
Dialogic® Conferencing API
Programming Guide and Library Reference

October 2012

05-2506-004

Dialogic® Conferencing API Programming Guide and Library Reference

Copyright © 2006-2012 Dialogic Inc. All Rights Reserved. You may not reproduce this document in whole or in part without permission in writing from
Dialogic Inc. at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Inc. and its affiliates or subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in
the document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or
omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see http://www.dialogic.com/company/terms-of-use.aspx for
more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only in specific countries, and thus
may not function properly in other countries. You are responsible for ensuring that your use of such products occurs only in the countries where such
use is suitable. For information on specific products, contact Dialogic Inc. at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 9800 Cavendish Blvd., Suite 500,
Montreal, Quebec, Canada H4M 2V9. Dialogic encourages all users of its products to procure all necessary intellectual property licenses
required to implement any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, Diva ISDN, Mobile Experience Matters, Making Innovation Thrive, Video is the New
Voice, VisionVideo, Diastar, Cantata, TruFax, SwitchKit, SnowShore, Eicon, Eiconcard, NMS Communications, NMS (stylized), SIPcontrol, Exnet,
EXS, Vision, PowerMedia, PacketMedia, BorderNet, inCloud9, I-Gate, ControlSwitch, NaturalAccess, NaturalCallControl, NaturalConference,
NaturalFax and Shiva, among others as well as related logos, are either registered trademarks or trademarks of Dialogic Inc. and its affiliates or
subsidiaries. Dialogic’s trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal
department at 9800 Cavendish Blvd., Suite 500, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic’s trademarks will be subject to
full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper
acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your decision to use open
source in connection with Dialogic products (including without limitation those referred to herein), nor is Dialogic responsible for any present or future
effects such usage might have, including without limitation effects on your products, your business, or your intellectual property rights.

Publication Date: October 2012

Document Number: 05-2506-004

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com

Dialogic® Conferencing API Programming Guide and Library Reference 3

Contents

Revision History . 6

About This Publication . 9
Purpose . 9
Applicability . 9
Intended Audience. 9
How to Use This Publication . 10
Related Information . 10

1 Product Description . 11

1.1 Overview . 11
1.2 Key Features . 11
1.3 Understanding How Conferences are Formed . 12
1.4 Relationship with Other Libraries. 13

2 Programming Models . 15

2.1 Programming Models Overview. 15
2.2 Asynchronous Programming Model. 15

3 Event Handling . 17

3.1 Dialogic® Standard Runtime Library Event Management Functions. 17
3.2 Dialogic® Standard Runtime Library Standard Attribute Functions. 17

4 Error Handling . 19

5 Application Development Guidelines . 21

5.1 Using Symbolic Defines. 21
5.2 Using Conferencing Devices . 21
5.3 Creating a Conference. 22
5.4 Conference Bridging . 24
5.5 Terminating an Application . 25
5.6 Data Structure Considerations. 25
5.7 Multiprocessing Considerations. 26
5.8 Multithreading Considerations . 26
5.9 Volume Control . 26
5.10 Active Talker . 27
5.11 Privilege Talker . 27
5.12 Monitor Mode. 29
5.13 Mute Audio. 31
5.14 HD Voice Conferencing (Wideband Audio Conferencing) . 31

6 Building Applications. 35

6.1 Compiling and Linking . 35
6.2 Variables for Compiling and Linking . 37

7 Function Summary by Category . 39

4 Dialogic® Conferencing API Programming Guide and Library Reference

Contents

7.1 Device Management Functions . 39
7.2 Conference Management Functions. 40
7.3 Configuration Functions . 40
7.4 Auxiliary Functions . 40
7.5 Multimedia Conferencing Functions . 41
7.6 TDM Routing Functions . 41
7.7 Error Processing Function . 41

8 Function Information. 43

8.1 Function Syntax Conventions . 43
cnf_AddParty() – add one or more parties to a conference . 44
cnf_Close() – close a board device . 46
cnf_CloseConference() – close a conference device . 48
cnf_CloseParty() – close a party device . 50
cnf_DisableEvents() – disable one or more events . 52
cnf_EnableEvents() – enable one or more events . 55
cnf_GetActiveTalkerList() – get a list of active talkers . 58
cnf_GetAttributes() – get one or more device attributes. 60
cnf_GetDeviceCount() – get conference and party device count information 63
cnf_GetDTMFControl() – get DTMF digits control information . 65
cnf_GetErrorInfo() – get error information about a failed function . 67
cnf_GetPartyList() – get a list of added parties in a conference. 68
cnf_GetPrivilegeTalkerList() – get privilege talker list . 70
cnf_GetVideoLayout() – get video layout on a specified device. 72
cnf_GetVisiblePartyList() – get visible party list . 74
cnf_GetXmitSlot() – get TDM bus time slot number of party transmit channel 76
cnf_Open() – open a board device . 80
cnf_Listen() – connect party receive channel to TDM bus time slot . 82
cnf_OpenConference() – open a conference device . 88
cnf_OpenEx() – open the board devices in synchronous or asynchronous mode 90
cnf_OpenParty() – open a party device . 92
cnf_RemoveParty() – remove one or more parties from a conference . 94
cnf_ResetDevices() – reset open devices that were improperly closed . 96
cnf_SetAttributes() – set one or more device attributes . 99
cnf_SetDTMFControl() – set DTMF digits control information . 102
cnf_SetVideoLayout() – set the video layout on a conference device 104
cnf_SetVisiblePartyList() – specifies visible parties in video layout region. 106
cnf_UnListen() – discconnect party receive channel from TDM bus . 108

9 Events. 111

9.1 Event Types . 111
9.2 Termination Events. 111
9.3 Notification Events . 114

10 Data Structures . 117

CNF_ACTIVE_TALKER_INFO – active talker information . 118
CNF_ATTR – attributes and attribute values. 119
CNF_ATTR_INFO – attribute information . 120

Dialogic® Conferencing API Programming Guide and Library Reference 5

Contents

CNF_CLOSE_CONF_INFO – reserved for future use . 121
CNF_CLOSE_INFO – reserved for future use . 122
CNF_CLOSE_PARTY_INFO – reserved for future use . 123
CNF_CONF_CLOSED_EVENT_INFO – information for conference closed event 124
CNF_CONF_OPENED_EVENT_INFO – information for conference opened event 125
CNF_DEVICE_COUNT_INFO – device count information . 126
CNF_DTMF_CONTROL_INFO – DTMF digits control information . 127
CNF_DTMF_EVENT_INFO – DTMF event information . 129
CNF_ERROR_INFO – error information . 130
CNF_EVENT_INFO – event information . 131
CNF_OPEN_CONF_INFO – reserved for future use . 132
CNF_OPEN_CONF_RESULT – result information for an opened conference 133
CNF_OPEN_INFO – reserved for future use . 134
 CNF_OPEN_PARTY_INFO – reserved for future use . 135
CNF_OPEN_PARTY_RESULT – result information for an opened party 136
CNF_PARTY_ADDED_EVENT_INFO – information for added party event 137
CNF_PARTY_INFO – party information. 138
CNF_PARTY_REMOVED_EVENT_INFO – information for removed party event. 139
CNF_PRIVILEGE_TALKER_INFO – privilege talker information. 140
CNF_VIDEO_LAYOUT_INFO – information for video layout. 141
CNF_VISIBLE_PARTY_INFO – information about the visible party . 142
CNF_VISIBLE_PARTY_LIST – visible party list information . 143
SC_TSINFO – TDM bus time slot information . 144

11 Error Codes . 145

12 Supplementary Reference Information . 147

12.1 Conferencing Example Code and Output . 147

Glossary . 199

Index . 203

Dialogic® Conferencing API Programming Guide and Library Reference 6

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No. Publication Date Description of Revisions

05-2506-004 October 2012 Added programming guide content to create a combined Programming Guide and
Library Reference.

Programming Guide content: Added Product Description, Programming Models,
Event Handling, Error Handling, Application Development Guidelines, Building
Applications. Reorganized and included Using Active Talker and Using Volume
Control chapters as part of Application Development Guidelines chapter.

Application Development Guidelines: Added Privilege Talker, Monitor Mode, Mute
Audio, HD Voice Conferencing (Wideband Audio Conferencing) sections. Added
Windows specific information in Creating a Conference section.

Building Applications: Added a note about compiling applications in Required
Libraries, Linux section.

Function Summary by Category: Added cnf_GetPrivilegeTalkerList(), cnf_Listen(),
cnf_UnListen(), cnf_GetXmitSlot().

cnf_DisableEvents() and cnf_EnableEvents(): Added
ECNF_CONF_EVT_EXCEEDED_CONF_LICENSE.

cnf_GetAttributes() and cnf_SetAttributes(): Added ECNF_CONF_ATTR_MAX_
ACTIVE_TALKERS, ECNF_PARTY_ATTR_PRIVILEGE,
ECNF_PARTY_ATTR_MUTE.

cnf_GetPrivilegeTalkerList(): Added for privilege talker attribute support.

cnf_GetXmitSlot(): Added for monitor mode support.

cnf_Listen(): Added for monitor mode support.

cnf_UnListen(): Added for monitor mode support.

Events chapter : Added CNFEV_GET_PRIVILEGE_TALKER and
CNFEV_GET_PRIVILEGE_TALKER_FAIL to Termination Events. Added
CNFEV_EXCEEDED_CONF_LICENSE to Notification Events.

CNF_PRIVILEGE_TALKER_INFO structure: Added.

CNF_VISIBLE_PARTY_LIST structure: Updated structure definition. (IPY00080538)

SC_TSINFO structure: Added.

05-2506-003
(continued on
next page)

October 2007 Function Summary by Category chapter : Added the Multimedia Conferencing
Functions section and added new functions to the Device Management
Functions section.

cnf_AddParty(): Added information about MCX device in Cautions section.

cnf_GetAttributes(): Added the ECNF_CONF_ATTR_NOTIFY parameter.

Dialogic® Conferencing API Programming Guide and Library Reference 7

Revision History

05-2506-003

(continued)

October 2007 cnf_EnableEvents() and cnf_DisableEvents(): Added note about
ECNF_BRD_EVT_ACTIVE_TALKER event type.

cnf_GetVideoLayout(): Added function for multimedia conferencing support.

cnf_GetActiveTalkerList(): Added information about MCX device.

cnf_GetVisiblePartyList(): Added function for multimedia conferencing support.

cnf_Open() and cnf_OpenEx(): Added description of new device name, MCX
conferencing device.

cnf_OpenConference(): Added information about MCX device.

cnf_OpenEx(): Added function to open devices in synchronous and asynchronous
mode.

cnf_OpenParty(): Added information about MCX device.

cnf_RemoveParty(): Added information about MCX device in Cautions section.

cnf_ResetDevices(): Added function to reset devices.

cnf_SetAttributes(): Added the ECNF_CONF_ATTR_NOTIFY parameter.

cnf_SetVideoLayout(): Added function for multimedia conferencing support.

cnf_SetVisiblePartyList(): Added function for multimedia conferencing support.

Events chapter: Added new termination events for multimedia conferencing support.

Data Structures chapter:: Added multimedia conferencing related structures.

CNF_VIDEO_LAYOUT_INFO: Added for multimedia conferencing support.

CNF_VISIBLE_PARTY_INFO: Added for multimedia conferencing support.

CNF_VISIBLE_PARTY_LIST: Added for multimedia conferencing support.

Supplementary Reference Information chapter: Added new example code.

05-2506-002 August 2007 Made global changes to reflect Dialogic brand.

05-2506-001 August 2006 Initial version of document.

Document No. Publication Date Description of Revisions

8 Dialogic® Conferencing API Programming Guide and Library Reference

Revision History

 Dialogic® Conferencing API Programming Guide and Library Reference 9

About This Publication

The following topics provide more information about this publication:

• Purpose

• Applicability

• Intended Audience

• How to Use This Publication

• Related Information

Purpose

This publication describes the features of the Dialogic® Conferencing (CNF) API library and
provides guidelines for developing applications using the conferencing API. It also provides a
reference to functions, parameters, data structures, and error codes in the conferencing API.

In this document, the term “board” refers to the virtual Dialogic® DM3 board.

Note: The Dialogic® Conferencing (CNF) API is distinct from and presently incompatible with the
Dialogic® Conferencing (CNF) API that was previously released in Dialogic® System Release 6.0
on PCI for Windows.

Applicability

This document version is published for Dialogic® Host Media Processing (HMP) Software Release
4.1LIN and Dialogic® Host Media Processing (HMP) Software Release 3.0WIN.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This publication is intended for the following audience:

• Distributors

• System Integrators

• Toolkit Developers

• Independent Software Vendors (ISVs)

• Value Added Resellers (VARs)

10 Dialogic® Conferencing API Programming Guide and Library Reference

About This Publication

• Original Equipment Manufacturers (OEMs)

• End Users

How to Use This Publication

This document assumes that its readers are familiar with the Linux or Windows operating systems
and the C++ programming language.

The information in this document is organized in two major parts:

• Programming Guide content, which describes the conferencing software features,
programming models, application development guidelines, and feature implementation
guidelines.

• Library Reference content, which provides an alphabetical reference to the conferencing
functions, events, data structures, and error codes.

Related Information

See the following additional information:

• http://www.dialogic.com/manuals/ (for Dialogic® product documentation)

• http://www.dialogic.com/support/ (for Dialogic technical support)

• http://www.dialogic.com/ (for Dialogic® product information)

http://resource.intel.com/telecom/support/documentation/releases/index.htm
http://www.dialogic.com/manuals/default.htm

Dialogic® Conferencing API Programming Guide and Library Reference 11

11.Product Description

This chapter provides an overview of the Dialogic® Conferencing (CNF) API library. Topics
include:

• Overview . 11

• Key Features . 11

• Understanding How Conferences are Formed. 12

• Relationship with Other Libraries . 13

1.1 Overview

The Dialogic® Conferencing (CNF) API software supports development of conferencing
applications on Dialogic® Host Media Processing (HMP) Software. The conference can take place
over an IP network and/or over traditional public switched telephone network (PSTN) lines.

Dialogic® HMP Software performs media processing tasks on general-purpose servers based on
Intel architecture without the need for specialized hardware. When installed on a system, Dialogic®
HMP Software performs like a virtual Dialogic® DM3 board to the customer application, but
media processing takes place on the host processor. In this document, the term “board” represents
the virtual Dialogic® DM3 board.

Note: This Dialogic® Conferencing (CNF) API is distinct from and incompatible with the Dialogic®
Conferencing (CNF) API that was previously released in Dialogic® System Release 6.0 on PCI for
Windows®.

1.2 Key Features

Key features of the Dialogic® Conferencing (CNF) API software include the following:

Asynchronous programming model support
This model enables multiple channels to be handled in a single process and supports higher
density conferencing solutions.

Support for conferees from multiple sources
Participants in a conference may come from a variety of sources, such as a voice device and an
IP media device. The software allows for flexibility to grow and support additional sources.

Conference bridging
Multiple conferences can be bridged together so that all parties (also called conferees) in two
or more established conferences can communicate with one another.

12 Dialogic® Conferencing API Programming Guide and Library Reference

Product Description

HD voice conferencing (wideband audio conferencing)
High definition (HD) voice conferencing, also called wideband audio conferencing, is
supported using G.722 and G.722.2 (AMR-WB) audio codecs. The conference can consist of a
combination of wideband and narrowband parties.

Coach/pupil feature
Two selected parties can establish a private communication link within the overall conference.
The coach is a private member of the conference and is only heard by the pupil. However, the
pupil cannot speak privately with the coach.

DTMF digit detection
The application can determine whether a party has generated a DTMF digit.

Volume control
A party can adjust the listening volume of the conference using pre-programmed DTMF digits.

DTMF tone clamping
This feature mutes dual tone multi-frequency (DTMF) tones heard during a conference. Tone
clamping applies to the transmitted audio going into the conference and does not affect DTMF
function. It can be enabled on a board, conference, or party basis.

Automatic gain control (AGC)
AGC is an algorithm for normalizing an input signal to a target level. The AGC algorithm
discriminates between voiced and unvoiced signals within a conference.

Active talker
The active talker feature sums the three most active talkers in a conference, so that the
conversation doesn’t get drowned out when too many people talk at once.

Conference monitoring
Participants have listen-only access to a conference.

Echo cancellation
This feature reduces echo from the incoming signal, improving the quality of a conference for
all participants.

Tariff tone
A party can receive a periodic tone for the duration of the conference call.

1.3 Understanding How Conferences are Formed

Developing a conferencing application requires the use of the Dialogic® Conferencing (CNF) API
library as well as other Dialogic® API libraries, such as the Dialogic® Standard Runtime Library
(SRL) and the Dialogic® Device Management API library. Other libraries include the IP media and
voice libraries.

A conference consists of conferees (also known as parties). The maximum number of conferences
and parties supported varies with the Dialogic® HMP Software license in use and, if applicable, the
media load in use on the board.

A conference is identified by a unique conference device handle, which is registered with the
Dialogic® Standard Runtime Library (SRL). A party is identified by a unique SRL party device
handle. The virtual board device is the parent device for the conference device and party device; it

Dialogic® Conferencing API Programming Guide and Library Reference 13

Product Description

has a unique SRL device handle. For more information on the types of conferencing devices, see
Section 5.3, “Creating a Conference”, on page 22.

The Dialogic® Conferencing (CNF) API is used to open a conference, and to add parties to a
conference. However, these parties cannot participate in a conference until they are connected to a
technology device handle through the dev_Connect() Dialogic® Device Management API
function. Technology device handles are obtained through the respective technology API library
functions. For example, the dxxxB1C1 voice channel device handle is obtained from dx_open().

A conference may be formed from parties that are connected to any one of the following
technology device handles:

• voice (dx) device handle

• IP media (ipm) device handle

• digital network interface (dti) device handle

Note: A device handle obtained from gc_OpenEx() in the Dialogic® Global Call API library cannot be
used by dev_Connect() to connect a party to a conference. Rather, you can use the device handle
returned by gc_GetResourceH() to connect a party to a conference.

1.4 Relationship with Other Libraries

A conferencing application is developed using the Dialogic® Conferencing (CNF) API library as
well as other Dialogic® API libraries, including the following:

• Dialogic® Standard Runtime Library (SRL)

• Dialogic® Device Management API Library

• Dialogic® Voice API Library

• Dialogic® IP Media Library API

• Dialogic® Global Call API Library

• Dialogic® Digital Network Interface API Library

1.4.1 Dialogic® Standard Runtime Library (SRL)

The Dialogic® Standard Runtime Library (SRL) provides a common interface for event handling
and other functionality common to all devices.

The Dialogic® Conferencing (CNF) API uses three types of devices: virtual board device,
conference device, and party device. TheDialogic® Conferencing (CNF) API registers the virtual
board device with the Dialogic® Standard Runtime Library (SRL) when cnf_Open() is called. In
addition, the conference device and the party device are registered when cnf_OpenConference()
and cnf_OpenParty(), respectively, are called. Conferencing events are posted to the SRL, which
then delivers these events to the application. For more information about SRL functions, see the
Dialogic® Standard Runtime Library API Library Reference.

14 Dialogic® Conferencing API Programming Guide and Library Reference

Product Description

1.4.2 Dialogic® Device Management API Library

The Dialogic® Device Management API library provides run-time control and management of
configurable system devices. It includes functions to reserve resources and to manage the
connections between devices. It performs all necessary connection-related operations, including
time slot management.

The device connection functions enable connection between conferencing devices and other
devices on Dialogic® HMP Software, providing the ability for conferencing communication.
Before a party can participate in a conference, it must be connected to a supported technology
device (such as voice and IP media) using the dev_Connect() function. Conference bridging is
also accomplished through the Dialogic® Device Management API library. For more information
about device management functions, see the Dialogic® Device Management API Library
Reference.

1.4.3 Dialogic® Voice API Library

The Dialogic® Voice API provides a collection of functions supporting call processing such as dual
tone multifrequency (DTMF) detection, tone signaling, playing and recording. You may add a
party to a conference using a device handle obtained from dx_open(). You must then connect the
voice device to a conference using dev_Connect(). For more information about voice functions,
see the Dialogic® Voice API Library Reference.

1.4.4 Dialogic® IP Media Library API

The Dialogic® IP Media Library API provides a collection of functions for media control on IP
devices. You may add a party to a conference using a device handle obtained from ipm_Open().
You must then connect the IP media device to a conference using dev_Connect(). For more
information about Dialogic® IP Media Library API functions, see the Dialogic® IP Media Library
API Library Reference.

1.4.5 Dialogic® Global Call API Library

The Dialogic® Global Call API provides a collection of functions supporting call control
operations. You may add a party to a conference using a device handle obtained from
gc_GetResourceH(). You must then connect the device to a conference using dev_Connect().
For more information about Dialogic® Global Call API functions, see the Dialogic® Global Call
API Library Reference.

1.4.6 Dialogic® Digital Network Interface API Library

The Dialogic® Digital Network Interface API is used to manage digital network interface devices.
You may add a party to a conference using a device handle obtained from dt_open(). You must
then connect the device to a conference using dev_Connect(). For more information about
Dialogic® Digital Network Interface API functions, see the Dialogic® Digital Network Interface
Software Reference.

Dialogic® Conferencing API Programming Guide and Library Reference 15

22.Programming Models

This chapter describes the programming models supported by the Dialogic® Conferencing (CNF)
API software. The following topics are covered:

• Programming Models Overview . 15

• Asynchronous Programming Model . 15

2.1 Programming Models Overview

The Dialogic® Conferencing (CNF) API software supports application development using
asynchronous programming models. By usage, the asynchronous models are often said to use
asynchronous mode. Asynchronous mode programming is introduced briefly in this chapter and
described in more detail in the Dialogic® Standard Runtime Library API Programming Guide.

Note: The Dialogic® Conferencing (CNF) API library is implemented as an asynchronous only library. If
desired, you can implement synchronous functionality in the application itself.

2.2 Asynchronous Programming Model

Asynchronous mode programming is characterized by allowing other processing to take place
while a function executes. In asynchronous mode programming, multiple channels are handled in a
single process rather than in separate processes as required in synchronous mode programming.

An asynchronous mode function typically receives an event from the Dialogic® Standard Runtime
Library (SRL) indicating completion (termination) of the function in order for the application to
continue processing a call on a particular channel. A function called in the asynchronous mode
returns control to the application after the request is passed to the device driver. A termination event
is returned when the requested operation completes.

Caution: In general, when a function is called in asynchronous mode, and an associated termination event
exists, the cnf_Close() function should not be called until the termination event has been received.

For Linux environments, the asynchronous models provided for application development include:

Asynchronous (Polled)
In this model, the application polls for or waits for events using the sr_waitevt() function.
When an event is available, event information may be retrieved using SRL event handling
functions such as sr_getevttype(). Retrieved event information is valid until the sr_waitevt()
function is called again. Typically, the polled model is used for applications that do not need to
use event handlers to process events.

Asynchronous with Event Handlers
This model may be run in non-signal mode only. Event handlers can be enabled or disabled for
specific events on specific devices.

16 Dialogic® Conferencing API Programming Guide and Library Reference

Programming Models

Dialogic® Conferencing API Programming Guide and Library Reference 17

33.Event Handling

All conferencing events are retrieved using Dialogic® Standard Runtime Library (SRL) event
retrieval mechanisms, including event handlers. The SRL is a device-independent library
containing event management functions and Standard Attribute functions. This chapter lists SRL
functions that are typically used by conferencing applications.

• Dialogic® Standard Runtime Library Event Management Functions. 17

• Dialogic® Standard Runtime Library Standard Attribute Functions 17

3.1 Dialogic® Standard Runtime Library Event
Management Functions

SRL event management functions retrieve and handle device termination events for certain library
functions. Applications typically use the following functions:

sr_enbhdlr()
enables event handler

sr_dishdlr()
disables event handler

sr_getevtdev()
gets device handle

sr_getevttype()
gets event type

sr_waitevt()
waits for next event

sr_waitevtEx()
waits for events on certain devices

Note: See the Dialogic® Standard Runtime Library API Library Reference for function details.

3.2 Dialogic® Standard Runtime Library Standard
Attribute Functions

SRL Standard Attribute functions return general device information, such as the device name or the
last error that occurred on the device. Applications typically use the following functions:

ATDV_ERRMSGP()
pointer to string describing the error that occurred during the last function call on the specified
device

18 Dialogic® Conferencing API Programming Guide and Library Reference

Event Handling

ATDV_LASTERR()
error that occurred during the last function call on a specified device. See the function
description for possible errors for the function.

ATDV_NAMEP()
pointer to device name

ATDV_SUBDEVS()
number of subdevices

Note: See the Dialogic® Standard Runtime Library API Library Reference for function details.

Dialogic® Conferencing API Programming Guide and Library Reference 19

44.Error Handling

This chapter describes error handling for the Dialogic® Conferencing (CNF) API software.

All Dialogic® Conferencing (CNF) API functions return a value that indicates the success or
failure of the function call. Success is indicated by a return value of CNF_SUCCESS. Failure is
indicated by a value of CNF_ERROR.

If a function fails, call the Dialogic® Standard Runtime Library API functions
ATDV_LASTERR() and ATDV_ERRMSGP() for the reason for failure. These functions are
described in the Dialogic® Standard Runtime Library API Library Reference.

If an error occurs during execution of an asynchronous function, the CNFEV_ERROR event is sent
to the application. No change of state is triggered by this event. Upon receiving the
CNFEV_ERROR event, the application can retrieve the reason for the failure using the Dialogic®
Standard Runtime Library API functions ATDV_LASTERR() and ATDV_ERRMSGP().

20 Dialogic® Conferencing API Programming Guide and Library Reference

Error Handling

Dialogic® Conferencing API Programming Guide and Library Reference 21

55.Application Development
Guidelines

This chapter contains guidelines for developing Dialogic® Conferencing (CNF) API applications.
The following topics are covered:

• Using Symbolic Defines . 21

• Using Conferencing Devices . 21

• Creating a Conference . 22

• Conference Bridging . 24

• Terminating an Application . 25

• Data Structure Considerations . 25

• Multiprocessing Considerations . 26

• Multithreading Considerations . 26

• Volume Control . 26

• Active Talker . 27

• Privilege Talker . 27

• Monitor Mode . 29

• Mute Audio . 31

• HD Voice Conferencing (Wideband Audio Conferencing) . 31

5.1 Using Symbolic Defines

The numerical values of defines may not remain the same as new versions of the software are
released. It is recommended that you do not use a numerical value in your application when an
equivalent symbolic define is available. Symbolic defines are found in the header files; for
example, cnflib.h, cnfevts.h, cnferrs.h, and srllib.h.

5.2 Using Conferencing Devices

The types of devices used in the Dialogic® Conferencing (CNF) API library and their naming
convention are as follows:

• virtual board device, called cnfBx, where x is the logical board number

• conference device, called cnfBxCy, where x is the logical board number and y is the conference
device channel

22 Dialogic® Conferencing API Programming Guide and Library Reference

Application Development Guidelines

• party device, called ptyBxPz, where x is the logical board number and z is the party device
channel

All devices are identified by a unique SRL handle. All subsequent references to the opened device
must be made using the handle, until the device is closed.

The virtual board device is the parent device for both the conference device and the party device.
You must open a virtual board device before opening a conference device or party device. After a
board device is opened, you can open and initialize all conference devices at once, and/or all party
devices at once. A conference device and a party device are independent; that is, you can open a
party device without first opening a conference device.

5.3 Creating a Conference

The following steps describe how to create a conference. See the Glossary for information on the
terms used here. See the Dialogic® Conferencing API Library Reference for details on
conferencing functions and data structures.

Note: These steps provide general guidelines. They do not cover all tasks required to write a conferencing
application.

1. Use the asynchronous programming model, and enable a Dialogic® Standard Runtime Library
(SRL) event handler for the various devices used by the conferencing software (virtual board,
conference, and party) via sr_enbhdlr().

2. Open the virtual board device handle using cnf_Open(). The device naming convention for
the virtual board is cnfBx, where x is the board number starting at 1. You must have a virtual
board device before you can open a conference device or a party device.

3. Get a count of the resources on this board using cnf_GetDeviceCount(). This count is a
snapshot in time. The CNF_DEVICE_COUNT_INFO data structure contains information
about the number of devices on this board, such as the maximum number of conferences and
parties, as well as the number of free conferences and free parties. The maximum number of
conferences and parties supported varies with the Dialogic® Host Media Processing (HMP)
Software license in use and, if applicable, the media load in use on the board. Having a count
of the resources enables you to properly manage these resources.

For information about resource limitations on Windows, see Resource Limitations on
Windows Operating Systems following these steps.

4. If desired, specify attributes for the board using cnf_SetAttributes(). Attributes are contained
in the CNF_ATTR data structure. Use cnf_GetAttributes() to return the current attributes for
the board.

5. If desired, enable notification events for the board using cnf_EnableEvents(). Events are
contained in the CNF_EVENT_INFO data structure. For example, the application can be
notified dynamically whenever a conference is opened or a party is added.

6. At this point, you can choose to open and set up all conferences; or you can choose to open one
conference at a time as needed. Similarly, you can also choose to open and set up all parties, or
open one party at a time as needed. The steps that follow show how to open one conference,
then add a party to this opened conference. Repeat the steps as appropriate for your use case.

Dialogic® Conferencing API Programming Guide and Library Reference 23

Application Development Guidelines

7. Using cnf_OpenConference(), create a new conference to which parties will be added. This
function takes the virtual board device handle returned by cnf_Open() as an argument. It
returns a unique SRL device handle for the conference. The conference created consumes a
conference resource.

8. If desired, specify attributes for the conference using cnf_SetAttributes(). Attributes are
contained in the CNF_ATTR data structure. Use cnf_GetAttributes() to return the current
attributes for the conference.

9. If desired, enable notification events for the conference using cnf_EnableEvents(). Events
are contained in the CNF_EVENT_INFO data structure.

10. Open a party device handle using cnf_OpenParty(). This function returns a unique SRL
device handle for the party.

11. If desired, you can specify attributes for a party using cnf_SetAttributes(). Attributes are
contained in the CNF_ATTR data structure. Use cnf_GetAttributes() to return the current
attributes for the party.

12. Before a party can participate in a conference, you must connect this party to a supported
technology device using dev_Connect(). Examples of supported technology devices include a
voice device (dxxxB1C1) and an IP device (ipmB1C1). See Section 1.3, “Understanding How
Conferences are Formed”, on page 12 for details on supported technology devices. See the
Dialogic® Device Management API Library Reference for details on device management
functions.

Note: Depending on your use case, you can choose to issue dev_Connect() either before or
after performing the cnf_AddParty() operation in Step 13. If you issue
dev_Connect() after adding a party, you must wait for this function to successfully
complete before streaming can take place.

13. Using cnf_AddParty(), add a party to the conference created in step 7. This function takes the
party device handle returned by cnf_OpenParty() as an argument. The party created
consumes a party resource.

14. Add more parties to the conference as needed. There is a limit to the number of parties that can
be added to a conference (the count of resources was obtained in step 3). However, if the limit
is reached, you can add parties using the conference bridging feature. For more information on
bridging, see Section 5.4, “Conference Bridging”, on page 24.

15. Terminate your application in an orderly fashion. For example, disable events, close all
devices, and so on. For more information, see Section 5.5, “Terminating an Application”, on
page 25.

Resource Limitations on Windows Operating Systems

When a license has voice, RTP, and conferencing devices, there are cases where not all of the
number of conference parties as mentioned in the license will be opened due to an internal
limitation of 2048 transmit time slots on Windows. This is because the Dialogic Windows stack has
an internal limitation on the maximum number of time slots it can allocate system wide, currently
2048 time slots. This limitation of 2048 is only on Windows operating systems due to memory
constraints.

