Dialzgic.

Dialogic® Conferencing API

Library Reference

October 2007

05-2506-003

Copyright © 2006-2007, Dialogic Corporation. All rights reserved. You may not reproduce this document in whole or in part without permission in
writing from Dialogic Corporation.

All contents of this document are furnished for informational use only and are subject to change without notice and do not represent a commitment on
the part of Dialogic Corporation or its subsidiaries (“Dialogic”). Reasonable effort is made to ensure the accuracy of the information contained in the
document. However, Dialogic does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions
that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A
SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY
RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document, in marketing collateral
produced by or on web pages maintained by Dialogic may infringe one or more patents or other intellectual property rights owned by third parties.
Dialogic does not provide any intellectual property licenses with the sale of Dialogic products other than a license to use such product in accordance
with intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with
Dialogic. More detailed information about such intellectual property is available from Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor,
Montreal, Quebec, Canada H4M 2V9. Dialogic encourages all users of its products to procure all necessary intellectual property licenses
required to implement any concepts or applications and does not condone or encourage any intellectual property infringement and
disclaims any responsibility related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different national license requirements.

Dialogic, Diva, Eicon, Eicon Networks, Dialogic Pro, EiconCard and SIPcontrol, among others, are either registered trademarks or trademarks of
Dialogic. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal
department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will be subject to
full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper
acknowledgement. Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries. Other names of actual
companies and products mentioned herein are the trademarks of their respective owners.

Publication Date: October 2007
Document Number: 05-2506-003

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Contents

Revision History 5
About This Publication 7
PUIPOSE . . . 7
Applicability e 7
Intended AUdIENCE. e 7

How to Use This Publication e 8
Related Information e 8
Function Summary by Category 9
1.1 Device Management FUNCLIONS e 9
1.2 Conference Management Functions i 10
1.3 Configuration FUNCtions. 10
1.4 Auxiliary FUNCHIONS. e e 10
1.5 Multimedia Conferencing Functions i 11
1.6 Error Processing FUNCLiON e 11
Function Information e 13
2.1 Function Syntax Conventions i e 13
cnf_AddParty() — add one or more partiestoaconference. 14
cnf_Close()—closeaboarddevice e e e 16
cnf_CloseConference() —close a conference devicecuiiiiiiinnnnn.. 18
cnf_CloseParty() —close aparty deviCettt e 20
cnf_DisableEvents() —disable one ormoreevents. 22
cnf_EnableEvents() —enable one ormoreevents, 24
cnf_GetActiveTalkerList() —getalistof activetalkers. i .. 27
cnf_GetAttributes() — get one or more device attributes L 29
cnf_GetDeviceCount() — get conference and party device count information............... 32
cnf_GetDTMFControl() — get DTMF digits control information 34
cnf_GetErrorinfo() — get error information about a failed function. 36
cnf_GetPartyList() — get a list of added partiesinaconference 37
cnf_GetVideoLayout() — get video layout on a specified device 39
cnf_GetVisiblePartyList() — getvisible party list 41
cnf_Open()—openaboard deviCet e e 43
cnf_OpenConference() —openaconferencedevice. 45
cnf_OpenEx() — open the board devices in synchronous or asynchronous mode 47
cnf_OpenParty() —openaparty deviCe.ttt et 49
cnf_RemoveParty() — remove one or more parties fromaconference 51
cnf_ResetDevices() — reset open devices that were improperlyclosed 53
cnf_SetAttributes() — set one or more device attributes L. 56
cnf_SetDTMFControl() — set DTMF digits control information. 59
cnf_SetVideoLayout() — set the video layout on a conference device 61
cnf_SetVisiblePartyList() — specifies visible parties in video layoutregion 63
Dialogic® Conferencing API Library Reference — October 2007 3

Dialogic Corporation

Contents

3 EVents. e 65
3.1 EVeNt TYPeS . e e 65
3.2 Termination Events. 65
3.3 Notification EVENtS 68
4 Data Structures 71
CNF_ACTIVE_TALKER_INFO — active talker information 72
CNF_ATTR — attributes and attribute values. 73
CNF_ATTR_INFO —attribute information e 74
CNF_CLOSE_CONF_INFO —reserved forfuture useco .. 75
CNF_CLOSE_INFO —reserved forfuture Use e 76
CNF_CLOSE_PARTY_INFO —reserved forfutureusec ... 77
CNF_CONF_CLOSED_EVENT_INFO - information for conference closed event. 78
CNF_CONF_OPENED_EVENT_INFO - information for conference opened event. 79
CNF_DEVICE_COUNT_INFO - device countinformation. 80
CNF_DTMF_CONTROL_INFO — DTMF digits control information. 81
CNF_DTMF_EVENT_INFO — DTMF event information 83
CNF_ERROR_INFO —errorinformation. e e 84
CNF_EVENT_INFO —eventinformation. e 85
CNF_OPEN_CONF_INFO —reserved forfuture use, 86
CNF_OPEN_CONF_RESULT - result information for an opened conference............... 87
CNF_OPEN_INFO —reserved for future Use e 88
CNF_OPEN_PARTY_INFO —reserved forfuture use.t 89
CNF_OPEN_PARTY_RESULT - result information for an opened party. 90
CNF_PARTY_ADDED_EVENT_INFO - information for added partyevent. 91
CNF_PARTY_INFO —party information e e e 92
CNF_PARTY_REMOVED_EVENT_INFO — information for removed partyevent 93
CNF_VIDEO_LAYOUT_INFO — information for video layout 94
CNF_VISIBLE_PARTY_INFO — information about the visible party 95
CNF_VISIBLE_PARTY_LIST — visible party listinformation. 96
5 Error Codes 97
6 Supplementary Reference Information. L. 99
6.1 Conferencing Example Codeand OQutput. i, 929
GlOSSaNYo e 151
INdeX . . . e 155
4 Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Revision History

This revision history summarizes the changes made in each published version of this document.

Document No.

Publication Date

Description of Revisions

05-2506-003

October 2007

Function Summary by Category chapter: Added the Multimedia Conferencing
Functions section and added new functions to the Device Management
Functions section.

cnf_AddParty(): Added information about MCX device in Cautions section.
cnf_GetAttributes(): Added the ECNF_CONF_ATTR_NOTIFY parameter.

cnf_EnableEvents() and cnf_DisableEvents(): Added note about
ECNF_BRD_EVT_ACTIVE_TALKER event type.

cnf_GetVideoLayout(): Added function for multimedia conferencing support.
cnf_GetActiveTalkerList(): Added information about MCX device.
cnf_GetVisiblePartyList(): Added function for multimedia conferencing support.

cnf_Open() and cnf_OpenEx(): Added description of new device name, MCX
conferencing device.

cnf_OpenConference(): Added information about MCX device.

cnf_OpenEx(): Added function to open devices in synchronous and asynchronous
mode.

cnf_OpenParty(): Added information about MCX device.

cnf_RemoveParty(): Added information about MCX device in Cautions section.
cnf_ResetDevices(): Added function to reset devices.

cnf_SetAttributes(): Added the ECNF_CONF_ATTR_NOTIFY parameter.
cnf_SetVideolLayout(): Added function for multimedia conferencing support.
cnf_SetVisiblePartyList(): Added function for multimedia conferencing support.
Events chapter: Added new termination events for multimedia conferencing support.
Data Structures chapter:: Added multimedia conferencing related structures.
CNF_VIDEO_LAYOUT_INFO: Added for multimedia conferencing support.
CNF_VISIBLE_PARTY_INFO: Added for multimedia conferencing support.
CNF_VISIBLE_PARTY_LIST: Added for multimedia conferencing support.
Supplementary Reference Information chapter: Added new example code.

05-2506-002

August 2007

Made global changes to reflect Dialogic brand.

05-2506-001

August 2006

Initial version of document.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Revision History

6 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

About This Publication

Note:

Dialogic® Conferencing API Library Reference — October 2007

The following topics provide more information about this publication:

* Purpose

Applicability

Intended Audience

How to Use This Publication

Related Information

Purpose

This publication provides a reference to functions, parameters, and data structures in the Dialogic®
Conferencing (CNF) API, supported for Linux and Windows® operating systems. It is a companion
document to the Dialogic® Conferencing API Programming Guide, which provides guidelines for
developing applications using the conferencing APL

In this document, the term “board” refers to the virtual Dialogic® DM3 board.

The Dialogic® Conferencing (CNF) API is distinct from and presently incompatible with the
Dialogic® Conferencing (CNF) API that was previously released in Dialogic® System Release 6.0
on PCI for Windows®.

Applicability

This document version (05-2506-003) is published for Dialogic® Multimedia Software for
AdvancedTCA Release 2.0.

This document may also be applicable to other software releases (including service updates) on
Linux or Windows® operating systems. Check the Release Guide for your software release to
determine whether this document is supported.

Intended Audience

This publication is intended for the following audience:
¢ Distributors
¢ System Integrators
¢ Toolkit Developers
¢ Independent Software Vendors (ISVs)

Dialogic Corporation

About This Publication

Value Added Resellers (VARSs)
Original Equipment Manufacturers (OEMs)

e End Users

How to Use This Publication

This document assumes that you are familiar with the Linux or Windows® operating systems and
the C++ programming language.

The information in this document is organized as follows:

Chapter 1, “Function Summary by Category” introduces the various categories of
conferencing functions and provides a brief description of each function.

Chapter 2, “Function Information” provides an alphabetical reference to the conferencing
functions.

Chapter 3, “Events” provides an alphabetical reference to events that may be returned by the
conferencing software.

Chapter 4, “Data Structures” provides an alphabetical reference to the conferencing data
structures.

Chapter 5, “Error Codes” presents a list of error codes that may be returned by the
conferencing software.

Chapter 6, “Supplementary Reference Information” provides reference information including
example code of all conferencing functions.

Related Information

See the following additional information:

http://www.dialogic.com/manuals/ (for Dialogic® product documentation)
http://www.dialogic.com/support/ (for Dialogic technical support)

http:/fwww.dialogic.com/ (for Dialogic® product information)

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

http://resource.intel.com/telecom/support/documentation/releases/index.htm
http://www.dialogic.com/manuals/default.htm

Function Summary by Category 1

1.1

Dialogic® Conferencing API Library Reference — October 2007

This chapter describes the categories into which the Dialogic® Conferencing (CNF) API library
functions can be logically grouped. The topics in this chapter are:

* Device Management Functions i 9

¢ Conference Management Functions i, 10
e Configuration FUNCHions e 10
e Auxiliary Functions. 10
¢ Multimedia Conferencing Functions. 11
e Error Processing Function. i 11

Device Management Functions

Device management functions allow you to open and close devices. There are three types of
devices: board device, conference device, and party device. The board device is the parent device
for both the conference and party devices. Thus, you must open a board device before you can open
a conference device or a party device.

cnf_Close()
closes a board device

cnf_CloseConference()
closes a conference device

cnf_CloseParty()
closes a party device

cnf_Open()
opens a board device

cnf_OpenConference()
opens a conference device

cnf_OpenEx()
opens a virtual board device in synchronous or asynchronous mode

cnf_OpenParty()
opens a party device

cnf_ResetDevices()
resets all open devices that were improperly closed

Dialogic Corporation

Function Summary by Category

1.2 Conference Management Functions

Conference management functions allow you add and remove parties to a conference.

cnf_AddParty()
adds one or more parties to a conference

cnf_RemoveParty()
removes one or more parties from a conference

1.3 Configuration Functions

Configuration functions allow you to alter, examine, and control the configuration of an open
device.

cnf_DisableEvents()
disables one or more events

cnf_EnableEvents()
enables one or more events

cnf_GetAttributes()
gets one or more device attributes

cnf_GetDTMF Control()
gets DTMF digits control information

cnf_SetAttributes()
sets one or more device attributes

cnf_SetDTMFControl()
sets DTMF digits control information

1.4 Auxiliary Functions

Auxiliary functions provide supplementary functionality to help you manage conferences and
resources:

cnf_GetActiveTalkerList()
gets a list of active talkers on a board or in a conference

cnf_GetDeviceCount()
gets conference and party count information

cnf_GetPartyList()
gets a list of added parties in a conference

10 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

1.5

1.6

Multimedia Conferencing Functions

Multimedia conferencing functions manage the multimedia conferencing features:

cnf_GetVideoLayout()
gets the current video layout

cnf_GetVisiblePartyList()
gets the visible party list

cnf_SetVideoLayout()
sets the video layout

cnf_SetVisiblePartyList()
sets the visible party list

Error Processing Function

The error processing function provides error information:

cnf_GetErrorInfo()
gets error information for a failed function

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Function Summary by Category

11

Function Summary by Category

12 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Function Information

2

2.1

This chapter contains a detailed description of each Dialogic® Conferencing (CNF) API function,

presented in alphabetical order. A general description of the function syntax is given before the
detailed function information.

