, Making Innovation Thrive,
Connecting to Growth, Video is the New Voice, Fusion, Vision, PacketMedia, NaturalAccess, NaturalCallControl,
NaturalConference, NaturalFax and Shiva, among others as well as related logos, are either registered
trademarks or trademarks of Dialogic Corporation or its subsidiaries. Dialogic's trademarks may be used publicly
only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800
Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will
be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of
Dialogic’s trademarks requires proper acknowledgement.

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. The
names of actual companies and product mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible
for your decision to use open source in connection with Dialogic products (including without limitation those
referred to herein), nor is Dialogic responsible for any present or future effects such usage might have, including
without limitation effects on your products, your business, or your intellectual property rights.

2 Dialogic Corporation

Revision history

Revision Release date Notes

1.0 GJG

1.2 March 1999 GJG

1.3 November 2000 GJG, SS7 3.6

1.5 August 2001 GJG, SS7 3.8 beta

1.6 November 2003 MCM, SS7 4.0 beta

1.7 April 2004 MCM, SS7 4.0

1.8 June 2008 SRG, SS7 5.0

64-0458-01 July 2009 LBG, SS7 5.1

Last modified: July 7, 2009

Refer to www.dialogic.com for product updates and for information about support policies, warranty
information, and service offerings.

http://www.dialogic.com/

Table Of Contents

Chapter 1: Introduction ...7

Chapter 2: Overview of the CPI library ..9
Development environment.. 9
CPI library definition ...10
Accessing the TX device driver using Windows..11
Accessing the TX device driver using UNIX...11

Chapter 3: Function reference ...13
Function summary..13
Using the function reference ..15
cpia_chkey..16
cpia_get_data..17
cpia_intr ...18
cpia_open ...19
cpia_rxnotify ...20
cpia_send ...21
cpia_txnotify ...22
cpi_check_bs...23
cpi_close...24
cpi_cptoh_l ...25
cpi_cptoh_s...26
cpi_force_bs..27
cpi_get_board..28
cpi_get_data ...29
cpi_get_dev_info..30
cpi_get_error_str ...31
cpi_get_last_error ..32
cpi_get_resources ..33
cpi_htocp_l ...34
cpi_htocp_s...35
cpi_init ...36
cpi_nmi ..37
cpi_open...38
cpi_read_control ..39
cpi_read_dpr ...40
cpi_send ...41
cpi_set_cpid ..42
cpi_show_stats ..43
cpi_stats ...44
cpi_wait_msg ..45
cpi_wait_obj..46
cpi_write_control..47
cpi_write_dpr ..48

Dialogic Corporation 5

11 Introduction
The CPI library provides a consistent communications mechanism to the TX board,
regardless of the operating system employed on the host (Windows or UNIX). The
Dialogic® TX Series SS7 Boards CPI Library Developer's Reference Manual explains
how to use the CPI library to facilitate application development on NMS
Communications TX boards.

Note: The product(s) to which this document pertains is/are among those sold by
NMS Communications Corporation (“NMS”) to Dialogic Corporation (“Dialogic”) in
December 2008. Certain terminology relating to the product(s) has been changed,
whereas other terminology has been retained for consistency and ease of reference.
For the changed terminology relating to the product(s), below is a table indicating
the “New Terminology” and the “Former Terminology”. The respective terminologies
can be equated to each other to the extent that either/both appear within this
document.

Former terminology Current terminology

NMS SS7 Dialogic® NaturalAccess™ Signaling Software

Natural Access Dialogic® NaturalAccess™ Software

Dialogic Corporation 7

22 Overview of the CPI library
Development environment

The TX host application development environment (shown in the following
illustration) consists of libraries that enable you to configure and control the protocol
engines loaded on the TX board. This manual describes the CPI library.

CPI library

Host application

TX board resources

H.100/H.110
library

T1/E1
library

TX SWI
library

Loader
library

Dialogic Corporation 9

Overview of the CPI library CPI Library Developer's Reference Manual

CPI library definition

A channel is the basic unit of communication to the TX boards. The channel provides
a multiplexing or de-multiplexing packet-based interface between the host operating
system and one or more TX boards. The combination of board number (CP number)
and channel is known as a logical port.

To implement multiplexing and de-multiplexing, a header is inserted on all packets
transferred between the host and the TX boards. The header includes the following
information:

Source channel Source CP Destination
channel

Destination
CP

Length Data

1 byte 1 byte 1 byte 1 byte 2 bytes 1 through 1512 bytes

TX boards are numbered 1 through 16. The host is assigned the CP number of 0. The
length field indicates the length of the entire data packet, including the header.
Channels are numbered 0 through 255, and channel 0 is reserved.

A channel number is assigned to a task on the TX board by a prior arrangement,
similar to the ports concept used in TCP/UDP. To minimize conflicts, NMS
recommends the following channel usage:

Channel Usage

0 through 31 Reserved

32 through 127 Available for use by applications

128 through 255 Reserved

The communications mechanism is similar to UDP datagrams. Tasks on the TX board
register to receive all data from a particular channel. Host applications pick an
unused channel to use and register to receive all packets on the chosen channel.
Communications are accomplished through a connectionless datagram type of
service. Due to the nature of such a service, most tasks on the TX board respond to
requests from the host application by returning an indication of success or failure of
the request. This response is at the application level, not at the CPI layer.