The Dialogic stack allocates the transmit time slots for voice and RTP devices when the devices are
created during board download, while the transmit time slots for the audio conference party is
allocated when a party is added to a conference. Each device requires a different number of time

24 Dialogic® Conferencing API Programming Guide and Library Reference

Application Development Guidelines

slots, hence Dialogic stack may not be able to open the exact number of devices mentioned in the
license if the time slot usage exceeds the 2048 time slot limit.

Consider the following examples provided herein. Note that each voice device and each RTP
requires one transmit time slot each, while each conference party requires two transmit time slots
internally.

License of 520r520v0e520c0s0f0i0m_host.lic namely 520 G.711, 520 Voice and 520 Conference
Parties

At board download, all voice and RTP channels together will consume 1040 transmit time slots as
520 voice devices will require 520 transmit time slots and 520 RTP devices will require 520
transmit time slots. Thus, 2048 minus 520 twice will leave 1008 transmit time slots for conference.
As each conference party requires two transmit time slots per party, the Dialogic Stack will allow
only 504 parties (1008/2) and the addition of 505th party will fail. Even when the license allows up
to 520 conference parties, the combination of voice, RTP and conference party devices limits the
number of parties to 504.

License of 510r510v0e510c0s0f0i0m_host.lic namely 510 G.711, 510 Voice and 510 Conference
Parties

At board download, all voice and RTP channels together will consume 1020 transmit time slots as
510 voice devices will require 510 transmit time slots and 510 RTP devices will require 510
transmit time slots. Thus, 2048 minus 510 twice will leave 1028 transmit time slots for conference.
As each conference party requires two transmit time slots per party, the Dialogic Stack will allow
514 parties (1028/2). In this scenario, the maximum number of conference parties specified in the
license (510 parties) can be achieved.

5.4 Conference Bridging

If a conference expands beyond the number of parties permitted by the Dialogic® HMP Software
license in use and, if applicable, the media load in use on the board, you can create a second
conference to support additional conferees. The two conferences are connected via a conference
bridge. Conference bridging allows all parties in two or more conferences to speak with and/or
listen to one another.

The following guidelines for creating a conference bridge assume that you have already created
two conferences and added the desired number of parties for each conference using the instructions
in Section 5.3, “Creating a Conference”, on page 22.

• Dedicate a party (party1) in conference A to serve as the bridge to conference B. Likewise,
dedicate a party (party2) in conference B to serve as the bridge to conference A.

• Connect party1 in conference A to party2 in conference B using dev_Connect(), a function in
the Dialogic® Device Management API library. See the Dialogic® Device Management API
Library Reference for details on device management functions.

The following rules apply to conference bridging:

• Each bridge that is created consumes two licensed party resources, one from each of the
conferences involved in the bridge.

Dialogic® Conferencing API Programming Guide and Library Reference 25

Application Development Guidelines

• Even though two (or more) conferences can be bridged together, the attributes and settings of
each conference remain unchanged. The application is responsible for managing each
conference and conference related events separately.

• The coach/pupil feature does not span conference bridges. Coach and pupil must be in the
same conference.

5.5 Terminating an Application

Party resources and conference resources are not released when an application terminates. The
conferencing software is designed in this way to allow conferences to stay active when a process
exits. Therefore, you are responsible for terminating the application properly. Similarly, if an error
condition abnormally terminates the application, individual conferences will not be closed nor will
individual channels be closed. In this case, design the application to recover and manage the
existing conferences or to shut down devices in an orderly fashion.

When your process completes, devices should be shut down in an orderly fashion. Tasks that are
performed to terminate an application generally include:

• disabling events by calling cnf_DisableEvents()

• closing all devices using the appropriate function such as cnf_CloseParty(),
cnf_CloseConference(), cnf_Close(), dx_close(), and so on

• breaking the connection between the party device and other supported device using
dev_Disconnect()

Note: Standard Runtime Library event management functions (such as sr_dishdlr(), which disables an
event handler) must be called before closing the device that is sending the handler event
notifications. See Chapter 3, “Event Handling” for more information about handling events.

5.6 Data Structure Considerations

Take note of the following consideration when working with data structures:

• Each data structure in the conferencing library has a version number field. This version
number is used to ensure that an application is binary compatible with future changes to this
data structure. This field is currently reserved for future use. Use the version number as
specified in the header file, cnflib.h, and as documented in the Dialogic® Conferencing API
Library Reference.

26 Dialogic® Conferencing API Programming Guide and Library Reference

Application Development Guidelines

5.7 Multiprocessing Considerations

Having multiple processes acting on the same board is undesirable. It is recommended to use a
single process per board, or a single process for all boards, rather than more than one process acting
on the same board. Consider the scenario where there are multiple boards in the system and each
board is being controlled by a different process.

The following considerations apply when multiple processes control the same board:

• You must provide your own synchronization to manage resources in each process.

• If process A creates a conference and process B wants to use that conference, process A must
pass the name of the conference to process B.

• If process A deletes a conference and process B has a handle to that conference, then process B
can no longer use that conference. Process A must notify process B of its action.

5.8 Multithreading Considerations

The following considerations apply to multithreading:

• The conferencing library supports multithreading. You can manage multiple conferences or
multiple boards within the same thread; however, it is not recommended that you manage the
same conference or the same board across multiple threads.

• The resource counts returned by cnf_GetDeviceCount() are a snapshot in time. If another
thread is adding/deleting a party or creating/deleting a conference, the counts will change and
the thread will no longer have the most current count. There is a gap between the time you
issue this function and when you actually use the resources. Be sure that threads use
synchronization when making decisions based on the counts returned by
cnf_GetDeviceCount().

• While the API functions allow for concurrent use of party, conference and board handles, you
must be aware of “logical” concurrency issues, such as maintaining the count of resources.

The cnf_GetDeviceCount() function returns a snapshot of available parties and maximum
parties that can be added to a conference. Because it is a snapshot of the state of the firmware
at any given time, the values returned are only valid until other parties and conferences are
added or removed.

In a multithreaded application, you should maintain local counts that are obtained when the
application initializes (through cnf_GetDeviceCount()) and protect those counts with
mutexes as needed; for example, if two or more threads in the application need to make
decisions based on the number of parties and conferences available at any given time. By
doing so, race conditions can be avoided; for example, if a thread thinks one more party
resource is available while another thread consumes it.

5.9 Volume Control

A party in a conference may wish to change the volume level of the received signal. This is
accomplished using the volume control feature.

Dialogic® Conferencing API Programming Guide and Library Reference 27

Application Development Guidelines

The cnf_SetDTMFControl() function allows the application to define the DTMF digits that cause
the volume level to be adjusted up, down, or back to the default. This function points to the
CNF_DTMF_CONTROL_INFO structure which specifies whether volume control is enabled or
not and contains details on the digits used for volume control. Volume control is enabled on a board
basis.

The cnf_GetDTMFControl() function returns information on the DTMF digits used to control
the volume.

The default volume or origin is 0 dB. Volume is incremented or decremented by 2 dB at a time. The
maximum value for the volume is 18 dB and the minimum value is -18 dB.

5.10 Active Talker

An active talker refers to a party in a conference who is providing “non-silence” energy. Active
talkers are determined by the loudness or strength of their “non-silence” energy. The active talker
feature sums the three most active talkers in a conference, so that the conversation doesn’t get
drowned out when too many people talk at once. The active talker feature also provides data on
active talkers through the cnf_GetActiveTalkerList() function.

The active talker feature is enabled on a board basis. To turn on the active talker feature, use
cnf_SetAttributes() with the ECNF_BRD_ATTR_ACTIVE_TALKER enumeration enabled. To
retrieve a list of active talkers, use cnf_GetActiveTalkerList().

Note: The active talker feature does not span conference bridges; that is, there is no active talker summing
across conference bridges and active talkers are reported separately for each conference.

The cnf_GetActiveTalkerList() function provides a snapshot of the active talkers at a given
moment. By default, the snapshot is updated every second. To change this value and specify how
frequently the active talker status is updated, use the cnf_SetAttributes() function with the
ECNF_BRD_ATTR_NOTIFY_INTERVAL enumeration and specify a value in 10 msec units. If a
low value is used, it can affect system performance due to the more frequent updating of the status
(which results in a high quantity of internal notification messages). If a high value is used, it will
result in less frequent updating on active talkers, but the non-silence energy by a conferee may not
be reported if it occurs between notification updates. For example, if the notification interval is set
to 2 seconds and a conferee only says “yes” or “no” quickly in between notifications, that
vocalization by the conferee will not be reported.

5.11 Privilege Talker

Using the privilege talker feature, the application can explicitly delegate which conference
participants are always included in the conference summation output process.

Without the privilege talker feature, Dialogic® HMP Software determines the conference parties
included in each summation cycle based on their speech level, resulting in the “loudest” active
talkers for a given sample cycle being selected for conference summation. Now, when the Privilege
Party attribute is assigned to a conference party, that party’s input, providing its speech level is

28 Dialogic® Conferencing API Programming Guide and Library Reference

Application Development Guidelines

greater than zero, is always included in the output summation process along with the loudest
remaining Normal/Pupil parties within the active talker limit defined for the conference.

5.11.1 Implementation

To use the privilege talker feature, enable the ECNF_PARTY_ATTR_PRIVILEGE attribute using
cnf_SetAttributes(). This attribute is defined in the ECNF_PARTY_ATTR enumeration.

When the ECNF_PARTY_ATTR_PRIVILEGE is enabled for a conference participant, that party is
summed into the conference output as long as its speech level is greater than zero, the loudest
remaining “Normal / Pupil” parties are within the maximum active talker limit defined for the
conference. For example, if the active talker limit is six and there are three designated privilege
parties, then the conference output would consist of the summation of three privilege parties and
three of the loudest Normal/Pupil parties.

When the ECNF_PARTY_ATTR_PRIVILEGE is disabled for a conference participant, that party
no longer has precedence in the conference summation, and is not included in the conference’s
summed output unless his speech level meets the criteria for inclusion as one of loudest talkers.

To set the maximum number of active talkers, use cnf_SetAttributes() and the
ECNF_CONF_ATTR_MAX_ACTIVE_TALKERS attribute. This attribute is defined in the
ECNF_CONF_ATTR enumeration.

Note: Do not set ECNF_CONF_ATTR_MAX_ACTIVE_TALKERS to less than the current privilege
party count for the conference; otherwise, the function returns an error.

You can return the privilege talker attributes using cnf_GetAttributes().

You can return a list of privilege talkers on a specified conference device using
cnf_GetPrivilegeTalkerList().

5.11.2 Conference Party Types

Normal, Coach, Broadcast, and Pupil are “types” that can be assigned to a conference party. A
party can only be assigned one type at the same time. Normal is the default type when adding or
creating a party to the conference. The Privilege Party attribute can be enabled or disabled for any
of the four types at any time; however, the summation behavior is dependent on the following:

Normal
When a conference party is type Normal, then the behavior of the system is as described
above.

Coach
When a conference party is type Coach, enabling or disabling the Privilege Party attribute will
not affect how the Coach party is summed by the system. That is, the Coach will only be heard
by parties of type Pupil and is never summed into the conference output. Its input is post
processed and summed into the conference output for Pupils only.

Dialogic® Conferencing API Programming Guide and Library Reference 29

Application Development Guidelines

Broadcast
When a conference party is type Broadcast, enabling or disabling the Privilege Party attribute
will not affect how the Broadcast party is summed by the system. In this case, only the
Broadcast party is heard by all parties.

Pupil
When a conference party is type Pupil, enabling or disabling the Privilege Party attribute will
result in Normal party behavior as described above. When the Privilege Party attribute is
enabled, the Pupil gets summed. When disabled, the Pupil gets summed in accordance with the
Active Talker Detection algorithm selection process.

5.12 Monitor Mode

A conferencing application is able to form audio connections from multiple HMP devices listening
half duplex to a single conference party and from multiple conference parties listening half duplex
to a single device transmitting on the TDM bus.

Without monitor mode, there is no way to create multiple connections from or to one conference
party with the conferencing API. This limited the number of HMP devices “listening” to a
conference to the number of conference resources in a license.

With this feature, an application can listen to conference output by retrieving a conference party
transmit TDM bus time slot. Multiple HMP devices can then listen to conference output in half-
duplex mode by using their technology-specific TDM bus listen APIs (e.g., ipm_listen()). This
feature also adds the ability for a conference party to listen in half-duplex mode to any TDM time
slot from traditional devices.

5.12.1 Implementation

To implement this feature, use cnf_Listen(), cnf_UnListen() and cnf_GetXmitSlot(). The data
structure, SC_TSINFO, is used with the functions to provide time slot information.

Note: It is recommended that the two types of connection methods, dev_Connect()/dev_Disconnect()
and cnf_listen()/cnf_unlisten(), not be used simultaneously. If they are, then the application must
take extreme caution to insure that the connections are properly managed.

5.12.2 Use Cases

This section provides two possible monitor mode use cases for reference.

Multiple IPM devices listen to a single conference party

In this use case, multiple externally facing devices, such as IPM devices, make half-duplex
listening connections to a conference party. Here, the summed media from the conference can be

30 Dialogic® Conferencing API Programming Guide and Library Reference

Application Development Guidelines

broadcast to one or more external connections by using only one conference party. In the
illustration below, the arrows designate the direction of the data.

Multiple conference parties listen to a single IPM device

In this use case, multiple conference parties in different conferences make half-duplex connections
to a single device such as an IPM device. Here, the single inbound media stream from the external
connection can be summed into two different conferences.

Dialogic® Conferencing API Programming Guide and Library Reference 31

Application Development Guidelines

5.13 Mute Audio

The application has the ability to mute and un-mute parties of a multimedia conference so that the
muted parties will not be heard by other members of the conference.

This feature provides a programmatic interface allowing the application to mute and un-mute the
audio stream received from a conference party. This feature applies when using the MCX board
device only.

Note: This feature does not support a CNF board device at this time.

5.13.1 Implementation

Use cnf_SetAttributes() and the party attribute, ECNF_PARTY_ATTR_MUTE, to mute or un-
mute a conference party.

The behavior of the ECNF_PARTY_ATTR_MUTE party attribute is as follows:

• When the party attribute is set to ECNF_ATTR_STATE_ENABLED for party X, party X is no
longer heard by conference participants.

• When a muted party is un-muted by setting the party attribute for that party to
ECNF_ATTR_STATE_DISABLED, that party is once again eligible to be summed and heard
by other participants of the conference. However:

– If the un-muted party is a coach, the coach is capable of being heard immediately by the
pupil.

– If the un-muted party is a pupil, the pupil is eligible to be summed and heard by other
conference participants. The un-muted party needs to be qualified once again by the active
talker algorithm as one of ‘n’ active talkers to be summed.

– If the un-muted party is a Privileged Party, that party, when speaking, is capable of being
heard immediately by other conference participants.

All other un-muted full-duplex conference parties are eligible to be summed and heard by
other conference participants.

5.14 HD Voice Conferencing (Wideband Audio
Conferencing)

The conferencing library supports high definition (HD) voice conferencing, also called wideband
audio conferencing, using G.722 and G.722.2 (AMR-WB) audio codecs. The conference can
consist of a combination of wideband and narrowband parties. In order to achieve wideband
fidelity audio, you must use wideband audio codecs for HD voice conferencing.

Conferences can include both wideband and narrowband parties. Wideband parties will hear other
wideband conferencing parties with high fidelity audio quality while narrowband parties will be
heard at reduced narrowband quality. Narrowband parties will hear all parties at the reduced
narrowband quality.

32 Dialogic® Conferencing API Programming Guide and Library Reference

Application Development Guidelines

Wideband conferencing is illustrated in the following figure where a multi-party conference
consists of party A using G.722, party B using G.722.2, and party C using G.729a coding. The
figure shows the flow of how the output of the conference is being recorded for training and review
purposes at a later time. Conferences can also play stored wideband audio content into the
conference (for example, background music).

5.14.1 Implementation

An application uses the conferencing library with an MCX resource device to implement the HD
voice conferencing feature. No conferencing application changes are needed to use this feature
beyond using the MCX resource device with wideband device management connection methods.

The following conferencing features are supported:

• AGC (Automatic Gain Control)

• ATD (Active Talker Detection)

• Volume control

• Tone Detection

• Tone Clamping / Tone Distribution

• Coach/pupil

• Conference bridging

• Tariff tone

Dialogic® Conferencing API Programming Guide and Library Reference 33

Application Development Guidelines

5.14.2 Licensing Requirements

Wideband conferencing requires the HD Voice Conferencing license as well as HD audio coder
licenses (G.722 and G.722.2) for wideband parties in the conference. If you want to use video in an
HD conference, you would substitute the Video Conferencing license for the HD Voice
Conferencing license.

The following table shows the set of conferencing licenses (along with the resource required) and
capabilities that are currently supported.

5.14.3 Conferencing Licenses Exceeded Events

The ECNF_CONF_EVT_EXCEEDED_CONF_LICENSE event notifies the host when
conferencing licenses have been exceeded. To enable or disable this event, use
cnf_EnableEvents() and cnf_DisableEvents().

Note: The ECNF_CONF_EVT_EXCEEDED_CONF_LICENSE event is valid for MCX devices only.

The CNFEV_EXCEEDED_CONF_LICENSE notification event notifies the application when the
maximum Conference licenses have been exceeded. To enable this event, use
cnf_EnableEvents(). When using wideband voice conferencing, the parties can be added to a
conference without initially consuming a Conferencing license. This event notifies the application
if Conferencing licenses are exhausted as it starts the media on the parties in the conference. The
daata type is CNF_EXCEEDED_CONF_LICENSE_EVENT_INFO.

License (and Resource) Audio NB Audio WB Video

Conferencing (CNF) Yes No No

HD Voice Conferencing (MCX) Yes Yes No

Video Conferencing (MCX) Yes Yes Yes

34 Dialogic® Conferencing API Programming Guide and Library Reference

Application Development Guidelines

Dialogic® Conferencing API Programming Guide and Library Reference 35

66.Building Applications

This chapter provides information on building applications using the Dialogic® Conferencing
(CNF) API library. The following topics are discussed:

• Compiling and Linking . 35

• Variables for Compiling and Linking . 37

6.1 Compiling and Linking

The following topics discuss compiling and linking requirements:

• Include Files

• Required Libraries

6.1.1 Include Files

Function prototypes and symbolic defines are determined in include files, also known as header
files. Applications that use Dialogic® Conferencing (CNF) API library functions must contain
statements for include files in this form, where <filename> represents the include file name:

#include <filename.h>

The following header files must be included in the application code in the order shown prior to
calling the Dialogic® Conferencing (CNF) API library functions:

srllib.h
Contains function prototypes and equates for the Dialogic® Standard Runtime Library.

Note: srllib.h must be included in code before all other Dialogic® header files.

cnflib.h
The primary header file for the Dialogic® Conferencing (CNF) API library. Contains function
prototypes and symbolic defines.

cnferrs.h
Contains equates for conferencing error codes.

cnfevts.h
Contains equates for conferencing event codes.

devmgmt.h
Contains function prototypes and symbolic defines for the Dialogic® Device Management API
library.

36 Dialogic® Conferencing API Programming Guide and Library Reference

Building Applications

If you use other library functions such as voice or IP media, you will have to include the header
files for that library:

dxxxlib.h
Contains function prototypes and symbolic defines for the Dialogic® Voice API library.

dtilib.h
Contains function prototypes and symbolic defines for the Dialogic® Digital Network
Interface API library.

gclib.h
The primary header file for the Dialogic® Global Call API library; contains function
prototypes and symbolic defines for this library.

ipmerror.h
Contains variables for Dialogic® IP Media Library API error codes.

ipmlib.h
Contains function prototypes and symbolic defines for the Dialogic® IP Media Library API.

6.1.2 Required Libraries

Windows®

In Windows®, you must link the following library files when compiling your conferencing
application:

libsrlmt.lib
Dialogic® Standard Runtime Library API file. Required in all applications.

libdxxmt.lib
Dialogic® Device Management API library file. Required only if the application uses
Dialogic® Voice API library functions directly; for example, dx_open().

libdtimt.lib
Dialogic® Digital Network Interface API library file. Required only if the application uses
Dialogic® Digital Network Interface API library functions directly; for example, dt_open().

libgc.lib
the primary Dialogic® Global Call APIlibrary file. Required only if the application uses
Dialogic® Global Call API library functions directly; for example, gc_GetResourceH().

libipm.lib
the primary Dialogic® IP Media Library API file. Required only if the application uses
Dialogic® IP Media Library API functions directly; for example, ipm_Open().

libdevmgmt.lib
Dialogic® Device Management API library file. Required in a conferencing application.

libcnf.lib
 Dialogic® Conferencing (CNF) API library file. Required in a conferencing application.

Dialogic® Conferencing API Programming Guide and Library Reference 37

Building Applications

Linux

In Linux, you must link the following library files in the order shown when compiling your
conferencing application:

libsrl.so
Dialogic® Standard Runtime Library API file. Required in all applications. Specify -lsrl in
makefile.

libdxxx.so
the primary Dialogic® Voice API library file. Required only if the application uses Dialogic®
Voice API library functions directly; for example, dx_open(). Specify -ldxxx in makefile.

libdti.so
Dialogic® Digital Network Interface API library file. Required only if the application uses
Dialogic® Digital Network Interface API library functions directly; for example, dt_open().
Specify -ldti in makefile.

libgc.so
the primary Dialogic® Global Call APIlibrary file. Required only if the application uses
Dialogic® Global Call API library functions directly; for example, gc_GetResourceH().
Specify -lgc in makefile.

libipm.so
the primary Dialogic® IP Media Library API file. Required only if the application uses
Dialogic® IP Media Library API functions directly; for example, ipm_Open(). Specify -
lipm in makefile.

libdevmgmt.so
Dialogic® Device Management API library file. Required in a conferencing application.
Specify -ldevmgmt in makefile.

libcnf.so
Dialogic® Conferencing (CNF) API library file. Required in a conferencing application.
Specify -lcnf in makefile.

By default, the library files are located in the directory given by the INTEL_DIALOGIC_LIB
environment variable.

Note: When compiling an application, you must list Dialogic libraries before all other libraries such as
operating system libraries.

6.2 Variables for Compiling and Linking

The following variables provide a standardized way of referencing the directories that contain
header files and shared objects:

INTEL_DIALOGIC_INC
Variable that points to the directory where header files are stored.

INTEL_DIALOGIC_LIB
Variable that points to the directory where shared library files are stored.

38 Dialogic® Conferencing API Programming Guide and Library Reference

Building Applications

These variables are automatically set at login and should be used in compiling and linking
commands. The following is an example of a compiling and linking command that uses these
variables:

cc -I${INTEL_DIALOGIC_INC} -o myapp myapp.c -L${INTEL_DIALOGIC_LIB} -lcnf -srl

Note: It is strongly recommended that you use these variables when compiling and linking applications.
The name of the variables will remain constant, but the values may change in future releases.

Dialogic® Conferencing API Programming Guide and Library Reference 39

77.Function Summary by Category

This chapter describes the categories into which the Dialogic® Conferencing (CNF) API library
functions can be logically grouped. The topics in this chapter are:

• Device Management Functions . 39

• Conference Management Functions . 40

• Configuration Functions . 40

• Auxiliary Functions . 40

• Multimedia Conferencing Functions . 41

• TDM Routing Functions . 41

• Error Processing Function . 41

7.1 Device Management Functions

Device management functions allow you to open and close devices. There are three types of
devices: board device, conference device, and party device. The board device is the parent device
for both the conference and party devices. Thus, you must open a board device before you can open
a conference device or a party device.

cnf_Close()
closes a board device

cnf_CloseConference()
closes a conference device

cnf_CloseParty()
closes a party device

cnf_Open()
opens a board device

cnf_OpenConference()
opens a conference device

cnf_OpenEx()
opens a virtual board device in synchronous or asynchronous mode

cnf_OpenParty()
opens a party device

cnf_ResetDevices()
 resets all open devices that were improperly closed

40 Dialogic® Conferencing API Programming Guide and Library Reference

Function Summary by Category

7.2 Conference Management Functions

Conference management functions allow you add and remove parties to a conference.

cnf_AddParty()
adds one or more parties to a conference

cnf_RemoveParty()
removes one or more parties from a conference

7.3 Configuration Functions

Configuration functions allow you to alter, examine, and control the configuration of an open
device.

cnf_DisableEvents()
disables one or more events

cnf_EnableEvents()
enables one or more events

cnf_GetAttributes()
gets one or more device attributes

cnf_GetDTMFControl()
gets DTMF digits control information

cnf_SetAttributes()
sets one or more device attributes

cnf_SetDTMFControl()
sets DTMF digits control information

7.4 Auxiliary Functions

Auxiliary functions provide supplementary functionality to help you manage conferences and
resources:

cnf_GetActiveTalkerList()
gets a list of active talkers on a board or in a conference

cnf_GetDeviceCount()
gets conference and party count information

cnf_GetPartyList()
gets a list of added parties in a conference

cnf_GetPrivilegeTalkerList()
gets a list of privilege talkers in a conference

Dialogic® Conferencing API Programming Guide and Library Reference 41

Function Summary by Category

7.5 Multimedia Conferencing Functions

Multimedia conferencing functions manage the multimedia conferencing features:

cnf_GetVideoLayout()
gets the current video layout

cnf_GetVisiblePartyList()
gets the visible party list

cnf_SetVideoLayout()
sets the video layout

cnf_SetVisiblePartyList()
sets the visible party list

7.6 TDM Routing Functions

TDM routing functions are used in TDM bus configurations.

cnf_GetXmitSlot()
gets the TDM bus slot number of a party transmit channel

cnf_Listen()
connects a party receive channel to a TDM bus time slot

cnf_UnListen()
disconnects a party receive channel from the TDM bus

7.7 Error Processing Function

The error processing function provides error information:

cnf_GetErrorInfo()
gets error information for a failed function

42 Dialogic® Conferencing API Programming Guide and Library Reference

Function Summary by Category

Dialogic® Conferencing API Programming Guide and Library Reference 43

88.Function Information

This chapter contains a detailed description of each Dialogic® Conferencing (CNF) API function,
presented in alphabetical order. A general description of the function syntax is given before the
detailed function information.

All function prototypes are in the cnflib.h header file.

8.1 Function Syntax Conventions

The conferencing functions typically use the following format:

datatype cnf_Function (deviceHandle, parameter1, parameter2, ... parametern)

where:

datatype
refers to the data type; for example, CNF_RETURN and SRL_DEVICE_HANDLE (see
cnflib.h and srllib.h for a definition of data types)

cnf_Function
represents the name of the function

deviceHandle
refers to an input field representing the type of device handle (board, conference, or party)

parameter1, parameter2, ... parametern
represent input or output fields

44 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_AddParty() — add one or more parties to a conference

cnf_AddParty()

add one or more parties to a conference

Description

The cnf_AddParty() function adds one or more parties to a conference that has already been
created. The CNF_PARTY_INFO structure contains a list of party devices to be added.

Parties must be connected to a voice device (dx_) or other supported device (such as ip_), through
the dev_Connect() function, before or after being added to a conference in order to have the party
actively participate in the conference. See the Dialogic® Device Management API Library
Reference for more information on the dev_Connect() function.

Termination Events

CNFEV_ADD_PARTY
indicates successful completion of the function; that is, a party was added to a conference

Data Type: CNF_PARTY_INFO

CNFEV_ADD_PARTY_FAIL
indicates that the function failed

Data Type: CNF_PARTY_INFO

Cautions

Adding multiple parties to a conference is supported only when using an mcxBx device. If you are
using a cnfBx device, this function will fail if more than one party is specified.

Name: CNF_RETURN cnf_AddParty (a_CnfHandle, a_pPtyInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

CPCNF_PARTY_INFO a_pPtyInfo • pointer to party information structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Conference Management

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pPtyInfo points to a party information structure, CNF_PARTY_INFO, which
contains a list of party devices to be added.

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 45

add one or more parties to a conference — cnf_AddParty()

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_RemoveParty()

• cnf_OpenParty()

• cnf_CloseParty()

• cnf_CloseConference()

46 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_Close() — close a board device

cnf_Close()

close a board device

Description

The cnf_Close() function closes a virtual board device that was previously opened using
cnf_Open(). This function does not affect any subdevices that were opened using this virtual
board device. All conference and party devices opened using this virtual board device will still be
valid after the virtual board device has been closed.

Cautions

• Once a device is closed, a process can no longer act on the given device via the device handle.

• The only process affected by cnf_Close() is the process that called the function.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

Name: CNF_RETURN cnf_Close (a_BrdHandle, a_pCloseInfo)

Inputs: SRL_DEVICE_HANDLE a_BrdHandle • SRL handle to the virtual board device

CPCNF_CLOSE_INFO a_pCloseInfo • reserved for future use

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management

Mode: synchronous

Parameter Description

a_BrdHandle specifies an SRL handle for a virtual board device obtained from a
previous open

a_pCloseInfo reserved for future use. Set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 47

close a board device — cnf_Close()

See Also

• cnf_Open()

48 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_CloseConference() — close a conference device

cnf_CloseConference()

close a conference device

Description

The cnf_CloseConference() function closes a conference device handle that was previously
opened using cnf_OpenConference(). When the conference is closed, all added parties in this
conference are indirectly removed. It is up to you to decide whether to close the party devices or
add them to another conference.

Cautions

• Once a device is closed, a process can no longer act on the given device via the device handle.

• This function closes the conference device on all processes in which it is being used. It is up to
you to synchronize the creation and deletion of conference devices between processes.

• The a_pCloseInfo parameter is reserved for future use and must be set to NULL.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Name: CNF_RETURN cnf_CloseConference (a_CnfHandle, a_pCloseInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

CPCNF_CLOSE_CONF_INFO a_pCloseInfo • reserved for future use

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management

Mode: synchronous

Parameter Description

a_CnfHandle specifies a conference device handle obtained from a previous open

a_pCloseInfo reserved for future use. Set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 49

close a conference device — cnf_CloseConference()

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_OpenConference()

• cnf_Open()

50 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_CloseParty() — close a party device

cnf_CloseParty()

close a party device

Description

The cnf_CloseParty() function closes a party device handle that was previously opened using
cnf_OpenParty(). If the party device is currently added to a conference, this function removes it
from the conference before closing it. .

Cautions

• Once a device is closed, a process can no longer act on the given device via the device handle.

• This function closes the party device on all processes in which it is being used. It is up to you
to synchronize the creation and deletion of party devices between processes.

• The a_pCloseInfo parameter is reserved for future use and must be set to NULL.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

Name: CNF_RETURN cnf_CloseParty (a_PtyHandle, a_pCloseInfo)

Inputs: SRL_DEVICE_HANDLE a_PtyHandle • party device handle

CPCNF_CLOSE_PARTY_INFO a_pCloseInfo • reserved for future use

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management

Mode: synchronous

Parameter Description

a_PtyHandle specifies a party device handle obtained from a previous open

a_pCloseInfo reserved for future use. Set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 51

close a party device — cnf_CloseParty()

See Also

• cnf_OpenParty()

• cnf_CloseConference()

52 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_DisableEvents() — disable one or more events

cnf_DisableEvents()

disable one or more events

Description

The cnf_DisableEvents() function disables one or more notification events that were previously
enabled using cnf_EnableEvents(). The function only applies to the process in which it was
called.

Events for a board device are defined in the ECNF_BRD_EVT data type; events for a conference
device are defined in the ECNF_CONF_EVT data type. Events are disabled by default.

The ECNF_BRD_EVT data type is an enumeration that defines the following values:

ECNF_BRD_EVT_ACTIVE_TALKER
board level notification event for active talker

ECNF_BRD_EVT_CONF_CLOSED
board level notification event for conference closed

ECNF_BRD_EVT_CONF_OPENED
board level notification event for conference opened

ECNF_BRD_EVT_PARTY_ADDED
board level notification event for party added

ECNF_BRD_EVT_PARTY_REMOVED
board level notification event for party removed

Name: CNF_RETURN cnf_DisableEvents (a_DevHandle, a_pEventInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_DevHandle • device handle

CPCNF_EVENT_INFO a_pEventInfo • pointer to event information structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration

Mode: asynchronous

Parameter Description

a_DevHandle specifies a device handle on which to disable events

a_pEventInfo points to the event information structure, CNF_EVENT_INFO, which
stores information about events to be enabled or disabled.