All function prototypes are in the cnflib.h header file.

Function Syntax Conventions

The conferencing functions typically use the following format:

datatype cnf_Function (deviceHandle, parameterl, parameter2, ... parametern)

where:

datatype
refers to the data type; for example, CNF_RETURN and SRL_DEVICE_HANDLE (see
cnflib.h and srllib.h for a definition of data types)

cnf_Function
represents the name of the function

deviceHandle
refers to an input field representing the type of device handle (board, conference, or party)

parameterl, parameter2, ... parametern
represent input or output fields

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

13

cnf_AddParty() — add one or more parties to a conference

cnf_AddParty()

Name: CNF_RETURN cnf AddParty (a_CnfHandle, a_pPtyInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_CnfHandle ¢ conference device handle
CPCNF_PARTY_INFO a_pPtyInfo * pointer to party information structure
void * a_pUserInfo * pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Conference Management
Mode: asynchronous
B Description
The cnf_AddParty() function adds one or more parties to a conference that has already been
created. The CNF_PARTY_INFO structure contains a list of party devices to be added.
Parties must be connected to a voice device (dx_) or other supported device (such as ip_), through
the dev_Connect() function, before or after being added to a conference in order to have the party
actively participate in the conference. See the Dialogic® Device Management API Library
Reference for more information on the dev_Connect() function.
Parameter Description
a_CnfHandle specifies the conference device handle obtained from a previous open
a_pPtyInfo points to a party information structure, CNF_PARTY_INFO, which
contains a list of party devices to be added.
a_pUserInfo points to user-defined data. If none, set to NULL.
B Termination Events
CNFEV_ADD_PARTY
indicates successful completion of the function; that is, a party was added to a conference
Data Type: CNF_PARTY_INFO
CNFEV_ADD_PARTY_FAIL
indicates that the function failed
Data Type: CNF_PARTY_INFO
B Cautions

14

Adding multiple parties to a conference is supported only when using an mcxBx device. If you are
using a cnfBx device, this function will fail if more than one party is specified.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

add one or more parties to a conference — cnf_AddParty()

B Errors

If this function fails with CNF_ERROR, use c¢nf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_RemoveParty()

e cnf_OpenParty()

e cnf_CloseParty()

e cnf_CloseConference()

Dialogic® Conferencing API Library Reference — October 2007 15
Dialogic Corporation

cnf_Close() — close a board device

cnf_Close()

Name: CNF_RETURN cnf_Close (a_BrdHandle, a_pCloselnfo)
Inputs: SRL_DEVICE_HANDLE a_BrdHandle ¢ SRL handle to the virtual board device
CPCNF_CLOSE_INFO a_pCloselnfo ¢ reserved for future use

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management

Mode: synchronous

B Description

The cnf_Close() function closes a virtual board device that was previously opened using
cnf_Open(). This function does not affect any subdevices that were opened using this virtual
board device. All conference and party devices opened using this virtual board device will still be
valid after the virtual board device has been closed.

Parameter Description
a_BrdHandle specifies an SRL handle for a virtual board device obtained from a
previous open
a_pCloselnfo reserved for future use. Set to NULL.
B Cautions

* Once a device is closed, a process can no longer act on the given device via the device handle.

¢ The only process affected by cnf_Close() is the process that called the function.
B Errors
If this function fails with CNF_ERROR, use c¢nf_GetErrorInfo() to obtain the reason for the

error. Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

H Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

16 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

close a board device — cnf_Close()

B See Also

e cnf_Open()

Dialogic® Conferencing API Library Reference — October 2007 17
Dialogic Corporation

cnf_CloseConference() — close a conference device

cnf_CloseConference()

Name: CNF_RETURN cnf_CloseConference (a_CnfHandle, a_pCloselnfo)
Inputs: SRL_DEVICE_HANDLE a_CnfHandle ¢ conference device handle
CPCNF_CLOSE_CONF_INFO a_pCloselnfo ¢ reserved for future use

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management
Mode: synchronous

B Description

The cnf_CloseConference() function closes a conference device handle that was previously
opened using enf_OpenConference(). When the conference is closed, all added parties in this
conference are indirectly removed. It is up to you to decide whether to close the party devices or
add them to another conference.

Parameter Description
a_CnfHandle specifies a conference device handle obtained from a previous open
a_pCloselnfo reserved for future use. Set to NULL.

B Cautions

* Once a device is closed, a process can no longer act on the given device via the device handle.

e This function closes the conference device on all processes in which it is being used. It is up to
you to synchronize the creation and deletion of conference devices between processes.

¢ The a_pCloselnfo parameter is reserved for future use and must be set to NULL.
B Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Possible errors for this function include:

ECNF_INVALID DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

18 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

close a conference device — cnf_CloseConference()

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_OpenConference()

e cnf_Open()

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

19

cnf_CloseParty() — close a party device

cnf_CloseParty()

Name: CNF_RETURN cnf_CloseParty (a_PtyHandle, a_pCloselnfo)
Inputs: SRL_DEVICE_HANDLE a_PtyHandle e party device handle
CPCNF_CLOSE_PARTY_INFO a_pCloselnfo ¢ reserved for future use

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Device Management
Mode: synchronous

B Description

The cnf_CloseParty() function closes a party device handle that was previously opened using
cnf_OpenParty(). If the party device is currently added to a conference, this function removes it
from the conference before closing it. .

Parameter Description
a_PtyHandle specifies a party device handle obtained from a previous open
a_pCloselnfo reserved for future use. Set to NULL.

B Cautions

* Once a device is closed, a process can no longer act on the given device via the device handle.

e This function closes the party device on all processes in which it is being used. It is up to you
to synchronize the creation and deletion of party devices between processes.

¢ The a_pCloselnfo parameter is reserved for future use and must be set to NULL.
B Errors
If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the

error. Possible errors for this function include:

ECNF_INVALID DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

H Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

20 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

close a party device — cnf_CloseParty()

B See Also

e cnf_OpenParty()
e cnf_CloseConference()

Dialogic® Conferencing API Library Reference — October 2007 21
Dialogic Corporation

cnf_DisableEvents() — disable one or more events

cnf_DisableEvents()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

CNF_RETURN cnf_DisableEvents (a_DevHandle, a_pEventInfo, a_pUserInfo)
SRL_DEVICE_HANDLE a_DevHandle ¢ device handle
CPCNF_EVENT_INFO a_pEventInfo * pointer to event information structure
void * a_pUserInfo e pointer to user-defined data

CNF_SUCCESS if successful
CNF_ERROR if failure

srllib.h
cnflib.h

Configuration

asynchronous

22

Description

The cnf_DisableEvents() function disables one or more notification events that were previously
enabled using cnf_EnableEvents(). The function only applies to the process in which it was
called.

Parameter Description
a_DevHandle specifies a device handle on which to disable events
a_pEventInfo points to the event information structure, CNF_EVENT_INFO, which

stores information about events to be enabled or disabled.

a_pUserInfo points to user-defined data. If none, set to NULL.

Events for a board device are defined in the ECNF_BRD_EVT data type; events for a conference
device are defined in the ECNF_CONF_EVT data type. Events are disabled by default.

The ECNF_BRD_EVT data type is an enumeration that defines the following values:

ECNF_BRD_EVT_ACTIVE_TALKER
board level notification event for active talker

ECNF_BRD_EVT_CONF_CLOSED
board level notification event for conference closed

ECNF_BRD_EVT_CONF_OPENED
board level notification event for conference opened

ECNF_BRD_EVT_PARTY_ADDED
board level notification event for party added

ECNF_BRD_EVT_PARTY_REMOVED
board level notification event for party removed

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

disable one or more events — cnf_DisableEvents()

The ECNF_CONF_EVT data type is an enumeration that defines the following values:

ECNF_CONF_EVT_ACTIVE_TALKER
conference level notification event for active talker

ECNF_CONF_EVT_DTMF_DETECTION
conference level notification event for DTMF detected

ECNF_CONF_EVT_PARTY_ADDED
conference level notification event for party added

ECNF_CONF_EVT_PARTY_REMOVED
conference level notification event for party removed

Note: The ECNF_BRD_EVT_ACTIVE_TALKER event type is only supported on a CNF board device
and not supported on an MCX board device.

For more information on events, see Chapter 3, “Events”.

B Termination Events

CNFEV_DISABLE_EVENT
indicates successful completion of this function; that is, one or more events were disabled

Data Type: CNF_EVENT_INFO

CNFEV_DISABLE_EVENT_FAIL
indicates that the function failed

Data Type: CNF_EVENT_INFO
B Cautions
None.
B Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID _EVENT
invalid device event

ECNF_SUBSYSTEM
internal subsystem error

H Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf EnableEvents()

Dialogic® Conferencing API Library Reference — October 2007 23
Dialogic Corporation

cnf_EnableEvents() — enable one or more events

cnf_EnableEvents()

Name:

Inputs:

Returns:

Includes:

Category:
Mode:

CNF_RETURN cnf_EnableEvents (a_DevHandle, a_pEventlnfo, a_pUserInfo)
SRL_DEVICE_HANDLE a_DevHandle ¢ device handle
CPCNF_EVENT_INFO a_pEventInfo * pointer to event information structure
void * a_pUserInfo e pointer to user-defined data

CNF_SUCCESS if successful
CNF_ERROR if failure

srllib.h
cnflib.h

Configuration

asynchronous

24

Description

The cnf_EnableEvents() function enables one or more notification events in the process in which
it is called. Notification events can only be enabled on a board or on a conference; they cannot be
enabled for a party. Notification events are disabled by default.

Notification events are different from asynchronous function termination events, such as
CNFEV_OPEN, which cannot be disabled.

Parameter Description
a_DevHandle specifies a device handle on which to enable events
a_pEventInfo points to the event information structure, CNF_EVENT_INFO, which

stores information about events to be enabled or disabled.

a_pUserInfo points to user-defined data. If none, set to NULL.

Events for a board device are defined in the ECNF_BRD_EVT data type; events for a conference
device are defined in the ECNF_CONF_EVT data type. Events are disabled by default.