The following code sample provides a list of channels used by tasks on the TX board.
These channels are defined in the dpriface.h file.
#define PT_MGR 0x00 /* Host Control Manager [$manager channel] */
#define PT_OACDRV 0x01 /* Open Access Interface to driver */
#define PT_SWI 0x03 /* Switching Control Channel */
#define PT_CONSOLE 0x06 /* Console Channel */
#define PT_LOADER 0x07 /* Loader Channel */
#define PT_DEBUG 0x08 /* Debug Channel */
#define PT_MVIP 0x09 /* MVIP Control Channel */
#define PT_T1E1C 0x0A /* T1/E1 Control Channel */
#define PT_T1E1S 0x0B /* T1/E1 Status Channel */
#define PT_INF 0x0C /* Alarm Manager (raw alarm channel) */
#define PT_SS7MON 0x0F /* SS7 Monitor API port #1 */
#define PT_ARP 0x12 /* ARP Protocol Channel */
#define PT_SS7MON2 0x13 /* SS7 Monitor API port #2 */
#define PT_ISUP 0x14 /* SS7 ISUP Task Channel */
#define PT_MTP 0x15 /* SS7 MTP Task Channel */
#define PT_TCAP 0x17 /* SS7 TCAP Task Channel */
#define PT_IUP 0x18 /* SS7 IUP Task Channel */
#define PT_TXMON 0x19 /* TX Monitor Task Channel */
#define PT_TUP 0x1D /* SS7 TUP Task Channel */
#define PT_SCCP 0x1E /* SS7 SCCP Task Channel */

10 Dialogic Corporation

CPI Library Developer's Reference Manual Overview of the CPI library

The txcpi.h include file provides all CPI library function prototypes and literal
definitions. Always use the structure packing compile option when compiling source
code that uses functions from this library.

Accessing the TX device driver using Windows

The CPI library uses standard Windows routines to access the TX kernel mode device
driver. The interface between the library and the driver is based on a Windows file
handle. The library opens a channel like a file, reads from and writes to the driver
like a file, and closes the channel like a file.

The host can receive packets asynchronously. Windows provides standard
mechanisms for receiving unsolicited packets. The library posts read calls to the
driver that do not block. The application can then use Windows
WaitForSingleObject or WaitforMultipleObjects to determine when those reads
complete with a received packet from the TX device. Use cpi_wait_obj to retrieve
the handle to pass to these Windows calls. Pass zero in the dwTimeout parameter,
which is equivalent to polling for packets, to tell Windows calls to return
immediately. The same parameter can be set to infinite, in which case it does not
return until there is a packet (when using WaitForSingleObject) or one of the list
of handles had something to report (when using WaitForMultipleObjects).

A flow control mechanism queues TX board messages on the board if the host-based
application does not service received packets quickly enough. The flow control
mechanism removes the possibility of the TX driver needing to drop received
packets. A similar mechanism exists for packets sent from a host-based application
to the TX board.

Accessing the TX device driver using UNIX

The TX driver for UNIX systems is a streams driver and is directly accessed through
the standard system calls, open, close, putmsg, getmsg, and ioctl.

Because the driver communicates with applications using a specific driver-to-
application protocol, direct access is not recommended.

The CPI library uses a TX_HANDLE type as an object on which all I/O is done. In
UNIX systems, pass the TX_HANDLE to cpi_wait_obj to obtain a standard UNIX file
descriptor. The host UNIX system can asynchronously receive packets from a TX
board by using the poll system call or the select system call.

Dialogic Corporation 11

Overview of the CPI library CPI Library Developer's Reference Manual

For example, to wait on both input and packets from a TX board, use poll on a UNIX
system as follows:
.
 struct pollfd fds[2];
 .
 .

 cpi_init(0, &str);
 mode = CPIM_PORT;
 port = PORT((S16)board, (S16)chan);

 if ((txhandle = cpi_open(port, mode, NULL)) < 0)
 {
 < Error handling code >
 }
 fd = cpi_wait_obj (txhandle);
 for (;;)
 {
 fds[0].fd = 0; /* fd for standard input */
 fds[0].events = POLLIN;
 fds[0].revents = 0;
 fds[1].fd = fd; /* TX fd */
 fds[1].events = POLLIN;
 fds[1].revents = 0;

 if (poll(fds, 2, -1) < 0)
 {
 < Error handling code >
 }

 for (i = 0; i < 2; i++)
 {
 if (fds[i].revents & (POLLERR | POLLHUP | POLLNVAL))
 {
 < Error handling code >
 }

 if (fds[i].revents & POLLIN)
 {
 /* TX receive */
 if (fds[i].fd == fd)
 { len = sizeof (CPIPKT);
 if (ret = cpi_get_data(txhandle,&inbuf,&len))
 {
 < Error handling code >
 }
 .
 .
 < Code to process data >
 .
 .
 }
 /* Terminal input */
 else if (fds[i].fd == 0)
 {
 }
 }

 } /* for i */

 } /* for ever */

12 Dialogic Corporation

33 Function reference
Function summary

The CPI library provides synchronous and asynchronous interfaces to the TX board:

Interface Description

Synchronous • Can allow packet loss and can introduce data overload conditions.

• Adequate for simple applications but not as efficient as asynchronous interfaces.

• Can stall multiple-threaded calling applications until a response is received from
the TX host-based driver.

• Does not include a flow control mechanism, causing dropped packets and
resource depletion during heavy packet traffic, whether from host to TX board or
from TX board to host.