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 53

disable one or more events — cnf_DisableEvents()

The ECNF_CONF_EVT data type is an enumeration that defines the following values:

ECNF_CONF_EVT_ACTIVE_TALKER
conference level notification event for active talker

ECNF_CONF_EVT_DTMF_DETECTION
conference level notification event for DTMF detected

ECNF_CONF_EVT_EXCEEDED_CONF_LICENSE
conference level notification event for conference licenses exceeded

ECNF_CONF_EVT_PARTY_ADDED
conference level notification event for party added

ECNF_CONF_EVT_PARTY_REMOVED
conference level notification event for party removed

Note: The ECNF_BRD_EVT_ACTIVE_TALKER event type is only supported on a CNF board device
and not supported on an MCX board device.

For more information on events, see Chapter 9, “Events”.

Termination Events

CNFEV_DISABLE_EVENT
indicates successful completion of this function; that is, one or more events were disabled

Data Type: CNF_EVENT_INFO

CNFEV_DISABLE_EVENT_FAIL
indicates that the function failed

Data Type: CNF_EVENT_INFO

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_EVENT
invalid device event

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

54 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_DisableEvents() — disable one or more events

See Also

• cnf_EnableEvents()

Dialogic® Conferencing API Programming Guide and Library Reference 55

enable one or more events — cnf_EnableEvents()

cnf_EnableEvents()

enable one or more events

Description

The cnf_EnableEvents() function enables one or more notification events in the process in which
it is called. Notification events can only be enabled on a board or on a conference; they cannot be
enabled for a party. Notification events are disabled by default.

Notification events are different from asynchronous function termination events, such as
CNFEV_OPEN, which cannot be disabled.

Events for a board device are defined in the ECNF_BRD_EVT data type; events for a conference
device are defined in the ECNF_CONF_EVT data type. Events are disabled by default.

The ECNF_BRD_EVT data type is an enumeration that defines the following values:

ECNF_BRD_EVT_ACTIVE_TALKER
board level notification event for active talker

ECNF_BRD_EVT_CONF_CLOSED
board level notification event for conference closed

ECNF_BRD_EVT_CONF_OPENED
board level notification event for conference opened

ECNF_BRD_EVT_PARTY_ADDED
board level notification event for party added

Name: CNF_RETURN cnf_EnableEvents (a_DevHandle, a_pEventInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_DevHandle • device handle

CPCNF_EVENT_INFO a_pEventInfo • pointer to event information structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration

Mode: asynchronous

Parameter Description

a_DevHandle specifies a device handle on which to enable events

a_pEventInfo points to the event information structure, CNF_EVENT_INFO, which
stores information about events to be enabled or disabled.

a_pUserInfo points to user-defined data. If none, set to NULL.

56 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_EnableEvents() — enable one or more events

ECNF_BRD_EVT_PARTY_REMOVED
board level notification event for party removed

The ECNF_CONF_EVT data type is an enumeration that defines the following values:

ECNF_CONF_EVT_ACTIVE_TALKER
conference level notification event for active talker

ECNF_CONF_EVT_DTMF_DETECTION
conference level notification event for DTMF detected

ECNF_CONF_EVT_EXCEEDED_CONF_LICENSE
conference level notification event for conference licenses exceeded

ECNF_CONF_EVT_PARTY_ADDED
conference level notification event for party added

ECNF_CONF_EVT_PARTY_REMOVED
conference level notification event for party removed

Note: The ECNF_BRD_EVT_ACTIVE_TALKER event type is only supported on a CNF board device
and not supported on an MCX board device.

For more information on events, see Chapter 9, “Events”.

Termination Events

CNFEV_ENABLE_EVENT
indicates successful completion of this function; that is, one or more events were enabled

Data Type: CNF_EVENT_INFO

CNFEV_ENABLE_EVENT_FAIL
indicates that the function failed

Data Type: CNF_EVENT_INFO

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_EVENT
invalid device event

ECNF_SUBSYSTEM
internal subsystem error

Dialogic® Conferencing API Programming Guide and Library Reference 57

enable one or more events — cnf_EnableEvents()

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_DisableEvents()

58 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetActiveTalkerList() — get a list of active talkers

cnf_GetActiveTalkerList()

get a list of active talkers

Description

The cnf_GetActiveTalker() function returns a list of active talkers on the specified device. A
device can be a board or a conference.

Although this function takes both board and conference device handles, board device handles are
only supported on a CNF board device and not on an MCX board device. Conference device
handles are supported on both MCX and CNF conference devices. For a board device, all active
talkers for that board are returned regardless of the conference to which they belong. For a
conference device, only active talkers within that specific conference are returned.

Termination Events

CNFEV_GET_ACTIVE_TALKER
indicates successful completion of this function; that is, list of active talkers returned

Data Type: CNF_ACTIVE_TALKER_INFO

CNFEV_GET_ACTIVE_TALKER_FAIL
indicates that the function failed

Data Type: CNF_ACTIVE_TALKER_INFO

Cautions

None.

Name: CNF_RETURN cnf_GetActiveTalkerList (a_DevHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_DevHandle • device handle

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Auxiliary

Mode: asynchronous

Parameter Description

a_DevHandle specifies the device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 59

get a list of active talkers — cnf_GetActiveTalkerList()

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

None.

60 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetAttributes() — get one or more device attributes

cnf_GetAttributes()

get one or more device attributes

Description

The cnf_GetAttributes() function gets the values of one or more device attributes. A device can
be a board, a conference, or a party. The values for the attributes are returned in a structure
provided in the CNFEV_GET_ATTRIBUTE event.

Attributes for each type of device are defined in the ECNF_BRD_ATTR, ECNF_CONF_ATTR,
and ECNF_PARTY_ATTR enumerations.

The ECNF_BRD_ATTR data type is an enumeration that defines the following values:

ECNF_BRD_ATTR_ACTIVE_TALKER
enables or disables board level active talker.

ECNF_BRD_ATTR_NOTIFY_INTERVAL
changes the default firmware interval for active talker notification events on the board. The
value must be passed in 10 msec units. The default setting is 100 (1 second).

ECNF_BRD_ATTR_TONE_CLAMPING
enables or disables board level tone clamping to reduce the level of DTMF tones heard on a
per party basis on the board.

Name: CNF_RETURN cnf_GetAttributes (a_DevHandle, a_pAttrInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_DevHandle • device on which to get attributes

CPCNF_ATTR_INFO a_pAttrInfo • pointer to attribute information structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration

Mode: asynchronous

Parameter Description

a_DevHandle specifies the device handle on which to get attributes

a_pAttrInfo points to the attribute information structure, CNF_ATTR_INFO. This
structure in turn points to the CNF_ATTR structure, which specifies an
attribute and its value.

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 61

get one or more device attributes — cnf_GetAttributes()

The ECNF_CONF_ATTR data type is an enumeration that defines the following values:

ECNF_CONF_ATTR_DTMF_MASK
specifies a mask for the DTMF digits used for volume control. The digits are defined in the
ECNF_DTMF_DIGIT enumeration. The ECNF_DTMF_DIGIT values can be ORed to form
the mask using the ECNF_DTMF_MASK_OPERATION enumeration. For a list of
ECNF_DTMF_DIGIT values, see the description for CNF_DTMF_CONTROL_INFO.

ECNF_CONF_ATTR_MAX_ACTIVE_TALKERS
sets maximum active talkers. Possible values are 2 to 10 (default).

ECNF_CONF_ATTR_NOTIFY
enables or disables conference notification tone.

ECNF_CONF_ATTR_TONE_CLAMPING
enables or disables conference level tone clamping. Overrides board level value.

The ECNF_PARTY_ATTR data type is an enumeration that defines the following values:

ECNF_PARTY_ATTR_AGC
enables or disables automatic gain control.

ECNF_PARTY_ATTR_BROADCAST
enables or disables broadcast mode. One party can speak while all other parties are muted.

ECNF_PARTY_ATTR_COACH
sets party to coach. Coach is heard by pupil only.

ECNF_PARTY_ATTR_ECHO_CANCEL
enables or disables echo cancellation. Provides 128 taps (16 msec) of echo cancellation.

ECNF_PARTY_ATTR_MUTE
mutes or un-mutes the audio stream received from a conference party.

ECNF_PARTY_ATTR_PRIVILEGE
enables or disables privilege talker. When enabled, party is always included in the conference
summation output process, providing its speech level is greater than zero.

ECNF_PARTY_ATTR_PUPIL
sets party to pupil. Pupil hears everyone including the coach.

ECNF_PARTY_ATTR_TARIFF_TONE
enables or disables tariff tone. Party receives periodic tone for duration of the call.

ECNF_PARTY_ATTR_TONE_CLAMPING
enables or disables DTMF tone clamping for the party. Overrides board and conference level
values.

Termination Events

CNFEV_GET_ATTRIBUTE
indicates successful completion of this function; that is, attribute values were returned

Data Type: CNF_ATTR_INFO

CNFEV_GET_ATTRIBUTE_FAIL
indicates that the function failed

Data Type: CNF_ATTR_INFO

62 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetAttributes() — get one or more device attributes

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_ATTR
invalid attribute

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_SetAttributes()

Dialogic® Conferencing API Programming Guide and Library Reference 63

get conference and party device count information — cnf_GetDeviceCount()

cnf_GetDeviceCount()

get conference and party device count information

Description

The cnf_GetDeviceCount() function returns the number of conference and party devices available
on the specified virtual board device. See the CNF_DEVICE_COUNT_INFO structure for more on
the type of information returned.

Termination Events

CNFEV_GET_DEVICE_COUNT
indicates successful completion of this function; that is, device count returned

Data Type: CNF_DEVICE_COUNT_INFO

CNFEV_GET_DEVICE_COUNT_FAIL
indicates that the function failed

Data Type: NULL

Cautions

None.

Name: CNF_RETURN cnf_GetDeviceCount (a_BrdHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_BrdHandle • board device handle

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Auxiliary

Mode: asynchronous

Parameter Description

a_BrdHandle specifies the virtual board device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

64 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetDeviceCount() — get conference and party device count information

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_AddParty()

• cnf_RemoveParty()

Dialogic® Conferencing API Programming Guide and Library Reference 65

get DTMF digits control information — cnf_GetDTMFControl()

cnf_GetDTMFControl()

get DTMF digits control information

Description

The cnf_GetDTMFControl() function returns information about the DTMF digits used to control
the conference behavior, such as volume level. The DTMF digit information is stored in the
CNF_DTMF_CONTROL_INFO structure.

Termination Events

CNFEV_GET_DTMF_CONTROL
indicates successful completion of this function; that is, DTMF digit information was returned

Data Type: CNF_DTMF_CONTROL_INFO

CNFEV_GET_DTMF_CONTROL_FAIL
indicates that the function failed

Data Type: NULL

Cautions

None.

Name: CNF_RETURN cnf_GetDTMFControl (a_BrdHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_BrdHandle • SRL handle to the virtual board device

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration

Mode: asynchronous

Parameter Description

a_BrdHandle specifies the SRL handle to the virtual board device obtained from a
previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

66 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetDTMFControl() — get DTMF digits control information

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_SetDTMFControl()

Dialogic® Conferencing API Programming Guide and Library Reference 67

get error information about a failed function — cnf_GetErrorInfo()

cnf_GetErrorInfo()

get error information about a failed function

Description

The cnf_GetErrorInfo() function obtains error information about a failed function and provides it
in the CNF_ERROR_INFO structure. To retrieve the information, this function must be called
immediately after the Dialogic® Conferencing (CNF) API function failed.

Cautions

• The cnf_GetErrorInfo() function can only be called in the same thread in which the routine
that had the error was called. The cnf_GetErrorInfo() function cannot be called to retrieve
error information for a function that returned error information in another thread.

• The Dialogic® Conferencing (CNF) API only keeps the error information for the last
Dialogic® Conferencing (CNF) API function call. Therefore, you should check and retrieve
the error information immediately if a Dialogic® Conferencing (CNF) API function fails.

Errors

Do not call the cnf_GetErrorInfo() function recursively if it returns CNF_ERROR to indicate
failure. A failure return generally indicates that the a_pErrorInfo parameter is NULL or invalid.

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

None.

Name: CNF_RETURN cnf_GetErrorInfo (a_pErrorInfo)

Inputs: PCNF_ERROR_INFO * a_pErrorInfo • pointer to error information structure

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Error Processing

Mode: synchronous

Parameter Description

a_pErrorInfo points to the error information structure, CNF_ERROR_INFO

68 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetPartyList() — get a list of added parties in a conference

cnf_GetPartyList()

get a list of added parties in a conference

Description

The cnf_GetPartyList() function returns a list of party devices currently added to the specified
conference.

Termination Events

CNFEV_GET_PARTY_LIST
indicates successful completion of this function; that is, list of added parties returned

Data Type: CNF_PARTY_INFO

CNFEV_GET_PARTY_LIST_FAIL
indicates that the function failed

Data Type: NULL

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

Name: CNF_RETURN cnf_GetPartyList (a_CnfHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Auxiliary

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 69

get a list of added parties in a conference — cnf_GetPartyList()

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_AddParty()

• cnf_RemoveParty()

70 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetPrivilegeTalkerList() — get privilege talker list

cnf_GetPrivilegeTalkerList()

get privilege talker list

Description

The cnf_GetPrivilegeTalkerList() function returns a list of privilege talkers on a specified
conference device.

Termination Events

CNFEV_GET_PRIVILEGE_TALKER
indicates successful completion of this function; that is, list of privilege talkers returned

Data Type: CNF_PRIVILEGE_TALKER_INFO

CNFEV_GET_PRIVILEGE_TALKER_FAIL
indicates that the function failed

Data Type: CNF_PRIVILEGE_TALKER_INFO_FAIL

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

Name: CNF_RETURN cnf_GetPrivilegeTalkerList(a_CnfHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Auxiliary

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 71

get privilege talker list — cnf_GetPrivilegeTalkerList()

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for general example
code.

See Also

None.

72 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetVideoLayout() — get video layout on a specified device

cnf_GetVideoLayout()

get video layout on a specified device

Description

The cnf_GetVideoLayout() function gets the video layout on the specified conference device.
The video layout handle will be provided in the termination event. Please refer to the Dialogic®
Media Toolkit Library Reference for more information on the layout builder functions. These
functions can be used to access the video layout information using the handle returned. Only
CUSTOM layout types are modifiable. Once received, the video layout handle can be modified
using the cnf_SetVideoLayout() function, which allows the user to configure the layout prior to
setting it on the conference device.

Termination Events

CNFEV_GET_VIDEO_LAYOUT
indicates successful completion of this function; that is, video layout returned

Data Type: CNF_VIDEO_LAYOUT_INFO

CNFEV_GET_VIDEO_LAYOUT_FAIL
indicates that the function failed

Data Type: NULL

Cautions

None.

Name: CNF_RETURN cnf_GetVideoLayout(a_CnfHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Multimedia Conferencing

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 73

get video layout on a specified device — cnf_GetVideoLayout()

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_SetVideoLayout()

74 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetVisiblePartyList() — get visible party list

cnf_GetVisiblePartyList()

get visible party list

Description

The cnf_GetVisiblePartyList() function returns the current visible party list on a specified
conference device.

Termination Events

CNFEV_GET_VISIBLE_PARTY_LIST
indicates successful completion of this function; that is, list of added parties returned

Data Type: CNF_VISIBLE_PARTY_LIST

CNFEV_GET_VISIBLE_PARTY_LIST_FAIL
indicates that the function failed

Data Type: NULL

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

Name: CNF_RETURN cnf_GetVisiblePartyList(a_CnfHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Multimedia Conferencing

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 75

get visible party list — cnf_GetVisiblePartyList()

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_SetVisiblePartyList()

76 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetXmitSlot() — get TDM bus time slot number of party transmit channel

cnf_GetXmitSlot()

get TDM bus time slot number of party transmit channel

Description

The cnf_GetXmitSlot() function returns the time division multiplexing (TDM) bus time slot
number of the conference party transmit channel. The TDM bus time slot information is contained
in an SC_TSINFO structure that includes the number of the TDM bus time slot connected to the
conference party transmit channel.

Cautions

This function fails when an invalid SC_TSINFO structure pointer or value(s) is specified. The data
structure must be initialized to one for the sc_numts field, and have memory allocated for one long
element for the sc_tsarrayp pointer field.

Errors

If the function fails with a CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error.

Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_INVALID_PARM
invalid parameter

ECNF_SUBSYSTEM
internal subsystem error

Name: int cnf_GetXmitSlot(a_PtyHandle, a_pTimeslotInfo)

Inputs: SRL_DEVICE_HANDLE a_PtyHandle • valid party device handle

SC_TSINFO * a_pTimeslotInfo • pointer to TDM bus time slot information
structure

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: TDM routing

Mode: asynchronous

Parameter Description

a_PtyHandle specifies a party device handle obtained from a previous open

a_pTimeslotInfo specifies a pointer to the SC_TSINFO structure

Dialogic® Conferencing API Programming Guide and Library Reference 77

get TDM bus time slot number of party transmit channel — cnf_GetXmitSlot()

Example

#include <stdlib.h>
#include <stdio.h>

// Dialogic headers
#include "srllib.h"
#include "cnflib.h"

#define MAX_DEVNAME100
#define SRWAITTIMEOUT 10000

long ProcessEvt();

int main(int argc, char* argv[])
{
 char cnfbdname[MAX_DEVNAME] = {"cnfB1"};
 SRL_DEVICE_HANDLE cnfbdh = -1;
 SRL_DEVICE_HANDLE cnfh = -1;
 SRL_DEVICE_HANDLE cnfptyh = -1;
 long ts;
 SC_TSINFO scts;
 int mode = SR_POLLMODE;

 /* Set SRL to run in polled (non-signal) mode */
 if(sr_setparm(SRL_DEVICE, SR_MODEID, &mode) == -1)
 {
 printf("Error: cannot set srl mode\n");
 exit(1);
 }

 cnfbdh = cnf_OpenEx(cnfbdname, NULL, NULL, EV_SYNC);
 if (cnfbdh == -1)
 {
 printf("Error during call to cnf_OpenEx\n");
 /* perform error processing */
 exit(1);
 }

 /* open conferences */
 cnfh = cnf_OpenConference(cnfbdh, NULL, NULL, NULL);
 if (cnfh == -1)
 {
 printf("Error during call to cnf_OpenConference\n");
 /* perform error processing */
 exit(1);
 }

 if(sr_waitevt(SRWAITTIMEOUT) != -1)
 {
 if (!ProcessEvt())
 {
 /* perform error processing */
 exit(1);
 }
 }
 else
 {
 printf("Error during call to sr_waitevt\n");
 /* perform error processing */
 exit(1);
 }

 cnfptyh = cnf_OpenParty(cnfbdh, NULL, NULL, NULL);
 if (cnfptyh == -1)
 {
 printf("Error during call to cnf_OpenParty\n");

78 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_GetXmitSlot() — get TDM bus time slot number of party transmit channel

 /* perform error processing */
 exit(1);
 }

 if(sr_waitevt(SRWAITTIMEOUT) != -1)
 {
 if (!ProcessEvt())
 {
 /* perform error processing */
 exit(1);
 }
 }
 else
 {
 printf("Error during call to sr_waitevt\n");
 /* perform error processing */
 exit(1);
 }

 scts.sc_numts = 1;
 scts.sc_tsarrayp = &ts;

 if (cnf_GetXmitSlot(cnfptyh, &scts))
 {
 printf("Error during call to cnf_GetXmitSlot\n");
 /* perform error processing */
 exit(1);
 }

 printf("Party %s (cnfptyh=%ld) is transmitting on %ld\n", ATDV_NAMEP(cnfptyh), cnfptyh, ts);
 return 0;
}

long ProcessEvt()
{
 long ret = 1;
 int devh;
 int evttype;
 long evtlen;
 void* datap;

 printf("ProcessEvt()\n");

 devh = sr_getevtdev();
 evttype = sr_getevttype();
 evtlen = sr_getevtlen();
 datap = sr_getevtdatap();

 switch(evttype)
 {
 case CNFEV_OPEN_CONF:
 printf("Received CNFEV_OPEN_CONF\n");
 break;

 case CNFEV_OPEN_CONF_FAIL:
 printf("Received CNFEV_OPEN_CONF_FAIL\n");
 ret = 0;
 break;

 case CNFEV_OPEN_PARTY:
 printf("Received CNFEV_OPEN_PARTY\n");
 break;

 case CNFEV_OPEN_PARTY_FAIL:
 printf("Received CNFEV_OPEN_PARTY_FAIL\n");
 ret = 0;
 break;

Dialogic® Conferencing API Programming Guide and Library Reference 79

get TDM bus time slot number of party transmit channel — cnf_GetXmitSlot()

 default:
 printf("Unhandled event: devh(%d); evttype(0x%x)", devh, evttype);
 break;
 }

 return ret;
}

See Also

• cnf_Listen()

• cnf_UnListen()

80 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_Open() — open a board device

cnf_Open()

open a board device

Description

The cnf_Open() function opens an audio only conference (CNF) board device or a multimedia
conference (MCX) board device. The naming convention of a CNF board device is "cnfBx" while
an MCX board device is "mcxBx" where x is the board number starting from 1. All subsequent
references to the opened device must be made using the handle until the device is closed.

All conference and party devices opened using a board handle will open the corresponding type of
conference or party device.

Termination Events

CNFEV_OPEN
indicates successful completion of this function; that is, a virtual board device was opened

Data Type: NULL

CNFEV_OPEN_FAIL
indicates that the function failed

Data Type: NULL

Note: If CNFEV_OPEN_FAIL is received, you must call cnf_Close() to clean up the operation.

Cautions

• Before closing CNF devices, ensure that events are disabled by calling cnf_DisableEvents();
otherwise, the firmware process will stop executing (also known as KILLTASK).

Name: SRL_DEVICE cnf_Open (a_szBrdName, a_pOpenInfo, a_pUserInfo)

Inputs: const char * a_szBrdName • pointer to board device name

CPCNF_OPEN_INFO a_pOpenInfo • reserved for future use

void * a_pUserInfo • pointer to user-defined data

Returns: board device handle if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management

Mode: asynchronous

Parameter Description

a_szBrdName points to a board device name

a_pOpenInfo reserved for future use. Set to NULL.

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 81

open a board device — cnf_Open()

• In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

• The a_pOpenInfo parameter is reserved for future use and must be set to NULL.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Possible errors for this function include:

ECNF_INVALID_NAME
invalid device name

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_Close()

82 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_Listen() — connect party receive channel to TDM bus time slot

cnf_Listen()

connect party receive channel to TDM bus time slot

Description

The cnf_Listen() function connects a party receive channel to a TDM bus time slot, using
information stored in the SC_TSINFO data structure. The function then sets up a half-duplex
connection. For a full-duplex connection, the receive channel of the other device must be connected
to the party transmit channel.

The cnf_Listen() function returns immediately before the operation is completed with
CNF_SUCCESS, providing argument validation passed, otherwise a CNF_ERROR is returned.
After the operation completes, a notification event is received and, if successful, the party receive
channel is connected to the TDM bus time slot. Although multiple party channels may listen (be
connected) to the same TDM bus time slot, the receive channel of a given party device can connect
to only one TDM bus time slot.

Termination Events

CNFEV_LISTEN
indicates successful completion of this function, at which point the party device’s receive
channel is connected to the TDM bus time slot originally specified in a_pTimeslotInfo

CNFEV_LISTEN_FAIL
indicates that the function failed

Name: int cnf_Listen(a_PtyHandle, a_pTimeslotInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_PtyHandle • valid party device handle

SC_TSINFO *a_pTimeslotInfo • pointer to TDM bus time slot information
structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: TDM routing

Mode: asynchronous

Parameter Description

a_PtyHandle specifies a party device handle obtained from a previous open

a_pTimeslotInfo specifies a pointer to the SC_TSINFO data structure

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 83

connect party receive channel to TDM bus time slot — cnf_Listen()

Cautions

• This function fails when an invalid party handle is specified or when an invalid TDM bus time
slot number is specified.

• It is recommended that the two types of connection methods,
dev_Connect()/dev_Disconnect() and cnf_listen()/cnf_unlisten(), not be used
simultaneously. If they are, then the application must take extreme caution to insure that the
connections are properly managed.

Errors

The CNF_ERROR_INFO data structure provides error information for the device handle when an
API function fails. Upon failure, call cnf_GetErrorInfo() to return error information for the
device in the CNF_ERROR_INFO structure. Error codes are returned as: ECNF_xxxxx

Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_INVALID_PARM
invalid parameter

ECNF_SUBSYSTEM
internal subsystem error

The CNF_EVENT_INFO data structure provides event information for the device handle when a
notification event is enabled or disabled. This structure is used by and enabled by
cnf_EnableEvents(). Use sr_waitevt(), sr_enbhdlr() or other SRL functions to collect an event
code, depending on the programming model in use. For more information, see the Dialogic®
Standard Runtime Library API Library Reference. Error codes are returned as: CNFEV_xxxxxx

Possible errors for this function include:

CNFEV_INVALID_DEVICE
invalid device handle

CNFEV_INVALID_PARM
invalid parameter

CNFEV_SUBSYSTEM
internal subsystem error

Example

#include <stdlib.h>
#include <stdio.h>

// Dialogic headers
#include "srllib.h"
#include "dxxxlib.h"
#include "cnflib.h"

#define MAX_DEVNAME100
#define SRWAITTIMEOUT 10000

84 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_Listen() — connect party receive channel to TDM bus time slot

long ProcessEvt();

int main(int argc, char* argv[])
{
 char cnfbdname[MAX_DEVNAME] = {"cnfB1"};
 char dxdevname[MAX_DEVNAME] = {"dxxxB1C1"};
 long devh = -1;
 SRL_DEVICE_HANDLE cnfbdh = -1;
 SRL_DEVICE_HANDLE cnfh = -1;
 SRL_DEVICE_HANDLE cnfptyh = -1;
 long ts;
 SC_TSINFO scts;
 int mode = SR_POLLMODE;

 /* Set SRL to run in polled (non-signal) mode */
 if(sr_setparm(SRL_DEVICE, SR_MODEID, &mode) == -1)
 {
 printf("Error: cannot set srl mode\n");
 exit(1);
 }

 cnfbdh = cnf_OpenEx(cnfbdname, NULL, NULL, EV_SYNC);
 if (cnfbdh == -1)
 {
 printf("Error during call to cnf_OpenEx\n");
 /* perform error processing */
 exit(1);
 }

 /* open conferences */
 cnfh = cnf_OpenConference(cnfbdh, NULL, NULL, NULL);
 if (cnfh == -1)
 {
 printf("Error during call to cnf_OpenConference\n");
 /* perform error processing */
 exit(1);
 }

 if(sr_waitevt(SRWAITTIMEOUT) != -1)
 {
 if (!ProcessEvt())
 {
 /* perform error processing */
 exit(1);
 }
 }
 else
 {
 printf("Error during call to sr_waitevt\n");
 /* perform error processing */
 exit(1);
 }

 cnfptyh = cnf_OpenParty(cnfbdh, NULL, NULL, NULL);
 if (cnfptyh == -1)
 {
 printf("Error during call to cnf_OpenParty\n");
 /* perform error processing */
 exit(1);
 }

 if(sr_waitevt(SRWAITTIMEOUT) != -1)
 {
 if (!ProcessEvt())
 {
 /* perform error processing */
 exit(1);

Dialogic® Conferencing API Programming Guide and Library Reference 85

connect party receive channel to TDM bus time slot — cnf_Listen()

 }
 }
 else
 {
 printf("Error during call to sr_waitevt\n");
 /* perform error processing */
 exit(1);
 }

 /* open a voice device */
 devh = dx_open(dxdevname, 0);
 if (devh == -1)
 {
 printf("Error during call to dx_open\n");
 /* perform error processing */
 exit(1);
 }

 scts.sc_numts = 1;
 scts.sc_tsarrayp = &ts;

 if (dx_getxmitslot(devh, &scts) == -1)
 {
 printf("Error during call to dx_getxmitslot\n");
 /* perform error processing */
 exit(1);
 }

 printf("Voice device %s (devh=%ld) is transmitting on %ld\n",
 ATDV_NAMEP(devh), devh, ts);

 if (cnf_Listen(cnfptyh, &scts, NULL) == -1)
 {
 printf("Error during call to cnf_Listen\n");
 /* perform error processing */
 exit(1);
 }

 printf("Successful call to cnf_Listen\n");

 if(sr_waitevt(SRWAITTIMEOUT) != -1)
 {
 if (!ProcessEvt())
 {
 /* perform error processing */
 exit(1);
 }
 }
 else
 {
 printf("Error during call to sr_waitevt\n");
 /* perform error processing */
 exit(1);
 }

 if (cnf_UnListen(cnfptyh, NULL) == -1)
 {
 printf("Error during call to cnf_UnListen\n");
 /* perform error processing */
 exit(1);
 }

 printf("Successful call to cnf_UnListen\n");

 if(sr_waitevt(SRWAITTIMEOUT) != -1)
 {
 if (!ProcessEvt())

86 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_Listen() — connect party receive channel to TDM bus time slot

 {
 /* perform error processing */
 exit(1);
 }
 }
 else
 {
 printf("Error during call to sr_waitevt\n");
 /* perform error processing */
 exit(1);
 }

 return 0;
}

long ProcessEvt()
{
 long ret = 1;
 int devh;
 int evttype;
 long evtlen;
 void* datap;

 printf("ProcessEvt()\n");

 devh = sr_getevtdev();
 evttype = sr_getevttype();
 evtlen = sr_getevtlen();
 datap = sr_getevtdatap();

 switch(evttype)
 {
 case CNFEV_OPEN_CONF:
 printf("Received CNFEV_OPEN_CONF\n");
 break;

 case CNFEV_OPEN_CONF_FAIL:
 printf("Received CNFEV_OPEN_CONF_FAIL\n");
 ret = 0;
 break;

 case CNFEV_OPEN_PARTY:
 printf("Received CNFEV_OPEN_PARTY\n");
 break;

 case CNFEV_OPEN_PARTY_FAIL:
 printf("Received CNFEV_OPEN_PARTY_FAIL\n");
 ret = 0;
 break;

 case CNFEV_LISTEN:
 printf("Received CNFEV_LISTEN\n");
 break;

 case CNFEV_LISTEN_FAIL:
 printf("Received CNFEV_LISTEN_FAIL\n");
 ret = 0;
 break;

 case CNFEV_UNLISTEN:
 printf("Received CNFEV_UNLISTEN\n");
 break;

 case CNFEV_UNLISTEN_FAIL:
 printf("Received CNFEV_UNLISTEN_FAIL\n");
 ret = 0;
 break;

Dialogic® Conferencing API Programming Guide and Library Reference 87

connect party receive channel to TDM bus time slot — cnf_Listen()

 default:
 printf("Unhandled event: devh(%d); evttype(0x%x)", devh, evttype);
 break;
 }

 return ret;
}

See Also

• cnf_GetXmitSlot()

• cnf_UnListen()

88 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_OpenConference() — open a conference device

cnf_OpenConference()

open a conference device

Description

The cnf_OpenConference() function opens a new conference device or an existing conference
device. The type of conference device opened is determined by the board device handle used to
open the device. If a CNF board device is used, a CNF conference device is opened; and if an MCX
board device is used, an MCX conference device is opened.

To open a new conference, set the a_szCnfName parameter to NULL and specify the virtual board
device handle on which to open the new conference. This function opens a conference device and
returns a unique SRL handle to identify the device. All subsequent references to the opened device
must be made using the handle until the device is closed.