The ECNF_BRD_EVT data type is an enumeration that defines the following values:

ECNF_BRD_EVT_ACTIVE_TALKER
board level notification event for active talker

ECNF_BRD_EVT_CONF_CLOSED
board level notification event for conference closed

ECNF_BRD_EVT_CONF_OPENED
board level notification event for conference opened

ECNF_BRD_EVT_PARTY_ADDED
board level notification event for party added

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

enable one or more events — cnf_EnableEvents()

ECNF_BRD_EVT_PARTY_REMOVED
board level notification event for party removed

The ECNF_CONF_EVT data type is an enumeration that defines the following values:

ECNF_CONF_EVT_ACTIVE_TALKER
conference level notification event for active talker

ECNF_CONF_EVT_DTMF_DETECTION
conference level notification event for DTMF detected

ECNF_CONF_EVT_PARTY_ADDED
conference level notification event for party added

ECNF_CONF_EVT_PARTY_REMOVED
conference level notification event for party removed

Note: The ECNF_BRD_EVT_ACTIVE_TALKER event type is only supported on a CNF board device
and not supported on an MCX board device.

For more information on events, see Chapter 3, “Events”.

B Termination Events

CNFEV_ENABLE_EVENT
indicates successful completion of this function; that is, one or more events were enabled

Data Type: CNF_EVENT_INFO

CNFEV_ENABLE_EVENT_FAIL
indicates that the function failed

Data Type: CNF_EVENT_INFO
B Cautions
None.
® Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID _EVENT
invalid device event

ECNF_SUBSYSTEM
internal subsystem error

H Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

Dialogic® Conferencing API Library Reference — October 2007 25
Dialogic Corporation

cnf_EnableEvents() — enable one or more events

26

B See Also

e cnf DisableEvents()

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

get a list of active talkers — cnf_GetActiveTalkerList()

cnf_GetActiveTalkerList()

Name: CNF_RETURN cnf_GetActiveTalkerList (a_DevHandle, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_DevHandle ¢ device handle
void * a_pUserInfo * pointer to user-defined data
Returns: CNF_SUCCESS if successful

CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Auxiliary

Mode: asynchronous
B Description

The enf_GetActiveTalker() function returns a list of active talkers on the specified device. A
device can be a board or a conference.

Although this function takes both board and conference device handles, board device handles are
only supported on a CNF board device and not on an MCX board device. Conference device
handles are supported on both MCX and CNF conference devices. For a board device, all active
talkers for that board are returned regardless of the conference to which they belong. For a
conference device, only active talkers within that specific conference are returned.

Parameter Description

a_DevHandle specifies the device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Termination Events

CNFEV_GET_ACTIVE_TALKER
indicates successful completion of this function; that is, list of active talkers returned

Data Type: CNF_ACTIVE_TALKER_INFO

CNFEV_GET_ACTIVE_TALKER_FAIL
indicates that the function failed

Data Type: CNF_ACTIVE_TALKER_INFO
Cautions

None.

Dialogic® Conferencing API Library Reference — October 2007 27
Dialogic Corporation

cnf_GetActiveTalkerList() — get a list of active talkers

H Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

None.

28 Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

get one or more device attributes — cnf_GetAttributes()

cnf_GetAttributes()

Name:
Inputs:

Returns:

Includes:

Category:
Mode:

CNF_RETURN cnf_GetAttributes (a_DevHandle, a_pAttrInfo, a_pUserInfo)
SRL_DEVICE_HANDLE a_DevHandle e device on which to get attributes
CPCNF_ATTR_INFO a_pAttrInfo * pointer to attribute information structure
void * a_pUserInfo e pointer to user-defined data

CNF_SUCCESS if successful
CNF_ERROR if failure

srllib.h
cnflib.h

Configuration

asynchronous

Description

The cnf_GetAttributes() function gets the values of one or more device attributes. A device can
be a board, a conference, or a party. The values for the attributes are returned in a structure
provided in the CNFEV_GET_ATTRIBUTE event.

Parameter Description
a_DevHandle specifies the device handle on which to get attributes
a_pAttrInfo points to the attribute information structure, CNF_ATTR_INFO. This

structure in turn points to the CNF_ATTR structure, which specifies an
attribute and its value.

a_pUserInfo points to user-defined data. If none, set to NULL.

Attributes for each type of device are defined in the ECNF_BRD_ATTR, ECNF_CONF_ATTR,
and ECNF_PARTY_ATTR enumerations.

The ECNF_BRD_ATTR data type is an enumeration that defines the following values:

ECNF_BRD_ATTR_ACTIVE_TALKER
enables or disables board level active talker.

ECNF_BRD_ATTR_NOTIFY_INTERVAL
changes the default firmware interval for active talker notification events on the board. The
value must be passed in 10 msec units. The default setting is 100 (1 second).

ECNF_BRD_ATTR_TONE_CLAMPING
enables or disables board level tone clamping to reduce the level of DTMF tones heard on a
per party basis on the board.

Dialogic® Conferencing API Library Reference — October 2007 29
Dialogic Corporation

cnf_GetAttributes() — get one or more device attributes

The ECNF_CONF_ATTR data type is an enumeration that defines the following values:

ECNF_CONF_ATTR_DTMF_MASK
specifies a mask for the DTMF digits used for volume control. The digits are defined in the
ECNF_DTMF_DIGIT enumeration. The ECNF_DTMF_DIGIT values can be ORed to form
the mask using the ECNF_DTMF_MASK_OPERATION enumeration. For a list of
ECNF_DTMEF_DIGIT values, see the description for CNF_DTMF_CONTROL_INFO.

ECNF_CONF_ATTR_NOTIFY
sets conference notification tone to enabled or disabled. Possible values are
ECNF_ATTR_STATE_ENABLED and ECNF_ATTR_STATE_DISABLED.

ECNF_CONF_ATTR_TONE_CLAMPING
enables or disables conference level tone clamping. Overrides board level value.

The ECNF_PARTY_ATTR data type is an enumeration that defines the following values:

ECNF_PARTY_ATTR_AGC
enables or disables automatic gain control.

ECNF_PARTY_ATTR_BROADCAST
enables or disables broadcast mode. One party can speak while all other parties are muted.

ECNF_PARTY_ATTR_COACH
sets party to coach. Coach is heard by pupil only.

ECNF_PARTY_ATTR_ECHO_CANCEL
enables or disables echo cancellation. Provides 128 taps (16 msec) of echo cancellation.

ECNF_PARTY_ATTR_PUPIL
sets party to pupil. Pupil hears everyone including the coach.

ECNF_PARTY_ATTR_TARIFF_TONE
enables or disables tariff tone. Party receives periodic tone for duration of the call.

ECNF_PARTY_ATTR_TONE_CLAMPING
enables or disables DTMF tone clamping for the party. Overrides board and conference level
values.

B Termination Events

CNFEV_GET_ATTRIBUTE
indicates successful completion of this function; that is, attribute values were returned

Data Type: CNF_ATTR_INFO

CNFEV_GET_ATTRIBUTE_FAIL
indicates that the function failed

Data Type: CNF_ATTR_INFO
B Cautions

None.

30 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

get one or more device attributes — cnf_GetAttributes()

B Errors

If this function fails with CNF_ERROR, use c¢nf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_ATTR
invalid attribute

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_SetAttributes()

Dialogic® Conferencing API Library Reference — October 2007 31
Dialogic Corporation

cnf_GetDeviceCount() — get conference and party device count information

cnf_GetDeviceCount()

Name: CNF_RETURN cnf_GetDeviceCount (a_BrdHandle, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_BrdHandle ® board device handle
void * a_pUserInfo * pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Auxiliary
Mode: asynchronous

B Description

The enf_GetDeviceCount() function returns the number of conference and party devices available
on the specified virtual board device. See the CNF_DEVICE_COUNT_INFO structure for more on
the type of information returned.

Parameter Description
a_BrdHandle specifies the virtual board device handle obtained from a previous open
a_pUserInfo points to user-defined data. If none, set to NULL.

B Termination Events

CNFEV_GET_DEVICE_COUNT
indicates successful completion of this function; that is, device count returned

Data Type: CNF_DEVICE_COUNT_INFO

CNFEV_GET_DEVICE_COUNT_FAIL
indicates that the function failed

Data Type: NULL
B Cautions

None.

32 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

get conference and party device count information — cnf_GetDeviceCount()

H Errors

If this function fails with CNF_ERROR, use c¢nf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

» cnf_AddParty()
e cnf_RemoveParty()

Dialogic® Conferencing API Library Reference — October 2007 33
Dialogic Corporation

cnf_GetDTMFControl() — get DTMF digits control information

cnf_GetDTMFControl()

Name: CNF_RETURN cnf_GetDTMFControl (a_BrdHandle, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_BrdHandle ¢ SRL handle to the virtual board device
void * a_pUserInfo * pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration
Mode: asynchronous

B Description
The enf_GetDTMF Control() function returns information about the DTMF digits used to control
the conference behavior, such as volume level. The DTMF digit information is stored in the

CNF_DTMF_CONTROL_INFO structure.

Parameter Description

a_BrdHandle specifies the SRL handle to the virtual board device obtained from a
previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

B Termination Events

CNFEV_GET_DTMF_CONTROL
indicates successful completion of this function; that is, DTMF digit information was returned

Data Type: CNF_DTMF_CONTROL_INFO

CNFEV_GET_DTMF_CONTROL_FAIL
indicates that the function failed

Data Type: NULL
B Cautions

None.

34 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

get DTMF digits control information — cnf_GetDTMFControl()

B Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_SetDTMFControl()

Dialogic® Conferencing API Library Reference — October 2007 35
Dialogic Corporation

cnf_GetErrorinfo() — get error information about a failed function

cnf_GetErrorinfo()

Name: CNF_RETURN cnf_GetErrorInfo (a_pErrorInfo)
Inputs: PCNF_ERROR_INFO * a_pErrorInfo e pointer to error information structure

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Error Processing

Mode: synchronous

B Description

The enf_GetErrorInfo() function obtains error information about a failed function and provides it
in the CNF_ERROR_INFO structure. To retrieve the information, this function must be called
immediately after the Dialogic® Conferencing (CNF) API function failed.

Parameter Description
a_pErrorInfo points to the error information structure, CNF_ERROR_INFO
B Cautions

e The enf_GetErrorInfo() function can only be called in the same thread in which the routine
that had the error was called. The cnf_GetErrorInfo() function cannot be called to retrieve
error information for a function that returned error information in another thread.

e The Dialogic® Conferencing (CNF) API only keeps the error information for the last
Dialogic® Conferencing (CNF) API function call. Therefore, you should check and retrieve
the error information immediately if a Dialogic® Conferencing (CNF) API function fails.

B Errors

Do not call the enf_GetErrorInfo() function recursively if it returns CNF_ERROR to indicate
failure. A failure return generally indicates that the a_pErrorInfo parameter is NULL or invalid.

H Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

None.

36 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

get a list of added parties in a conference — cnf_GetPartyList()

cnf_GetPartyList()

Name: CNF_RETURN cnf_GetPartyList (a_CnfHandle, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_CnfHandle e conference device handle
void * a_pUserInfo * pointer to user-defined data
Returns: CNF_SUCCESS if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Auxiliary
Mode: asynchronous
B Description

The enf_GetPartyList() function returns a list of party devices currently added to the specified
conference.

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open

a_pUserInfo points to user-defined data. If none, set to NULL.