• Used when opening a CPI channel using cpi_open.

Asynchronous • Recommended for all development because it is more efficient than synchronous
interfaces.

• Does not stall the calling application because all responses from the driver are
handled as independent events. For certain operating systems, multiple-threaded
applications must use an asynchronous interface. For operating systems that do
not impose this restriction, an asynchronous interface is still recommended.

• Includes flow control mechanisms to ensure that no packets are dropped and no
depletion conditions are introduced due to host traffic.

• Used when opening a CPI channel with cpia_open.

Not all CPI library functions can handle asynchronous I/O and synchronous I/O
functions. Mixed-mode (synchronous and asynchronous) I/O on the same handle is
not allowed. The following table summarizes the CPI functions and their modality. An
asterisk (*) indicates a user-supplied function.

Function Synchronous Asynchronous

cpia_chkey No Yes

cpia_get_data No Yes

cpia_intr No Yes

cpia_open No Yes

cpia_rxnotify* No Yes

cpia_send No Yes

cpia_txnotify* No Yes

cpi_check_bs Yes Yes

cpi_close Yes Yes

cpi_cptoh_l Yes Yes

Dialogic Corporation 13

Function reference CPI Library Developer's Reference Manual

Function Synchronous Asynchronous

cpi_cptoh_s Yes Yes

cpi_force_bs Yes Yes

cpi_get_board Yes Yes

cpi_get_data Yes No

cpi_get_dev_info Yes Yes

cpi_get_error_str Yes Yes

cpi_get_last_error Yes Yes

cpi_get_resources Yes Yes

cpi_htocp_l Yes Yes

cpi_htocp_s Yes Yes

cpi_init Yes Yes

cpi_nmi Yes Yes

cpi_open Yes No

cpi_read_control Yes Yes

cpi_read_dpr Yes Yes

cpi_send Yes No

cpi_set_cpid Yes Yes

cpi_show_stats Yes Yes

cpi_stats Yes Yes

cpi_wait_msg Yes No

cpi_wait_obj Yes Yes

cpi_write_control Yes Yes

cpi_write_dpr Yes Yes

14 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

Using the function reference

This section provides an alphabetical reference to the CPI library functions. A typical
function definition includes the following:

Prototype The prototype is shown followed by a listing of the function arguments. Dialogic data
types include:

• U8 (8-bit unsigned)

• S8 (8-bit signed)

• U16 (16-bit unsigned)

• S16 (16-bit signed)

• U32 (32-bit unsigned)

• S32 (32-bit signed)

If a function argument is a data structure, the complete data structure is defined.

Return
values

The return value for a function is either CPI_SUCCESS or an error code. For asynchronous
functions, a return value of CPI_SUCCESS (zero) indicates that the function was initiated.
Subsequent events indicate the status of the operation.

Dialogic Corporation 15

Function reference CPI Library Developer's Reference Manual

cpia_chkey

Returns the user-provided key associated with the specified handle.

Prototype

#include txcpi.h

void *cpia_chkey (TX_HANDLE handle)

Argument Description

handle TX_HANDLE associated with the channel.

Return values

Return value Description

NULL Provided TX handle is not a handle to an asynchronous channel.

Details

One of the parameters provided to cpia_open is a user-controlled key named
chkey. Applications can use cpia_chkey to get the key associated with the open.
For asynchronous receive and transmit complete notifications, it is not necessary to
call cpia_chkey since the user’s key is provided as a parameter to cpia_rxnotify
and cpia_txnotify.

16 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpia_get_data

Obtains a packet of data from the specified channel.

Prototype

#include txcpi.h

S16 cpia_get_data (TX_HANDLE handle, CPIPKT *buffer, S16*len)

Argument Description

handle TX_HANDLE associated with the asynchronous transmit completion.

buffer Pointer to the CPIPKT buffer to store the received packet.

len Pointer to the size of the buffer on input and the length of the received packet on output.

Return values

Return value Description

CPI_SUCCESS Packet successfully received.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

CPI_INVALID_MODE Handle is not open for asynchronous I/O.

CPI_TRUNCATED Received packet was larger than the passed buffer.

Details

cpia_get_data obtains a packet of data from the channel. On entry, the passed
length parameter is checked. If the length is less than the received message, then
len bytes of the message are copied to buffer and CPI_TRUNCATED is returned. The
length of the received packet is placed in len.

Call cpia_get_data from within cpia_rxnotify. Calling cpia_get_data from
outside cpia_rxnotify can result in communication errors.

Dialogic Corporation 17

Function reference CPI Library Developer's Reference Manual

cpia_intr

Drains the asynchronous transmit acknowledgements and checks for any waiting
received packets.

Prototype

#include txcpi.h

CPI_ERR_TYPE cpia_intr (TX_HANDLE handle)

Argument Description

handle TX_HANDLE that has had an I/O event.

Return values

Return value Description

CPI_SUCCESS Asynchronous processing completed successfully.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

CPI_INVALID_MODE Handle is not open for asynchronous I/O.

Details

Call cpia_intr when an I/O event is detected. Detecting such events is operating
system-specific (WaitForMultipleObjects for Windows or poll for UNIX).

Note: Asynchronous transmit complete messages are processed before received
messages.

18 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpia_open

Opens a channel for asynchronous I/O on the host.