The number of conference devices that can be opened is fixed per virtual board and you may open
all conference devices during initialization or dynamically at runtime. To determine the number of
conference devices available, use cnf_GetDeviceCount().

Name: SRL_DEVICE_HANDLE cnf_OpenConference (a_nBrdHandle, a_szCnfName, a_pOpenInfo,
a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_nBrdHandle • SRL handle to the virtual board device

const char * a_szCnfName • pointer to conference name

CPCNF_OPEN_CONF_INFO a_pOpenInfo • reserved for future use

void * a_pUserInfo • pointer to user-defined data

Returns: conference device handle if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management

Mode: asynchronous

Parameter Description

a_nBrdHandle specifies an SRL handle to the virtual board device

a_szConfName points to an existing conference device. Set to NULL to open a new
conference.

a_pOpenInfo reserved for future use. Set to NULL.

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 89

open a conference device — cnf_OpenConference()

Termination Events

CNFEV_OPEN_CONF
indicates successful completion of this function; that is, a conference device was opened

Data Type: CNF_OPEN_CONF_RESULT

CNFEV_OPEN_CONF_FAIL
indicates that the function failed

Data Type: CNF_OPEN_CONF_RESULT

Note: If CNFEV_OPEN_CONF_FAIL is received, you must call cnf_CloseConference() to clean up
the operation.

Cautions

• Before closing CNF devices, ensure that events are disabled by calling cnf_DisableEvents();
otherwise, the firmware process will stop executing (also known as KILLTASK).

• In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

• The a_pOpenInfo parameter is reserved for future use and must be set to NULL.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_INVALID_NAME
invalid device name

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_CloseConference()

90 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_OpenEx() — open the board devices in synchronous or asynchronous mode

cnf_OpenEx()

open the board devices in synchronous or asynchronous mode

Description

The cnf_OpenEx() function opens an audio only conference (CNF) board device or a multimedia
conference (MCX) board device. The naming convention of a CNF board device is "cnfBx" while
an MCX board device is "mcxBx" where x is the board number starting from 1. All subsequent
references to the opened device must be made using the handle until the device is closed.

All conference and party devices opened using a board handle will open the corresponding type of
conference or party device.

The cnf_OpenEx() function allows you to choose synchronous or asynchronous mode. If you
require operation in synchronous mode, use cnf_OpenEx() instead of cnf_Open().

If this function is called in synchronous mode, then if successful, the returned SRL handle is a valid
handle that can be used to further communicate with the board device.

If this function is called in the asynchronous mode, then if successful, the returned SRL handle will
not be valid until the CNFEV_OPEN event is reported on the SRL handle to indicate successful

Name SRL_DEVICE_HANDLE cnf_OpenEx (a_szBrdName, a_pOpenInfo, a_pUserInfo, a_usMode)

Inputs: const char * a_szBrdName • pointer to virtual board device name

CPCNF_OPEN_INFO
a_pOpenInfo

• reserved for future use

void * a_pUserInfo • pointer to user-defined data

unsigned short a_usMode • synchronous/asynchronous mode specifier

Returns: Virtual board SRL device handle if successful
CNF_ERROR on failure

Includes: cnflib.h

Category: Device Management

Mode: synchronous/asynchronous

Parameter Description

a_szBrdName points to a virtual board device name

a_pOpenInfo reserved for future use. Must be set to NULL.

 a_pUserInfo points to user-defined data. If none, set to NULL.

a_usMode specifies synchronous/asynchronous mode. Valid values are:

• EV_SYNC

• EV_ASYNC

Note: There is no default setting for mode.

Dialogic® Conferencing API Programming Guide and Library Reference 91

open the board devices in synchronous or asynchronous mode — cnf_OpenEx()

initialization of the device. If a failure occurs, the device is not opened and the
CNFEV_OPEN_FAIL event will be reported on the SRL handle returned from cnf_OpenEx().

Termination Events

The following is a list of events that can be returned as a completion to this request when used in
asynchronous mode.

CNFEV_OPEN
indicates successful completion of this function; that is, a virtual board device was opened
Data Type: NULL

CNFEV_OPEN_FAIL
indicates that the function failed
Data Type: NULL

Note: Application must call cnf_Close() to clean up if CNFEV_OPEN_FAIL is received.

Cautions

• In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

• The a_pOpenInfo parameter is reserved for future use and must be set to NULL.

• The same virtual board device can be opened in multiple processes; one process can delete a
conference running on another process on the same virtual board device. It is up to you to
synchronize access to the same virtual board device from multiple processes.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Refer to cnf_GetErrorInfo() for a list of possible error values.

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_Close()

92 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_OpenParty() — open a party device

cnf_OpenParty()

open a party device

Description

The cnf_OpenParty() function opens a new party device or an existing party device. The type of
party device opened is determined by the board device handle used to open the device. If a CNF
board device is used, a CNF party device is opened; and if an MCX board device is used, an MCX
party device is opened.

To open a new party, set the a_szPtyName parameter to NULL and specify the virtual board device
handle on which to open the new party. This function opens a party device and returns a unique
SRL handle to identify the device. All subsequent references to the opened device must be made
using the handle until the device is closed.

The number of party devices that can be opened is fixed per virtual board and you may open all
party devices during initialization or dynamically at runtime. To determine the number of party
devices available, use cnf_GetDeviceCount().

Termination Events

CNFEV_OPEN_PARTY
indicates successful completion of this function; that is, a party device was opened

Data Type: CNF_OPEN_PARTY_RESULT

Name: CNF_RETURN cnf_OpenParty (a_nBrdHandle, a_szPtyName, a_pOpenInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_nBrdHandle • SRL handle to the virtual board device

const char * a_szPtyName • pointer to party device name

CPCNF_OPEN_PARTY_INFO a_pOpenInfo • reserved for future use

void * a_pUserInfo • pointer to user-defined data

Returns: party device handle if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management

Mode: asynchronous

Parameter Description

a_nBrdHandle specifies the SRL handle to the virtual board device

a_szPtyName points to an existing party device. Set to NULL to open a new party.

a_pOpenInfo reserved for future use. Set to NULL.

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 93

open a party device — cnf_OpenParty()

CNFEV_OPEN_PARTY_FAIL
indicates that the function failed

Data Type: CNF_OPEN_PARTY_RESULT

Note: If CNFEV_OPEN_PARTY_FAIL is received, you must call cnf_CloseParty() to clean up the
operation.

Cautions

• In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

• The a_pOpenInfo parameter is reserved for future use and must be set to NULL.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_INVALID_NAME
invalid device name

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_CloseParty()

• cnf_CloseConference()

94 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_RemoveParty() — remove one or more parties from a conference

cnf_RemoveParty()

remove one or more parties from a conference

Description

The cnf_RemoveParty() function removes one or more parties from a conference. The
CNF_PARTY_INFO structure contains a list of party devices to be removed. The removed party or
parties can be added to a different conference; or they can be closed.

Termination Events

CNFEV_REMOVE_PARTY
indicates successful completion of this function; that is, a party device was added

Data Type: CNF_PARTY_INFO

CNFEV_REMOVE_PARTY_FAIL
indicates that the function failed

Data Type: CNF_PARTY_INFO

Cautions

When using a CNF conference device, only one party at a time can be removed from the
conference. This function will fail if more than one party is specified. Removing multiple parties
from a conference is supported on an MCX conference device.

Name: CNF_RETURN cnf_RemoveParty (a_CnfHandle, a_pPtyInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

CPCNF_PARTY_INFO a_pPtyInfo • pointer to party information structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Conference Management

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pPtyInfo points to a party information structure, CNF_PARTY_INFO

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 95

remove one or more parties from a conference — cnf_RemoveParty()

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_AddParty()

• cnf_CloseParty()

• cnf_CloseConference()

96 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_ResetDevices() — reset open devices that were improperly closed

cnf_ResetDevices()

reset open devices that were improperly closed

Description

The cnf_ResetDevices() function resets all devices that may have been opened and not closed by a
previous process for the specified board. This function should only be used to recover conference
and party devices that were not properly closed due to an abnormal or improper shutdown of some
process, and should not be used otherwise.

Events

If CNF_SUCCESS is returned, the user is notified of the completion status of this request via one
of the events listed below, otherwise CNF_ERROR will be returned.

CNFEV_RESET_DEVICES
Reset devices successful or no devices to recover

CNFEV_RESET_DEVICES_FAIL
Reset devices failure

Cautions

This function should only be used to recover previously opened devices that were not closed due to
an abnormal shutdown of a process. The most common use of this function is to call it at the
beginning of an application in order to make sure that the firmware conferencing resources are
properly reset. The function will return the CNFEV_RESET_DEVICES event if it successfully
recovered one or more CNF devices, or if there were no devices to recover.

Name: CNF_RETURN cnf_ResetDevices(SRL_DEVICE_HANDLE a_BrdHandle,
CPCNF_RESET_DEVICES_INFO a_pResetInfo, void *a_pUserInfo)

Inputs: a_BrdHandle • SRL handle to the virtual board device

a_pResetInfo • reserved for future use

a_pUserInfo • pointer to user defined data

Returns: CNF_SUCCESS for success
CNF_ERROR for failure

Includes: cnflib.h

Category: Device Management

Mode: Asynchronous

Parameter Description

a_BrdHandle specifies an SRL handle to the virtual board device

a_pResetInfo reserved for future use. If none, set to NULL.

a_pUserInfo points to user-defined data

Dialogic® Conferencing API Programming Guide and Library Reference 97

reset open devices that were improperly closed — cnf_ResetDevices()

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Refer to cnf_GetErrorInfo() for a list of possible error values.

Example

#include <cnflib.h>
int main(int argc, char *argv[])
{
 SRL_DEVICE_HANDLE BrdDevice; /* Virtual board device handle. */

 if ((BrdDevice = cnf_Open("brdB1", NULL, NULL)) == CNF_ERROR)
 {
 cout << "cnf_Open failed !!" << endl;
 /* process error */
 return 0;
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt TIMEOUT failure" << endl;
 /* process error */
 return 0;
 }
 else
 {
 unsigned int unEvent = sr_getevttype();
 switch(unEvent)
 {
 case CNFEV_OPEN:
 /* Open successful - May now use BrdDevice handle */
 break;

 case CNFEV_OPEN_FAIL:
 /* Open failed - Process failure and must close device */
 cnf_Close(BrdDevice, NULL);
 exit(0);
 break;

 default:
 /* Received some other event - Process this event */
 break;
 };
 }
 }

 /**
 * We could use the cnf_GetDeviceCount() function to determine if we have
 * any allocated conference or party devices that need to deallocated or
 * we could decide to always reset the board devices by default. If so,
 * we use the cnf_ResetDevices to force a deallocation of these devices.
 */

 if ((cnf_ResetDevices(BrdDevice, NULL, NULL)) == CNF_ERROR
 {
 cout << "cnf_ResetDevices failed !!" << endl;
 /* process error */
 return 0;
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {

98 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_ResetDevices() — reset open devices that were improperly closed

 cout << "sr_waitevt TIMIEOUT failure" << endl;
 /* process error */
 return 0;
 }
 else
 {
 unsigned int unEvent = sr_getevttype();
 switch(unEvent)
 {
 case CNFEV_RESET_DEVICES:
 /* Reset devices successful */
 break;

 case CNFEV_RESET_DEVICES_FAIL:
 /* Reset devices failure - lets use SRL to find reason */
 break;

 default:
 /* Received some other event - process this event */
 Break;
 };
 }
 }
}

See Also

None.

Dialogic® Conferencing API Programming Guide and Library Reference 99

set one or more device attributes — cnf_SetAttributes()

cnf_SetAttributes()

set one or more device attributes

Description

The cnf_SetAttributes() function sets the values for one or more attributes on a device. A device
can be a board, a conference, or a party.

Attributes for each type of device are defined in the ECNF_BRD_ATTR, ECNF_CONF_ATTR,
and ECNF_PARTY_ATTR enumerations.

The ECNF_BRD_ATTR data type is an enumeration that defines the following values:

ECNF_BRD_ATTR_ACTIVE_TALKER
enables or disables board level active talker.

ECNF_BRD_ATTR_NOTIFY_INTERVAL
changes the default firmware interval for active talker notification events on the board. The
value must be passed in 10 msec units. The default setting is 100 (1 second).

ECNF_BRD_ATTR_TONE_CLAMPING
enables or disables board level tone clamping to reduce the level of DTMF tones heard on a
per party basis on the board.

Name: CNF_RETURN cnf_SetAttributes (a_DevHandle, a_pAttrInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_DevHandle • device on which to get attributes

CPCNF_ATTR_INFO a_pAttrInfo • pointer to attribute information structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration

Mode: Asynchronous

Parameter Description

a_DevHandle specifies the device handle on which to set attributes

a_pAttrInfo points to the attribute information structure, CNF_ATTR_INFO. This
structure in turn points to the CNF_ATTR data structure, which specifies
an attribute and its value.

a_pUserInfo points to user-defined data. If none, set to NULL.

100 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_SetAttributes() — set one or more device attributes

The ECNF_CONF_ATTR data type is an enumeration that defines the following values:

ECNF_CONF_ATTR_DTMF_MASK
specifies a mask for the DTMF digits used for volume control. The digits are defined in the
ECNF_DTMF_DIGIT enumeration. The ECNF_DTMF_DIGIT values can be ORed to form
the mask using the ECNF_DTMF_MASK_OPERATION enumeration. For a list of
ECNF_DTMF_DIGIT values, see the description for CNF_DTMF_CONTROL_INFO.

ECNF_CONF_ATTR_MAX_ACTIVE_TALKERS
sets maximum active talkers. Possible values are 2 to 10 (default).

ECNF_CONF_ATTR_NOTIFY
enables or disables conference notification tone.

ECNF_CONF_ATTR_TONE_CLAMPING
enables or disables conference level tone clamping. Overrides board level value.

The ECNF_PARTY_ATTR data type is an enumeration that defines the following values:

ECNF_PARTY_ATTR_AGC
enables or disables automatic gain control.

ECNF_PARTY_ATTR_BROADCAST
enables or disables broadcast mode. One party can speak while all other parties are muted.

ECNF_PARTY_ATTR_COACH
sets party to coach. Coach is heard by pupil only.

ECNF_PARTY_ATTR_ECHO_CANCEL
enables or disables echo cancellation. Provides 128 taps (16 msec) of echo cancellation.

ECNF_PARTY_ATTR_MUTE
mutes or un-mutes the audio stream received from a conference party.

ECNF_PARTY_ATTR_PRIVILEGE
enables or disables privilege talker. When enabled, party is always included in the conference
summation output process, providing its speech level is greater than zero.

ECNF_PARTY_ATTR_PUPIL
sets party to pupil. Pupil hears everyone including the coach.

ECNF_PARTY_ATTR_TARIFF_TONE
enables or disables tariff tone. Party receives periodic tone for duration of the call.

ECNF_PARTY_ATTR_TONE_CLAMPING
enables or disables DTMF tone clamping for the party. Overrides board and conference level
values.

Termination Events

CNFEV_SET_ATTRIBUTE
indicates successful completion of this function; that is, attribute values were set

Data Type: CNF_ATTR_INFO

CNFEV_SET_ATTRIBUTE_FAIL
indicates that the function failed

Data Type: CNF_ATTR_INFO

Dialogic® Conferencing API Programming Guide and Library Reference 101

set one or more device attributes — cnf_SetAttributes()

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_ATTR
invalid attribute

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_GetAttributes()

102 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_SetDTMFControl() — set DTMF digits control information

cnf_SetDTMFControl()

set DTMF digits control information

Description

The cnf_SetDTMFControl() function returns information about the DTMF digits used to control
the conference behavior. The DTMF digit information is stored in the
CNF_DTMF_CONTROL_INFO structure.

Termination Events

CNFEV_SET_DTMF_CONTROL
indicates successful completion of this function; that is, DTMF digit information was set

Data Type: CNF_DTMF_CONTROL_INFO

CNFEV_SET_DTMF_CONTROL_FAIL
indicates that the function failed

Data Type: CNF_DTMF_CONTROL_INFO

Cautions

None.

Name: CNF_RETURN cnf_SetDTMFControl (a_BrdHandle, a_pDTMFInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_BrdHandle • SRL handle to the virtual board device

CPCNF_DTMF_CONTROL_INFO
a_pDTMFInfo

• pointer to volume control information structure

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration

Mode: asynchronous

Parameter Description

a_BrdHandle specifies an SRL handle to the virtual board device obtained from a
previous open

a_pDTMFInfo points to the DTMF volume control information structure,
CNF_DTMF_CONTROL_INFO

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 103

set DTMF digits control information — cnf_SetDTMFControl()

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_GetDTMFControl()

104 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_SetVideoLayout() — set the video layout on a conference device

cnf_SetVideoLayout()

set the video layout on a conference device

Description

The cnf_SetVideoLayout() function sets the specified video layout on the conference device. The
video layout handle can be the same handle as the one acquired when calling the
cnf_GetVideoLayout() function, or a new handle created using the lb_CreateLayoutTemplate()
function. If the layout handle being set is acquired using the cnf_GetVideoLayout() function, the
acquired handle must be from the same device on which the layout is to be set.

Refer to the Dialogic® Media Toolkit API Library Reference for more information about the
lb_CreateLayoutTemplate() function and other Layout Builder functions.

Termination Events

A termination event will return the unique layout handle for the conference device, but this handle
may or may not be the same handle as the one used when setting the video layout. You must use the
handle returned by the termination event for all future calls requiring a layout handle on a given
conference device.

CNFEV_SET_VIDEO_LAYOUT
indicates successful completion of this function; that is, video layset is set

Data Type: CNF_PARTY_INFO

CNFEV_SET_VIDEO_LAYOUT_FAIL
indicates that the function failed

Data Type: NULL

Name: CNF_RETURN cnf_SetVideoLayout(a_CnfHandle, a_pLayoutInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

CPCNF_VIDEO_LAYOUT_INFO
a_pLayoutInfo

• pointer to the layout information

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Multimedia Conferencing

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pLayoutInfo points to the layout information structure

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 105

set the video layout on a conference device — cnf_SetVideoLayout()

Cautions

None.

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_GetVideoLayout()

106 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_SetVisiblePartyList() — specifies visible parties in video layout region

cnf_SetVisiblePartyList()

specifies visible parties in video layout region

Description

The cnf_SetVisiblePartyList() function sets which parties are visible in the video layout regions.
Video layout regions are specified in the visible party list information structure. Region handles are
acquired using the lb_GetRegionList() function. Refer to the Dialogic® Media Toolkit API
Library Reference for more information about the lb_GetRegionList() and other Layout Builder
functions.

Termination Events

CNFEV_SET_VISABLE_PARTY_LIST
indicates successful completion of this function; that is, list of visible parties returned

Data Type: CNF_VISIBLE_PARTY_LIST

CNFEV_SET_VISIBLE_PARTY_LIST_FAIL
indicates that the function failed

Data Type: CNF_VISIBLE_PARTY_LIST

Cautions

None.

Name: CNF_RETURN cnf_SetVisiblePartyList(a_CnfHandle, a_pPartyList, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle • conference device handle

CNF_VISIBLE_PARTY_LIST a_pPartyList • pointer to visible party list

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Multimedia Conferencing

Mode: asynchronous

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pPartyList Points to the visible party list information structure

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 107

specifies visible parties in video layout region — cnf_SetVisiblePartyList()

Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 12.1, “Conferencing Example Code and Output”, on page 147 for complete example
code.

See Also

• cnf_GetVisiblePartyList()

108 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_UnListen() — discconnect party receive channel from TDM bus

cnf_UnListen()

discconnect party receive channel from TDM bus

Description

The cnf_UnListen() function disconnects the conference party receive channel from the TDM
bus. The function returns immediately before the operation completes with CNF_SUCCESS,
providing argument validation passed; otherwise CNF_ERROR is returned. After the operation
completes, a notification event is received and, if successful, the party receive channel is
disconnected from the TDM bus time slot.

Calling the cnf_Listen() function to connect to a different TDM bus time slot automatically breaks
an existing connection. Thus, when changing connections, there is no need to call the
ccnf_UnListen() function first.

Termination Events

CNFEV_UNLISTEN
indicates successful completion of this function, at which point the party device’s receive
channel is disconnected from the TDM bus

CNFEV_UNLISTEN_FAIL
indicates that the function failed

Cautions

• This function fails when an invalid party handle is specified or when an invalid TDM bus time
slot number is specified.

• It is recommended that the two types of connection methods,
dev_Connect()/dev_Disconnect() and cnf_listen()/cnf_unlisten(), not be used
simultaneously. If they are, then the application must take extreme caution to insure that the
connections are properly managed.

Name: int cnf_UnListen(a_PtyHandle, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_PtyHandle • valid party device handle

void * a_pUserInfo • pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: TDM routing

Mode: asynchronous

Parameter Description

a_PtyHandle specifies a party device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Dialogic® Conferencing API Programming Guide and Library Reference 109

discconnect party receive channel from TDM bus — cnf_UnListen()

Errors

The CNF_ERROR_INFO data structure provides error information for the device handle when an
API function fails. Upon failure, call cnf_GetErrorInfo() to return error information for the
device in the CNF_ERROR_INFO structure. Error codes are returned as: ECNF_xxxxx

Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

The CNF_EVENT_INFO data structure provides event information for the device handle when a
notification event is enabled or disabled. This structure is used by and enabled by
cnf_EnableEvents(). Use sr_waitevt(), sr_enbhdlr() or other SRL functions to collect an event
code, depending on the programming model in use. For more information, see the Dialogic®
Standard Runtime Library API Library Reference. Error codes are returned as: CNFEV_xxxxxx

Possible errors for this function include:

CNFEV_INVALID_DEVICE
invalid device handle

CNFEV_SUBSYSTEM
internal subsystem error

Example

For an example, see the example for cnf_Listen().

See Also

• cnf_GetXmitSlot()

• cnf_Listen()

110 Dialogic® Conferencing API Programming Guide and Library Reference

cnf_UnListen() — discconnect party receive channel from TDM bus

Dialogic® Conferencing API Programming Guide and Library Reference 111

99.Events

This chapter provides information about the events that may be returned by the Dialogic®
Conferencing (CNF) API software. Topics include:

• Event Types . 111

• Termination Events . 111

• Notification Events . 114

9.1 Event Types

An event indicates that a specific activity has occurred on a channel. The host library reports
channel activity to the application program in the form of events, which allows the program to
identify and respond to a specific occurrence on a channel. Events provide feedback on the
progress and completion of functions and indicate the occurrence of other channel activities.
Dialogic® Conferencing (CNF) API library events are defined in the cnfevts.h header file.

Events in the Dialogic® Conferencing (CNF) API library can be categorized as follows:

termination events
These events are returned after the completion of a function call operating in asynchronous
mode. The Dialogic® Conferencing (CNF) API library provides a pair of termination events
for a function, to indicate successful completion or failure. A termination event is only
generated in the process that called the function.

notification events
These events are requested by the application and provide information about the function call.
They are produced in response to a condition specified by the event; for example, the
CNFEV_PARTY_ADDED event is generated each time a party is added to a conference.
Notification events are enabled or disabled using cnf_EnableEvents() and
cnf_DisableEvents(), respectively. Notification events in the conferencing library are
disabled by default.

Use sr_waitevt(), sr_enbhdlr() or other SRL functions to collect an event code, depending on the
programming model in use. For more information, see the Dialogic® Standard Runtime Library
API Library Reference.

9.2 Termination Events

The following termination events, listed in alphabetical order, may be returned by the Dialogic®
Conferencing (CNF) API software.

CNFEV_ADD_PARTY
Termination event for cnf_AddParty(). Party added successfully.

112 Dialogic® Conferencing API Programming Guide and Library Reference

Events

CNFEV_ADD_PARTY_FAIL
Termination event for cnf_AddParty(). Add party operation failed.

CNFEV_DISABLE_EVENT
Termination event for cnf_DisableEvents(). Events disabled successfully.

CNFEV_DISABLE_EVENT_FAIL
Termination event for cnf_DisableEvents(). Disable events operation failed.

CNFEV_ENABLE_EVENT
Termination event for cnf_EnableEvents(). Events enabled successfully.

CNFEV_ENABLE_EVENT_FAIL
Termination event for cnf_EnableEvents(). Enable events operation failed.

CNFEV_GET_ACTIVE_TALKER
Termination event for cnf_GetActiveTalkerList(). Active talker list retrieved successfully.

CNFEV_GET_ACTIVE_TALKER_FAIL
Termination event for cnf_GetActiveTalkerList(). Get active talker list operation failed.

CNFEV_GET_ATTRIBUTE
Termination event for cnf_GetAttributes(). Attributes retrieved successfully.

CNFEV_GET_ATTRIBUTE_FAIL
Termination event for cnf_GetAttributes(). Get attributes operation failed.

CNFEV_GET_DEVICE_COUNT
Termination event for cnf_GetDeviceCount(). Device count retrieved successfully.

CNFEV_GET_DEVICE_COUNT_FAIL
Termination event for cnf_GetDeviceCount(). Get device count operation failed.

CNFEV_GET_DTMF_CONTROL
Termination event for cnf_GetDTMFControl(). DTMF digits for volume control retrieved
successfully.

CNFEV_GET_DTMF_CONTROL_FAIL
Termination event for cnf_GetDTMFControl(). Get DTMF digits for volume control
operation failed.

CNFEV_GET_PARTY_LIST
Termination event for cnf_GetPartyList(). Party list retrieved successfully.

CNFEV_GET_PARTY_LIST_FAIL
Termination event for cnf_GetPartyList(). Get party list operation failed.

CNFEV_GET_PRIVILEGE_TALKER
Termination event for cnf_GetPrivilegeTalkerList(). Privilege talker list retrieved
successfully.

CNFEV_GET_PRIVILEGE_TALKER_FAIL
Termination event for cnf_GetPrivilegeTalkerList(). Get privilege talker list operation
failed.

CNFEV_GET_VIDEO_LAYOUT
Termination event for cnf_GetVideoLayout(). Video layout retrieved successfully.

Dialogic® Conferencing API Programming Guide and Library Reference 113

Events

CNFEV_GET_VIDEO_LAYOUT_FAIL
Termination event for cnf_GetVideoLayout(). Get video layout failed.

CNFEV_GET_VISIBLE_PARTY_LIST
Termination event for cnf_GetPartyList(). Visible party list retrieved successfully.

CNFEV_GET_VISIBLE_PARTY_LIST_FAIL
Termination event for cnf_GetPartyList(). Get visible party failed.

CNFEV_OPEN
Termination event for cnf_Open(). Board device handle opened successfully.

CNFEV_OPEN_CONF
Termination event for cnf_OpenConference(). Conference device handle opened
successfully.

CNFEV_OPEN_CONF_FAIL
Termination event for cnf_OpenConference(). Open conference operation failed.

CNFEV_OPEN_FAIL
Termination event for cnf_Open(). Open board operation failed.

CNFEV_OPEN_PARTY
Termination event for cnf_OpenParty(). Party device handle opened successfully.

CNFEV_OPEN_PARTY_FAIL
Termination event for cnf_OpenParty(). Open party operation failed.

CNFEV_REMOVE_PARTY
Termination event for cnf_RemoveParty(). Party removed successfully.

CNFEV_REMOVE_PARTY_FAIL
Termination event for cnf_RemoveParty(). Remove party operation failed.

CNFEV_SET_ATTRIBUTE
Termination event for cnf_SetAttributes(). Attribute(s) set successfully.

CNFEV_SET_ATTRIBUTE_FAIL
Termination event for cnf_SetAttributes(). Set attribute(s) operation failed.

CNFEV_SET_DTMF_CONTROL
Termination event for cnf_SetDTMFControl(). DTMF digits for volume control set
successfully.

CNFEV_SET_DTMF_CONTROL_FAIL
Termination event for cnf_SetDTMFControl(). Set DTMF digit operation failed.

CNFEV_SET_VIDEO_LAYOUT
Termination event for cnf_SetVideoLayout(). Video layout set successfully.

CNFEV_SET_VIDEO_LAYOUT_FAIL
Termination event for cnf_SetVideoLayout(). Set video layout failed.

CNFEV_SET_VISIBLE_PARTY_LIST
Termination event for cnf_SetVisiblePartyList(). Visible party list set successfully.

CNFEV_SET_VISIBLE_PARTY_LIST_FAIL
Termination event for cnf_SetVisiblePartyList(). Set visible party list failed.

114 Dialogic® Conferencing API Programming Guide and Library Reference

Events

9.3 Notification Events

The following notification events, listed in alphabetical order, may be returned by the conferencing
software:

CNFEV_ACTIVE_TALKER
Notification event for active talker. Active talker feature is set using cnf_SetAttributes().
Notification event is enabled using cnf_EnableEvents().

Data Type: CNF_ACTIVE_TALKER_INFO

CNFEV_CONF_CLOSED
Notification event for a conference that has been closed. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A.

Data Type: CNF_CONF_CLOSED_EVENT_INFO

CNFEV_CONF_OPENED
Notification event for a conference that has been opened. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A.

Data Type: CNF_CONF_OPENED_EVENT_INFO

CNFEV_DTMF_DETECTED
Notification event when DTMF digit has been detected in the conference. Enabled using
cnf_EnableEvents().

Data Type: CNF_DTMF_EVENT_INFO

CNFEV_ERROR
General error event. Returned when an unexpected error occurs while processing a notification
event.

CNFEV_EXCEEDED_CONF_LICENSE
Notification event that the maximum Conferencing licenses have been exceeded. Enabled
using cnf_EnableEvents(). When using wideband voice conferencing, the parties can be
added to a conference without initially consuming a Conferencing license. This event notifies
the application if Conferencing licenses are exhausted as it starts the media on the parties in
the conference.

Data Type: CNF_EXCEEDED_CONF_LICENSE_EVENT_INFO

CNFEV_PARTY_ADDED
Notification event for a party that has been added. Enabled using cnf_EnableEvents(). Useful
in multiprocessing; for example, when process B wants to be notified of activity in process A.

Data Type: CNF_PARTY_ADDED_EVENT_INFO

CNFEV_PARTY_CLOSED
Notification event for a party that has been closed. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A. This event is only supported on an MCX board device.

Data Type: CNF_PARTY_CLOSED_EVENT_INFO

Dialogic® Conferencing API Programming Guide and Library Reference 115

Events

CNFEV_PARTY_OPENED
Notification event for a party that has been opened. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A. This event is only supported on an MCX board device.

Data Type: CNF_PARTY_OPENED_EVENT_INFO

CNFEV_PARTY_REMOVED
Notification event for a party that has been removed, either directly through
cnf_RemoveParty() or indirectly through cnf_CloseConference(). Enabled using
cnf_EnableEvents(). Useful in multiprocessing; for example, when process B wants to be
notified of activity in process A.