Termination Events

CNFEV_GET_PARTY_LIST
indicates successful completion of this function; that is, list of added parties returned

Data Type: CNF_PARTY_INFO

CNFEV_GET_PARTY_LIST FAIL
indicates that the function failed

Data Type: NULL
Cautions
None.
Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID DEVICE
invalid device handle

Dialogic® Conferencing API Library Reference — October 2007 37
Dialogic Corporation

cnf_GetPartyList() — get a list of added parties in a conference

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_AddParty()
e cnf_RemoveParty()

38 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

get video layout on a specified device — cnf_GetVideoLayout()

cnf_GetVideoLayout()

Name: CNF_RETURN cnf GetVideoLayout(a_CnfHandle, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_CnfHandle e conference device handle
void * a_pUserInfo * pointer to user-defined data
Returns: CNF_SUCCESS if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Multimedia Conferencing
Mode: asynchronous
B Description
The enf_GetVideoLayout() function gets the video layout on the specified conference device.
The video layout handle will be provided in the termination event. Please refer to the Dialogic®
Media Toolkit Library Reference for more information on the layout builder functions. These
functions can be used to access the video layout information using the handle returned. Only
CUSTOM layout types are modifiable. Once received, the video layout handle can be modified
using the enf_SetVideoLayout() function, which allows the user to configure the layout prior to
setting it on the conference device.
Parameter Description
a_CnfHandle specifies the conference device handle obtained from a previous open
a_pUserInfo points to user-defined data. If none, set to NULL.
B Termination Events
CNFEV_GET_VIDEO_LAYOUT
indicates successful completion of this function; that is, video layout returned
Data Type: CNF_VIDEO_LAYOUT_INFO
CNFEV_GET_VIDEO_LAYOUT_FAIL
indicates that the function failed
Data Type: NULL
B Cautions
None.
Dialogic® Conferencing API Library Reference — October 2007 39

Dialogic Corporation

cnf_GetVideoLayout() — get video layout on a specified device

H Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

o cnf_SetVideoLayout()

40 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

get visible party list — cnf_GetVisiblePartyList()

cnf_GetVisiblePartyList()

get visible party list

Name: CNF_RETURN cnf_GetVisiblePartyList(a_CnfHandle, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_CnfHandle e conference device handle
void * a_pUserInfo * pointer to user-defined data
Returns: CNF_SUCCESS if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Multimedia Conferencing
Mode: asynchronous
B Description
The cnf_GetVisiblePartyList() function returns the current visible party list on a specified
conference device.
Parameter Description
a_CnfHandle specifies the conference device handle obtained from a previous open
a_pUserInfo points to user-defined data. If none, set to NULL.
B Termination Events
CNFEV_GET_VISIBLE_PARTY_LIST
indicates successful completion of this function; that is, list of added parties returned
Data Type: CNF_VISIBLE_PARTY_LIST
CNFEV_GET_VISIBLE_PARTY_LIST_FAIL
indicates that the function failed
Data Type: NULL
B Cautions
None.
B Errors
If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:
ECNF_INVALID_DEVICE
invalid device handle
Dialogic® Conferencing API Library Reference — October 2007 4

Dialogic Corporation

cnf_GetVisiblePartyList() — get visible party list

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_SetVisiblePartyList()

42 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

open a board device — cnf_Open()

cnf_Open()

Name:
Inputs:

SRL_DEVICE cnf_Open (a_szBrdName, a_pOpenlInfo, a_pUserInfo)
const char * a_szBrdName e pointer to board device name
CPCNF_OPEN_INFO a_pOpenlnfo e reserved for future use

void * a_pUserInfo * pointer to user-defined data

Returns: board device handle if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Device Management
Mode: asynchronous
B Description
The enf_Open() function opens an audio only conference (CNF) board device or a multimedia
conference (MCX) board device. The naming convention of a CNF board device is "cnfBx" while
an MCX board device is "mcxBx" where x is the board number starting from 1. All subsequent
references to the opened device must be made using the handle until the device is closed.
All conference and party devices opened using a board handle will open the corresponding type of
conference or party device.
Parameter Description
a_szBrdName points to a board device name
a_pOpenlnfo reserved for future use. Set to NULL.
a_pUserInfo points to user-defined data. If none, set to NULL.
B Termination Events
CNFEV_OPEN
indicates successful completion of this function; that is, a virtual board device was opened
Data Type: NULL
CNFEV_OPEN_FAIL
indicates that the function failed
Data Type: NULL
Note: 1f CNFEV_OPEN_FAIL is received, you must call enf_Close() to clean up the operation.
B Cautions
* Before closing CNF devices, ensure that events are disabled by calling enf_DisableEvents();
otherwise, the firmware process will stop executing (also known as KILLTASK).
Dialogic® Conferencing API Library Reference — October 2007 43

Dialogic Corporation

cnf_Open() — open a board device

e In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

e The a_pOpenlnfo parameter is reserved for future use and must be set to NULL.
B Errors

If this function fails with CNF_ERROR, use c¢nf_GetErrorInfo() to obtain the reason for the
error. Possible errors for this function include:

ECNF_INVALID_NAME
invalid device name

ECNF_SUBSYSTEM
internal subsystem error

H Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

H See Also

e cnf _Close()

44 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

open a conference device — cnf_OpenConference()

cnf_OpenConference()

Name:

Inputs:

SRL_DEVICE_HANDLE cnf OpenConference (a_nBrdHandle, a_szCnfName, a_pOpenlInfo,
a_pUserInfo)

SRL_DEVICE_HANDLE a_nBrdHandle e SRL handle to the virtual board device
const char * a_szCnfName * pointer to conference name

CPCNF_OPEN_CONF_INFO a_pOpenlnfo e reserved for future use

void * a_pUserInfo * pointer to user-defined data
Returns: conference device handle if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Device Management
Mode: asynchronous
B Description
The cnf_OpenConference() function opens a new conference device or an existing conference
device. The type of conference device opened is determined by the board device handle used to
open the device. If a CNF board device is used, a CNF conference device is opened; and if an MCX
board device is used, an MCX conference device is opened.
To open a new conference, set the a_szCnfName parameter to NULL and specify the virtual board
device handle on which to open the new conference. This function opens a conference device and
returns a unique SRL handle to identify the device. All subsequent references to the opened device
must be made using the handle until the device is closed.
The number of conference devices that can be opened is fixed per virtual board and you may open
all conference devices during initialization or dynamically at runtime. To determine the number of
conference devices available, use cnf_GetDeviceCount().
Parameter Description
a_nBrdHandle specifies an SRL handle to the virtual board device
a_szConfName points to an existing conference device. Set to NULL to open a new
conference.
a_pOpenlnfo reserved for future use. Set to NULL.
a_pUserInfo points to user-defined data. If none, set to NULL.
Dialogic® Conferencing API Library Reference — October 2007 45

Dialogic Corporation

cnf_OpenConference() — open a conference device

46

Note:

Termination Events

CNFEV_OPEN_CONF
indicates successful completion of this function; that is, a conference device was opened

Data Type: CNF_OPEN_CONF_RESULT
CNFEV_OPEN_CONF_FAIL

indicates that the function failed

Data Type: CNF_OPEN_CONF_RESULT

If CNFEV_OPEN_CONF_FAIL is received, you must call cnf_CloseConference() to clean up
the operation.

Cautions

e Before closing CNF devices, ensure that events are disabled by calling cnf_DisableEvents();
otherwise, the firmware process will stop executing (also known as KILLTASK).

e In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

¢ The a_pOpenlnfo parameter is reserved for future use and must be set to NULL.
Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_INVALID_NAME
invalid device name

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

See Also

e cnf_CloseConference()

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

open the board devices in synchronous or asynchronous mode — cnf_OpenEx()

cnf_OpenEXx()

Name
Inputs:

Returns:

Includes:
Category:
Mode:

SRL_DEVICE_HANDLE cnf OpenEx (a_szBrdName, a_pOpenlnfo, a_pUserInfo, a_usMode)
const char * a_szBrdName e pointer to virtual board device name

CPCNF_OPEN_INFO ¢ reserved for future use
a_pOpenlnfo

void * a_pUserInfo * pointer to user-defined data
unsigned short a_usMode ¢ synchronous/asynchronous mode specifier

Virtual board SRL device handle if successful
CNF_ERROR on failure

cnflib.h
Device Management

synchronous/asynchronous

Description

The enf_OpenEx() function opens an audio only conference (CNF) board device or a multimedia
conference (MCX) board device. The naming convention of a CNF board device is "cnfBx" while
an MCX board device is "mcxBx" where x is the board number starting from 1. All subsequent
references to the opened device must be made using the handle until the device is closed.

All conference and party devices opened using a board handle will open the corresponding type of
conference or party device.

The ecnf_OpenEx() function allows you to choose synchronous or asynchronous mode. If you
require operation in synchronous mode, use ecnf_OpenEx() instead of cnf_Open().

Parameter Description

a_szBrdName points to a virtual board device name
a_pOpenlnfo reserved for future use. Must be set to NULL.
a_pUserInfo points to user-defined data. If none, set to NULL.
a_usMode specifies synchronous/asynchronous mode. Valid values are:
e EV_SYNC
e EV_ASYNC

Note: There is no default setting for mode.

If this function is called in synchronous mode, then if successful, the returned SRL handle is a valid
handle that can be used to further communicate with the board device.

If this function is called in the asynchronous mode, then if successful, the returned SRL handle will
not be valid until the CNFEV_OPEN event is reported on the SRL handle to indicate successful

Dialogic® Conferencing API Library Reference — October 2007 47
Dialogic Corporation

cnf_OpenEx() — open the board devices in synchronous or asynchronous mode

initialization of the device. If a failure occurs, the device is not opened and the
CNFEV_OPEN_FAIL event will be reported on the SRL handle returned from enf_OpenEx().

B Termination Events
The following is a list of events that can be returned as a completion to this request when used in

asynchronous mode.

CNFEV_OPEN
indicates successful completion of this function; that is, a virtual board device was opened
Data Type: NULL

CNFEV_OPEN_FAIL
indicates that the function failed
Data Type: NULL

Note: Application must call enf_Close() to clean up if CNFEV_OPEN_FAIL is received.
B Cautions

e In applications that spawn child processes from a parent process, the device handle is not
inheritable by the child process. Make sure devices are opened in the child process.

¢ The a_pOpenlnfo parameter is reserved for future use and must be set to NULL.

e The same virtual board device can be opened in multiple processes; one process can delete a
conference running on another process on the same virtual board device. It is up to you to
synchronize access to the same virtual board device from multiple processes.

B Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Refer to enf_GetErrorInfo() for a list of possible error values.

H Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

H See Also

e cnf _Close()

Dialogic® Conferencing API Library Reference — October 2007 48
Dialogic Corporation

open a party device — cnf_OpenParty()

cnf_OpenParty()

Name: CNF_RETURN cnf OpenParty (a_nBrdHandle, a_szPtyName, a_pOpenlInfo, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_nBrdHandle e SRL handle to the virtual board device
const char * a_szPtyName * pointer to party device name
CPCNF_OPEN_PARTY_INFO a_pOpenlnfo ¢ reserved for future use
void * a_pUserInfo e pointer to user-defined data
Returns: party device handle if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Device Management
Mode: asynchronous
B Description
The cnf_OpenParty() function opens a new party device or an existing party device. The type of
party device opened is determined by the board device handle used to open the device. If a CNF
board device is used, a CNF party device is opened; and if an MCX board device is used, an MCX
party device is opened.
To open a new party, set the a_szPtyName parameter to NULL and specify the virtual board device
handle on which to open the new party. This function opens a party device and returns a unique
SRL handle to identify the device. All subsequent references to the opened device must be made
using the handle until the device is closed.
The number of party devices that can be opened is fixed per virtual board and you may open all
party devices during initialization or dynamically at runtime. To determine the number of party
devices available, use cnf_GetDeviceCount().
Parameter Description
a_nBrdHandle specifies the SRL handle to the virtual board device
a_szPtyName points to an existing party device. Set to NULL to open a new party.
a_pOpenlnfo reserved for future use. Set to NULL.
a_pUserInfo points to user-defined data. If none, set to NULL.
B Termination Events
CNFEV_OPEN_PARTY
indicates successful completion of this function; that is, a party device was opened
Data Type: CNF_OPEN_PARTY_RESULT
Dialogic® Conferencing API Library Reference — October 2007 49

Dialogic Corporation

cnf_OpenParty() — open a party device

50

Note:

CNFEV_OPEN_PARTY_FAIL
indicates that the function failed

Data Type: CNF_OPEN_PARTY_RESULT

If CNFEV_OPEN_PARTY_FAIL is received, you must call enf_CloseParty() to clean up the
operation.