Prototype

#include txcpi.h

TX_HANDLE cpia_open (void *chkey, U16 board, U16 channel, void
((*rxnotify)(TX_HANDLE handle, void *chkey)), void ((*txnotify)(TX_HANDLE
handle, void*chkey, CPIPKT *buffer, void*user_tx_key, CPI_ERR_TYPE,
ccode)))

Argument Description

chkey User-controlled key passed back on all callback functions.

board Board number from which to receive packets.

channel DPR channel from which to receive packets.

rxnotify Pointer to a receive notification callback function.

txnotify Pointer to a transmit notification callback function.

Return values

Return value Description

CPI_INVALID_HANDLE Unable to open the channel.

Details

Use cpia_open to open a channel for aynchronous I/O. Use cpi_open to open a
channel for synchronous I/O. Mixed mode I/O on a given channel is not possible,
either with a single TX_HANDLE or multiple TX_HANDLEs. If successful, TX_HANDLE
is returned.

See also

cpia_intr, cpia_rxnotify, cpia_txnotify

Dialogic Corporation 19

Function reference CPI Library Developer's Reference Manual

cpia_rxnotify

Notifies upper layers of messages to be received.

Prototype

void cpia_rxnotify (TX_HANDLE handle, void *chkey)

Argument Description

handle TX_HANDLE on which the message was received.

chkey Channel key provided when the handle was opened.

Details

Provide cpia_rxnotify as a parameter to cpia_open. The CPI library calls this
function as a result of a call to cpia_intr when receive packets are pending for the
given channel.

cpia_rxnotify calls cpia_get_data to receive the incoming message.

20 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpia_send

Asynchronously sends a packet of data over the specified channel.

Prototype

#include txcpi.h

S16 cpia_send (TX_HANDLE handle, CPIPKT *buffer, void *user_tx_key)

Argument Description

handle TX_HANDLE associated with the channel.

buffer Pointer to a CPIPKT structure containing data to send.

user_tx_key Pointer to a user-defined key returned when I/O completes.

Return values

Return value Description

CPI_SUCCESS Packet send successfully started. Completes when cpia_txnotify is called.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

CPI_INVALID_MODE Handle is not open for asynchronous I/O.

CPI_QUEUE_FULL Maximum number of pending asynchronous I/O requests already in progress.

Details

The value returned by cpia_send reflects the result of enqueing the packet for
transmission. The ultimate disposition of the packet is passed back as a parameter to
cpia_txnotify.

Once sent, a packet cannot be unsent (that is, there is no cpia_cancel).

Final I/O result notification is handled by cpia_intr and cpia_txnotify callback.

The CPIPKT structure pointed to by the buffer parameter cannot be freed, re-used,
or re-allocated until the final disposition of the packet is determined with cpia_intr
and cpia_txnotify. Failure to adhere to this requirement causes unreliable and
unpredictable results.

See also

cpia_open

Dialogic Corporation 21

Function reference CPI Library Developer's Reference Manual

cpia_txnotify

Processes an asynchronous transmit completion message received from the TX
board.

Prototype

void cpia_txnotify (TX_HANDLE handle, void *chkey, CPIPKT *buffer, void
*user_tx_key, CPI_ERR_TYPE ccode)

Argument Description

handle TX_HANDLE associated with the asynchronous transmit completion.

chkey Pointer to the channel key provided when the handle was opened.

buffer CPIPKT buffer pointer provided when cpia_send was called.

user_tx_key Pointer to the user key provided when cpia_send was called.

ccode I/O completion code.

Details

Provide cpia_txnotify as a parameter to cpia_open. The CPI library calls this
function as a result of a call to cpia_intr when previously issued transmit requests
(with cpia_send) complete for the given channel. When cpia_txnotify is called, or
any time thereafter, the application can free the corresponding CPIPKT passed in on
cpia_send. Failure to adhere to this rule results in communications errors.

22 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_check_bs

Determines whether the TX board specified by handle is in the boot state.

Prototype

#include txcpi.h

S16 cpi_check_bs (TX_HANDLE handle, CPIBS *bsp)

Argument Description

handle TX handle number of the board to check.

bsp Pointer to the location where the boot state is to be returned:

typedef struct _CPIBS
{
 U16 state;
 U8 reg[5];
} CPIBS;

Refer to the Details section for valid boot states.

Return values

Return value Description

CPI_SUCCESS Boot state determined.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

The bsp.state is loaded with the boot state (low byte) and the CSR (high byte). The
boot state can be one of the following values:

State Description

BS_BOOT Waiting to begin PREBOOT.

BS_READY KERNEL loaded, initialized, and ready

BS_INIT KERNEL is initializing.

BS_DOWN KERNEL not responding.

BS_BERR Bus error indicated by KERNEL.

BS_LOADING Loading block of KERNEL.

BS_PREBOOTING PREBOOT running, not ready for KERNEL.

BS_WAIT_KERNEL PREBOOT complete, waiting for KERNEL.

The reg element in the structure is unused.

See also

cpi_force_bs

Dialogic Corporation 23

Function reference CPI Library Developer's Reference Manual

cpi_close

Closes the channel associated with the specified handle.

Prototype

#include txcpi.h

S16 cpi_close (TX_HANDLE handle)

Argument Description

handle TX handle associated with the channel, returned from cpi_open or cpia_open.

Return values

Return value Description

CPI_SUCCESS Channel successfully closed.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

Applications that open CPI channels must close all channels before the application
terminates. Failing to close a channel can leave resources in an indeterminate state.

24 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_cptoh_l

Converts the src value from the TX board native format to the host format.