Data Type: CNF_PARTY_REMOVED_EVENT_INFO

116 Dialogic® Conferencing API Programming Guide and Library Reference

Events

Dialogic® Conferencing API Programming Guide and Library Reference 117

1010.Data Structures

This chapter provides an alphabetical reference to the data structures used by the Dialogic®
Conferencing (CNF) API software. The following data structures are described:

• CNF_ACTIVE_TALKER_INFO . 118

• CNF_ATTR . 119

• CNF_ATTR_INFO . 120

• CNF_CLOSE_CONF_INFO. 121

• CNF_CLOSE_INFO . 122

• CNF_CLOSE_PARTY_INFO. 123

• CNF_CONF_CLOSED_EVENT_INFO. 124

• CNF_CONF_OPENED_EVENT_INFO. 125

• CNF_DEVICE_COUNT_INFO . 126

• CNF_DTMF_CONTROL_INFO . 127

• CNF_DTMF_EVENT_INFO . 129

• CNF_ERROR_INFO. 130

• CNF_EVENT_INFO . 131

• CNF_OPEN_CONF_INFO . 132

• CNF_OPEN_CONF_RESULT . 133

• CNF_OPEN_INFO . 134

• CNF_OPEN_PARTY_INFO . 135

• CNF_OPEN_PARTY_RESULT . 136

• CNF_PARTY_ADDED_EVENT_INFO. 137

• CNF_PARTY_INFO . 138

• CNF_PARTY_REMOVED_EVENT_INFO. 139

• CNF_PRIVILEGE_TALKER_INFO . 140

• CNF_VIDEO_LAYOUT_INFO . 141

• CNF_VISIBLE_PARTY_INFO . 142

• CNF_VISIBLE_PARTY_LIST . 143

• SC_TSINFO . 144

118 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_ACTIVE_TALKER_INFO — active talker information

CNF_ACTIVE_TALKER_INFO

active talker information
typedef struct CNF_ACTIVE_TALKER_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unPartyCount; /* number of party handles in list */
 SRL_DEVICE_HANDLE *pPartyList; /* pointer to list of party handles */
} CNF_ACTIVE_TALKER_INFO, *PCNF_ACTIVE_TALKER_INFO;
typedef const CNF_ACTIVE_TALKER_INFO * CPCNF_ACTIVE_TALKER_INFO;

Description

The CNF_ACTIVE_TALKER_INFO data structure provides active talker information after the
application receives the CNFEV_ACTIVE_TALKER notification event. Notification events are
enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_ACTIVE_TALKER_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ACTIVE_TALKER_INFO_VERSION_0.

unPartyCount
specifies the number of party handles in the list.

unPartyList
points to a list of party handles.

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 119

attributes and attribute values — CNF_ATTR

CNF_ATTR

attributes and attribute values
typedef struct CNF_ATTR
{
 unsigned int unVersion; /* version of structure */
 unsigned int nAttrType; /* attribute type */
 unsigned unAttrValue; /* attribute value */
} CNF_ATTR, *PCNF_ATTR;

Description

The CNF_ATTR data structure specifies the attributes of a party, conference, or board. This
structure is contained in the CNF_ATTR_INFO structure, and is used by the cnf_SetAttributes()
and cnf_GetAttributes() functions.

Field Descriptions

The fields of the CNF_ATTR data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ATTR_VERSION_0.

nAttrType
specifies the type of attribute: board, conference, or party. The attribute type is defined in the
ECNF_BRD_ATTR, ECNF_CONF_ATTR, and ECNF_PARTY_ATTR enumerations. All
attributes are disabled by default.

pAttrValue
specifies the value of the attribute. For attributes that can be enabled or disabled, the attribute
value is defined in the ECNF_ATTR_STATE enumeration. Possible values include:

• ECNF_ATTR_STATE_DISABLED – attribute is disabled
• ECNF_ATTR_STATE_ENABLED – attribute is enabled

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

120 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_ATTR_INFO — attribute information

CNF_ATTR_INFO

attribute information
typedef struct CNF_ATTR_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int nAttrCount; /* number of attributes in list */
 PCNF_ATTR pAttrList; /* pointer to attribute list */
} CNF_ATTR_INFO, *PCNF_ATTR_INFO;

Description

The CNF_ATTR_INFO data structure contains information about the attributes of a party,
conference, or board. This structure is used by the cnf_SetAttributes() and cnf_GetAttributes()
functions.

Field Descriptions

The fields of the CNF_ATTR_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ATTR_INFO_VERSION_0.

nAttrCount
specifies the number of attributes in the list.

pAttrList
points to the attribute list. See the CNF_ATTR data structure for more information.

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 121

reserved for future use — CNF_CLOSE_CONF_INFO

CNF_CLOSE_CONF_INFO

reserved for future use
typedef struct CNF_CLOSE_CONF_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unRFU; /* reserved for future use */
} CNF_CLOSE_CONF_INFO, *PCNF_CLOSE_CONF_INFO;
typedef const CNF_CLOSE_CONF_INFO * CPCNF_CLOSE_CONF_INFO;

Description

The CNF_CLOSE_CONF_INFO structure is used by the cnf_CloseConference() function.

Note: This structure is reserved for future use. NULL must be passed.

122 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_CLOSE_INFO — reserved for future use

CNF_CLOSE_INFO

reserved for future use
typedef struct CNF_CLOSE_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unRFU; /* reserved for future use */
} CNF_CLOSE_INFO, *PCNF_CLOSE_INFO;
typedef const CNF_CLOSE_INFO * CPCNF_CLOSE_INFO;

Description

The CNF_CLOSE_INFO data structure is used by the cnf_Close() function.

Note: This structure is reserved for future use. NULL must be passed.

Dialogic® Conferencing API Programming Guide and Library Reference 123

reserved for future use — CNF_CLOSE_PARTY_INFO

CNF_CLOSE_PARTY_INFO

reserved for future use
typedef struct CNF_CLOSE_PARTY_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unRFU; /* reserved for future use */
} CNF_CLOSE_PARTY_INFO, *PCNF_CLOSE_PARTY_INFO;
typedef const CNF_CLOSE_PARTY_INFO * CPCNF_CLOSE_PARTY_INFO;

Description

The CNF_CLOSE_PARTY_INFO data structure is used by the cnf_CloseParty() function.

Note: This structure is reserved for future use. NULL must be passed.

124 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_CONF_CLOSED_EVENT_INFO — information for conference closed event

CNF_CONF_CLOSED_EVENT_INFO

information for conference closed event
typedef struct CNF_CONF_CLOSED_EVENT_INFO
{
 unsigned int unVersion; /* version of structure */
 const char *szConfName; /* conference device name */
} CNF_CONF_CLOSED_EVENT_INFO, *PCNF_CONF_CLOSED_EVENT_INFO;
typedef const CNF_CONF_CLOSED_EVENT_INFO * CPCNF_CONF_CLOSED_EVENT_INFO;

Description

The CNF_CONF_CLOSED_EVENT_INFO data structure provides information about the
conference after the application receives the CNFEV_CONF_CLOSED notification event.
Notification events are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_CONF_CLOSED_EVENT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_CONF_CLOSED_EVENT_INFO_VERSION_0.

szConfName
points to the conference device name

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 125

information for conference opened event — CNF_CONF_OPENED_EVENT_INFO

CNF_CONF_OPENED_EVENT_INFO

information for conference opened event
typedef struct CNF_CONF_OPENED_EVENT_INFO
{
 unsigned int unVersion; /* version of structure */
 SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */
 const char *szConfName; /* conference device name */
} CNF_CONF_OPENED_EVENT_INFO, *PCNF_CONF_OPENED_EVENT_INFO;
typedef const CNF_CONF_OPENED_EVENT_INFO * CPCNF_CONF_OPENED_EVENT_INFO;

Description

The CNF_CONF_OPENED_EVENT_INFO data structure provides information about the
conference after the application receives the CNFEV_CONF_OPENED notification event.
Notification events are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_CONF_OPENED_EVENT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_CONF_OPENED_EVENT_INFO_VERSION_0.

ConfHandle
specifies the conference device handle

szConfName
points to the conference device name

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

126 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_DEVICE_COUNT_INFO — device count information

CNF_DEVICE_COUNT_INFO

device count information
typedef struct CNF_DEVICE_COUNT_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unFreePartyCount; /* number of free parties */
 unsigned int unMaxPartyCount; /* number of maximum parties */
 unsigned int unFreeConfCount; /* number of free conferences */
 unsigned int unMaxConfCount; /* number of maximum conferences */
} CNF_DEVICE_COUNT_INFO, *PCNF_DEVICE_COUNT_INFO;
typedef const CNF_DEVICE_COUNT_INFO * CPCNF_DEVICE_COUNT_INFO;

Description

The CNF_DEVICE_COUNT_INFO data structure stores information about the number of devices
on a board. This structure is used by the cnf_GetDeviceCount() function.

Field Descriptions

The fields of the CNF_DEVICE_COUNT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_DEVICE_COUNT_INFO_VERSION_0.

unFreePartyCount
specifies the number of free parties remaining on the board

unMaxPartyCount
specifies the maximum number of parties that can be opened on the board

unFreeConfCount
specifies the number of free conferences remaining on the board

unMaxConfCount
specifies the maximum number of conferences that can be opened on the board

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 127

DTMF digits control information — CNF_DTMF_CONTROL_INFO

CNF_DTMF_CONTROL_INFO

DTMF digits control information
typedef struct CNF_DTMF_CONTROL_INFO
{
 unsigned int unVersion; /* version of structure */
 ECNF_ATTR_STATE eDTMFControlState; /* enable/disable DMTF control */
 ECNF_DTMF_DIGIT eVolumeUpDigit; /* volume up digit */
 ECNF_DTMF_DIGIT eVolumeDownDigit; /* volume down digit */
 ECNF_DTMF_DIGIT eVolumeResetDigit; /* volume reset digit */
} CNF_DTMF_CONTROL_INFO, *PCNF_DTMF_CONTROL_INFO;
typedef const CNF_DTMF_CONTROL_INFO * CPCNF_DTMF_CONTROL_INFO;

Description

The CNF_DTMF_CONTROL_INFO data structure stores information about DTMF values used to
control the volume of a conference. This structure is used by the cnf_SetDTMFControl() and
cnf_GetDTMFControl() functions.

Field Descriptions

The fields of the CNF_DTMF_CONTROL_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_DTMF_CONTROL_INFO_VERSION_0.

eDTMFControlState
enables or disables DTMF digits used to control the volume of a conference. The
ECNF_ATTR_STATE data type is an enumeration that defines the following values:

• ECNF_ATTR_STATE_DISABLED – attribute is disabled
• ECNF_ATTR_STATE_ENABLED – attribute is enabled

eVolumeUpDigit
specifies the DTMF digit used to increase the volume. The volume increment is 2 dB. The
ECNF_DTMF_DIGIT data type is an enumeration that defines the following values:

• ECNF_DTMF_DIGIT_1 – specifies DTMF 1
• ECNF_DTMF_DIGIT_2 – specifies DTMF 2
• ECNF_DTMF_DIGIT_3 – specifies DTMF 3
• ECNF_DTMF_DIGIT_4 – specifies DTMF 4
• ECNF_DTMF_DIGIT_5 – specifies DTMF 5
• ECNF_DTMF_DIGIT_6 – specifies DTMF 6
• ECNF_DTMF_DIGIT_7 – specifies DTMF 7
• ECNF_DTMF_DIGIT_8 – specifies DTMF 8
• ECNF_DTMF_DIGIT_9 – specifies DTMF 9
• ECNF_DTMF_DIGIT_0 – specifies DTMF 0
• ECNF_DTMF_DIGIT_STAR – specifies DTMF *
• ECNF_DTMF_DIGIT_POUND – specifies DTMF #
• ECNF_DTMF_DIGIT_A – specifies DTMF A
• ECNF_DTMF_DIGIT_B – specifies DTMF B
• ECNF_DTMF_DIGIT_C – specifies DTMF C
• ECNF_DTMF_DIGIT_D – specifies DTMF D

128 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_DTMF_CONTROL_INFO — DTMF digits control information

eVolumeDownDigit
specifies the DTMF digit used to decrease the volume. The volume decrement is 2 dB. The
ECNF_DTMF_DIGIT data type is an enumeration that defines the values for DTMF digits.
See eVolumeUpDigit for a list of values.

eVolumeResetDigit
specifies the DTMF digit used to reset the volume to its default level. The default volume and
origin is 0 dB. The ECNF_DTMF_DIGIT data type is an enumeration that defines the values
for DTMF digits. See eVolumeUpDigit for a list of values.

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 129

DTMF event information — CNF_DTMF_EVENT_INFO

CNF_DTMF_EVENT_INFO

DTMF event information
typedef struct CNF_DTMF_EVENT_INFO
{
 unsigned int unVersion; /* version of structure */
 SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
 ECNF_DTMF_DIGIT eDigit; /* detected DTMF digit */
} CNF_DTMF_EVENT_INFO, *PCNF_DTMF_EVENT_INFO;
typedef const CNF_DTMF_EVENT_INFO * CPCNF_DTMF_EVENT_INFO;

Description

The CNF_DTMF_EVENT_INFO data structure provides DTMF digit information to the party
after the application receives the CNFEV_DTMF_EVENT notification event. Notification events
are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_DTMF_EVENT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_DTMF_EVENT_INFO_VERSION_0.

PartyHandle
specifies the party device handle

eDigit
specifies the DTMF digit that was detected. The ECNF_DTMF_DIGIT data type is an
enumeration that defines the following values:

• ECNF_DTMF_DIGIT_1 – specifies DTMF 1
• ECNF_DTMF_DIGIT_2 – specifies DTMF 2
• ECNF_DTMF_DIGIT_3 – specifies DTMF 3
• ECNF_DTMF_DIGIT_4 – specifies DTMF 4
• ECNF_DTMF_DIGIT_5 – specifies DTMF 5
• ECNF_DTMF_DIGIT_6 – specifies DTMF 6
• ECNF_DTMF_DIGIT_7 – specifies DTMF 7
• ECNF_DTMF_DIGIT_8 – specifies DTMF 8
• ECNF_DTMF_DIGIT_9 – specifies DTMF 9
• ECNF_DTMF_DIGIT_0 – specifies DTMF 0
• ECNF_DTMF_DIGIT_STAR – specifies DTMF *
• ECNF_DTMF_DIGIT_POUND – specifies DTMF #
• ECNF_DTMF_DIGIT_A – specifies DTMF A
• ECNF_DTMF_DIGIT_B – specifies DTMF B
• ECNF_DTMF_DIGIT_C – specifies DTMF C
• ECNF_DTMF_DIGIT_D – specifies DTMF D

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

130 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_ERROR_INFO — error information

CNF_ERROR_INFO

error information
typedef struct CNF_ERROR_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unErrorCode; /* error code */
 const char *szErrorString; /* error string */
 const char *szAdditionalInfo; /* additional error information string */
} CNF_ERROR_INFO, *PCNF_ERROR_INFO;
typedef const CNF_ERROR_INFO * CPCNF_ERROR_INFO;

Description

The CNF_ERROR_INFO data structure provides error information for the device handle when an
API function fails. This structure is used by the cnf_GetErrorInfo() function.

Field Descriptions

The fields of the CNF_ERROR_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ERROR_INFO_VERSION_0.

unErrorCode
specifies the error code

szErrorString
points to the error message

szAdditionalInfo
points to additional error information

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 131

event information — CNF_EVENT_INFO

CNF_EVENT_INFO

event information
typedef struct CNF_EVENT_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unEventCount; /* number of events in list */
 unsigned int *punEventList; /* pointer to event list */
} CNF_EVENT_INFO, *PCNF_EVENT_INFO;
typedef const CNF_EVENT_INFO * CPCNF_EVENT_INFO;

Description

The CNF_EVENT_INFO data structure provides event information for the device handle when a
notification event is enabled or disabled. This structure is used by the cnf_EnableEvents()
function.

Field Descriptions

The fields of the CNF_EVENT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_EVENT_INFO_VERSION_0.

unEventCount
specifies the number of events in the list.

punEventList
points to a list of events.

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

132 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_OPEN_CONF_INFO — reserved for future use

CNF_OPEN_CONF_INFO

reserved for future use
typedef struct CNF_OPEN_CONF_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unRFU; /* reserved for future use */
} CNF_OPEN_CONF_INFO, *PCNF_OPEN_CONF_INFO;
typedef const CNF_OPEN_CONF_INFO * CPCNF_OPEN_CONF_INFO;

Description

The CNF_OPEN_CONF_INFO data structure is used by the cnf_OpenConference() function.

Note: This structure is reserved for future use. NULL must be passed.

Dialogic® Conferencing API Programming Guide and Library Reference 133

result information for an opened conference — CNF_OPEN_CONF_RESULT

CNF_OPEN_CONF_RESULT

result information for an opened conference
typedef struct CNF_OPEN_CONF_RESULT
{
 unsigned int unVersion; /* version of structure */
 const char * szConfName; /* conference device name */
 SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */
} CNF_OPEN_CONF_RESULT, *PCNF_OPEN_CONF_RESULT;
typedef const CNF_OPEN_CONF_RESULT * CPCNF_OPEN_CONF_RESULT;

Description

The CNF_OPEN_CONF_RESULT data structure contains result information returned with the
CNFEV_OPEN_CONF event. This termination event is returned by the cnf_OpenConference()
function.

Field Descriptions

The fields of the CNF_OPEN_CONF_RESULT data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_OPEN_CONF_RESULT_VERSION_0.

szConfName
specifies the conference device name

ConfHandle
specifies the conference device handle

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

134 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_OPEN_INFO — reserved for future use

CNF_OPEN_INFO

reserved for future use
typedef struct CNF_OPEN_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unRFU; /* reserved for future use */
} CNF_OPEN_INFO, *PCNF_OPEN_INFO;
typedef const CNF_OPEN_INFO * CPCNF_OPEN_INFO;

Description

The CNF_OPEN_INFO data structure is used by the cnf_Open() function.

Note: This structure is reserved for future use. NULL must be passed.

Dialogic® Conferencing API Programming Guide and Library Reference 135

reserved for future use — CNF_OPEN_PARTY_INFO

 CNF_OPEN_PARTY_INFO

reserved for future use
typedef struct CNF_OPEN_PARTY_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unRFU; /* reserved for future use */
} CNF_OPEN_PARTY_INFO, *PCNF_OPEN_PARTY_INFO;
typedef const CNF_OPEN_PARTY_INFO * CPCNF_OPEN_PARTY_INFO;

Description

The CNF_OPEN_PARTY_INFO data structure is used by the cnf_OpenParty() function.

Note: This structure is reserved for future use. NULL must be passed.

136 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_OPEN_PARTY_RESULT — result information for an opened party

CNF_OPEN_PARTY_RESULT

result information for an opened party
typedef struct CNF_OPEN_PARTY_RESULT
{
 unsigned int unVersion; /* version of structure */
 const char * szPartyName; /* party device name */
 SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
} CNF_OPEN_PARTY_RESULT, *PCNF_OPEN_PARTY_RESULT;
typedef const CNF_OPEN_PARTY_RESULT * CPCNF_OPEN_PARTY_RESULT;

Description

The CNF_OPEN_PARTY_RESULT data structure contains result information returned with the
CNFEV_OPEN_PARTY event. This termination event is returned by the cnf_OpenParty()
function.

Field Descriptions

The fields of the CNF_OPEN_PARTY_RESULT data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_OPEN_PARTY_RESULT_VERSION_0.

szPartyName
specifies the party device name

PartyHandle
specifies the party device handle

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 137

information for added party event — CNF_PARTY_ADDED_EVENT_INFO

CNF_PARTY_ADDED_EVENT_INFO

information for added party event
typedef struct CNF_PARTY_ADDED_EVENT_INFO
{
 unsigned int unVersion; /* version of structure */
 SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */
 const char *szConfName; /* conference device name */
 SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
 const char *szPartyName; /* party device name */
} CNF_PARTY_ADDED_EVENT_INFO, *PCNF_PARTY_ADDED_EVENT_INFO;
typedef const CNF_PARTY_ADDED_EVENT_INFO * CPCNF_PARTY_ADDED_EVENT_INFO;

Description

The CNF_PARTY_ADDED_EVENT_INFO data structure provides information about the party
after the application receives the CNFEV_PARTY_ADDED notification event. Notification events
are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_PARTY_ADDED_EVENT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_PARTY_ADDED_EVENT_INFO_VERSION_0.

ConfHandle
specifies the conference device handle

szConfName
points to the conference device name

PartyHandle
specifies the party device handle

szPartyName
points to the party device name

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

138 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_PARTY_INFO — party information

CNF_PARTY_INFO

party information
typedef struct CNF_PARTY_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unPartyCount; /* number of party handles in list */
 SRL_DEVICE_HANDLE *pPartyList; /* pointer to list of party handles */
} CNF_PARTY_INFO, *PCNF_PARTY_INFO;
typedef const CNF_PARTY_INFO * CPCNF_PARTY_INFO;

Description

The CNF_PARTY_INFO data structure stores information on a party that is opened, added or
removed. This structure is used by the cnf_OpenParty(), cnf_AddParty(), and
cnf_RemoveParty() functions. This structure is also returned as the data to several events; for
example, the CNF_OPEN_PARTY termination event.

Field Descriptions

The fields of the CNF_PARTY_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_PARTY_INFO_VERSION_0.

unPartyCount
specifies the number of party handles in the list.

pPartyList
points to a list of party handles.

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 139

information for removed party event — CNF_PARTY_REMOVED_EVENT_INFO

CNF_PARTY_REMOVED_EVENT_INFO

information for removed party event
typedef struct CNF_PARTY_REMOVED_EVENT_INFO
{
 unsigned int unVersion; /* version of structure */
 SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */
 const char *szConfName; /* conference device name */
 SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
 const char *szPartyName; /* party device name */
} CNF_PARTY_REMOVED_EVENT_INFO, *PCNF_PARTY_REMOVED_EVENT_INFO;
typedef const CNF_PARTY_REMOVED_EVENT_INFO * CPCNF_PARTY_REMOVED_EVENT_INFO;

Description

The CNF_PARTY_REMOVED_EVENT_INFO data structure provides information about the
party after the application receives the CNFEV_PARTY_REMOVED notification event.
Notification events are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_PARTY_REMOVED_EVENT_INFO data structure are described as
follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_PARTY_REMOVED_EVENT_INFO_VERSION_0.

ConfHandle
specifies the conference device handle

szConfName
points to the conference device name

PartyHandle
specifies the party device handle

szPartyName
points to the party device name

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

140 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_PRIVILEGE_TALKER_INFO — privilege talker information

CNF_PRIVILEGE_TALKER_INFO

privilege talker information
typedef struct CNF_PRIVILEGE_TALKER_INFO
{
 unsigned int unVersion; /* version of structure */
 unsigned int unPartyCount; /* number of party handles in list */
 SRL_DEVICE_HANDLE *pPartyList; /* pointer to list of party handles */
} CNF_PRIVILEGE_TALKER_INFO, *PCNF_PRIVILEGE_TALKER_INFO;
typedef const CNF_PRIVILEGE_TALKER_INFO * CPCNF_PRIVILEGE_TALKER_INFO;

Description

The CNF_PRIVILEGE_TALKER_INFO data structure provides privilege talker information after
the application receives the CNFEV_PRIVILEGE_TALKER notification event. Notification events
are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_PRIVILEGE_TALKER_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_PRIVILEGE_TALKER_INFO_VERSION_0.

unPartyCount
specifies the number of party handles in the list

pPartyList
points to a list of party handles

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 141

information for video layout — CNF_VIDEO_LAYOUT_INFO

CNF_VIDEO_LAYOUT_INFO

information for video layout
typedef struct CNF_VIDEO_LAYOUT_INFO
{
 unsigned int unVersion; /* version of structure */
 ELB_LAYOUT_SIZE unLayoutSize; /* layout screen size */
 LB_FRAME_HANDLE LayoutHandle; /* layout region handle */
} CNF_VIDEO_LAYOUT_INFO, *PCNF_CVIDEO_LAYOUT_INFO;
typedef const CNF_VIDEO_LAYOUT_INFO, *PCNF_CVIDEO_LAYOUT_INFO;

Description

The CNF_VIDEO_LAYOUT_INFO data structure provides information about the video layout.
Notification events are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_VIDEO_LAYOUT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_VIDEO_LAYOUT_INFO_VERSION_0.

unLayoutSize
specifies the layout screen size. Possible values include:

• ELB_LAYOUT_SIZE_SUBQCIF – Layout size [128 x 96]
• ELB_LAYOUT_SIZE_QCIF – Layout size [176 x 144]
• ELB_LAYOUT_SIZE_CIF – Layout size [352 x 288]

LayoutHandle
points to the layout region handle

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

142 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_VISIBLE_PARTY_INFO — information about the visible party

CNF_VISIBLE_PARTY_INFO

information about the visible party
typedef struct CNF_VISIBLE_PARTY_INFO
{
 unsigned int unVersion; /* version of structure */
 SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
 LB_FRAME_HANDLE RegionHandle; /* layout region handle */
} CNF_VISIBLE_PARTY_INFO, *PCNF_VISIBLE_PARTY_INFO;
typedef const CNF_VISIBLE_PARTY_INFO * CPCNF_VISIBLE_PARTY_INFO;

Description

The CNF_VISIBLE_PARTY_INFO data structure provides information about the visible party in a
specified conference. Notification events are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_VISIBLE_PARTY_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_VISIBLE_PARTY_INFO_VERSION_0.

PartyHandle
specifies the party device handle

RegionHandle
specifies the region handle

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

Dialogic® Conferencing API Programming Guide and Library Reference 143

visible party list information — CNF_VISIBLE_PARTY_LIST

CNF_VISIBLE_PARTY_LIST

visible party list information
typedef struct CNF_VISIBLE_PARTY_LIST
{
 unsigned int unVersion; /* version of structure */
 unsigned int unCount; /* size of visible party list */
 PCNF__VISIBLE_PARTY_INFO pPartyList; /* pointer to visible party info list */
} CNF_VISIBLE_PARTY_LIST, *PCNF_VISIBLE_PARTY_LIST;
typedef const CNF_VISIBLE_PARTY_LIST * CPCNF_VISIBLE_PARTY_LIST;

Description

The CNF_VISIBLE_PARTY_LIST data structure provides information about the parties visible in
a specified conference. Notification events are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_VISIBLE_PARTY_LIST data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_VISIBLE_PARTY_LIST_VERSION_0.

unCount
specifies the visible party list size

pPartyList
points to the visible party information list

Example

For an example of this data structure, see Section 12.1, “Conferencing Example Code and Output”,
on page 147.

144 Dialogic® Conferencing API Programming Guide and Library Reference

SC_TSINFO — TDM bus time slot information

SC_TSINFO

TDM bus time slot information
typedef struct {
 unsigned long sc_numts;
 long *sc_tsarrayp;
} SC_TSINFO;

Description

The SC_TSINFO data structure defines TDM bus time slot information. It may contain CT Bus or
HMP soft CT Bus time slot information. It is used by the cnf_GetXmitSlot() and cnf_Listen()
functions.

Field Descriptions

The fields of the SC_TSINFO structure are described as follows:

sc_numts
specifies the number of TDM bus time slots to follow; must be set to 1

sc_tsarrayp
specifies the time slot ID number

Example

See cnf_Listen() for an example of how to use the SC_TSINFO structure.

Dialogic® Conferencing API Programming Guide and Library Reference 145

1111.Error Codes

This chapter describes the error codes used by the Dialogic® Conferencing (CNF) API software.
Error codes are defined in cnferrs.h.

Dialogic® Conferencing (CNF) API library functions return a value that indicates the success or
failure of a function call. Success is indicated by CNF_SUCCESS, and failure is indicated by
CNF_ERROR. If a library function returns CNF_ERROR to indicate failure, use
cnf_GetErrorInfo() to obtain the reason for the error. Alternatively, you can use the standard
attribute function ATDV_LASTERR() to return the error code and ATDV_ERRMSGP() to
return the error description. These functions are described in the Dialogic® Standard Runtime
Library API Library Reference.

Note: The following functions cannot use the Dialogic® Standard Runtime Library standard attribute
functions to process errors: cnf_Close(), cnf_CloseConference(), and cnf_CloseParty().

If an error occurs during execution of an asynchronous function, an error event, preceded by
“CNFEV_” is sent to the application. No change of state is triggered by this event. Upon receiving
the CNFEV_ERROR event, the application can retrieve the reason for the failure using
ATDV_LASTERR() and ATDV_ERRMSGP().

The error codes used by the conferencing software are described as follows:

ECNF_FIRMWARE
firmware error

ECNF_INVALID_ATTR
invalid device attribute

ECNF_INVALID_DEVICE
invalid device

ECNF_INVALID_EVENT
invalid device event

ECNF_INVALID_HANDLE
invalid device handle

ECNF_INVALID_NAME
invalid device name

ECNF_INVALID_PARM
invalid parameter

ECNF_INVALID_STATE
invalid device state for requested operation

ECNF_LIBRARY
library error

ECNF_MEMORY_ALLOC
memory allocation error

146 Dialogic® Conferencing API Programming Guide and Library Reference

Error Codes

ECNF_NOERROR
no error

ECNF_SUBSYSTEM
internal subsystem error

ECNF_SYSTEM
system error

ECNF_UNSUPPORTED_API
API not currently supported

ECNF_UNSUPPORTED_FUNC
requested functionality not supported

ECNF_UNSUPPORTED_TECH
technology not currently supported

Dialogic® Conferencing API Programming Guide and Library Reference 147

1212.Supplementary Reference
Information

This chapter provides reference information about the following topic:

• Conferencing Example Code and Output . 147

12.1 Conferencing Example Code and Output

Written in the C++ programming language, the example code exercises Dialogic® Conferencing
(CNF) API functions and data structures. It is intended to illustrate how the Dialogic®
Conferencing (CNF) API functions and data structures are used in a simple application. It is not
intended to be used in a production environment.

The output from the example code is provided in Figure 2, “Conferencing (CNF) Example Code
Output”, on page 180 and Figure 3, “Conferencing (MCX) Example Code Output”, on page 187.

Figure 1. Conferencing Example Code

#include <cnflib.h>
#include <lb_mtklib.h>
#include <srllib.h>
#include <iostream>

#ifdef WIN32
#else
#include <unistd.h>
#endif

using namespace std;

#define MAX_CNF_BRD_ATTR (ECNF_BRD_ATTR_END_OF_LIST - CNF_BRD_ATTR_BASE)
#define MAX_CNF_CONF_ATTR (ECNF_CONF_ATTR_END_OF_LIST - CNF_CONF_ATTR_BASE)
#define MAX_CNF_PTY_ATTR (ECNF_PARTY_ATTR_END_OF_LIST - CNF_PARTY_ATTR_BASE)

LB_FRAME_HANDLE g_LayoutHandle;

/**
 * @struct SRL_METAEVENT
 */
struct SRL_METAEVENT
{
 long EventType; ///< Event type
 SRL_DEVICE_HANDLE EventDevice; ///< Event device handle
 void * pEventData; ///< Pointer to event data
 long EventDataLength; ///< Event data length
 void * pEventUserInfo; ///< Pointer to user defined data
};
typedef SRL_METAEVENT * PSRL_METAEVENT;

/**
 * @enum CNF_TYPE
 */

148 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

typedef enum ECNF_TYPE
{
 ECNF_TYPE_CNF = 0,
 ECNF_TYPE_MCX = 1
} ECNF_TYPE;

/**
 * @fn srl_GetMetaEvent
 */
void srl_GetMetaEvent(PSRL_METAEVENT a_pMetaEvent);

/**
 * @fn ProcessErrorInformation
 */
void ProcessErrorInformation();

/**
 * @fn ProcessMetaEvent
 */
void ProcessMetaEvent(char * a_szString);

/**
 * @fn Process conferencing event(s) functions.