Cautions
e In applications that spawn child processes from a parent process, the device handle is not

inheritable by the child process. Make sure devices are opened in the child process.

e The a_pOpenlnfo parameter is reserved for future use and must be set to NULL.
Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_INVALID_NAME
invalid device name

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

See Also

e cnf_CloseParty()

¢ cnf_CloseConference()

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

remove one or more parties from a conference — cnf_RemoveParty()

cnf_RemoveParty()

Name: CNF_RETURN cnf_RemoveParty (a_CnfHandle, a_pPtylInfo, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_CnfHandle ¢ conference device handle
CPCNF_PARTY_INFO a_pPtyInfo * pointer to party information structure
void * a_pUserInfo * pointer to user-defined data
Returns: CNF_SUCCESS if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Conference Management
Mode: asynchronous
B Description
The cnf_RemoveParty() function removes one or more parties from a conference. The
CNF_PARTY_INFO structure contains a list of party devices to be removed. The removed party or
parties can be added to a different conference; or they can be closed.
Parameter Description
a_CnfHandle specifies the conference device handle obtained from a previous open
a_pPtylInfo points to a party information structure, CNF_PARTY_INFO
a_pUserInfo points to user-defined data. If none, set to NULL.
B Termination Events
CNFEV_REMOVE_PARTY
indicates successful completion of this function; that is, a party device was added
Data Type: CNF_PARTY_INFO
CNFEV_REMOVE_PARTY_FAIL
indicates that the function failed
Data Type: CNF_PARTY_INFO
B Cautions
When using a CNF conference device, only one party at a time can be removed from the
conference. This function will fail if more than one party is specified. Removing multiple parties
from a conference is supported on an MCX conference device.
Dialogic® Conferencing API Library Reference — October 2007 51

Dialogic Corporation

cnf_RemoveParty() — remove one or more parties from a conference

H Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_AddParty()
e cnf_CloseParty()
e cnf_CloseConference()

52 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

reset open devices that were improperly closed — cnf_ResetDevices()

cnf_ResetDevices()

Name:

Inputs:

Returns:

Includes:
Category:
Mode:

CNF_RETURN cnf_ResetDevices(SRL_DEVICE_HANDLE a_BrdHandle,
CPCNF_RESET_DEVICES_INFO a_pResetInfo, void *a_pUserInfo)

a_BrdHandle e SRL handle to the virtual board device
a_pResetInfo ¢ reserved for future use
a_pUserInfo e pointer to user defined data

CNF_SUCCESS for success
CNF_ERROR for failure

cnflib.h
Device Management

Asynchronous

Description

The cnf_ResetDevices() function resets all devices that may have been opened and not closed by a
previous process for the specified board. This function should only be used to recover conference
and party devices that were not properly closed due to an abnormal or improper shutdown of some
process, and should not be used otherwise.

Parameter Description
a_BrdHandle specifies an SRL handle to the virtual board device

a_pResetInfo reserved for future use. If none, set to NULL.

a_pUserInfo points to user-defined data

Events

If CNF_SUCCESS is returned, the user is notified of the completion status of this request via one
of the events listed below, otherwise CNF_ERROR will be returned.

CNFEV_RESET _DEVICES
Reset devices successful or no devices to recover

CNFEV_RESET DEVICES_FAIL
Reset devices failure

Cautions

This function should only be used to recover previously opened devices that were not closed due to
an abnormal shutdown of a process. The most common use of this function is to call it at the
beginning of an application in order to make sure that the firmware conferencing resources are
properly reset. The function will return the CNFEV_RESET_DEVICES event if it successfully
recovered one or more CNF devices, or if there were no devices to recover.

Dialogic® Conferencing API Library Reference — October 2007 53
Dialogic Corporation

cnf_ResetDevices() — reset open devices that were improperly closed

H Errors

If this function fails with CNF_ERROR, use ¢nf_GetErrorInfo() to obtain the reason for the
error. Refer to enf_GetErrorInfo() for a list of possible error values.

B Example

#include <cnflib.h>
int main(int argc, char *argv[])

{
SRL_DEVICE_HANDLE BrdDevice; /* Virtual board device handle. */
ifT ((BrdDevice = cnf_Open(brdB1", NULL, NULL)) == CNF_ERROR)
{
cout << "cnf_Open failed !!" << endl;
/* process error */
return O;
3
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt TIMEOUT failure" << endl;
/* process error */
return 0;
}
else
{
unsigned int unEvent = sr_getevttype();
switch(unEvent)
{
case CNFEV_OPEN:
/* Open successful - May now use BrdDevice handle */
break;
case CNFEV_OPEN_FAIL:
/* Open failed - Process failure and must close device */
cnf_Close(BrdDevice, NULL);
exit(0);
break;
default:
/* Received some other event - Process this event */
break;
}:
}
¥
/**
* We could use the cnf_GetDeviceCount() function to determine if we have
* any allocated conference or party devices that need to deallocated or
* we could decide to always reset the board devices by default. If so,
* we use the cnf_ResetDevices to force a deallocation of these devices.
*/
if ((cnf_ResetDevices(BrdDevice, NULL, NULL)) == CNF_ERROR
{
cout << "cnf_ResetDevices failed !!" << endl;
/* process error */
return O;
¥
else
{
if (sr_waitevt(10000) == -1)
{
Dialogic® Conferencing API Library Reference — October 2007 54

Dialogic Corporation

reset open devices that were improperly closed — cnf_ResetDevices()

cout << "sr_waitevt TIMIEOUT failure” << endl;
/* process error */

return O;
}
else
{
unsigned int unEvent = sr_getevttype();
switch(unEvent)
{
case CNFEV_RESET_DEVICES:
/* Reset devices successful */
break;
case CNFEV_RESET_DEVICES_FAIL:
/* Reset devices failure - lets use SRL to find reason */
break;
default:
/* Received some other event - process this event */
Break;
}:
}
¥
¥
B See Also
None.
Dialogic® Conferencing API Library Reference — October 2007 55

Dialogic Corporation

cnf_SetAttributes() — set one or more device attributes

cnf_SetAttributes()

Name: CNF_RETURN cnf_SetAttributes (a_DevHandle, a_pAttrInfo, a_pUserInfo)

Inputs: SRL_DEVICE_HANDLE a_DevHandle e device on which to get attributes
CPCNF_ATTR_INFO a_pAttrInfo e pointer to attribute information structure
void * a_pUserInfo e pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration
Mode: Asynchronous

B Description

The cnf_SetAttributes() function sets the values for one or more attributes on a device. A device
can be a board, a conference, or a party.

Parameter Description
a_DevHandle specifies the device handle on which to set attributes
a_pAttrInfo points to the attribute information structure, CNF_ATTR_INFO. This

structure in turn points to the CNF_ATTR data structure, which specifies
an attribute and its value.

a_pUserInfo points to user-defined data. If none, set to NULL.

Attributes for each type of device are defined in the ECNF_BRD_ATTR, ECNF_CONF_ATTR,
and ECNF_PARTY_ATTR enumerations.

The ECNF_BRD_ATTR data type is an enumeration that defines the following values:

ECNF_BRD_ATTR_ACTIVE_TALKER
enables or disables board level active talker.

ECNF_BRD_ATTR_NOTIFY_INTERVAL
changes the default firmware interval for active talker notification events on the board. The
value must be passed in 10 msec units. The default setting is 100 (1 second).

ECNF_BRD_ATTR_TONE_CLAMPING
enables or disables board level tone clamping to reduce the level of DTMF tones heard on a
per party basis on the board.

56 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

set one or more device attributes — cnf_SetAttributes()

The ECNF_CONF_ATTR data type is an enumeration that defines the following values:

ECNF_CONF_ATTR_DTMF_MASK
specifies a mask for the DTMF digits used for volume control. The digits are defined in the
ECNF_DTMF_DIGIT enumeration. The ECNF_DTMF_DIGIT values can be ORed to form
the mask using the ECNF_DTMF_MASK_OPERATION enumeration. For a list of
ECNF_DTMEF_DIGIT values, see the description for CNF_DTMF_CONTROL_INFO.

ECNF_CONF_ATTR_NOTIFY
sets conference notification tone to enabled or disabled. Possible values are
ECNF_ATTR_STATE_ENABLED and ECNF_ATTR_STATE_DISABLED.

ECNF_CONF_ATTR_TONE_CLAMPING
enables or disables conference level tone clamping. Overrides board level value.

The ECNF_PARTY_ATTR data type is an enumeration that defines the following values:

ECNF_PARTY_ATTR_AGC
enables or disables automatic gain control.

ECNF_PARTY_ATTR_BROADCAST
enables or disables broadcast mode. One party can speak while all other parties are muted.

ECNF_PARTY_ATTR_COACH
sets party to coach. Coach is heard by pupil only.

ECNF_PARTY_ATTR_ECHO_CANCEL
enables or disables echo cancellation. Provides 128 taps (16 msec) of echo cancellation.

ECNF_PARTY_ATTR_PUPIL
sets party to pupil. Pupil hears everyone including the coach.

ECNF_PARTY_ATTR_TARIFF_TONE
enables or disables tariff tone. Party receives periodic tone for duration of the call.

ECNF_PARTY_ATTR_TONE_CLAMPING
enables or disables DTMF tone clamping for the party. Overrides board and conference level
values.

B Termination Events

CNFEV_SET_ATTRIBUTE
indicates successful completion of this function; that is, attribute values were set

Data Type: CNF_ATTR_INFO

CNFEV_SET_ATTRIBUTE_FAIL
indicates that the function failed

Data Type: CNF_ATTR_INFO
B Cautions

None.

Dialogic® Conferencing API Library Reference — October 2007 57
Dialogic Corporation

cnf_SetAttributes() — set one or more device attributes

H Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_ATTR
invalid attribute

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_GetAttributes()

58 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

set DTMF digits control information — cnf_SetDTMFControl()

cnf_SetDTMFControl()

Name: CNF_RETURN cnf_SetDTMFControl (a_BrdHandle, a_pDTMFInfo, a_pUserInfo)
Inputs: SRL_DEVICE_HANDLE a_BrdHandle e SRL handle to the virtual board device
CPCNF_DTMF_CONTROL_INFO * pointer to volume control information structure
a_pDTMFInfo
void * a_pUserInfo e pointer to user-defined data
Returns: CNF_SUCCESS if successful

CNF_ERROR if failure

Includes: srllib.h
cnflib.h

Category: Configuration

Mode: asynchronous
B Description

The enf_SetDTMFControl() function returns information about the DTMF digits used to control
the conference behavior. The DTMF digit information is stored in the
CNF_DTMF_CONTROL_INFO structure.

Parameter Description

a_BrdHandle specifies an SRL handle to the virtual board device obtained from a
previous open

a_pDTMFInfo points to the DTMF volume control information structure,
CNF_DTMF_CONTROL_INFO

a_pUserInfo points to user-defined data. If none, set to NULL.