Prototype

#include txcpi.h

U32 cpi_cptoh_l (U32 src)

Argument Description

src Value in TX native format to be converted.

Details

The value of src is converted to the host format and placed in the return value.

Note: This function performs no operation on a host system that uses the same
native format as the TX board (TX boards use the Motorola native format). However,
for code portability, NMS recommends that you always use the conversion functions,
even with host systems that are already in Motorola format.

Dialogic Corporation 25

Function reference CPI Library Developer's Reference Manual

cpi_cptoh_s

Converts the src value from the TX board native format to the host format.

Prototype

#include txcpi.h

U16 cpi_cptoh_s (U16 src)

Argument Description

src Value in TX native format to be converted.

Details

The value of src is converted to the host format and placed in the return value.

Note: This function performs no operation on a host system that uses the same
native format as the TX board (TX boards use the Motorola native format). However,
for code portability, NMS recommends that you always use the conversion functions,
even with host systems that are already in Motorola format.

26 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_force_bs

Boots the TX device indicated by the specified handle. The board performs a
complete reset, including loading the operating system kernel from on-board flash
memory.

Prototype

#include txcpi.h

S16 cpi_force_bs (TX_HANDLE handle)

Argument Description

handle TX handle number.

Return values

Return value Description

CPI_SUCCESS Reset of the TX board successfully started.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

cpi_force_bs triggers the board to reboot from the TX operating system that is
stored in on-board flash memory. All current processing on the board is aborted.
When the board reset completes, cpi_check_bs returns a state of BS_READY.

Dialogic Corporation 27

Function reference CPI Library Developer's Reference Manual

cpi_get_board

Returns the board number and channel number associated with the specified
handle.

Prototype

#include txcpi.h

S16 cpi_get_board (TX_HANDLE handle, U8 *board, U8 *chan)

Argument Description

handle TX handle number.

board Pointer to a location to return the TX board number.

chan Pointer to a location to return the channel number.

Return values

Return value Description

CPI_SUCCESS Board and channel numbers returned (as board and chan).

CPI_ERROR Call cpi_get_last_error to obtain the error code.

28 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_get_data

Recovers received packets from the channel associated with the specified handle.

Prototype

#include txcpi.h

S16 cpi_get_data (TX_HANDLE handle, CPIPKT *buffer, S16 *len)

Argument Description

handle TX handle associated with the channel.

buffer Pointer to a location to store the received packet.

len Pointer to the length of the buffer on input and the length of the received packet on
output.

Return values

Return value Description

CPI_SUCCESS Packet successfully received.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

CPI_TRUNCATED Received length is longer than the specified buffer length.

Details

Specify the length of the buffer in the len parameter in the call to cpi_get_data. If
there is no packet to receive, cpi_get_data returns CPI_SUCCESS and len is set to
zero. If there is a packet, cpi_get_data returns CPI_SUCCESS, the length is placed
in len, and the packet is copied into the specified buffer.

Dialogic Corporation 29

Function reference CPI Library Developer's Reference Manual

cpi_get_dev_info

Retrieves device information for available TX boards.

Prototype

#include txcpi.h

CPI_ERR_TYPE cpi_get_dev_info (CPI_DEV_INFO *devinfo, U16 *numdevs)

Argument Description

devinfo Pointer to an array of device information structures.

numdevs Pointer to the number of entries in the devinfo array on input and the number of entries
populated on output (number of detected TX devices).

Return values

Return value Description

CPI_SUCCESS Information about the set of detected TX devices provided in devinfo.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

Use cpi_get_dev_info to determine the PCI bus and slot for each installed TX board
when assigning CP numbers to the detected boards.

See also

cpi_set_cpid

30 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_get_error_str

Returns an ASCII string associated with the errnum passed to the function.

Prototype

#include txcpi.h

S8 *cpi_get_error_str (CPI_ERR_TYPE errnum)

Argument Description

errnum CPI library error number.

Return values

Return value Description

Unknown error nnn No match for the errnum parameter.

NULL NULL terminated string containing a description of the errnum passed.

Details

When a CPI library function returns CPI_ERROR, use cpi_get_last_error to
determine the error code. Then use cpi_get_error_str to convert this errnum into
an ASCII string describing the error.

Dialogic Corporation 31

Function reference CPI Library Developer's Reference Manual

cpi_get_last_error

Returns the error code for the most recent error that occurred in the library.

Prototype

#include txcpi.h

CPI_ERR_TYPE cpi_get_last_error()

Details

When a CPI library function returns CPI_ERROR, use cpi_get_last_error to
determine the error code. Then use cpi_get_error_str to convert this errnum into
an ASCII string describing the error.

32 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_get_resources

Identifies the available TX boards.

Prototype

#include txcpi.h

S16 cpi_get_resources (S16 max_cps, S32 *cps[])

Argument Description

max_cps Maximum CP number for which to return resource information.

cps Pointer to an array of entries where CP types are returned.

Return values

Return value Description

CPI_SUCCESS Board types identified in cps array.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

If a CP of the corresponding index does not exist, each element of the array cps is
filled with 0. If a CP for that index does exist, the array is filled with the TX board
types. The parameter max_cps indicates the number of CPs to check. The cps array
should have max_cps + 1 elements since the array is filled according to board
number. There is no board number 0 and this element is not used by this routine.