 */

void Process_AddParty_Event();
void Process_Board_Event();
void Process_DisableEvents_Event();
void Process_EnableEvents_Event();
void Process_GetActiveTalkerList_Event();
void Process_GetAttributes_Event();
void Process_GetDeviceCount_Event();
void Process_GetDTMFControl_Event();
void Process_GetPartyList_Event();
void Process_GetVideoLayout_Event();
void Process_GetVisiblePartyList_Event();
void Process_OpenBoard_Event();
void Process_OpenConference_Event();
void Process_OpenParty_Event();
void Process_RemoveParty_Event();
void Process_ResetDevices_Event();
void Process_SetAttributes_Event();
void Process_SetDTMFControl_Event();
void Process_SetVideoLayout_Event();
void Process_SetVisiblePartyList_Event();

/**
 * @fn main
 */
int main(int nArgCount, char *pArgList[])
{
 cout << "Conferencing (CNF/MCX) Sample Application" << endl;
 cout << "===" << endl << endl;

 std::string szBrdName = "cnfB1";
 ECNF_TYPE eType = ECNF_TYPE_CNF;

 switch (nArgCount)
 {
 case 1:

 // Use default cnfB1 board name.
 break;

Dialogic® Conferencing API Programming Guide and Library Reference 149

Supplementary Reference Information

 case 2:
 // Use user specified board name.
 szBrdName = pArgList[1];
 if (szBrdName.compare(0, 3, "mcx", 3) == 0)
 {
 eType = ECNF_TYPE_MCX;
 }
 break;

 default:
 cout << "Invalid number of arguments provided. defaulting to cnfB1." << endl << endl;
 break;
 }

 cout << "Board Name is: " << szBrdName.c_str() << endl << endl;

 /**
 * SETUP SRL MODE OF FUNCTIONALITY.
 ***/
 int nSRLMode = SR_POLLMODE;
 if (sr_setparm(SRL_DEVICE, SR_MODEID, &nSRLMode) == -1)
 {
 cout << "Error setting SRL mode !!" << endl;
 return 0;
 }

 SRL_DEVICE_HANDLE BrdDevice;
SRL_DEVICE_HANDLE CnfDevice;
 SRL_DEVICE_HANDLE PtyDevice;

/**
 * OPEN A BOARD DEVICE
 *
 * NOTE: THIS CALL IS EXPECTED TO FAIL DUE TO BAD PARAMETERS. TEST TO SEE IF
 * ERROR HANDLING IS WORKING CORRECTLY. PASSING INVALID DEVICE NAME.
 ***/
 if ((BrdDevice = cnf_Open(NULL, NULL, NULL)) == CNF_ERROR)
 {
 ///
 // Good, we were expecting this to happen. Lets get the error information
 cout << "cnf_Open failure!! : Expected failure due to the following" << endl;
 ProcessErrorInformation();
 }

 /**
 * OPEN A BOARD DEVICE
 *
 * NOTE: THIS CALL IS EXPECTED TO FAIL DUE TO BAD PARAMETERS. TEST TO SEE IF
 * ERROR HANDLING IS WORKING CORRECTLY. PASSING INVALID DEVICE NAME.
 ***/
 if ((BrdDevice = cnf_Open("blah_blah", NULL, NULL)) == CNF_ERROR)
 {
 ///
 // Good, we were expecting this to happen. Lets get the error information
 cout << "cnf_Open failure!! : Expected failure due to the following" << endl;
 ProcessErrorInformation();
 }
/**
 * OPEN A BOARD DEVICE.
 ***/
 if ((BrdDevice = cnf_Open(szBrdName.c_str(), NULL, NULL)) == CNF_ERROR)
 {
 cout << "cnf_Open failed !!" << endl;
ProcessErrorInformation();
 }
 else
 {

150 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_OpenBoard_Event();
 }
 }

 /**
 * GET THE DEVICE COUNTS FOR THE BOARD DEVICE.
 ***/
 if ((cnf_GetDeviceCount(BrdDevice, NULL)) == CNF_ERROR)
 {
 cout << "cnf_GetDeviceCount failed !!" << endl;
ProcessErrorInformation();
 return 0;
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_GetDeviceCount_Event();
 }
 }

 /**
 * RESET DEVICES ON THE BOARD DEVICE.
 ***/
 if ((cnf_ResetDevices(BrdDevice, NULL, NULL)) == CNF_ERROR)
 {
 cout << "cnf_ResetDevices failed !!" << endl;
ProcessErrorInformation();
 return 0;
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_ResetDevices_Event();
 }
 }

 /**
 * GET THE DEVICE COUNTS FOR THE BOARD DEVICE.
 ***/
 if ((cnf_GetDeviceCount(BrdDevice, NULL)) == CNF_ERROR)
 {
 cout << "cnf_GetDeviceCount failed !!" << endl;
ProcessErrorInformation();
 return 0;
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }

Dialogic® Conferencing API Programming Guide and Library Reference 151

Supplementary Reference Information

 else
 {
 Process_GetDeviceCount_Event();
 }
 }

 /**
 * GET THE DTMF CONTROL INFORMATION FOR THE BOARD DEVICE.
 ***/
 if ((cnf_GetDTMFControl(BrdDevice, NULL)) == CNF_ERROR)
 {
 cout << "cnf_GetDTMFControl failed !!" << endl;
ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_GetDTMFControl_Event();
 }
 }

 /**
 * SET THE DTMF CONTROL INFORMATION FOR THE BOARD DEVICE.
 ***/
 CNF_DTMF_CONTROL_INFO DTMFControlInfo;
 DTMFControlInfo.unVersion = CNF_DTMF_CONTROL_INFO_VERSION_0;
 DTMFControlInfo.eDTMFControlState = ECNF_ATTR_STATE_ENABLED;
 DTMFControlInfo.eVolumeUpDigit = ECNF_DTMF_DIGIT_POUND;
 DTMFControlInfo.eVolumeDownDigit = ECNF_DTMF_DIGIT_STAR;
 DTMFControlInfo.eVolumeResetDigit = ECNF_DTMF_DIGIT_5;

 if ((cnf_SetDTMFControl(BrdDevice, &DTMFControlInfo, NULL)) == CNF_ERROR)
 {
 cout << "cnf_SetDTMFControl failed !!" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_SetDTMFControl_Event();
 }
 }

 /**
 * GET THE DTMF CONTROL INFORMATION FOR THE BOARD DEVICE.
 ***/
 if ((cnf_GetDTMFControl(BrdDevice, NULL)) == CNF_ERROR)
 {
 cout << "cnf_GetDTMFControl failed !!" << endl;
 ProcessErrorInformation();

 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;

152 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 }
 else
 {
 Process_GetDTMFControl_Event();
 }
 }

 /**
 * ENABLE BOARD DEVICE EVENTS.
 ***/
 unsigned int BrdEventList[10];
 BrdEventList[0] = ECNF_BRD_EVT_CONF_OPENED;
 BrdEventList[1] = ECNF_BRD_EVT_CONF_CLOSED;
 BrdEventList[2] = ECNF_BRD_EVT_ACTIVE_TALKER;
 BrdEventList[3] = ECNF_BRD_EVT_PARTY_ADDED;
 BrdEventList[4] = ECNF_BRD_EVT_PARTY_REMOVED;

 CNF_EVENT_INFO BrdEventInfo;
 BrdEventInfo.unEventCount = 5;
 BrdEventInfo.punEventList = BrdEventList;

 if (cnf_EnableEvents(BrdDevice, &BrdEventInfo, (void *)1) == CNF_ERROR)
 {
 cout << "cnf_EnableEvents failed !!" << endl;
 ProcessErrorInformation();
 return 0;
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_EnableEvents_Event();
 }
 }

 /**
 * GET ATTRIBUTES ON A BOARD DEVICE. FAILURE CASE.
 ***/
 CNF_ATTR BrdAttrList[MAX_CNF_BRD_ATTR];
 CNF_ATTR_INFO BrdAttrInfo;

 BrdAttrList[0].unAttribute = ECNF_CONF_ATTR_DTMF_MASK;
 BrdAttrInfo.unAttrCount = 1;
 BrdAttrInfo.pAttrList = BrdAttrList;

 if (cnf_GetAttributes(BrdDevice, &BrdAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!! - Expected error
due to invalid attribute" << endl;
 ProcessErrorInformation();
 }

 /**
 * GET ATTRIBUTES ON A BOARD DEVICE.
 ***/
 int nBrdAttr = CNF_BRD_ATTR_BASE;
 {
 for (int i = 0; i < MAX_CNF_BRD_ATTR; i++, nBrdAttr++)
 {
 BrdAttrList[i].unAttribute = nBrdAttr;
 }
 }

Dialogic® Conferencing API Programming Guide and Library Reference 153

Supplementary Reference Information

 BrdAttrInfo.unAttrCount = MAX_CNF_BRD_ATTR;
 BrdAttrInfo.pAttrList = BrdAttrList;

 if (cnf_GetAttributes(BrdDevice, &BrdAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!!" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_GetAttributes_Event();
 }
 }

 /**
 * SET ATTRIBUTES ON A BOARD DEVICE.
 ***/

 BrdAttrList[0].unAttribute = ECNF_BRD_ATTR_ACTIVE_TALKER;
 BrdAttrList[0].unValue = ECNF_ATTR_STATE_ENABLED;
 BrdAttrList[1].unAttribute = ECNF_BRD_ATTR_NOTIFY_INTERVAL;
 BrdAttrList[1].unValue = 2000; // 2 Second interval for active talker events.
 BrdAttrInfo.unAttrCount = 2;
 BrdAttrInfo.pAttrList = BrdAttrList;

 if (cnf_SetAttributes(BrdDevice, &BrdAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_SetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!!" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_SetAttributes_Event();
 }
 }

 /**
 * GET ATTRIBUTES ON A BOARD DEVICE.
 ***/
 nBrdAttr = CNF_BRD_ATTR_BASE;
 {
 for (int i = 0; i < MAX_CNF_BRD_ATTR; i++, nBrdAttr++)
 {
 BrdAttrList[i].unAttribute = nBrdAttr;
 }
 }

 BrdAttrInfo.unAttrCount = MAX_CNF_BRD_ATTR;
 BrdAttrInfo.pAttrList = BrdAttrList;

 if (cnf_GetAttributes(BrdDevice, &BrdAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!!" << endl;
 ProcessErrorInformation();
//return 0;

154 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_GetAttributes_Event();
 }
 }

 /**
 * OPEN A CONFERENCE DEVICE.
 ***/
if ((CnfDevice = cnf_OpenConference(BrdDevice, NULL, NULL, NULL)) == CNF_ERROR)

{
cout << "cnf_OpenConference failed !!" << endl;
ProcessErrorInformation();
}
 else
 {
 for (int i = 0; i < 2; i++)
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "cnf_OpenConference on " << ATDV_NAMEP(BrdDevice) << " FAILED..." << endl;
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_OpenConference_Event();
 }
 }
 }

 /**
 * IF THIS IS A MEDIA CONFERENCE LETS SET THE VIDEO LAYOUT.
 ***/
 if (eType == ECNF_TYPE_MCX)
 {
 if (cnf_GetVideoLayout(CnfDevice, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetVideoLayout failed !!" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_GetVideoLayout_Event();
 }
 }

 LB_FRAME_HANDLE LayoutHandle = lb_CreateLayoutTemplate(eLB_LAYOUT_TYPE_4_1);
 if (LayoutHandle == MTK_ERROR)
 {
 cout << "lb_CreateLayoutTemplate failed !!" << endl;
 }
 else
 {

Dialogic® Conferencing API Programming Guide and Library Reference 155

Supplementary Reference Information

 cout << "Created 4 region layout..." << endl;
 }

 CNF_VIDEO_LAYOUT_INFO LayoutInfo;
 LayoutInfo.eLayoutSize = eLB_LAYOUT_SIZE_CIF;
 LayoutInfo.LayoutHandle = LayoutHandle;

 if (cnf_SetVideoLayout(CnfDevice, &LayoutInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_SetVideoLayout failed !!" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_SetVideoLayout_Event();
 }
 }
 }

 /**
 * ENABLE CONFERENCE DEVICE EVENTS.
 ***/
 unsigned int CnfEventList[10];
 CnfEventList[0] = ECNF_CONF_EVT_PARTY_ADDED;
 CnfEventList[1] = ECNF_CONF_EVT_PARTY_REMOVED;
 CnfEventList[2] = ECNF_CONF_EVT_ACTIVE_TALKER;

 CNF_EVENT_INFO CnfEventInfo;
 CnfEventInfo.unEventCount = 3;
 CnfEventInfo.punEventList = CnfEventList;

 if (cnf_EnableEvents(CnfDevice, &CnfEventInfo, (void *)1) == CNF_ERROR)
 {
 cout << "cnf_EnableEvents failed !!" << endl;
ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_EnableEvents_Event();
 }
 }

 /**
 * GET CONFERENCE DEVICE ATTRIBUTES. FAILURE CASE.
 ***/
 CNF_ATTR CnfAttrList[MAX_CNF_CONF_ATTR];
 CNF_ATTR_INFO CnfAttrInfo;

 CnfAttrList[0].unAttribute = ECNF_BRD_ATTR_NOTIFY_INTERVAL;
 CnfAttrInfo.unAttrCount = 1;
 CnfAttrInfo.pAttrList = CnfAttrList;

 if (cnf_GetAttributes(CnfDevice, &CnfAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetAttributes() on " << ATDV_NAMEP(CnfDevice) << " failed!! - Expected error

156 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

due to invalid attribute" << endl;
 ProcessErrorInformation();
 }

 /**
 * GET CONFERENCE DEVICE ATTRIBUTES.
 ***/
 int nCnfAttr = CNF_CONF_ATTR_BASE;
 for (int i = 0; i < MAX_CNF_CONF_ATTR; i++, nCnfAttr++)
 {
 CnfAttrList[i].unAttribute = nCnfAttr;
 }

 CnfAttrInfo.unAttrCount = MAX_CNF_CONF_ATTR;
 CnfAttrInfo.pAttrList = CnfAttrList;

 if (cnf_GetAttributes(CnfDevice, &CnfAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetAttributes() on " << ATDV_NAMEP(CnfDevice) << " failed!!" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_GetAttributes_Event();
 }
 }

 /**
 * SET CONFERENCE DEVICE ATTRIBUTES.
 ***/
 CnfAttrList[0].unAttribute = ECNF_CONF_ATTR_TONE_CLAMPING;
CnfAttrList[0].unValue = ECNF_ATTR_STATE_ENABLED;
 CnfAttrList[1].unAttribute = ECNF_CONF_ATTR_DTMF_MASK;
 CnfAttrList[1].unValue = ECNF_DTMF_MASK_OP_SET | ECNF_DTMF_DIGIT_1 | ECNF_DTMF_DIGIT_2 |
ECNF_DTMF_DIGIT_3 | ECNF_DTMF_DIGIT_4;
CnfAttrInfo.unAttrCount = 2;
CnfAttrInfo.pAttrList = CnfAttrList;

 ///
 // Lets set conference device attributes.
 if (cnf_SetAttributes(CnfDevice, &CnfAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_SetAttributes() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_SetAttributes_Event();
 }
 }

 /**
 * GET CONFERENCE DEVICE ATTRIBUTES.
 ***/
 nCnfAttr = CNF_CONF_ATTR_BASE;

Dialogic® Conferencing API Programming Guide and Library Reference 157

Supplementary Reference Information

 {
 for (int i = 0; i < MAX_CNF_CONF_ATTR; i++, nCnfAttr++)
 {
 CnfAttrList[i].unAttribute = nCnfAttr;
 }
 }

 CnfAttrInfo.unAttrCount = MAX_CNF_CONF_ATTR;
 CnfAttrInfo.pAttrList = CnfAttrList;

 if (cnf_GetAttributes(CnfDevice, &CnfAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetAttributes() on " << ATDV_NAMEP(CnfDevice) << " failed!!" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_GetAttributes_Event();
 }
 }

 /**
 * GET LIST OF PARTY'S ADDED TO A CONFERENCE.
 ***/
 if (cnf_GetPartyList(CnfDevice, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetPartyList() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_GetPartyList_Event();
 }
 }

 /**
 * OPEN A PARTY DEVICE.
 ***/
if ((PtyDevice = cnf_OpenParty(BrdDevice, NULL, NULL, NULL)) == CNF_ERROR)
{
cout << "cnf_OpenParty() - failed" << endl;
ProcessErrorInformation();
}
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_OpenParty_Event();
 }
 }

158 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 /**
 * GET PARTY DEVICE ATTRIBUTES.
 ***/
 CNF_ATTR PtyAttrList[MAX_CNF_PTY_ATTR];
 int nPtyAttr = CNF_PARTY_ATTR_BASE;

 {
 for (int i = 0; i < MAX_CNF_PTY_ATTR; i++, nPtyAttr++)
 {
 PtyAttrList[i].unAttribute = nPtyAttr;
 }
 }

 CNF_ATTR_INFO PtyAttrInfo;
 PtyAttrInfo.unAttrCount = MAX_CNF_PTY_ATTR;
 PtyAttrInfo.pAttrList = PtyAttrList;

 if (cnf_GetAttributes(PtyDevice, &PtyAttrInfo, NULL) == CNF_ERROR)

 {
 cout << "cnf_GetAttributes() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
 }
 else
 {

 Process_GetAttributes_Event();
 }
 }

 /**
 * SET PARTY DEVICE ATTRIBUTES.
 ***/
 PtyAttrList[0].unAttribute = ECNF_PARTY_ATTR_TARIFF_TONE;
 PtyAttrList[0].unValue = ECNF_ATTR_STATE_ENABLED;
 PtyAttrList[1].unAttribute = ECNF_PARTY_ATTR_COACH;
 PtyAttrList[1].unValue = ECNF_ATTR_STATE_ENABLED;

 PtyAttrInfo.unAttrCount = 2;
 PtyAttrInfo.pAttrList = PtyAttrList;

 if (cnf_SetAttributes(PtyDevice, &PtyAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_SetAttributes() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
 }
 else
 {
 Process_SetAttributes_Event();
 }
 }

 /**
 * ADD A PARTY TO A CONFERENCE.
 ***/

Dialogic® Conferencing API Programming Guide and Library Reference 159

Supplementary Reference Information

 CNF_PARTY_INFO PtyInfo;
 PtyInfo.unPartyCount = 1;
 PtyInfo.pPartyList = new SRL_DEVICE_HANDLE[1];
 PtyInfo.pPartyList[0] = PtyDevice;

 if (cnf_AddParty(CnfDevice, &PtyInfo, (void *)&CnfDevice) == CNF_ERROR)
 {
 cout << "cnf_AddParty() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 for (int i = 0; i < 3; i++)
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed" << endl;
 }
 else
 {
 Process_AddParty_Event();
 }
 }
 }

 /**
 * OPEN MULTIPLE PARTY DEVICES.
 ***/
 const unsigned int unPtyCount = 5;
 SRL_DEVICE_HANDLE * pPtyDeviceList = new SRL_DEVICE_HANDLE[unPtyCount];
{
 for (unsigned int i = 0; i < unPtyCount; i++)
 {
 if ((pPtyDeviceList[i] = cnf_OpenParty(BrdDevice, NULL, NULL, NULL)) == CNF_ERROR)
 {
 cout << "cnf_OpenParty() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_OpenParty_Event();
 }
 }
 }
 }

 bool bMultiPartyAdded = false;

 /**
 * ADD MULTIPLE PARTY'S TO A CONFERENCE.
 ***/
 PtyInfo.unPartyCount = unPtyCount;
 PtyInfo.pPartyList = pPtyDeviceList;

 if (cnf_AddParty(CnfDevice, &PtyInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_AddParty() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {

160 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 bMultiPartyAdded = true;
 int nPtyEvtCount = unPtyCount * 2 + 1;
 for (int i = 0; i < nPtyEvtCount; i++)
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_AddParty_Event();
 }
 }
 }

 /**
 * GET LIST OF PARTYIES ADDED TO A CONFERENCE.
 ***/
 if (cnf_GetPartyList(CnfDevice, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetPartyList() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_GetPartyList_Event();
 }
 }

 if (eType == ECNF_TYPE_MCX)
 {
 /**
 * SET LIST OF VISIBLE PARTY'S.
 ***/

 LB_FRAME_HANDLE RegionHandleList[10];
 size_t RegionHandleListSize = 10;
 if (lb_GetRegionList(g_LayoutHandle, RegionHandleList, &RegionHandleListSize) ==
 MTK_SUCCESS)
 {
 // We expect to get 4 regions in the list. Lets check...
 if (RegionHandleListSize != 4)
 {
 cout << "Received invalid region handle list size..." << endl;
 }
 else
 {
 CNF_VISIBLE_PARTY_INFO VisiblePartyInfoList[4];

 for (int i = 0; i < RegionHandleListSize; i++)
 {
 VisiblePartyInfoList[i].PartyHandle = pPtyDeviceList[i];
 VisiblePartyInfoList[i].RegionHandle = RegionHandleList[i];
 }

 CNF_VISIBLE_PARTY_LIST VisiblePartyInfo;
 VisiblePartyInfo.unCount = 4;
 VisiblePartyInfo.pPartyList = VisiblePartyInfoList;

 if (cnf_SetVisiblePartyList(CnfDevice, &VisiblePartyInfo, NULL) == CNF_ERROR)
 {

Dialogic® Conferencing API Programming Guide and Library Reference 161

Supplementary Reference Information

 cout << "cnf_SetVisiblePartyList() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_SetVisiblePartyList_Event();
 }
 }
 }
 }
 else
 {
 cout << "lb_GetRegionList() - failed" << endl;
 }

 /**
 * GET LIST OF VISIBLE PARTY'S.
 ***/
 if (cnf_GetVisiblePartyList(CnfDevice, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetVisiblePartyList() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_GetVisiblePartyList_Event();
 }
 }
 }

 /**
 * GET PARTY DEVICE ATTRIBUTES.
 ***/

 nPtyAttr = CNF_PARTY_ATTR_BASE;
 {
 for (int i = 0; i < MAX_CNF_PTY_ATTR; i++, nPtyAttr++)
 {
 PtyAttrList[i].unAttribute = nPtyAttr;
 }
 }

 PtyAttrInfo.unAttrCount = MAX_CNF_PTY_ATTR;
 PtyAttrInfo.pAttrList = PtyAttrList;

 if (cnf_GetAttributes(PtyDevice, &PtyAttrInfo, NULL) == CNF_ERROR)

 {
 cout << "cnf_GetAttributes() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {

162 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
 }
 else
 {
 Process_GetAttributes_Event();
 }
 }
 /**
 * SET PARTY DEVICE ATTRIBUTES.
 ***/

 PtyAttrList[0].unAttribute = ECNF_PARTY_ATTR_TARIFF_TONE;
 PtyAttrList[0].unValue = ECNF_ATTR_STATE_DISABLED;
 PtyAttrList[1].unAttribute = ECNF_PARTY_ATTR_COACH;
 PtyAttrList[1].unValue = ECNF_ATTR_STATE_DISABLED;

 PtyAttrInfo.unAttrCount = 2;
 PtyAttrInfo.pAttrList = PtyAttrList;

 if (cnf_SetAttributes(PtyDevice, &PtyAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_SetAttributes() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
 }
 else
 {
 Process_SetAttributes_Event();
 }
 }

 /**
 * GET PARTY DEVICE ATTRIBUTES.
 ***/

 nPtyAttr = CNF_PARTY_ATTR_BASE;

 {
 for (int i = 0; i < MAX_CNF_PTY_ATTR; i++, nPtyAttr++)
 {
 PtyAttrList[i].unAttribute = nPtyAttr;
 }
 }

 PtyAttrInfo.unAttrCount = MAX_CNF_PTY_ATTR;
 PtyAttrInfo.pAttrList = PtyAttrList;

 if (cnf_GetAttributes(PtyDevice, &PtyAttrInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_GetAttributes() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
 }
 else
 {
 Process_GetAttributes_Event();
 }

Dialogic® Conferencing API Programming Guide and Library Reference 163

Supplementary Reference Information

 }

 /**
 * REMOVE PARTY FROM A CONFERENCE.
 *
 * NOTE: SINCE WE HAVE ENABLED THE PARTY REMOVED EVENT ON BOTH THE BOARD AND
 * CONFERENCE DEVICES, WE SHOULD EXPECT TO GET THE CNFEV_PARTY_REMOVED
 * NOTIFICATION EVENT ON BOTH THE BOARD AND CONFERENCE DEVICE HANDLES,
 * IN ADDITION TO THE CNFEV_REMOVE_PARTY TERMINATION EVENT.
 ***/
if (cnf_RemoveParty(CnfDevice, &PtyInfo, NULL) == CNF_ERROR)
 {
 cout << "cnf_RemoveParty() - failed" << endl;
 ProcessErrorInformation();
 }
 else
 {
 for (int i = 0; i < 3; i++)
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_RemoveParty_Event();
 }
 }
 }

 /**
 * CLOSE MULTIPLE PARTY DEVICE.
 ***/
{
 for (unsigned int i = 0; i < unPtyCount; i++)
 {
 if (cnf_CloseParty(pPtyDeviceList[i], NULL) == CNF_ERROR)
 {
 cout << "cnf_CloseParty() - failed" << endl << endl;
 ProcessErrorInformation();
 }
 else
 {
 cout << "cnf_CloseParty() - successful" << endl << endl;
 if (bMultiPartyAdded == true)
 {
 for (int i = 0; i < 2; i++)
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_RemoveParty_Event();
 }
 }
 }
 }
 }
 }

 /**
 * DISABLE CONFERENCE DEVICE EVENTS.

164 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 ***/

 if (cnf_DisableEvents(CnfDevice, &CnfEventInfo, (void *)1) == CNF_ERROR)
 {
 cout << "cnf_DisableEvents failed !!" << endl;
ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
 }
 else
 {
 Process_DisableEvents_Event();
 }
 }

 /**
 * CLOSE A CONFERENCE DEVICE.
 ***/
 if (cnf_CloseConference(CnfDevice, NULL) == CNF_ERROR)
{
 cout << "cnf_CloseConference() for " << ATDV_NAMEP(CnfDevice) << " FAILED" << endl;
 cout << "\tError - " << ATDV_LASTERR(CnfDevice) << endl;
}
 else
 {
 for (int i = 0; i < 1; i++)
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl << endl;
 }
 else
 {
 Process_Board_Event();
 }
 }

 cout << "cnf_CloseConference() - successful" << endl << endl;
 }

 /**
 * CLOSE A PARTY DEVICE.
 ***/
 if (cnf_CloseParty(PtyDevice, NULL) == CNF_ERROR)
{
cout << "cnf_CloseParty failed !!" << endl << endl;
ProcessErrorInformation();
}
 else
 {
 cout << "cnf_CloseParty() - successful !!" << endl << endl;
 }

 /**
 * DISABLE BOARD DEVICE EVENTS.
 ***/
 unsigned int BrdDisableEventList[10];
 BrdDisableEventList[0] = ECNF_BRD_EVT_CONF_OPENED;
 BrdDisableEventList[1] = ECNF_BRD_EVT_CONF_CLOSED;
 BrdDisableEventList[2] = ECNF_BRD_EVT_ACTIVE_TALKER;
 BrdDisableEventList[3] = ECNF_BRD_EVT_PARTY_ADDED;
 BrdDisableEventList[4] = ECNF_BRD_EVT_PARTY_REMOVED;

Dialogic® Conferencing API Programming Guide and Library Reference 165

Supplementary Reference Information

 BrdDisableEventList[5] = ECNF_CONF_ATTR_TONE_CLAMPING;

 CNF_EVENT_INFO BrdDisableEventInfo;
 BrdDisableEventInfo.unEventCount = 5;
 BrdDisableEventInfo.punEventList = &BrdDisableEventList[0];

 if (cnf_DisableEvents(BrdDevice, &BrdDisableEventInfo, (void *)1) == CNF_ERROR)
 {
 cout << "cnf_DisableEvents failed !!" << endl;
ProcessErrorInformation();
 }
 else
 {
 if (sr_waitevt(10000) == -1)
 {
 cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
 }
 else
 {
 Process_DisableEvents_Event();
 }
 }

 /**
 * CLOSE THE BOARD DEVICE.
 ***/
 if (cnf_Close(BrdDevice, NULL) == CNF_ERROR)
 {
 cout << "cnf_Close failed !!" << endl << endl;
ProcessErrorInformation();

 }
 else
 {
 cout << "cnf_Close() - Successful" << endl << endl;
 }

 return 0;
}

/**
 * @fn Process_DisableEvents_Event
 */
void Process_DisableEvents_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_EVENT_INFO pInfo = (PCNF_EVENT_INFO) Data.pEventData;

 switch (Data.EventType)
 {
 case CNFEV_DISABLE_EVENT:
 {
 cout << "cnf_DisableEvents on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
 endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event Count: " << pInfo->unEventCount << endl;
 for (int i = 0; i < pInfo->unEventCount; i++)
 {
 cout << "\t Event: " << pInfo->punEventList[i] << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

166 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 case CNFEV_DISABLE_EVENT_FAIL:
 {
 cout << "cnf_DisableEvents() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
 endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;

 cout << "\t Event Count: " << pInfo->unEventCount << endl;
 for (int i = 0; i < pInfo->unEventCount; i++)
 {
 cout << "\t Event: " << pInfo->punEventList[i] << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 default:
 {
 cout << "Process_DisableEvents_Event - UNEXPECTED EVENT" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;
 };
}

/**
 * @fn ProcessEnableEventsEvent
 */
void Process_EnableEvents_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_EVENT_INFO pInfo = (PCNF_EVENT_INFO) Data.pEventData;

 if (Data.EventType == CNFEV_ENABLE_EVENT)
 {
 cout << "cnf_EnableEvents on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" << endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\t Event Data: " << Data.pEventData << endl;
 if (pInfo)
 {
 cout << "\t Event Count: " << pInfo->unEventCount << endl;
 for (int i = 0; i < pInfo->unEventCount; i++)
 {
 cout << "\t Event: " << pInfo->punEventList[i] << endl;
 }
 }
 cout << "\tEvent Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 else
 {
 cout << "cnf_EnableEvents on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" << endl;
 cout << "\tEvent: " << Data.EventType << endl;
 cout << "\t Event Count: " << pInfo->unEventCount << endl;
 for (int i = 0; i < pInfo->unEventCount; i++)
 {
 cout << "\t Event: " << pInfo->punEventList[i] << endl;
 }
 cout << endl;

Dialogic® Conferencing API Programming Guide and Library Reference 167

Supplementary Reference Information

 }
}

/**
 * @fn srl_GetMetaEvent
 */
void srl_GetMetaEvent(PSRL_METAEVENT a_pMetaEvent)
{
 a_pMetaEvent->EventType = sr_getevttype();
a_pMetaEvent->EventDevice = sr_getevtdev();
a_pMetaEvent->EventDataLength = sr_getevtlen();
a_pMetaEvent->pEventData = sr_getevtdatap();
a_pMetaEvent->pEventUserInfo = sr_getUserContext();
}

/**
 * @fn ProcessErrorInfo
 */
void ProcessErrorInformation()
{
PCNF_ERROR_INFO pErrorInfo = new CNF_ERROR_INFO;
 if (cnf_GetErrorInfo(pErrorInfo) == CNF_ERROR)
 {
 cout << "cnf_GetErrorInfo() FAILED!!" << endl;
 }
 else
 {
 cout << "\t Error Code: " << pErrorInfo->unErrorCode << endl;
 cout << "\t Error String: " << pErrorInfo->szErrorString << endl;
 cout << "\tAdditional Info: " << pErrorInfo->szAdditionalInfo << endl << endl;
 }
}

/**
 * @fn Process_AddParty_Event
 */
void Process_AddParty_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 switch (Data.EventType)
 {
 case CNFEV_ADD_PARTY:
 {
 PCNF_PARTY_INFO pInfo = (PCNF_PARTY_INFO) Data.pEventData;
 cout << "cnf_AddParty() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" << endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Party Count: " << pInfo->unPartyCount << endl;
 for (int i = 0; i < pInfo->unPartyCount; i++)
 {
 cout << "\t Party Handle: " << pInfo->pPartyList[i] << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 case CNFEV_PARTY_ADDED:
 {
 PCNF_PARTY_ADDED_EVENT_INFO pInfo = (PCNF_PARTY_ADDED_EVENT_INFO) Data.pEventData;
 cout << "Received PARTY ADDED notification event..." << endl;
 cout << "\tConference Handle: " << pInfo->ConfHandle << endl;
 cout << "\t Conference Name: " << pInfo->szConfName << endl;
 cout << "\t Party Handle: " << pInfo->PartyHandle << endl;
 cout << "\t Party Name: " << pInfo->szPartyName << endl;