Termination Events

CNFEV_SET_DTMF_CONTROL
indicates successful completion of this function; that is, DTMF digit information was set

Data Type: CNF_DTMF_CONTROL_INFO

CNFEV_SET DTMF_CONTROL_FAIL
indicates that the function failed

Data Type: CNF_DTMF_CONTROL_INFO
Cautions

None.

Dialogic® Conferencing API Library Reference — October 2007 59
Dialogic Corporation

cnf_SetDTMFControl() — set DTMF digits control information

H Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_GetDTMFControl()

60 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

set the video layout on a conference device — cnf_SetVideoLayout()

cnf_SetVideoLayout()

Name:

Inputs:

CNF_RETURN cnf_SetVideoLayout(a_CnfHandle, a_pLayoutInfo, a_pUserInfo)
SRL_DEVICE_HANDLE a_CnfHandle e conference device handle

CPCNF_VIDEO_LAYOUT_INFO e pointer to the layout information
a_pLayoutlnfo

void * a_pUserInfo * pointer to user-defined data

Returns: CNF_SUCCESS if successful
CNF_ERROR if failure
Includes: srllib.h
cnflib.h
Category: Multimedia Conferencing
Mode: asynchronous
B Description
The enf_SetVideoLayout() function sets the specified video layout on the conference device. The
video layout handle can be the same handle as the one acquired when calling the
cnf_GetVideoLayout() function, or a new handle created using the Ib_CreateLayoutTemplate()
function. If the layout handle being set is acquired using the cnf_GetVideoLayout() function, the
acquired handle must be from the same device on which the layout is to be set.
Refer to the Dialogic® Media Toolkit API Library Reference for more information about the
Ib_CreateLayoutTemplate() function and other Layout Builder functions.
Parameter Description
a_CnfHandle specifies the conference device handle obtained from a previous open
a_pLayoutInfo points to the layout information structure
a_pUserInfo points to user-defined data. If none, set to NULL.
B Termination Events
A termination event will return the unique layout handle for the conference device, but this handle
may or may not be the same handle as the one used when setting the video layout. You must use the
handle returned by the termination event for all future calls requiring a layout handle on a given
conference device.
CNFEV_SET_VIDEO_LAYOUT
indicates successful completion of this function; that is, video layset is set
Data Type: CNF_PARTY_INFO
CNFEV_SET_VIDEO_LAYOUT_FAIL
indicates that the function failed
Data Type: NULL
Dialogic® Conferencing API Library Reference — October 2007 61

Dialogic Corporation

cnf_SetVideoLayout() — set the video layout on a conference device

62

B Cautions

None.
Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_GetVideoLayout()

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

specifies visible parties in video layout region — cnf_SetVisiblePartyList()

cnf_SetVisiblePartyList()

Name:

Inputs:

Returns:

Includes:

Category:
Mode:

CNF_RETURN cnf_SetVisiblePartyList(a_CnfHandle, a_pPartyList, a_pUserInfo)
SRL_DEVICE_HANDLE a_CnfHandle e conference device handle
CNF_VISIBLE_PARTY_LIST a_pPartyList e pointer to visible party list
void * a_pUserInfo * pointer to user-defined data

CNF_SUCCESS if successful
CNF_ERROR if failure

srllib.h
cnflib.h

Multimedia Conferencing

asynchronous

Description

The enf_SetVisiblePartyList() function sets which parties are visible in the video layout regions.
Video layout regions are specified in the visible party list information structure. Region handles are
acquired using the Ib_GetRegionList() function. Refer to the Dialogic® Media Toolkit API
Library Reference for more information about the lb_GetRegionList() and other Layout Builder
functions.

Parameter Description

a_CnfHandle specifies the conference device handle obtained from a previous open
a_pPartyList Points to the visible party list information structure

a_pUserInfo points to user-defined data. If none, set to NULL.

Termination Events

CNFEV_SET _VISABLE_PARTY_LIST
indicates successful completion of this function; that is, list of visible parties returned

Data Type: CNF_VISIBLE_PARTY_LIST

CNFEV_SET_VISIBLE_PARTY_LIST_FAIL
indicates that the function failed

Data Type: CNF_VISIBLE_PARTY_LIST
Cautions

None.

Dialogic® Conferencing API Library Reference — October 2007 63
Dialogic Corporation

cnf_SetVisiblePartyList() — specifies visible parties in video layout region

H Errors

If this function fails with CNF_ERROR, use cnf_GetErrorInfo() to obtain the reason for the
error. Alternatively, you can use the Standard Runtime Library (SRL) Standard Attribute functions,
ATDV_LASTERR() and ATDV_ERRMSGP(), to obtain the error code and error message.
Possible errors for this function include:

ECNF_INVALID_DEVICE
invalid device handle

ECNF_SUBSYSTEM
internal subsystem error

B Example

See Section 6.1, “Conferencing Example Code and Output”, on page 99 for complete example
code.

B See Also

e cnf_GetVisiblePartyList()

64 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Events 3

3.1

3.2

This chapter provides information about the events that may be returned by the Dialogic®
Conferencing (CNF) API software. Topics include:

O VNt Ty DS . oottt 65
e Termination EVENts e 65
e Notification EVents 68

Event Types

An event indicates that a specific activity has occurred on a channel. The host library reports
channel activity to the application program in the form of events, which allows the program to
identify and respond to a specific occurrence on a channel. Events provide feedback on the
progress and completion of functions and indicate the occurrence of other channel activities.
Dialogic® Conferencing (CNF) API library events are defined in the cnfevts.h header file.

Events in the Dialogic® Conferencing (CNF) API library can be categorized as follows:

termination events
These events are returned after the completion of a function call operating in asynchronous
mode. The Dialogic® Conferencing (CNF) API library provides a pair of termination events
for a function, to indicate successful completion or failure. A termination event is only
generated in the process that called the function.

notification events
These events are requested by the application and provide information about the function call.
They are produced in response to a condition specified by the event; for example, the
CNFEV_PARTY_ADDED event is generated each time a party is added to a conference.
Notification events are enabled or disabled using enf_EnableEvents() and
cnf_DisableEvents(), respectively. Notification events in the conferencing library are
disabled by default.

Use sr_waitevt(), sr_enbhdlr() or other SRL functions to collect an event code, depending on the
programming model in use. For more information, see the Dialogic® Standard Runtime Library
API Library Reference.

Termination Events

The following termination events, listed in alphabetical order, may be returned by the Dialogic®
Conferencing (CNF) API software.

CNFEV_ADD_PARTY
Termination event for enf_AddParty(). Party added successfully.

Dialogic® Conferencing API Library Reference — October 2007 65
Dialogic Corporation

Events

66

CNFEV_ADD_PARTY_FAIL
Termination event for cnf_AddParty(). Add party operation failed.

CNFEV_DISABLE_EVENT
Termination event for cnf_DisableEvents(). Events disabled successfully.

CNFEV_DISABLE_EVENT_FAIL
Termination event for cnf_DisableEvents(). Disable events operation failed.

CNFEV_ENABLE_EVENT
Termination event for cnf_EnableEvents(). Events enabled successfully.

CNFEV_ENABLE_EVENT_FAIL
Termination event for cnf_EnableEvents(). Enable events operation failed.

CNFEV_GET_ACTIVE_TALKER
Termination event for cnf_GetActiveTalkerList(). Active talker list retrieved successfully.

CNFEV_GET_ACTIVE_TALKER_FAIL
Termination event for cnf_GetActiveTalkerList(). Get active talker list operation failed.

CNFEV_GET_ATTRIBUTE
Termination event for cnf_GetAttributes(). Attributes retrieved successfully.

CNFEV_GET_ATTRIBUTE_FAIL
Termination event for cnf_GetAttributes(). Get attributes operation failed.

CNFEV_GET_DEVICE_COUNT
Termination event for cnf_GetDeviceCount(). Device count retrieved successfully.

CNFEV_GET_DEVICE_COUNT_FAIL
Termination event for cnf_GetDeviceCount(). Get device count operation failed.

CNFEV_GET_DTMF_CONTROL
Termination event for cnf_GetDTMFControl(). DTMF digits for volume control retrieved
successfully.

CNFEV_GET_DTMF_CONTROL_FAIL
Termination event for cnf_GetDTMFControl(). Get DTMF digits for volume control
operation failed.

CNFEV_GET_PARTY_LIST
Termination event for enf_GetPartyList(). Party list retrieved successfully.

CNFEV_GET_PARTY_LIST_FAIL
Termination event for enf_GetPartyList(). Get party list operation failed.

CNFEV_GET_VIDEO_LAYOUT
Termination event for enf_GetVideoLayout(). Video layout retrieved successfully.

CNFEV_GET_VIDEO_LAYOUT_FAIL
Termination event for enf_GetVideoLayout(). Get video layout failed.

CNFEV_GET_VISIBLE_PARTY_LIST
Termination event for enf_GetPartyList(). Visible party list retrieved successfully.

CNFEV_GET_VISIBLE_PARTY_LIST_FAIL
Termination event for enf_GetPartyList(). Get visible party failed.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Events

CNFEV_OPEN
Termination event for enf_Open(). Board device handle opened successfully.

CNFEV_OPEN_CONF
Termination event for cnf_OpenConference(). Conference device handle opened
successfully.

CNFEV_OPEN_CONF_FAIL
Termination event for cnf_OpenConference(). Open conference operation failed.

CNFEV_OPEN_FAIL
Termination event for enf_Open(). Open board operation failed.

CNFEV_OPEN_PARTY
Termination event for enf_OpenParty(). Party device handle opened successfully.

CNFEV_OPEN_PARTY_FAIL
Termination event for cnf_OpenParty(). Open party operation failed.

CNFEV_REMOVE_PARTY
Termination event for cnf_RemoveParty(). Party removed successfully.

CNFEV_REMOVE_PARTY_FAIL
Termination event for cnf_RemoveParty(). Remove party operation failed.

CNFEV_SET_ATTRIBUTE
Termination event for cnf_SetAttributes(). Attribute(s) set successfully.

CNFEV_SET_ATTRIBUTE_FAIL
Termination event for cnf_SetAttributes(). Set attribute(s) operation failed.

CNFEV_SET_DTMF_CONTROL
Termination event for cnf_SetDTMF Control(). DTMF digits for volume control set
successfully.

CNFEV_SET_DTMF_CONTROL_FAIL
Termination event for cnf_SetDTMFControl(). Set DTMF digit operation failed.

CNFEV_SET_VIDEO_LAYOUT
Termination event for cnf_SetVideoLayout(). Video layout set successfully.

CNFEV_SET_VIDEO_LAYOUT_FAIL
Termination event for cnf_SetVideoLayout(). Set video layout failed.

CNFEV_SET_VISIBLE_PARTY_LIST
Termination event for cnf_SetVisiblePartyList(). Visible party list set successfully.

CNFEV_SET_VISIBLE_PARTY_LIST_FAIL
Termination event for cnf_SetVisiblePartyList(). Set visible party list failed.

Dialogic® Conferencing API Library Reference — October 2007 67
Dialogic Corporation

Events

3.3

68

Notification Events

The following notification events, listed in alphabetical order, may be returned by the conferencing
software:

CNFEV_ACTIVE_TALKER
Notification event for active talker. Active talker feature is set using cnf_SetAttributes().
Notification event is enabled using cnf_EnableEvents().

Data Type: CNF_ACTIVE_TALKER_INFO

CNFEV_CONF_CLOSED
Notification event for a conference that has been closed. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A.