Dialogic Corporation 33

Function reference CPI Library Developer's Reference Manual

cpi_htocp_l

Converts the src value from the host format to the TX board native format.

Prototype

#include txcpi.h

U32 cpi_htocp_l (U32 src)

Argument Description

src Value in host native format to be converted.

Details

The value of src is converted to the TX board format and placed in the return value.

Note: This function performs no operation on a host system that uses the same
native format as the TX board (TX boards use the Motorola native format). However,
for code portability, NMS recommends that you always use the conversion functions,
even with host systems that are already in Motorola format.

34 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_htocp_s

Converts the src value from the host format to the TX board native format.

Prototype

#include txcpi.h

U16 cpi_htocp_s (U16 src)

Argument Description

src Value in host native format to be converted.

Details

The value of src is converted to the TX board format and placed in the return value.

Note: This function performs no operation on a host system that uses the same
native format as the TX board (TX boards use the Motorola native format). However,
for code portability, NMS recommends that you always use the conversion functions,
even with host systems that are already in Motorola format.

Dialogic Corporation 35

Function reference CPI Library Developer's Reference Manual

cpi_init

Initializes the CPI library.

Prototype

#include txcpi.h

S16 cpi_init (S16 dummy, S8 *idstring)

Argument Description

dummy Unused and retained for compatibility.

idstring Unused and retained for compatibility.

Return values

Return value Description

CPI_SUCCESS CPI library successfully initialized.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

Call cpi_init once per application.

36 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_nmi

Controls the non-maskable interrupt (NMI) state on the TX board.

Prototype

#include txcpi.h

S16 cpi_nmi (TX_HANDLE handle, U32 state)

Argument Description

handle TX handle number.

state Desired state of the NMI signal. Valid values:

CPI_NMI_ASSERT
Assert NMI signal.

CPI_NMI_DEASSERT
Deassert NMI signal.

Return values

Return value Description

CPI_SUCCESS NMI signal state set as requested.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

Use the NMI to halt all standard processing on the TX board and to place the board
into a state where diagnostic information can be read from the board. An application
should assert NMI first, and then deassert NMI to cause the TX board to begin
executing in this diagnostic state.

Dialogic Corporation 37

Function reference CPI Library Developer's Reference Manual

cpi_open

Opens a channel for synchronous I/O on the host.

Note: NMS recommends that you use cpia_open to open all channels to TX boards.

Prototype

#include txcpi.h

TX_HANDLE cpi_open (U16 port, S16 mode, S16 *rcvr (S16 handle, S16 len))

Argument Description

port Combination of the TX board number and the channel number. Use the PORT macro to
combine a board number and channel number into a port.

mode Unused and retained for backwards compatibility.

rcvr Unused and retained for backwards compatibility.

Return values

Return value Description

CPI_INVALID_HANDLE Unable to open the channel.

Details

TX_HANDLE is operating-system specific. Since this return value is passed back only
to other CPI calls, the type is not important to the application. When the handle is
required for a wait call (WaitForSingleObject in Windows, poll in UNIX), use
cpi_wait_obj (handle) to access the proper element for each operating system, as
follows:
WaitForSingleObject (cpi_wait_obj (handle), 0);
For multiple-threaded applications, the thread that opens a channel should be the
same thread that processes all I/O for that channel. Otherwise, unpredictable
behavior can result.

See also

cpi_get_data, cpi_wait_msg

38 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_read_control

Reads a set of control registers from a TX board.

Prototype

#include txcpi.h

S16 cpi_read_control (TX_HANDLE handle, U16 basereg, U16 numreg, U32
*regarray, U16 *actcnt)

Argument Description

handle TX handle number.

basereg Number of the base register to read (0 through max-1).

numreg Count of registers to read.

regarray Pointer to an array to hold register values.

actcnt Pointer to the location where the actual number of registers read are stored.

Return values

Return value Description

CPI_SUCCESS Requested set of registers successfully read from TX board.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

In addition to the dual-ported RAM shared between the host processor and the TX
board, a set of registers is used for communication control. Certain low-level
diagnostics on the TX board use the control registers to pass status information to
the host.

All control register access should be restricted to diagnostic applications. Do not use
this function for normal data transfer situations.

See also

cpi_write_control

Dialogic Corporation 39

Function reference CPI Library Developer's Reference Manual

cpi_read_dpr

Reads from the dual-ported RAM of the TX board specified by handle.

Prototype

#include txcpi.h

S16 cpi_read_dpr (TX_HANDLE handle, S8 *buffer, U32 off, S16 len)

Argument Description

handle TX handle number.

buffer Pointer to a location to which the data is read.

off Offset into the dual-ported RAM from which data is to be read.

len Number of bytes to be read.

Return values

Return value Description

CPI_SUCCESS DPR successfully read into the buffer.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

The read starts at off in the DPR and reads len number of bytes.

All dual-ported RAM is used for messaging and therefore should not be read directly.
Do not use this function for normal data transfer situations.

40 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_send

Synchronously sends a packet of data over the channel indicated by the specified
handle.

Prototype

#include txcpi.h

S16 cpi_send (TX_HANDLE handle, CPIPKT *buffer)

Argument Description

handle TX handle associated with the channel.

buffer Pointer to a CPIPKT structure containing data to send.

Return values

Return value Description

CPI_SUCCESS Packet successfully sent to the TX board.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

buffer should point to a properly formatted CP packet. The application sets the
destination board and channel number in the header portion of the buffer. The
function does not return until the board acknowledges the sent packet.