168 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 cout << "\t Event Device: " << Data.EventDevice << endl << endl;
 }
 break;

 case CNFEV_ADD_PARTY_FAIL:
 {
 PCNF_PARTY_INFO pInfo = (PCNF_PARTY_INFO) Data.pEventData;
 cout << "cnf_AddParty() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" << endl;
 cout << "\tError - " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "\t Party Count: " << pInfo->unPartyCount << endl;
 for (int i = 0; i < pInfo->unPartyCount; i++)
 {
 cout << "\t Party Handle: " << pInfo->pPartyList[i] << endl;
 }
 cout << endl;
 }
 break;

 default:
 {
 cout << "Process_AddParty_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 }
 break;
 }
}

void Process_Board_Event()
{
 SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 if (Data.EventType == CNFEV_CONF_CLOSED)
 {
 PCNF_CONF_CLOSED_EVENT_INFO pInfo = (PCNF_CONF_CLOSED_EVENT_INFO) Data.pEventData;
 cout << "Received CONFERENCE CLOSED notification event..." << endl;
 cout << "\t Conference Name: " << pInfo->szConfName << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl << endl;
 }
 else
 {
 //ProcessRemovePartyEvent();
 }
}

void Process_GetActiveTalkerList_Event()
{
 SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_ACTIVE_TALKER_INFO pInfo = (PCNF_ACTIVE_TALKER_INFO) Data.pEventData;

 if (Data.EventType == CNFEV_GET_ACTIVE_TALKER)
 {
 cout << "cnf_GetActiveTalkerList() - Successful" << endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 if (pInfo)
 {
 cout << "\t Event Data: " << pInfo << endl;
 cout << "\t Party Count: " << pInfo->unPartyCount << endl;
 for (int i = 0; i < pInfo->unPartyCount; i++)
 {
 cout << "\t Party Info: Party[" << i << "] - Handle[" << pInfo->pPartyList[i] <<
"] - Device Name[" << ATDV_NAMEP(pInfo->pPartyList[i]) << "]" << endl;

Dialogic® Conferencing API Programming Guide and Library Reference 169

Supplementary Reference Information

 }
 }
 else
 {
 cout << "\t INVALID PINFO POINTER..." << endl;
 }
 cout << "\tEvent Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 else
 {
 cout << "cnf_GetActiveTalkerList() - Failed" << endl;
 cout << "\tEvent: " << Data.EventType << endl << endl;
 }
}

/**
 * @fn Process_GetAttributes_Event
 */
void Process_GetAttributes_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_ATTR_INFO pInfo = (PCNF_ATTR_INFO) Data.pEventData;

switch (Data.EventType)
{
case CNFEV_GET_ATTRIBUTE:
{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL " << endl;
 cout << "\tReceived following event information:" << endl;
 if (pInfo)
 {
 cout << "\t Attribute Count: " << pInfo->unAttrCount << endl;
 for (int i = 0; i < pInfo->unAttrCount; i++)
 {
 cout << "\t Attribute Info: Attribute[" << pInfo->pAttrList[i].unAttribute << "]
Value[0x" << hex << pInfo->pAttrList[i].unValue << dec << "]" << endl;
 }
 }
 else
 {
 cout << "\t INVALID DATA POINTER..." << endl;
 }
 cout << "\tEvent Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
}
break;

case CNFEV_GET_ATTRIBUTE_FAIL:
{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" << endl;
 cout << "\tError - " << ATDV_LASTERR(Data.EventDevice) << endl;

 if (pInfo)
 {
 cout << "\t Attribute Count: " << pInfo->unAttrCount << endl;
 for (int i = 0; i < pInfo->unAttrCount; i++)
 {
 cout << "\t Attribute Info: Attribute[" << pInfo->pAttrList[i].unAttribute << "]
Value[" << pInfo->pAttrList[i].unValue << "]" << endl;
 }
 }
 else

170 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 {
 cout << "\t INVALID DATA POINTER..." << endl;
 }
}
break;

default:
{
cout << "Process_GetAttributes_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
}
break;
}
}

/**
 * @fn Process_GetDeviceCount_Event
 */
void Process_GetDeviceCount_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_DEVICE_COUNT_INFO pInfo = (PCNF_DEVICE_COUNT_INFO) Data.pEventData;

 switch (Data.EventType)
 {
 case CNFEV_GET_DEVICE_COUNT:
 {
 cout << "cnf_GetDeviceCount() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL "
<< endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event Data: " << Data.pEventData << endl;
 cout << "\t Free Party Devices: " << pInfo->unFreePartyCount << endl;
 cout << "\tFree Conference Devices: " << pInfo->unFreeConfCount << endl;
 cout << "\t Max Party Devices: " << pInfo->unMaxPartyCount << endl;
 cout << "\t Max Conference Devices: " << pInfo->unMaxConfCount << endl;
 cout << "\t Event Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 case CNFEV_GET_DEVICE_COUNT_FAIL:
 {
 cout << "cnf_GetDeviceCount() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
 cout << "\tError - " << ATDV_LASTERR(Data.EventDevice) << endl;
 }
 break;

 default:
 {
 cout << "Process_GetDeviceCount_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 }
 break;
 }
}

/**
 * @fn Process_GetDTMFControl_Event
 */

Dialogic® Conferencing API Programming Guide and Library Reference 171

Supplementary Reference Information

void Process_GetDTMFControl_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_DTMF_CONTROL_INFO pInfo = (PCNF_DTMF_CONTROL_INFO) Data.pEventData;

 switch (Data.EventType)
 {
 case CNFEV_GET_DTMF_CONTROL:
 cout << "cnf_GetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\t Event Data: " << Data.pEventData << endl;
 cout << "\t DTMF Control State: " << pInfo->eDTMFControlState << endl;
 cout << "\t Volume Up Digit: " << pInfo->eVolumeUpDigit << endl;
 cout << "\t Volume Down Digit: " << pInfo->eVolumeDownDigit << endl;
 cout << "\t Volume Reset Digit: " << pInfo->eVolumeResetDigit << endl;
 cout << "\t Event Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 break;

 case CNFEV_GET_DTMF_CONTROL_FAIL:
 cout << "cnf_GetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 break;

 default:
 cout << "Process_GetDTMFControl_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 break;
 }
}

/**
 * @fn Process_GetPartyList_Event
 */
void Process_GetPartyList_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);
 PCNF_PARTY_INFO pInfo = (PCNF_PARTY_INFO) Data.pEventData;

 if (Data.EventType == CNFEV_GET_PARTY_LIST)
 {
 cout << "cnf_GetPartyList() - Successful" << endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 if (pInfo)
 {
 cout << "\t Event Data: " << pInfo << endl;
 cout << "\t Party Count: " << pInfo->unPartyCount << endl;
 for (int i = 0; i < pInfo->unPartyCount; i++)
 {
 cout << "\t Party Info: Party[" << i << "] - Handle[" << pInfo->pPartyList[i] <<
"] - Device Name[" << ATDV_NAMEP(pInfo->pPartyList[i]) << "]" << endl;
 }
 }
 else
 {
 cout << "\t INVALID PINFO POINTER..." << endl;

172 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 }
 cout << "\tEvent Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 else
 {
 cout << "cnf_GetPartyList() - Failed" << endl;
 cout << "\tEvent: " << Data.EventType << endl;
 }
}

/**
 * @fn ProcessMetaEvent
 */
void ProcessMetaEvent(char * a_szString)
{
SRL_METAEVENT MetaData;
srl_GetMetaEvent(&MetaData);
 cout << a_szString << endl;
cout << "\tReceived following event information:" << endl;
cout << "\t Event: " << MetaData.EventType << endl;
cout << "\t Event Data: " << MetaData.pEventData << endl;
cout << "\tEvent Data Length: " << MetaData.EventDataLength << endl;
cout << "\t Event Device: " << MetaData.EventDevice << endl;
cout << "\t Event User Info: " << MetaData.pEventUserInfo << endl << endl;
}

/**
 * @fn Process_OpenBoard_Event
 */
void Process_OpenBoard_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 switch (Data.EventType)
 {
 case CNFEV_OPEN:
 {
 cout << "cnf_Open() - Successful" << endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event Data: " << Data.pEventData << endl;
 cout << "\tEvent Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 default:
 {
 cout << "cnf_Open() - Failed" << endl;
 cout << "\tEvent: " << Data.EventType << endl;
 }
 break;
 };
}

void Process_OpenConference_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 switch (Data.EventType)
 {
 case CNFEV_OPEN_CONF:

Dialogic® Conferencing API Programming Guide and Library Reference 173

Supplementary Reference Information

 {
 PCNF_OPEN_CONF_RESULT pInfo = (PCNF_OPEN_CONF_RESULT) Data.pEventData;
 cout << "cnf_OpenConference() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL "
<< endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\tConference Device: " << pInfo->ConfHandle << endl;
 cout << "\t Conference Name: " << pInfo->szConfName << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 case CNFEV_CONF_OPENED:
 {
 PCNF_CONF_OPENED_EVENT_INFO pInfo = (PCNF_CONF_OPENED_EVENT_INFO) Data.pEventData;
 cout << "Received CONFERENCE OPENED notification event..." << endl;
 cout << "\tConference Handle: " << pInfo->ConfHandle << endl;
 cout << "\t Conference Name: " << pInfo->szConfName << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl << endl;
 }
 break;

 case CNFEV_OPEN_CONF_FAIL:
 {
 PCNF_OPEN_CONF_RESULT pInfo = (PCNF_OPEN_CONF_RESULT) Data.pEventData;
 cout << "cnf_OpenConference() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED " <<
endl;
 cout << "\tConference Device: " << pInfo->ConfHandle << endl << endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 cnf_CloseConference(pInfo->ConfHandle, NULL);
 }
 break;

 default:
 {
 cout << "Process_OpenConference_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 }
 break;
 };
}

void Process_OpenParty_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 switch(Data.EventType)
 {
 case CNFEV_OPEN_PARTY:
 {
 PCNF_OPEN_PARTY_RESULT pInfo = (PCNF_OPEN_PARTY_RESULT) Data.pEventData;
 cout << "cnf_OpenParty() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL " <<
endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Party Device: " << pInfo->PartyHandle << endl;
 cout << "\t Party Name: " << pInfo->szPartyName << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl;
 cout << "\tEvent User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 case CNFEV_OPEN_PARTY_FAIL:

174 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 {
 PCNF_OPEN_PARTY_RESULT pInfo = (PCNF_OPEN_PARTY_RESULT) Data.pEventData;
 cout << "cnf_OpenParty() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED " << endl;
 cout << "\tParty Device: " << pInfo->PartyHandle << endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 cnf_CloseParty(pInfo->PartyHandle, NULL);
 }
 break;

 default:
 {
 cout << "Process_OpenParty_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 }
 break;
 };
}

/**
 * @fn Process_RemoveParty_Event
 */
void Process_RemoveParty_Event()
{
SRL_METAEVENT Data;

srl_GetMetaEvent(&Data);

 switch (Data.EventType)
 {
 case CNFEV_REMOVE_PARTY:
 {
 PCNF_PARTY_INFO pInfo = (PCNF_PARTY_INFO) Data.pEventData;
 cout << "cnf_RemoveParty() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Party Count: " << pInfo->unPartyCount << endl;
 for (int i = 0; i < pInfo->unPartyCount; i++)
 {
 cout << "\t Party Handle: " << pInfo->pPartyList[i] << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;

 }

 break;

 case CNFEV_PARTY_REMOVED:
 {
 PCNF_PARTY_REMOVED_EVENT_INFO pInfo = (PCNF_PARTY_REMOVED_EVENT_INFO) Data.pEventData;
 cout << "Received PARTY REMOVED notification event..." << endl;
 cout << "\tConference Handle: " << pInfo->ConfHandle << endl;
 cout << "\t Conference Name: " << pInfo->szConfName << endl;
 cout << "\t Party Handle: " << pInfo->PartyHandle << endl;
 cout << "\t Party Name: " << pInfo->szPartyName << endl;
 cout << "\t Event Device: " << Data.EventDevice << endl << endl;
 }
 break;

 default:
 {
 PCNF_PARTY_INFO pInfo = (PCNF_PARTY_INFO) Data.pEventData;
 cout << "cnf_RemoveParty() - Failed" << endl;
 cout << "\tEvent: " << Data.EventType << endl;

Dialogic® Conferencing API Programming Guide and Library Reference 175

Supplementary Reference Information

 cout << "\t Party Count: " << pInfo->unPartyCount << endl;
 for (int i = 0; i < pInfo->unPartyCount; i++)
 {
 cout << "\t Party Handle: " << pInfo->pPartyList[i] << endl;
 }
 cout << endl;
 }
 break;
 }
}

/**
 * @fn Process_ResetDevices_Event
 */
void Process_ResetDevices_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 switch (Data.EventType)
 {
 case CNFEV_RESET_DEVICES:
 {
 cout << "cnf_ResetDevices() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL " <<
endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event Data: " << Data.pEventData << endl;
 cout << "\tEvent Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 case CNFEV_RESET_DEVICES_FAIL:
 {
 cout << "cnf_ResetDevices() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED " <<
endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 }
 break;

 default:
 {
 cout << "Process_ResetDevices_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 }
 break;
 };
}

/**
 * @fn Process_SetAttributes_Event
 */
void Process_SetAttributes_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_ATTR_INFO pInfo = (PCNF_ATTR_INFO) Data.pEventData;

 switch (Data.EventType)
 {
 case CNFEV_SET_ATTRIBUTE:

176 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 {
 cout << "cnf_SetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
 cout << "\tReceived following event information:" << endl;
 if (pInfo)
 {
 cout << "\t Attribute Count: " << pInfo->unAttrCount << endl;
 PCNF_ATTR pAttrList = pInfo->pAttrList;
 if (pAttrList)
 {
 for (int i = 0; i < pInfo->unAttrCount; i++)
 {
 cout << "\t Attribute Info: Attribute[" << pAttrList[i].unAttribute << "]
Value[0x" << hex << pAttrList[i].unValue << dec << "]" << endl;
 }
 }
 else
 {
 cout << "\t INVALID ATTRIBUTE LIST POINTER..." << endl;
 }

 }
 else
 {
 cout << "\t INVALID PINFO POINTER..." << endl;
 }
 cout << "\tEvent Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 }
 break;

 case CNFEV_SET_ATTRIBUTE_FAIL:
 {
 cout << "cnf_SetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
 if (pInfo)
 {
 cout << "\t Attribute Count: " << pInfo->unAttrCount << endl;
 PCNF_ATTR pAttrList = pInfo->pAttrList;

 if (pAttrList)
 {
 for (int i = 0; i < pInfo->unAttrCount; i++)
 {
 cout << "\t Attribute Info: Attribute[" << pAttrList[i].unAttribute << "]
Value[" << pAttrList[i].unValue << "]" << endl;
 }
 }
 else
 {
 cout << "\t INVALID ATTRIBUTE LIST POINTER..." << endl;
 }
 }
 else
 {
 cout << "\t INVALID PINFO POINTER..." << endl;
 }
 }
 break;

 default:
 {

Dialogic® Conferencing API Programming Guide and Library Reference 177

Supplementary Reference Information

 cout << "Process_SetAttributes_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 }
 break;
 };
}

/**
 * @fn Process_SetDTMFControl_Event
 */
void Process_SetDTMFControl_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 switch(Data.EventType)
 {
 case CNFEV_SET_DTMF_CONTROL:
 cout << "cnf_SetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Event Data: " << Data.pEventData << endl;
 cout << "\t Event Data Length: " << Data.EventDataLength << endl;
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 break;

 case CNFEV_SET_DTMF_CONTROL_FAIL:
 cout << "cnf_SetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 break;

 default:

 cout << "Process_SetDTMFControl_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 break;
 }
}

/**
 * @fn Process_GetVideoLayout_Event
 */
void Process_GetVideoLayout_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_VIDEO_LAYOUT_INFO pInfo = (PCNF_VIDEO_LAYOUT_INFO) Data.pEventData;

 switch(Data.EventType)
 {
 case CNFEV_GET_VIDEO_LAYOUT:
 cout << "cnf_GetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
 cout << "\tReceived following event information:" << endl;
 if (pInfo)
 {
 cout << "\t Layout Handle: " << pInfo->LayoutHandle << endl;
 cout << "\t Layout Size: " << pInfo->eLayoutSize << endl;
 g_LayoutHandle = pInfo->LayoutHandle;
 eLB_LAYOUT_TYPE eType;

178 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 if (lb_GetType(pInfo->LayoutHandle, &eType) == MTK_SUCCESS)
 {
 cout << "\t Layout Type: " << eType << endl;
 }
 }
 else
 {
 cout << "\tInvalid pINFO pointer." << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 break;

 case CNFEV_GET_VIDEO_LAYOUT_FAIL:
 cout << "cnf_GetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 break;

 default:
 cout << "Process_GetVideoLayout_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 break;
 }
}

/**
 * @fn Process_SetVideoLayout_Event
 */
void Process_SetVideoLayout_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_VIDEO_LAYOUT_INFO pInfo = (PCNF_VIDEO_LAYOUT_INFO) Data.pEventData;

 switch(Data.EventType)
 {
 case CNFEV_SET_VIDEO_LAYOUT:
 cout << "cnf_SetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
 cout << "\tReceived following event information:" << endl;
 cout << "\t Layout Handle: " << pInfo->LayoutHandle << endl;
 cout << "\t Layout Size: " << pInfo->eLayoutSize << endl;
 g_LayoutHandle = pInfo->LayoutHandle;
 eLB_LAYOUT_TYPE eType;
 if (lb_GetType(pInfo->LayoutHandle, &eType) == MTK_SUCCESS)
 {
 cout << "\t Layout Type: " << eType << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 break;

 case CNFEV_SET_VIDEO_LAYOUT_FAIL:
 cout << "cnf_SetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 break;

 default:
 cout << "Process_SetVideoLayout_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;

Dialogic® Conferencing API Programming Guide and Library Reference 179

Supplementary Reference Information

 break;
 }
}

/**
 * @fn Process_GetVisiblePartyList_Event
 */
void Process_GetVisiblePartyList_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_VISIBLE_PARTY_LIST pInfo = (PCNF_VISIBLE_PARTY_LIST) Data.pEventData;

 switch(Data.EventType)
 {
 case CNFEV_GET_VISIBLE_PARTY_LIST:
 cout << "cnf_GetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << "
SUCCESSFUL" << endl;
 cout << "\tReceived following event information:" << endl;
 if (pInfo)
 {
 for (unsigned int i = 0; i < pInfo->unCount; i++)
 {
 PCNF_VISIBLE_PARTY_INFO pVPI = &(pInfo->pPartyList[i]);
 cout << "\tVisiblePartyList[" << i << "] --- Party Handle: " << pVPI->PartyHandle
<< " Region Handle: " << pVPI->RegionHandle << endl;
 }
 }
 else
 {
 cout << "Received invalid data pointer..." << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 break;

 case CNFEV_GET_VISIBLE_PARTY_LIST_FAIL:
 cout << "cnf_GetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED"
<< endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 break;

 default:
 cout << "Process_GetVisiblePartyList_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 break;
 }
}

/**
 * @fn Process_SetVisiblePartyList_Event
 */
void Process_SetVisiblePartyList_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

 PCNF_VISIBLE_PARTY_LIST pInfo = (PCNF_VISIBLE_PARTY_LIST) Data.pEventData;

 switch(Data.EventType)
 {
 case CNFEV_SET_VISIBLE_PARTY_LIST:
 cout << "cnf_SetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << "

180 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

SUCCESSFUL" << endl;
 cout << "\tReceived following event information:" << endl;
 if (pInfo)
 {
 for (unsigned int i = 0; i < pInfo->unCount; i++)
 {
 PCNF_VISIBLE_PARTY_INFO pVPI = &(pInfo->pPartyList[i]);
 cout << "\tVisiblePartyList[" << i << "] --- Party Handle: " << pVPI->PartyHandle
<< " Region Handle: " << pVPI->RegionHandle << endl;
 }
 }
 else
 {
 cout << "Received invalid data pointer..." << endl;
 }
 cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
 break;

 case CNFEV_SET_VISIBLE_PARTY_LIST_FAIL:
 cout << "cnf_SetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED"
<< endl;
 cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
 cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
 break;

 default:
 cout << "Process_SetVisiblePartyList_Event() - Unexpected event" << endl;
 cout << "\t Event: " << Data.EventType << endl;
 cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
 break;
 }
}

Figure 2. Conferencing (CNF) Example Code Output

Conferencing (CNF) Example Code
===

Board Name is: cnfB1

cnf_Open failure!! : Expected failure due to the following Error Code: 4 Error String: Invalid
parameter in function call

Additional Info: Invalid parameter - a_szBrdName is NULL

cnf_Open failure!! : Expected failure due to the following Error Code: 3Error String: Invalid
device name provided by user

Additional Info: Invalid device name [blah_blah] specified

cnf_Open() - Successful

Received following event information:
 Event Data: 0
 Event Data Length: 10
 Event Device: 1
 Event User Info: 0

cnf_GetDeviceCount() on cnfB1 SUCCESSFUL
Received following event information:
 Event Data: 0x8723e68
 Free Party Devices: 60
Free Conference Devices: 30
 Max Party Devices: 60
 Max Conference Devices: 30

Dialogic® Conferencing API Programming Guide and Library Reference 181

Supplementary Reference Information

 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

cnf_ResetDevices() on cnfB1 SUCCESSFUL
Received following event information:
 Event Data: 0
Event Data Length: 10
 Event User Info: 0

cnf_GetDeviceCount() on cnfB1 SUCCESSFUL
Received following event information:
 Event Data: 0x873a1f8
 Free Party Devices: 60
Free Conference Devices: 30
 Max Party Devices: 60
 Max Conference Devices: 30
 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

cnf_GetDTMFControl() on cnfB1 SUCCESSFUL
Received following event information:
 Event: 49164
 Event Data: 0x873a188
 DTMF Control State: 1
 Volume Up Digit: 2048
 Volume Down Digit: 1024
 Volume Reset Digit: 16
 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

cnf_SetDTMFControl() on cnfB1 SUCCESSFUL
Received following event information:
 Event Data: 0
 Event Data Length: 10
 Event User Info: 0

cnf_GetDTMFControl() on cnfB1 SUCCESSFUL
Received following event information:
 Event: 49164
 Event Data: 0x873a188
 DTMF Control State: 1
 Volume Up Digit: 2048
 Volume Down Digit: 1024
 Volume Reset Digit: 16
 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

cnf_EnableEvents on cnfB1 SUCCESSFUL
Received following event information:
 Event: 49162
 Event Data: 0x873a288
 Event Count: 5
 Event: 301
 Event: 302
 Event: 305
 Event: 303
 Event: 304
Event Data Length: 32
 Event Device: 1
 Event User Info: 0x1

cnf_GetAttributes() on cnfB1 failed!! -

182 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

Expected error due to invalid attribute Error Code: 5
 Error String: Invalid attribute provided by user
Additional Info: Attribute[102] not a valid device attribute

cnf_GetAttributes() on cnfB1 SUCCESSFUL
Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[1]

Value[0x1]
 Attribute Info: Attribute[2]

Value[0x1]
 Attribute Info: Attribute[3]

Value[0x7d0]
Event Data Length: 48
 Event User Info: 0

cnf_SetAttributes() on cnfB1 SUCCESSFUL
Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[1]

Value[0x1]
 Attribute Info: Attribute[3]

Value[0x7d0]
Event Data Length: 36
 Event User Info: 0

cnf_GetAttributes() on cnfB1 SUCCESSFUL
Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[1]

Value[0x1]
 Attribute Info: Attribute[2]

Value[0x1]
 Attribute Info: Attribute[3]

Value[0x7d0]

Event Data Length: 48
 Event User Info: 0

Received CONFERENCE OPENED notification event...
Conference Handle: 2
 Conference Name: cnfB1C1
 Event Device: 1

cnf_OpenConference() on cnfB1 SUCCESSFUL
Received following event information:
Conference Device: 2
 Conference Name: cnfB1C1
 Event Device: 1
 Event User Info: 0

cnf_EnableEvents on cnfB1C1 SUCCESSFUL
Received following event information:
 Event: 49162
 Event Data: 0x873bc00
 Event Count: 3
 Event: 401
 Event: 402

Dialogic® Conferencing API Programming Guide and Library Reference 183

Supplementary Reference Information

 Event: 404
Event Data Length: 24
 Event Device: 2
 Event User Info: 0x1

cnf_GetAttributes() on cnfB1C1 failed!! -

Expected error due to invalid attribute
 Error Code: 5
 Error String: Invalid attribute provided by user
Additional Info: Attribute[3] not a valid device attribute

cnf_GetAttributes() on cnfB1C1 SUCCESSFUL
Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[101]

Value[0x1]
 Attribute Info: Attribute[102]

Value[0x0]
 Attribute Info: Attribute[103]

Value[0x0]
Event Data Length: 48
 Event User Info: 0

cnf_SetAttributes() on cnfB1C1 SUCCESSFUL
Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[101]

Value[0x1]
 Attribute Info: Attribute[102]

Value[0x40000f]
Event Data Length: 36
 Event User Info: 0

cnf_GetAttributes() on cnfB1C1 SUCCESSFUL
Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[101]

Value[0x1]
 Attribute Info: Attribute[102]

Value[0x1007]
 Attribute Info: Attribute[103]

Value[0x0]
Event Data Length: 48
 Event User Info: 0
sr_waitevt failed - No error

cnf_OpenParty() on cnfB1 SUCCESSFUL
Received following event information:
 Party Device: 3
 Party Name: cnfB1P1
 Event Device: 1
Event User Info: 0

cnf_GetAttributes() on cnfB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 7
 Attribute Info: Attribute[201]

184 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

Value[0x0]
 Attribute Info: Attribute[202]

Value[0x0]
 Attribute Info: Attribute[203]

Value[0x0]
 Attribute Info: Attribute[204]

Value[0x0]
 Attribute Info: Attribute[205]

Value[0x0]
 Attribute Info: Attribute[206]

Value[0x0]
 Attribute Info: Attribute[207]

Value[0x0]
Event Data Length: 96
 Event User Info: 0

cnf_SetAttributes() on cnfB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[201]

Value[0x1]
 Attribute Info: Attribute[202]

Value[0x1]
Event Data Length: 36
 Event User Info: 0

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: cnfB1C1
 Party Handle: 3
 Party Name: cnfB1P1
 Event Device: 1

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: cnfB1C1
 Party Handle: 3
 Party Name: cnfB1P1
 Event Device: 2

cnf_AddParty() on cnfB1C1 SUCCESSFUL
Received following event information:
 Party Count: 1
 Party Handle: 3
 Event User Info: 0xbff2e6f8

cnf_OpenParty() on cnfB1 SUCCESSFUL
Received following event information:
 Party Device: 4
 Party Name: cnfB1P2
 Event Device: 1
Event User Info: 0

cnf_OpenParty() on cnfB1 SUCCESSFUL
Received following event information:
 Party Device: 5
 Party Name: cnfB1P3
 Event Device: 1

Dialogic® Conferencing API Programming Guide and Library Reference 185

Supplementary Reference Information

Event User Info: 0

cnf_OpenParty() on cnfB1 SUCCESSFUL
Received following event information:
 Party Device: 6
 Party Name: cnfB1P4
 Event Device: 1
Event User Info: 0

cnf_OpenParty() on cnfB1 SUCCESSFUL
Received following event information:
 Party Device: 7
 Party Name: cnfB1P5
 Event Device: 1
Event User Info: 0

cnf_OpenParty() on cnfB1 SUCCESSFUL
Received following event information:
 Party Device: 8
 Party Name: cnfB1P6
 Event Device: 1
Event User Info: 0

cnf_AddParty() - failed
 Error Code: 15
 Error String: Functionality currently not supported
Additional Info: Cannot add more than 1 party

cnf_GetPartyList() - Successful
Received following event information:
 Event: 49167
 Event Data: 0x8761bb8
 Party Count: 1
 Party Info: Party[0] - Handle[3]
- Device Name[cnfB1P1]
Event Data Length: 16
 Event Device: 2
 Event User Info: 0

cnf_GetAttributes() on cnfB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 7
 Attribute Info: Attribute[201]

Value[0x1]
 Attribute Info: Attribute[202]

Value[0x1]
 Attribute Info: Attribute[203]

Value[0x0]
 Attribute Info: Attribute[204]

Value[0x0]
 Attribute Info: Attribute[205]

Value[0x0]
 Attribute Info: Attribute[206]

Value[0x0]
 Attribute Info: Attribute[207]

Value[0x1]
Event Data Length: 96
 Event User Info: 0

cnf_SetAttributes() on cnfB1P1 SUCCESSFUL

186 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[201]

Value[0x0]
 Attribute Info: Attribute[202]

Value[0x0]
Event Data Length: 36
 Event User Info: 0

cnf_GetAttributes() on cnfB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 7
 Attribute Info: Attribute[201]

Value[0x0]
 Attribute Info: Attribute[202]

Value[0x0]
 Attribute Info: Attribute[203]

Value[0x0]
 Attribute Info: Attribute[204]

Value[0x0]
 Attribute Info: Attribute[205]

Value[0x0]
 Attribute Info: Attribute[206]

Value[0x0]
 Attribute Info: Attribute[207]

Value[0x1]
Event Data Length: 96
 Event User Info: 0

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: cnfB1C1
 Party Handle: 3
 Party Name: cnfB1P1
 Event Device: 1

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: cnfB1C1
 Party Handle: 3
 Party Name: cnfB1P1
 Event Device: 2

cnf_RemoveParty() on cnfB1C1 SUCCESSFUL
Received following event information:
 Party Count: 1
 Party Handle: 3
 Event User Info: 0

cnf_CloseParty() - successful

cnf_CloseParty() - successful

cnf_CloseParty() - successful

cnf_CloseParty() - successful

cnf_CloseParty() - successful

Dialogic® Conferencing API Programming Guide and Library Reference 187

Supplementary Reference Information

cnf_DisableEvents on cnfB1C1 SUCCESSFUL
Received following event information:
 Event Count: 3
 Event: 401
 Event: 402
 Event: 404
 Event User Info: 0x1

Received CONFERENCE CLOSED notification event...