Data Type: CNF_CONF_CLOSED_EVENT_INFO

CNFEV_CONF_OPENED
Notification event for a conference that has been opened. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A.

Data Type: CNF_CONF_OPENED_EVENT_INFO

CNFEV_DTMF_DETECTED
Notification event when DTMF digit has been detected in the conference. Enabled using
cnf_EnableEvents().

Data Type: CNF_DTMF_EVENT_INFO

CNFEV_ERROR
General error event. Returned when an unexpected error occurs while processing a notification
event.

CNFEV_PARTY_ADDED
Notification event for a party that has been added. Enabled using cnf_EnableEvents(). Useful
in multiprocessing; for example, when process B wants to be notified of activity in process A.

Data Type: CNF_PARTY_ADDED_EVENT_INFO

CNFEV_PARTY_CLOSED
Notification event for a party that has been closed. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A. This event is only supported on an MCX board device.

Data Type: CNF_PARTY_CLOSED_EVENT_INFO

CNFEV_PARTY_OPENED
Notification event for a party that has been opened. Enabled using cnf_EnableEvents().
Useful in multiprocessing; for example, when process B wants to be notified of activity in
process A. This event is only supported on an MCX board device.

Data Type: CNF_PARTY_OPENED_EVENT_INFO

CNFEV_PARTY_REMOVED
Notification event for a party that has been removed, either directly through
cnf_RemoveParty() or indirectly through enf_CloseConference(). Enabled using

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Events

cnf_EnableEvents(). Useful in multiprocessing; for example, when process B wants to be
notified of activity in process A.

Data Type: CNF_PARTY_REMOVED_EVENT_INFO

Dialogic® Conferencing API Library Reference — October 2007 69
Dialogic Corporation

Events

70

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Data Structures

This chapter provides an alphabetical reference to the data structures used by the Dialogic®
Conferencing (CNF) API software. The following data structures are described:

CNF_ACTIVE_TALKER_INFO i 72
CNF_ATTR . .o e 73
CNF_ATTR_INFO . ..o e 74
CNF_CLOSE_CONF_INFO.o e 75
CNF_CLOSE_INFOo e 76
CNF_CLOSE_PARTY_INFO. i 77
CNF_CONF_CLOSED_EVENT_INFO. i 78
CNF_CONF_OPENED_EVENT_INFO. i 79
CNF_DEVICE_COUNT_INFO i 80
CNF_DTMF_CONTROL_INFO i 81
CNF_DTMF_EVENT_INFO e 83
CNF_ERROR_INFO. e 84
CNF_EVENT_INFO. e 85
CNF_OPEN_CONF_INFO. e 86
CNF_OPEN_CONF_RESULT e 87
CNF_OPEN_INFO e 88
CNF_OPEN_PARTY_INFO. i 89
CNF_OPEN_PARTY_RESULT 90
CNF_PARTY_ADDED_EVENT_INFO. 91
CNF_PARTY_INFO 92
CNF_PARTY_REMOVED_EVENT_INFO....... 93
CNF_VIDEO_LAYOUT_INFO i 94
CNF_VISIBLE_PARTY_INFO 95
CNF_VISIBLE_PARTY _LIST 96

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

71

CNF_ACTIVE_TALKER_INFO — active talker information

CNF_ACTIVE_TALKER_INFO

typedef struct CNF_ACTIVE_TALKER_INFO

{
unsigned int unvVersion; /* version of structure */
unsigned int unPartyCount; /* number of party handles in list */
SRL_DEVICE_HANDLE *pPartyList; /* pointer to list of party handles */

} CNF_ACTIVE_TALKER_INFO, *PCNF_ACTIVE_TALKER_INFO;
typedef const CNF_ACTIVE_TALKER_INFO * CPCNF_ACTIVE_TALKER_INFO;

B Description

The CNF_ACTIVE_TALKER_INFO data structure provides active talker information after the
application receives the CNFEV_ACTIVE_TALKER notification event. Notification events are
enabled using the cnf_EnableEvents() function.

B Field Descriptions

The fields of the CNF_ACTIVE_TALKER_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ACTIVE_TALKER_INFO_VERSION_0.

unPartyCount
specifies the number of party handles in the list.

unPartyList
points to a list of party handles.

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

72 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

attributes and attribute values — CNF_ATTR

typedef struct CNF_ATTR

{
unsigned int unVersion; /* version of structure */
unsigned int nAttrType; /* attribute type */
unsigned unAttrValue; /* attribute value */

} CNF_ATTR, *PCNF_ATTR;
B Description

The CNF_ATTR data structure specifies the attributes of a party, conference, or board. This
structure is contained in the CNF_ATTR_INFO structure, and is used by the ecnf_SetAttributes()
and cnf_GetAttributes() functions.

B Field Descriptions

The fields of the CNF_ATTR data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ATTR_VERSION_0.

nAttrType
specifies the type of attribute: board, conference, or party. The attribute type is defined in the
ECNF_BRD_ATTR, ECNF_CONF_ATTR, and ECNF_PARTY_ATTR enumerations. All
attributes are disabled by default.

pAttrValue
specifies the value of the attribute. For attributes that can be enabled or disabled, the attribute
value is defined in the ECNF_ATTR_STATE enumeration. Possible values include:
e ECNF_ATTR_STATE_DISABLED - attribute is disabled
e ECNF_ATTR_STATE_ENABLED - attribute is enabled

B Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007 73
Dialogic Corporation

CNF_ATTR_INFO — attribute information

CNF_ATTR_INFO

74

typedef struct CNF_ATTR_INFO

{
unsigned int unvVersion; /* version of structure */
unsigned int nAttrCount; /* number of attributes in list */
PCNF_ATTR pAttrList; /* pointer to attribute list */

} CNF_ATTR_INFO, *PCNF_ATTR_INFO;
Description

The CNF_ATTR_INFO data structure contains information about the attributes of a party,
conference, or board. This structure is used by the cnf_SetAttributes() and cnf_GetAttributes()
functions.

Field Descriptions

The fields of the CNF_ATTR_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ATTR_INFO_VERSION_0.

nAttrCount
specifies the number of attributes in the list.

pAttrList
points to the attribute list. See the CNF_ATTR data structure for more information.

Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

reserved for future use — CNF_CLOSE_CONF_INFO

CNF_CLOSE_CONF_INFO

Note:

typedef struct CNF_CLOSE_CONF_INFO
{

unsigned int unVersion; /* version of structure */
unsigned int unRFU; /* reserved for future use */
} CNF_CLOSE_CONF_INFO, *PCNF_CLOSE_CONF_INFO;
typedef const CNF_CLOSE_CONF_INFO * CPCNF_CLOSE_CONF_INFO;

Description

The CNF_CLOSE_CONF_INFO structure is used by the cnf_CloseConference() function.

This structure is reserved for future use. NULL must be passed.

Dialogic® Conferencing API Library Reference — October 2007 75
Dialogic Corporation

CNF_CLOSE_INFO — reserved for future use

CNF_CLOSE_INFO

typedef struct CNF_CLOSE_INFO
{

unsigned int unvVersion; /* version of structure */
unsigned int unRFU; /* reserved for future use */
} CNF_CLOSE_INFO, *PCNF_CLOSE_INFO;
typedef const CNF_CLOSE_INFO * CPCNF_CLOSE_INFO;

B Description

The CNF_CLOSE_INFO data structure is used by the enf_Close() function.

Note: This structure is reserved for future use. NULL must be passed.

76 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

reserved for future use — CNF_CLOSE_PARTY_INFO

CNF_CLOSE_PARTY_INFO

Note:

typedef struct CNF_CLOSE_PARTY_INFO
{

unsigned int unVersion; /* version of structure */
unsigned int unRFU; /* reserved for future use */
} CNF_CLOSE_PARTY_INFO, *PCNF_CLOSE_PARTY_INFO;
typedef const CNF_CLOSE_PARTY_INFO * CPCNF_CLOSE_PARTY_INFO;

Description

The CNF_CLOSE_PARTY_INFO data structure is used by the cnf_CloseParty() function.

This structure is reserved for future use. NULL must be passed.

Dialogic® Conferencing API Library Reference — October 2007 77
Dialogic Corporation

CNF_CONF_CLOSED EVENT_INFO — information for conference closed event

CNF_CONF_CLOSED_EVENT_INFO

78

typedef struct CNF_CONF_CLOSED_EVENT_INFO
{

unsigned int unvVersion; /* version of structure */
const char *szConfName; /* conference device name */

} CNF_CONF_CLOSED_EVENT_INFO, *PCNF_CONF_CLOSED_EVENT_INFO;

typedef const CNF_CONF_CLOSED_EVENT_INFO * CPCNF_CONF_CLOSED_EVENT_INFO;

Description

The CNF_CONF_CLOSED_EVENT_INFO data structure provides information about the
conference after the application receives the CNFEV_CONF_CLOSED notification event.
Notification events are enabled using the ecnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_CONF_CLOSED_EVENT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_CONF_CLOSED_EVENT_INFO_VERSION_0.

szConfName
points to the conference device name

Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

information for conference opened event — CNF_CONF_OPENED_EVENT_INFO

CNF_CONF_OPENED_EVENT_INFO

typedef struct CNF_CONF_OPENED_EVENT_INFO

{
unsigned int unVersion; /* version of structure */
SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */
const char *szConfName; /* conference device name */

3 CNF_CONF_OPENED_EVENT_INFO, *PCNF_CONF_OPENED_EVENT_INFO;
typedef const CNF_CONF_OPENED_EVENT_INFO * CPCNF_CONF_OPENED_EVENT_INFO;

B Description

The CNF_CONF_OPENED_EVENT_INFO data structure provides information about the
conference after the application receives the CNFEV_CONF_OPENED notification event.
Notification events are enabled using the cnf_EnableEvents() function.

B Field Descriptions

The fields of the CNF_CONF_OPENED_EVENT _INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_CONF_OPENED_EVENT_INFO_VERSION_0.

ConfHandle
specifies the conference device handle

szConfName
points to the conference device name

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007 79
Dialogic Corporation

CNF_DEVICE_COUNT_INFO — device count information

CNF_DEVICE_COUNT_INFO

80

typedef struct CNF_DEVICE_COUNT_INFO

{
unsigned int unvVersion; /* version of structure */
unsigned int unFreePartyCount; /* number of free parties */
unsigned int unMaxPartyCount; /* number of maximum parties */
unsigned int unFreeConfCount; /* number of free conferences */
unsigned int unMaxConfCount; /* number of maximum conferences */

} CNF_DEVICE_COUNT_INFO, *PCNF_DEVICE_COUNT_INFO;
typedef const CNF_DEVICE_COUNT_INFO * CPCNF_DEVICE_COUNT_INFO;

Description

The CNF_DEVICE_COUNT_INFO data structure stores information about the number of devices
on a board. This structure is used by the cnf_GetDeviceCount() function.

Field Descriptions

The fields of the CNF_DEVICE_COUNT _INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_DEVICE_COUNT_INFO_VERSION_0.

unFreePartyCount
specifies the number of free parties remaining on the board

unMaxPartyCount
specifies the maximum number of parties that can be opened on the board

unFreeConfCount
specifies the number of free conferences remaining on the board

unMaxConfCount
specifies the maximum number of conferences that can be opened on the board

Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

DTMF digits control information — CNF_DTMF_CONTROL_INFO

CNF_DTMF_CONTROL_INFO

typedef struct CNF_DTMF_CONTROL_INFO

{
unsigned int unVersion; /* version of structure */
ECNF_ATTR_STATE eDTMFControlState; /* enable/disable DMTF control */
ECNF_DTMF_DIGIT eVolumeUpDigit; /* volume up digit */
ECNF_DTMF_DIGIT eVolumeDownDigit; /* volume down digit */
ECNF_DTMF_DIGIT eVolumeResetDigit; /* volume reset digit */

3 CNF_DTMF_CONTROL_INFO, *PCNF_DTMF_CONTROL_INFO;
typedef const CNF_DTMF_CONTROL_INFO * CPCNF_DTMF_CONTROL_INFO;

B Description

The CNF_DTMF_CONTROL_INFO data structure stores information about DTMF values used to
control the volume of a conference. This structure is used by the cnf_SetDTMF Control() and
cnf_GetDTMF Control() functions.