Dialogic Corporation 41

Function reference CPI Library Developer's Reference Manual

cpi_set_cpid

Assigns a CP number to the TX board at the given PCI bus and slot number.

Prototype

#include txcpi.h

S16 cpi_set_cpid (S16 type, U32 param1, U32 param2, U32 cpId)

Argument Description

type Type of board. The only supported type is CPI_PCI_BUS = PCI board.

param1 Bus number.

param2 Slot number.

cpId TX board number to associate with the board at the given bus and slot.

Return values

Return value Description

CPI_SUCCESS CP number successfully assigned to the given PCI bus and slot number.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

cpi_set_cpid assigns a board number (CP number) to the TX board at the indicated
PCI bus and slot number. After a TX board is assigned a CP number, the board can
be accessed by other CPI functions.

42 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_show_stats

Displays common statistics to stdout using a series of printf calls.

Prototype

#include txcpi.h

S16 cpi_show_stats (TX_STATS_COMMON *stats)

Argument Description

stats Pointer to a location where common statistics information is written.

Return values

Return value Description

CPI_SUCCESS Statistics successfully displayed to stdout.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

cpi_show_stats enables an application to display all common statistics in a
standardized format. All statistics definitions can be found in the txstats.h include
file.

See also

cpi_stats

Dialogic Corporation 43

Function reference CPI Library Developer's Reference Manual

cpi_stats

Obtains per-channel statistics synchronously.

Prototype

#include txcpi.h

CPI_ERR_TYPE cpi_stats (TX_HANDLE handle, U32 options,
TX_STATS_COMMON *stats)

Argument Description

handle TX_HANDLE associated with the channel.

options Statistics collection operation. Refer to the Details section for valid values.

stats Pointer to a location where statistics information is written.

Return values

Return value Description

CPI_SUCCESS Statistics request successfully completed.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

cpi_stats enables an application to collect the per-channel statistics maintained by
the CPI library. All statistics definitions can be found in the txstats.h include file.

The CPI layer maintains a set of common statistics and optionally a set of layer-
specific statistics. The common statistics are defined by the TX_STATS_COMMON
structure. Use the TX_STATS_NAME operation to get ASCII names of the common
statistics.

Use the options parameter to describe the type of statistics to return. The following
table lists the valid values for the options parameter:

#include txstats.h

Use this value... To return...

TX_STATS_GET Current statistics.

TX_STATS_ZERO Current statistics, then zero the statistics.

TX_STATS_NAME Names of common statistics.

TX_STATS_NAME_LAYER Names of layer-specific statistics.

TX_STATS_DESC A description of common statistics.

TX_STATS_DESC_LAYER A description of layer-specific statistics.

See also

cpi_show_stats

44 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_wait_msg

Waits a specified amount of time (in milliseconds) and returns a packet if one is
received.

Prototype

#include txcpi.h

S16 cpi_wait_msg (TX_HANDLE handle, CPIPKT *buffer, S16*len, S32
millisecs)

Argument Description

handle TX handle associated with the channel.

buffer Pointer to the address to which to copy the received buffer.

len Pointer to the length of the buffer on input and the length of the received packet on
output.

millisecs Amount of time to wait before returning the packet.

Return values

Return value Description

CPI_SUCCESS Packet successfully received in buffer.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

CPI_TIMEOUT No packet to receive.

CPI_TRUNCATED Received length is longer than the specified buffer length.

Details

cpi_wait_msg recovers received packets from the channel associated with the
specified handle. Upon entry, len contains the size of the buffer. If there is a packet
to receive, the length is placed in len and the packet is placed in the specified buffer.

Dialogic Corporation 45

Function reference CPI Library Developer's Reference Manual

cpi_wait_obj

Returns the wait object for the channel associated with the specified handle.

Prototype

#include txcpi.h

CPI_WAIT_TYPE cpi_wait_obj (TX_HANDLE handle)

Argument Description

handle TX handle associated with the channel.

Return values

Return value Description

CPI_INVALID_WAIT_HANDLE Invalid TX handle.

Details

Use the wait object when calling the host operating system's native wait routine,
such as WaitForSingleObject in Windows or poll for UNIX.

46 Dialogic Corporation

CPI Library Developer's Reference Manual Function reference

cpi_write_control

Writes a set of control registers to a TX board.

Prototype

#include txcpi.h

S16 cpi_write_control (TX_HANDLE handle, U16 basereg, U16 numreg, U32
*regarray, U16 *actcnt)

Argument Description

handle TX handle number.

basereg Number of the base register to write (0 through max-1).

numreg Count of registers to write.

regarray Pointer to an array holding the register values to be written.

actcnt Pointer to the location to store the number of registers written.

Return values

Return value Description

CPI_SUCCESS Provided set of registers successfully written to the TX board.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

In addition to the dual-ported RAM shared between the host processor and the TX
board, a set of registers is used for communication control. Certain low-level
diagnostics on the TX board use the control registers to control low-level, on-board
diagnostics.

All control register access should be restricted to diagnostic applications. Do not use
this function for normal data transfer situations.

See also

cpi_read_control

Dialogic Corporation 47

Function reference CPI Library Developer's Reference Manual

cpi_write_dpr

Writes to the dual-ported RAM of the CP indicated by the specified handle.