 Conference Name: cnfB1C1
 Event Device: 1

cnf_CloseConference() - successful
cnf_CloseParty() - successful !!

cnf_DisableEvents on cnfB1 SUCCESSFUL
Received following event information:
 Event Count: 5
 Event: 301
 Event: 302
 Event: 305
 Event: 303
 Event: 304
 Event User Info: 0x1

cnf_Close() - Successful

Figure 3. Conferencing (MCX) Example Code Output

Conferencing (MCX) Example Code
===

Board Name is: mcxB1

cnf_Open failure!! : Expected failure due to the following
 Error Code: 4
 Error String: Invalid parameter

in function call
Additional Info: Invalid parameter - a_szBrdName is NULL

cnf_Open failure!! : Expected failure due to the following
 Error Code: 3
 Error String: Invalid device name provided by user
Additional Info: Invalid device name [blah_blah] specified

cnf_Open() - Successful
Received following event information:
 Event Data: 0
Event Data Length: 10
 Event Device: 1
 Event User Info: 0

cnf_GetDeviceCount() on mcxB1 SUCCESSFUL
Received following event information:
 Event Data: 0x96a1630
 Free Party Devices: 60
Free Conference Devices: 30
 Max Party Devices: 60
 Max Conference Devices: 30
 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

188 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

cnf_ResetDevices() on mcxB1 SUCCESSFUL
Received following event information:
 Event Data: 0
Event Data Length: 10
 Event User Info: 0

cnf_GetDeviceCount() on mcxB1 SUCCESSFUL
Received following event information:
 Event Data: 0x96a1630
 Free Party Devices: 61
Free Conference Devices: 30
 Max Party Devices: 60
 Max Conference Devices: 30
 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

cnf_GetDTMFControl() on mcxB1 SUCCESSFUL
Received following event information:
 Event: 49164
 Event Data: 0x969f7e8
 DTMF Control State: 1
 Volume Up Digit: 2048
 Volume Down Digit: 1024
 Volume Reset Digit: 16
 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

cnf_SetDTMFControl() on mcxB1 SUCCESSFUL
Received following event information:
 Event Data: 0
 Event Data Length: 10
 Event User Info: 0

cnf_GetDTMFControl() on mcxB1 SUCCESSFUL
Received following event information:
 Event: 49164
 Event Data: 0x969f7e8
 DTMF Control State: 1
 Volume Up Digit: 2048
 Volume Down Digit: 1024
 Volume Reset Digit: 16
 Event Data Length: 20
 Event Device: 1
 Event User Info: 0

cnf_EnableEvents on mcxB1 SUCCESSFUL
Received following event information:
 Event: 49162
 Event Data: 0x96b8a90
 Event Count: 5
 Event: 301
 Event: 302
 Event: 305
 Event: 303
 Event: 304
Event Data Length: 32
 Event Device: 1
 Event User Info: 0x1

cnf_GetAttributes() on mcxB1 failed!! -

Expected error due to invalid attribute
 Error Code: 5
 Error String: Invalid attribute provided by user

Dialogic® Conferencing API Programming Guide and Library Reference 189

Supplementary Reference Information

Additional Info: Attribute[102] not a valid device attribute

cnf_GetAttributes() on mcxB1 SUCCESSFUL
Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[1]

Value[0x1]
 Attribute Info: Attribute[2]

Value[0x0]
 Attribute Info: Attribute[3]

Value[0x1d01]
Event Data Length: 48
 Event User Info: 0

cnf_SetAttributes() on mcxB1 SUCCESSFUL
Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[1]

Value[0x1]
 Attribute Info: Attribute[3]

Value[0x7d0]
Event Data Length: 36
 Event User Info: 0

cnf_GetAttributes() on mcxB1 SUCCESSFUL

Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[1]

Value[0x1]
 Attribute Info: Attribute[2]

Value[0x0]
 Attribute Info: Attribute[3]

Value[0x1d01]
Event Data Length: 48
 Event User Info: 0

cnf_OpenConference() on mcxB1 SUCCESSFUL
Received following event information:
Conference Device: 2
 Conference Name: mcxB1C1
 Event Device: 1
 Event User Info: 0

Received CONFERENCE OPENED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Event Device: 1

cnf_GetVideoLayout() on mcxB1C1 SUCCESSFUL
Received following event information:
 Layout Handle: 256
 Layout Size: 1
 Layout Type: 0
 Event User Info: 0

Created 4 region layout...
cnf_SetVideoLayout() on mcxB1C1 SUCCESSFUL
Received following event information:

190 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 Layout Handle: 256
 Layout Size: 2
 Layout Type: 401
 Event User Info: 0

cnf_EnableEvents on mcxB1C1 SUCCESSFUL
Received following event information:
 Event: 49162
 Event Data: 0x96b9830
 Event Count: 3
 Event: 401
 Event: 402
 Event: 404
Event Data Length: 24
 Event Device: 2
 Event User Info: 0x1

cnf_GetAttributes() on mcxB1C1 failed!! -
Expected error due to invalid attribute
 Error Code: 5
 Error String: Invalid attribute provided by user
Additional Info: Attribute[3] not a valid device attribute

cnf_GetAttributes() on mcxB1C1 SUCCESSFUL
Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[101]

Value[0x1]
 Attribute Info: Attribute[102]

Value[0x3]
 Attribute Info: Attribute[103]

Value[0x3e8]
Event Data Length: 48
 Event User Info: 0

cnf_SetAttributes() on mcxB1C1 SUCCESSFUL
Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[101]

Value[0x1]
 Attribute Info: Attribute[102]

Value[0x40000f]
Event Data Length: 36
 Event User Info: 0

cnf_GetAttributes() on mcxB1C1 SUCCESSFUL
Received following event information:
 Attribute Count: 3
 Attribute Info: Attribute[101]

Value[0x1]
 Attribute Info: Attribute[102]

Value[0x3]
 Attribute Info: Attribute[103]

Value[0x3e8]
Event Data Length: 48
 Event User Info: 0

Dialogic® Conferencing API Programming Guide and Library Reference 191

Supplementary Reference Information

cnf_GetPartyList() - Successful
Received following event information:
 Event: 49167
 Event Data: 0x96b9610
 Party Count: 0
Event Data Length: 12
 Event Device: 2
 Event User Info: 0

cnf_OpenParty() on mcxB1P1 SUCCESSFUL
Received following event information:
 Party Device: 3
 Party Name: mcxB1P1
 Event Device: 3
Event User Info: 0

cnf_GetAttributes() on mcxB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 7
 Attribute Info: Attribute[201]

Value[0x0]
 Attribute Info: Attribute[202]

Value[0x7fffac]
 Attribute Info: Attribute[203]

Value[0x420]
 Attribute Info: Attribute[204]

Value[0x1]
 Attribute Info: Attribute[205]

Value[0x0]
 Attribute Info: Attribute[206]

Value[0xccccc]
 Attribute Info: Attribute[207]

Value[0x420]
Event Data Length: 96
 Event User Info: 0

cnf_SetAttributes() on mcxB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[201]

Value[0x1]
 Attribute Info: Attribute[202]

Value[0x1]
Event Data Length: 36
 Event User Info: 0

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 3
 Party Name: mcxB1P1
 Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 3
 Party Name: mcxB1P1

192 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 Event Device: 1

cnf_AddParty() on mcxB1C1 SUCCESSFUL
Received following event information:
 Party Count: 1
 Party Handle: 3
 Event User Info: 0xbff60468

cnf_OpenParty() on mcxB1P2 SUCCESSFUL
Received following event information:
 Party Device: 5
 Party Name: mcxB1P2
 Event Device: 5
Event User Info: 0

cnf_OpenParty() on mcxB1P3 SUCCESSFUL
Received following event information:
 Party Device: 7
 Party Name: mcxB1P3
 Event Device: 7
Event User Info: 0

cnf_OpenParty() on mcxB1P4 SUCCESSFUL
Received following event information:
 Party Device: 9
 Party Name: mcxB1P4
 Event Device: 9
Event User Info: 0

cnf_OpenParty() on mcxB1P5 SUCCESSFUL
Received following event information:
 Party Device: 11
 Party Name: mcxB1P5
 Event Device: 11
Event User Info: 0

cnf_OpenParty() on mcxB1P6 SUCCESSFUL
Received following event information:
 Party Device: 13
 Party Name: mcxB1P6
 Event Device: 13
Event User Info: 0

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 5
 Party Name: mcxB1P2
 Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 7
 Party Name: mcxB1P3
 Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 9
 Party Name: mcxB1P4
 Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1

Dialogic® Conferencing API Programming Guide and Library Reference 193

Supplementary Reference Information

 Party Handle: 11
 Party Name: mcxB1P5
 Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 13
 Party Name: mcxB1P6
 Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 5
 Party Name: mcxB1P2
 Event Device: 1

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 7
 Party Name: mcxB1P3
 Event Device: 1

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 9
 Party Name: mcxB1P4
 Event Device: 1

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 11
 Party Name: mcxB1P5
 Event Device: 1

Received PARTY ADDED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 13
 Party Name: mcxB1P6
 Event Device: 1

cnf_AddParty() on mcxB1C1 SUCCESSFUL
Received following event information:
 Party Count: 5
 Party Handle: 5
 Party Handle: 7
 Party Handle: 9
 Party Handle: 11
 Party Handle: 13
 Event User Info: 0

cnf_GetPartyList() - Successful
Received following event information:
 Event: 49167
 Event Data: 0x96e1f68
 Party Count: 6
 Party Info: Party[0] - Handle[3]
- Device Name[mcxB1P1]
 Party Info: Party[1] - Handle[5]
- Device Name[mcxB1P2]
 Party Info: Party[2] - Handle[7]

194 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

- Device Name[mcxB1P3]
 Party Info: Party[3] - Handle[9]

- Device Name[mcxB1P4]
 Party Info: Party[4] -
Handle[11] - Device Name[mcxB1P5]
 Party Info: Party[5] -
Handle[13] - Device Name[mcxB1P6]
Event Data Length: 36
 Event Device: 2
 Event User Info: 0

cnf_SetVisiblePartyList() on mcxB1C1 SUCCESSFUL
Received following event information:
VisiblePartyList[0] --- Party Handle: 5 Region Handle: 257
VisiblePartyList[1] --- Party Handle: 7 Region Handle: 258
VisiblePartyList[2] --- Party Handle: 9 Region Handle: 259
VisiblePartyList[3] --- Party Handle: 11 Region Handle: 260
 Event User Info: 0

cnf_GetVisiblePartyList() on mcxB1C1 SUCCESSFUL
Received following event information:
VisiblePartyList[0] --- Party Handle: 5 Region Handle: 257
VisiblePartyList[1] --- Party Handle: 7 Region Handle: 258
VisiblePartyList[2] --- Party Handle: 9 Region Handle: 259
VisiblePartyList[3] --- Party Handle: 11 Region Handle: 260
 Event User Info: 0

cnf_GetAttributes() on mcxB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 7
 Attribute Info: Attribute[201]

Value[0x1]
 Attribute Info: Attribute[202]

Value[0x7fffac]
 Attribute Info: Attribute[203]

Value[0x420]
 Attribute Info: Attribute[204]

Value[0x1]
 Attribute Info: Attribute[205]

Value[0x0]
 Attribute Info: Attribute[206]

Value[0xccccc]
 Attribute Info: Attribute[207]

Value[0x420]
Event Data Length: 96
 Event User Info: 0

cnf_SetAttributes() on mcxB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 2
 Attribute Info: Attribute[201]

Value[0x0]
 Attribute Info: Attribute[202]

Value[0x0]
Event Data Length: 36
 Event User Info: 0

Dialogic® Conferencing API Programming Guide and Library Reference 195

Supplementary Reference Information

cnf_GetAttributes() on mcxB1P1 SUCCESSFUL
Received following event information:
 Attribute Count: 7
 Attribute Info: Attribute[201]

Value[0x0]
 Attribute Info: Attribute[202]

Value[0x7fffac]
 Attribute Info: Attribute[203]

Value[0x420]
 Attribute Info: Attribute[204]

Value[0x1]
 Attribute Info: Attribute[205]

Value[0x0]
 Attribute Info: Attribute[206]

Value[0xccccc]
 Attribute Info: Attribute[207]

Value[0x420]
Event Data Length: 96
 Event User Info: 0

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 3
 Party Name: mcxB1P1
 Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 3
 Party Name: mcxB1P1
 Event Device: 1

cnf_RemoveParty() on mcxB1C1 SUCCESSFUL
Received following event information:
 Party Count: 1
 Party Handle: 3
 Event User Info: 0

cnf_CloseParty() - successful
Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 5
 Party Name: mcxB1P2
 Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 5
 Party Name: mcxB1P2
 Event Device: 1

cnf_CloseParty() - successful
Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 7

196 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

 Party Name: mcxB1P3
 Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 7
 Party Name: mcxB1P3
 Event Device: 1

cnf_CloseParty() - successful
Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 9
 Party Name: mcxB1P4
 Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 9
 Party Name: mcxB1P4
 Event Device: 1

cnf_CloseParty() - successful
Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 11
 Party Name: mcxB1P5
 Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 11
 Party Name: mcxB1P5
 Event Device: 1

cnf_CloseParty() - successful
Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 13
 Party Name: mcxB1P6
 Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
 Conference Name: mcxB1C1
 Party Handle: 13
 Party Name: mcxB1P6
 Event Device: 1

cnf_DisableEvents on mcxB1C1 SUCCESSFUL
Received following event information:
 Event Count: 3
 Event: 401
 Event: 402
 Event: 404
 Event User Info: 0x1

Received CONFERENCE CLOSED notification event...
 Conference Name: mcxB1C1
 Event Device: 1

Dialogic® Conferencing API Programming Guide and Library Reference 197

Supplementary Reference Information

cnf_CloseConference() - successful

cnf_CloseParty() - successful !!

cnf_DisableEvents on mcxB1 SUCCESSFUL
Received following event information:
 Event Count: 5
 Event: 301
 Event: 302
 Event: 305
 Event: 303
 Event: 304
 Event User Info: 0x1

cnf_Close() - Successful

198 Dialogic® Conferencing API Programming Guide and Library Reference

Supplementary Reference Information

Dialogic® Conferencing API Programming Guide and Library Reference 199

13Glossary

active talker: A participant in a conference who is providing “non-silence” energy.

automatic gain control (AGC): An electronic circuit used to maintain the audio signal volume at a constant
level. AGC maintains nearly constant gain during voice signals, thereby avoiding distortion, and optimizes the
perceptual quality of voice signals by using a new method to process silence intervals (background noise).

asynchronous function: A function that allows program execution to continue without waiting for a task to
complete. To implement an asynchronous function, an application-defined event handler must be enabled to trap
and process the completed event. Contrast with synchronous function.

bit mask: A pattern which selects or ignores specific bits in a bit-mapped control or status field.

bitmap: An entity of data (byte or word) in which individual bits contain independent control or status
information.

board device: A board-level object that maps to a virtual board.

buffer: A block of memory or temporary storage device that holds data until it can be processed. It is used to
compensate for the difference in the rate of the flow of information (or time occurrence of events) when
transmitting data from one device to another.

bus: An electronic path that allows communication between multiple points or devices in a system.

busy device: A device that has one of the following characteristics: is stopped, being configured, has a
multitasking or non-multitasking function active on it, or I/O function active on it.

channel device: A channel-level object that can be manipulated by a physical library, such as an individual
telephone line connection. A channel is also a subdevice of a board.

CO (Central Office): A local phone network exchange, the telephone company facility where subscriber lines
are linked, through switches, to other subscriber lines (including local and long distance lines). The term “Central
Office” is used in North America. The rest of the world calls it “PTT”, for Post, Telephone, and Telegraph.

coach: A participant in a conference that can be heard by pupils only. A mentoring relationship exists between a
coach and a pupil.

conferee: Participant in a conference call. Synonym of party.

conference: Ability for three or more participants in a call to communicate with one another in the same call.

conferencing: Ability to perform a conference.

conference bridging: Ability for all participants in two or more established conferences to speak to and/or
listen to one another.

200 Dialogic® Conferencing API Programming Guide and Library Reference

configuration file: An unformatted ASCII file that stores device initialization information for an application.

configuration manager: A utility with a graphical user interface (GUI) that enables you to add new boards to
your system, start and stop system service, and work with board configuration data. Also known as DCM.

CT Bus: Computer Telephony bus. A time division multiplexing communications bus that provides 4096 time
slots for transmission of digital information between CT Bus products. See TDM bus.

data structure: Programming term for a data element consisting of fields, where each field may have a different
type definition and length. A group of data structure elements usually share a common purpose or functionality.

device: A computer peripheral or component controlled through a software device driver. A Dialog® voice and/or
network interface expansion board is considered a physical board containing one or more logical board devices, and
each channel or time slot on the board is a device.

device channel: A voice data path that processes one incoming or outgoing call at a time (equivalent to the
terminal equipment terminating a phone line).

device driver: Software that acts as an interface between an application and hardware devices.

device handle: Numerical reference to a device, obtained when a device is opened using xx_open(), where xx is
the prefix defining the device to be opened. The device handle is used for all operations on that device.

device name: Literal reference to a device, used to gain access to the device via an xx_open() function, where
xx is the prefix defining the device to be opened.

DM3: Refers to Dialogic® mediastream processing architecture, which is open, layered, and flexible,
encompassing hardware as well as software components. A whole set of products from Dialogic are built on DM3
architecture.

driver: A software module which provides a defined interface between a program and the firmware interface.

DTMF (Dual-Tone Multifrequency): Push-button or touch-tone dialing based on transmitting a high- and a
low-frequency tone to identify each digit on a telephone keypad.

E1: A CEPT digital telephony format devised by the CCITT, used in Europe and other countries around the world.
A digital transmission channel that carries data at the rate of 2.048 Mbps (DS-1 level). CEPT stands for the
Conference of European Postal and Telecommunication Administrations. Contrast with T1.

extended attribute functions: A class of functions that take one input parameter and return device-specific
information. For instance, a voice device’s extended attribute function returns information specific to the voice
devices. Extended attribute function names are case-sensitive and must be in capital letters. See also standard
runtime library (SRL).

firmware: A set of program instructions that reside on an expansion board.

idle device: A device that has no functions active on it.

party: A participant in a conference. Synonym of conferee.

Dialogic® Conferencing API Programming Guide and Library Reference 201

pupil: A participant in a conference that has a mentoring relationship with a coach.

resource: Functionality (for example, conferencing) that can be assigned to a call. Resources are shared when
functionality is selectively assigned to a call and may be shared among multiple calls. Resources are dedicated
when functionality is fixed to the one call.

RFU: Reserved for future use.

route: Assign a resource to a time slot.

SRL: See Standard Runtime Library.

standard attribute functions: Class of functions that take one input parameter (a valid device handle) and
return generic information about the device. For instance, standard attribute functions return IRQ and error
information for all device types. Standard attribute function names are case-sensitive and must be in capital letters.
Standard attribute functions for all Dialogic® devices are contained in the SRL. See standard runtime library (SRL).

standard runtime library (SRL): A Dialogic® software resource containing event management and standard
attribute functions and data structures used by all Dialogic® devices, but which return data unique to the device.

synchronous function: Blocks program execution until a value is returned by the device. Also called a
blocking function. Contrast with asynchronous function.

T1: A digital line transmitting at 1.544 Mbps over 2 pairs of twisted wires. Designed to handle a minimum of 24
voice conversations or channels, each conversation digitized at 64 Kbps. T1 is a digital transmission standard in
North America. Contrast with E1.

TDM (Time Division Multiplexing): A technique for transmitting multiple voice, data, or video signals
simultaneously over the same transmission medium. TDM is a digital technique that interleaves groups of bits from
each signal, one after another. Each group is assigned its own “time slot” and can be identified and extracted at the
receiving end. See also time slot.

TDM bus: Time division multiplexing bus. A resource sharing bus such as the SCbus or CT Bus that allows
information to be transmitted and received among resources over multiple data lines.

termination condition: An event or condition which, when present, causes a process to stop.

termination event: An event that is generated when an asynchronous function terminates. See also
asynchronous function.

thread (Windows®): The executable instructions stored in the address space of a process that the operating
system actually executes. All processes have at least one thread, but no thread belongs to more than one process. A
multithreaded process has more than one thread that are executed seemingly simultaneously. When the last thread
finishes its task, then the process terminates. The main thread is also referred to as a primary thread; both main and
primary thread refer to the first thread started in a process. A thread of execution is just a synonym for thread.

tone clamping: (DTMF tone clamping) Mutes DTMF tones heard in a conference. If a confereee’s phone
generates a tone, the DTMF signal will not interfere with the conference. Applies to transmitted audio into the
conference and does not affect DTMF function.

202 Dialogic® Conferencing API Programming Guide and Library Reference

time division multiplexing (TDM): See TDM (Time Division Multiplexing).

time slot: The smallest, switchable data unit on a TDM bus. A time slot consists of 8 consecutive bits of data.
One time slot is equivalent to a data path with a bandwidth of 64 kbps. In a digital telephony environment, a
normally continuous and individual communication (for example, someone speaking on a telephone) is (1)
digitized, (2) broken up into pieces consisting of a fixed number of bits, (3) combined with pieces of other
individual communications in a regularly repeating, timed sequence (multiplexed), and (4) transmitted serially over
a single telephone line. The process happens at such a fast rate that, once the pieces are sorted out and put back
together again at the receiving end, the speech is normal and continuous. Each individual, pieced-together
communication is called a time slot.

Dialogic® Conferencing API Programming Guide and Library Reference 203

Index

A
active talkers 12

enabling 27
get list 58
notification interval 60, 99
setting 60, 99

adding parties 44

asynchronous callback model, Linux 15

asynchronous mode programming
Linux 15

asynchronous models
Linux 15

asynchronous polled model
Linux 15

asynchronous programming model 11, 22

ATDV_ERRMSGP() 145

ATDV_ERRMSGP() 17, 19

ATDV_LASTERR() 145

ATDV_LASTERR() 18, 19

ATDV_NAMEP() 18

ATDV_SUBDEVS() 18

attributes
getting 60
setting 99

automatic gain control (AGC) 12

automatic gain control, setting 61, 100

auxiliary functions 40

B
broadcast mode, setting 61, 100

C
closing

conference device 48
party device 50
virtual board device 46

CNF board device 90

CNF_ACTIVE_TALKER_INFO data structure 118

cnf_AddParty() 23, 44

CNF_ATTR data structure 22, 119

CNF_ATTR_INFO data structure 120

cnf_Close() 25, 46

CNF_CLOSE_CONF_INFO data structure 121

CNF_CLOSE_INFO data structure 122

CNF_CLOSE_PARTY_INFO data structure 123

cnf_CloseConference() 25, 48

cnf_CloseParty() 25, 50

CNF_CONF_CLOSED_EVENT_INFO data structure 124

CNF_CONF_OPENED_EVENT_INFO data structure 125,
141, 142

CNF_DEVICE_COUNT_INFO data structure 22, 126

cnf_DisableEvents() 25, 52

CNF_DTMF_CONTROL_INFO data structure 27, 127

CNF_DTMF_EVENT_INFO data structure 129

cnf_EnableEvents() 22, 55

CNF_ERROR_INFO data structure 130

CNF_EVENT_INFO data structure 131

cnf_GetActiveTalker() 58

cnf_GetActiveTalkerList() 27

cnf_GetAttributes() 60

cnf_GetDeviceCount() 22, 26, 63

cnf_GetDTMFControl() 27, 65

cnf_GetErrorInfo() 67, 145

cnf_GetPartyList() 68, 72, 74, 104, 106

cnf_GetPrivilegeTalkerList() 70

cnf_GetXmitSlot() 76

cnf_Listen() 82

cnf_Open() 22, 80

CNF_OPEN_CONF_INFO data structure 132

CNF_OPEN_CONF_RESULT data structure 133

CNF_OPEN_INFO data structure 134

CNF_OPEN_PARTY_INFO data structure 135

CNF_OPEN_PARTY_RESULT data structure 136

cnf_OpenConference() 23, 88

cnf_OpenEx() 90

cnf_OpenParty() 23, 92

CNF_PARTY_ADDED_EVENT_INFO data structure 137

CNF_PARTY_INFO data structure 138

CNF_PARTY_REMOVED_EVENT_INFO data
structure 139

CNF_PRIVILEGE_TALKER_INFO data structure 140

cnf_SetAttributes() 22, 27

cnf_SetDTMFControl() 26, 102

cnf_UnListen() 108

204 Dialogic® Conferencing API Programming Guide and Library Reference

CNF_VISIBLE_PARTY_LIST data structure 143

cnferrs.h 35, 145

CNFEV_ADD_PARTY event 44

CNFEV_ADD_PARTY_FAIL event 44

CNFEV_ENABLE_EVENT event 53, 56

CNFEV_ENABLE_EVENT_FAIL event 53, 56

CNFEV_GET_ACTIVE_TALKER event 58

CNFEV_GET_ACTIVE_TALKER_FAIL event 58

CNFEV_GET_ATTR event 61

CNFEV_GET_ATTR_FAIL event 61

CNFEV_GET_DEVICE_COUNT event 63

CNFEV_GET_DEVICE_COUNT_FAIL event 63

CNFEV_GET_DTMF_CONTROL event 65

CNFEV_GET_DTMF_CONTROL_FAIL event 65

CNFEV_GET_PARTY_LIST event 68, 72, 74, 104, 106

CNFEV_GET_PARTY_LIST_FAIL event 68, 72, 74, 104,
106

CNFEV_GET_PRIVILEGE_TALKER event 70

CNFEV_GET_PRIVILEGE_TALKER_FAIL event 70

CNFEV_LISTEN event 82

CNFEV_LISTEN_FAIL event 82

CNFEV_OPEN event 80

CNFEV_OPEN_CONF event 89

CNFEV_OPEN_CONF_FAIL event 89

CNFEV_OPEN_FAIL event 80

CNFEV_OPEN_PARTY event 92

CNFEV_OPEN_PARTY_FAIL event 93

CNFEV_SET_DTMF_CONTROL event 102

CNFEV_SET_DTMF_CONTROL_FAIL event 102

CNFEV_UNLISTEN event 108

CNFEV_UNLISTEN_FAIL event 108

cnfevts.h 35, 111

cnflib.h 35

coach mode, setting 61, 100

coach/pupil 12, 25

code example 147

compiling applications 35

conference bridging 24
multiprocessing considerations 26

conference device 21

conference device, opening 23

conference guidelines 22

conference management functions 40

conference monitoring 12

conference resource 25

configuration functions 40

D
data structures 117

TDM bus time slot information 144

dev_Connect() 23, 44

dev_Disconnect() 25

device management functions 39

device management library 23

devices, types 21

devmgmtlib.h 35

digit detection 12

disabling events 52

dtilib.h 36

DTMF detection 12

DTMF digits
getting 65
setting 102
setting mask 61, 100

DTMF tone clamping 12

dx_close() 25

dxxxlib.h 36

E
echo cancellation, setting 61, 100

enabling events 55

error codes 145

error codes header file
conferencing 35

error codes header file, IP media 36

error processing function 41, 67

event codes header file, conferencing 35

events
disabling 52
enabling 55
list 111
types 111

example code 147

F
function categories 39

function syntax conventions 43

functions
example code 147

G
G.722 audio codec 31

G.722.2 (AMR-WB) audio codec 31

Dialogic® Conferencing API Programming Guide and Library Reference 205

gclib.h 36

H
header files 35

high density (HD) voice conferencing 31

I
include files 35

INTEL_DIALOGIC_INC 37

INTEL_DIALOGIC_LIB 37

ipmerror.h 36

ipmlib.h 36

L
libcnf.lib 36

libcnf.so 37

libdevmgmt.lib 36

libdevmgmt.so 37

libdti.so 37

libdtimt.lib 36

libdxxmt.lib 36

libdxxx.so 37

libgc.lib 36

libgc.so 37

libipm.lib 36

libipm.so 37

libsrl.so 37

libsrlmt.lib 36

linking applications 35

M
MCX board device 90

monitor mode 29

monitoring a conference 12

multiprocessing considerations 26

multithreading considerations 26

mute audio 31

mute audio stream, setting 61, 100

N
non-signal mode, Linux asynchronous callback model 15

notification events 111, 114

O
opening

conference device 88
party device 92
virtual board device 80

P
parties

adding 44
closing 50
getting list 68, 70, 72, 74, 76, 82, 104, 106, 108
opening 92
removing 94

party device 22

party device, opening 23

party mode, setting 61, 100

party resource 25

polled model 15

privilege talker 27

privilege talker, setting 61, 100

R
resource count 26

S
SC_TSINFO data structure 144

signal mode, Linux asynchronous callback model 15

sr_dishdlr() 17, 25

sr_enbhdlr() 17

sr_getevtdev() 17

sr_getevttype() 17

sr_waitevt() 17

sr_waitevt(_) 15

sr_waitevtEx() 17

SRL events 15

srllib.h 35

structures 117

symbolic defines 21

syntax conventions 43

T
tariff tone, setting 61, 100

TDM bus
time slot information structure 144

termination event 15

206 Dialogic® Conferencing API Programming Guide and Library Reference

termination events 111

tone clamping, setting 60, 61, 99, 100

U
unmute audio 31

unmute audio stream, setting 61, 100

V
variables for compiling and linking 37

virtual board device 21
closing 46
opening 80

virtual board device, opening 22

volume control 12

volume control, using 26

W
wideband audio conferencing 31

	Contents
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Product Description
	1.1 Overview
	1.2 Key Features
	1.3 Understanding How Conferences are Formed
	1.4 Relationship with Other Libraries
	1.4.1 Dialogic® Standard Runtime Library (SRL)
	1.4.2 Dialogic® Device Management API Library
	1.4.3 Dialogic® Voice API Library
	1.4.4 Dialogic® IP Media Library API
	1.4.5 Dialogic® Global Call API Library
	1.4.6 Dialogic® Digital Network Interface API Library

	2. Programming Models
	2.1 Programming Models Overview
	2.2 Asynchronous Programming Model

	3. Event Handling
	3.1 Dialogic® Standard Runtime Library Event Management Functions
	3.2 Dialogic® Standard Runtime Library Standard Attribute Functions

	4. Error Handling
	5. Application Development Guidelines
	5.1 Using Symbolic Defines
	5.2 Using Conferencing Devices
	5.3 Creating a Conference
	5.4 Conference Bridging
	5.5 Terminating an Application
	5.6 Data Structure Considerations
	5.7 Multiprocessing Considerations
	5.8 Multithreading Considerations
	5.9 Volume Control
	5.10 Active Talker
	5.11 Privilege Talker
	5.11.1 Implementation
	5.11.2 Conference Party Types

	5.12 Monitor Mode
	5.12.1 Implementation
	5.12.2 Use Cases

	5.13 Mute Audio
	5.13.1 Implementation

	5.14 HD Voice Conferencing (Wideband Audio Conferencing)
	5.14.1 Implementation
	5.14.2 Licensing Requirements
	5.14.3 Conferencing Licenses Exceeded Events

	6. Building Applications
	6.1 Compiling and Linking
	6.1.1 Include Files
	6.1.2 Required Libraries

	6.2 Variables for Compiling and Linking

	7. Function Summary by Category
	7.1 Device Management Functions
	7.2 Conference Management Functions
	7.3 Configuration Functions
	7.4 Auxiliary Functions
	7.5 Multimedia Conferencing Functions
	7.6 TDM Routing Functions
	7.7 Error Processing Function

	8. Function Information
	8.1 Function Syntax Conventions
	cnf_AddParty()
	cnf_Close()
	cnf_CloseConference()
	cnf_CloseParty()
	cnf_DisableEvents()
	cnf_EnableEvents()
	cnf_GetActiveTalkerList()
	cnf_GetAttributes()
	cnf_GetDeviceCount()
	cnf_GetDTMFControl()
	cnf_GetErrorInfo()
	cnf_GetPartyList()
	cnf_GetPrivilegeTalkerList()
	cnf_GetVideoLayout()
	cnf_GetVisiblePartyList()
	cnf_GetXmitSlot()
	cnf_Open()
	cnf_Listen()
	cnf_OpenConference()
	cnf_OpenEx()
	cnf_OpenParty()
	cnf_RemoveParty()
	cnf_ResetDevices()
	cnf_SetAttributes()
	cnf_SetDTMFControl()
	cnf_SetVideoLayout()
	cnf_SetVisiblePartyList()
	cnf_UnListen()

	9. Events
	9.1 Event Types
	9.2 Termination Events
	9.3 Notification Events

	10. Data Structures
	CNF_ACTIVE_TALKER_INFO
	CNF_ATTR
	CNF_ATTR_INFO
	CNF_CLOSE_CONF_INFO
	CNF_CLOSE_INFO
	CNF_CLOSE_PARTY_INFO
	CNF_CONF_CLOSED_EVENT_INFO
	CNF_CONF_OPENED_EVENT_INFO
	CNF_DEVICE_COUNT_INFO
	CNF_DTMF_CONTROL_INFO
	CNF_DTMF_EVENT_INFO
	CNF_ERROR_INFO
	CNF_EVENT_INFO
	CNF_OPEN_CONF_INFO
	CNF_OPEN_CONF_RESULT
	CNF_OPEN_INFO
	CNF_OPEN_PARTY_INFO
	CNF_OPEN_PARTY_RESULT
	CNF_PARTY_ADDED_EVENT_INFO
	CNF_PARTY_INFO
	CNF_PARTY_REMOVED_EVENT_INFO
	CNF_PRIVILEGE_TALKER_INFO
	CNF_VIDEO_LAYOUT_INFO
	CNF_VISIBLE_PARTY_INFO
	CNF_VISIBLE_PARTY_LIST
	SC_TSINFO

	11. Error Codes
	12. Supplementary Reference Information
	12.1 Conferencing Example Code and Output

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