Prototype

#include txcpi.h

S16 cpi_write_dpr (TX_HANDLE handle, S8 *buffer, U32 off, S16 len)

Argument Description

handle TX handle number.

buffer Pointer to a location to which the data is written.

off Offset into the dual-ported RAM where data is written.

len Number of bytes to be written.

Return values

Return value Description

CPI_SUCCESS Provided buffer successfully written to DPR.

CPI_ERROR Call cpi_get_last_error to obtain the error code.

Details

cpi_write_dpr writes from buffer for len number of bytes starting at off in the
DPR.

All dual-ported RAM is used for messaging and should not be written directly. Do not
use this function for normal data transfer situations.

48 Dialogic Corporation

Index

A

asynchronous functions 13

asynchronous transmit 18, 22

B

board information 28, 30, 42

board number 28, 42

boot state 23, 27

C

channel usage 10

close channel 24

close system call 11

control registers 39, 47

conversion 25, 26, 34, 35

CP number 28, 42

CPI library definition 10

cpi_check_bs 23

cpi_close 24

cpi_cptoh_l 25

cpi_cptoh_s 26

cpi_force_bs 27

cpi_get_board 28

cpi_get_data 29

cpi_get_dev_info 30

cpi_get_error_str 31

cpi_get_last_error 32

cpi_get_resources 33

cpi_htocp_l 34

cpi_htocp_s 35

cpi_init 36

cpi_nmi 37

cpi_open 38

cpi_read_control 39

cpi_read_dpr 40

cpi_send 41

cpi_set_cpid 42

cpi_show_stats 43

cpi_stats 44

cpi_wait_msg 45

cpi_wait_obj 46

cpi_write_control 47

cpi_write_dpr 48

cpia_chkey 16

cpia_get_data 17

cpia_intr 18

cpia_open 19

cpia_rxnotify 20

cpia_send 21

cpia_txnotify 22

CPIPKT structure 21, 22, 29, 41, 45

D

de-multiplexing 10

development environment 9

device information 30

DPR 40, 48

dpriface.h 10

dual-ported RAM 40, 48

E

errors 31, 32

F

flow control 11

function summary 13

G

getmsg system call 11

I

initialize CPI library 36

ioctl system call 11

L

logical port 10

Dialogic Corporation 49

Index CPI Library Developer's Reference Manual

M

multiplexing 10

N

NMI state 37

non-maskable interrupt state 37

O

open channel 19, 38

open system call 11

operating systems 11, 11

P

poll system call 11, 18, 46

port usage 10

putmsg system call 11

R

receive data 17, 29

resources 33

S

select system call 11

send data 21, 41

statistics 43, 44

synchronous functions 13

T

TX_STATS_COMMON structure 44

TX_STATS_NAME structure 44

txcpi.h 10

txstats.h 44

U

UNIX 11

W

wait object 46

WaitForMultipleObjects 11, 18

WaitForSingleObject 11, 46

Windows 11

50 Dialogic Corporation

	Copyright and legal notices
	Introduction
	Overview of the CPI library
	Development environment
	CPI library definition
	Accessing the TX device driver using Windows
	Accessing the TX device driver using UNIX

	Function reference
	Function summary
	Using the function reference
	cpia_chkey
	
	
	Prototype
	Return values
	Details

	cpia_get_data
	
	
	Prototype
	Return values
	Details

	cpia_intr
	
	
	Prototype
	Return values
	Details

	cpia_open
	
	
	Prototype
	Return values
	Details
	See also

	cpia_rxnotify
	
	
	Prototype
	Details

	cpia_send
	
	
	Prototype
	Return values
	Details
	See also

	cpia_txnotify
	
	
	Prototype
	Details

	cpi_check_bs
	
	
	Prototype
	Return values
	Details
	See also

	cpi_close
	
	
	Prototype
	Return values
	Details

	cpi_cptoh_l
	
	
	Prototype
	Details

	cpi_cptoh_s
	
	
	Prototype
	Details

	cpi_force_bs
	
	
	Prototype
	Return values
	Details

	cpi_get_board
	
	
	Prototype
	Return values

	cpi_get_data
	
	
	Prototype
	Return values
	Details

	cpi_get_dev_info
	
	
	Prototype
	Return values
	Details
	See also

	cpi_get_error_str
	
	
	Prototype
	Return values
	Details

	cpi_get_last_error
	
	
	Prototype
	Details

	cpi_get_resources
	
	
	Prototype
	Return values
	Details

	cpi_htocp_l
	
	
	Prototype
	Details

	cpi_htocp_s
	
	
	Prototype
	Details

	cpi_init
	
	
	Prototype
	Return values
	Details

	cpi_nmi
	
	
	Prototype
	Return values
	Details

	cpi_open
	
	
	Prototype
	Return values
	Details
	See also

	cpi_read_control
	
	
	Prototype
	Return values
	Details
	See also

	cpi_read_dpr
	
	
	Prototype
	Return values
	Details

	cpi_send
	
	
	Prototype
	Return values
	Details

	cpi_set_cpid
	
	
	Prototype
	Return values
	Details

	cpi_show_stats
	
	
	Prototype
	Return values
	Details
	See also

	cpi_stats
	
	
	Prototype
	Return values
	Details
	See also

	cpi_wait_msg
	
	
	Prototype
	Return values
	Details

	cpi_wait_obj
	
	
	Prototype
	Return values
	Details

	cpi_write_control
	
	
	Prototype
	Return values
	Details
	See also

	cpi_write_dpr
	
	
	Prototype
	Return values
	Details