B Field Descriptions

The fields of the CNF_DTMF_CONTROL_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_DTMF_CONTROL_INFO_VERSION_0.

eDTMFControlState
enables or disables DTMF digits used to control the volume of a conference. The
ECNF_ATTR_STATE data type is an enumeration that defines the following values:
e ECNF_ATTR_STATE_DISABLED - attribute is disabled
e ECNF_ATTR_STATE_ENABLED - attribute is enabled

eVolumeUpDigit
specifies the DTMF digit used to increase the volume. The volume increment is 2 dB. The
ECNF_DTMF_DIGIT data type is an enumeration that defines the following values:
e ECNF_DTMF_DIGIT 1 - specifies DTMF 1
e ECNF_DTMF_DIGIT 2 - specifies DTMF 2
e ECNF_DTMF_DIGIT _3 - specifies DTMF 3
e ECNF_DTMF_DIGIT 4 - specifies DTMF 4
e ECNF_DTMF_DIGIT _5 - specifies DTMF 5
e ECNF_DTMF_DIGIT _6 - specifies DTMF 6
e ECNF_DTMF_DIGIT_7 - specifies DTMF 7
e ECNF_DTMF_DIGIT _8 - specifies DTMF 8
¢ ECNF_DTMF_DIGIT_9 - specifies DTMF 9
e ECNF_DTMF_DIGIT_0 - specifies DTMF 0
e ECNF_DTMF_DIGIT_STAR - specifies DTMF *
e ECNF_DTMF_DIGIT_POUND - specifies DTMF #
e ECNF_DTMF_DIGIT_A - specifies DTMF A
e ECNF_DTMF_DIGIT_B - specifies DTMF B
e ECNF_DTMF_DIGIT_C - specifies DTMF C
e ECNF_DTMF_DIGIT_D - specifies DTMF D

Dialogic® Conferencing API Library Reference — October 2007 81
Dialogic Corporation

CNF_DTMF_CONTROL_INFO — DTMF digits control information

eVolumeDownDigit
specifies the DTMF digit used to decrease the volume. The volume decrement is 2 dB. The
ECNF_DTMF_DIGIT data type is an enumeration that defines the values for DTMF digits.
See eVolumeUpDigit for a list of values.

eVolumeResetDigit
specifies the DTMF digit used to reset the volume to its default level. The default volume and
origin is 0 dB. The ECNF_DTMF_DIGIT data type is an enumeration that defines the values
for DTMF digits. See eVolumeUpDigit for a list of values.

B Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

82 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

DTMF event information — CNF_DTMF_EVENT_INFO

CNF_DTMF_EVENT_INFO

typedef struct CNF_DTMF_EVENT_INFO

{
unsigned int unVersion; /* version of structure */
SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
ECNF_DTMF_DIGIT eDigit; /* detected DTMF digit */

3 CNF_DTMF_EVENT_INFO, *PCNF_DTMF_EVENT_INFO;
typedef const CNF_DTMF_EVENT_INFO * CPCNF_DTMF_EVENT_INFO;

B Description

The CNF_DTMF_EVENT_INFO data structure provides DTMF digit information to the party
after the application receives the CNFEV_DTMF_EVENT notification event. Notification events
are enabled using the enf_EnableEvents() function.

B Field Descriptions

The fields of the CNF_DTMF_EVENT _INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_DTMF_EVENT_INFO_VERSION_0.

PartyHandle
specifies the party device handle
eDigit

specifies the DTMF digit that was detected. The ECNF_DTMF_DIGIT data type is an

enumeration that defines the following values:
e ECNF_DTMF_DIGIT _1 - specifies DTMF 1
e ECNF_DTMF_DIGIT_2 — specifies DTMF 2
e ECNF_DTMF_DIGIT_3 — specifies DTMF 3
e ECNF_DTMF_DIGIT_4 — specifies DTMF 4
e ECNF_DTMF_DIGIT _5 - specifies DTMF 5
e ECNF_DTMF_DIGIT _6 - specifies DTMF 6
e ECNF_DTMF_DIGIT_7 - specifies DTMF 7
e ECNF_DTMF_DIGIT _8 - specifies DTMF 8
¢ ECNF_DTMF_DIGIT_9 - specifies DTMF 9
e ECNF_DTMF_DIGIT_0 - specifies DTMF 0
e ECNF_DTMF_DIGIT_STAR - specifies DTMF *
e ECNF_DTMF_DIGIT_POUND - specifies DTMF #
e ECNF_DTMF_DIGIT_A - specifies DTMF A
e ECNF_DTMF_DIGIT_B - specifies DTMF B
e ECNF_DTMF_DIGIT_C - specifies DTMF C
e ECNF_DTMF_DIGIT_D - specifies DTMF D

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Dialogic® Conferencing API Library Reference — October 2007 83
Dialogic Corporation

CNF_ERROR_INFO — error information

CNF_ERROR_INFO

84

typedef struct CNF_ERROR_INFO

{
unsigned int unvVersion; /* version of structure */
unsigned int unErrorCode; /* error code */
const char *szErrorString; /* error string */
const char *szAdditionalInfo; /* additional error information string */

} CNF_ERROR_INFO, *PCNF_ERROR_INFO;
typedef const CNF_ERROR_INFO * CPCNF_ERROR_INFO;

Description

The CNF_ERROR_INFO data structure provides error information for the device handle when an
API function fails. This structure is used by the ecnf_GetErrorInfo() function.

Field Descriptions

The fields of the CNF_ERROR_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_ERROR_INFO_VERSION_0.

unErrorCode
specifies the error code

szErrorString
points to the error message

szAdditionallnfo
points to additional error information

Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

event information — CNF_EVENT_INFO

CNF_EVENT_INFO

typedef struct CNF_EVENT_INFO

{
unsigned int unVersion; /* version of structure */
unsigned int unEventCount; /* number of events in list */
unsigned int *punEventList; /* pointer to event list */

} CNF_EVENT_INFO, *PCNF_EVENT_INFO;
typedef const CNF_EVENT_INFO * CPCNF_EVENT_INFO;

B Description

The CNF_EVENT_INFO data structure provides event information for the device handle when a
notification event is enabled or disabled. This structure is used by the cnf_EnableEvents()
function.

B Field Descriptions

The fields of the CNF_EVENT_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_EVENT_INFO_VERSION_0.

unEventCount
specifies the number of events in the list.

punEventList
points to a list of events.

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007 85
Dialogic Corporation

CNF_OPEN_CONF_INFO — reserved for future use

CNF_OPEN_CONF_INFO

typedef struct CNF_OPEN_CONF_INFO
{

unsigned int unvVersion; /* version of structure */
unsigned int unRFU; /* reserved for future use */
} CNF_OPEN_CONF_INFO, *PCNF_OPEN_CONF_INFO;
typedef const CNF_OPEN_CONF_INFO * CPCNF_OPEN_CONF_INFO;

B Description

The CNF_OPEN_CONF_INFO data structure is used by the cnf_OpenConference() function.

Note: This structure is reserved for future use. NULL must be passed.

86 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

result information for an opened conference — CNF_OPEN_CONF_RESULT

CNF_OPEN_CONF_RESULT

typedef struct CNF_OPEN_CONF_RESULT

{
unsigned int unVersion; /* version of structure */
const char * szConfName; /* conference device name */
SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */

3 CNF_OPEN_CONF_RESULT, *PCNF_OPEN_CONF_RESULT;
typedef const CNF_OPEN_CONF_RESULT * CPCNF_OPEN_CONF_RESULT;

B Description

The CNF_OPEN_CONF_RESULT data structure contains result information returned with the
CNFEV_OPEN_CONF event. This termination event is returned by the cnf_OpenConference()
function.

B Field Descriptions

The fields of the CNF_OPEN_CONF_RESULT data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_OPEN_CONF_RESULT_VERSION_0.

szConfName
specifies the conference device name

ConfHandle
specifies the conference device handle

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007 87
Dialogic Corporation

CNF_OPEN_INFO — reserved for future use

CNF_OPEN_INFO

typedef struct CNF_OPEN_INFO
{

unsigned int unvVersion; /* version of structure */
unsigned int unRFU; /* reserved for future use */
} CNF_OPEN_INFO, *PCNF_OPEN_INFO;
typedef const CNF_OPEN_INFO * CPCNF_OPEN_INFO;

B Description

The CNF_OPEN_INFO data structure is used by the enf_Open() function.

Note: This structure is reserved for future use. NULL must be passed.

88 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

reserved for future use — CNF_OPEN_PARTY_INFO

CNF_OPEN_PARTY_INFO

typedef struct CNF_OPEN_PARTY_INFO
{

unsigned int unVersion; /* version of structure */
unsigned int unRFU; /* reserved for future use */
} CNF_OPEN_PARTY_INFO, *PCNF_OPEN_PARTY_INFO;
typedef const CNF_OPEN_PARTY_INFO * CPCNF_OPEN_PARTY_INFO;

B Description

The CNF_OPEN_PARTY_INFO data structure is used by the cnf_OpenParty() function.

Note: This structure is reserved for future use. NULL must be passed.

Dialogic® Conferencing API Library Reference — October 2007 89
Dialogic Corporation

CNF_OPEN_PARTY_RESULT — result information for an opened party

CNF_OPEN_PARTY_RESULT

typedef struct CNF_OPEN_PARTY_RESULT

{
unsigned int unvVersion; /* version of structure */
const char * szPartyName; /* party device name */
SRL_DEVICE_HANDLE PartyHandle; /* party device handle */

} CNF_OPEN_PARTY_RESULT, *PCNF_OPEN_PARTY_RESULT;
typedef const CNF_OPEN_PARTY_RESULT * CPCNF_OPEN_PARTY_RESULT;

B Description

The CNF_OPEN_PARTY_RESULT data structure contains result information returned with the
CNFEV_OPEN_PARTY event. This termination event is returned by the cnf_OpenParty()
function.

B Field Descriptions

The fields of the CNF_OPEN_PARTY_RESULT data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_OPEN_PARTY_RESULT_VERSION_0.

szPartyName
specifies the party device name

PartyHandle
specifies the party device handle

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

90 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

information for added party event — CNF_PARTY_ADDED_EVENT_INFO

CNF_PARTY_ADDED_EVENT_INFO

typedef struct CNF_PARTY_ADDED_EVENT_INFO

{
unsigned int unVersion; /* version of structure */
SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */
const char *szConfName; /* conference device name */
SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
const char *szPartyName; /* party device name */

3 CNF_PARTY_ADDED_EVENT_INFO, *PCNF_PARTY_ADDED_EVENT_INFO;
typedef const CNF_PARTY_ADDED_EVENT_INFO * CPCNF_PARTY_ADDED_EVENT_INFO;

B Description

The CNF_PARTY_ADDED_EVENT_INFO data structure provides information about the party
after the application receives the CNFEV_PARTY_ADDED notification event. Notification events
are enabled using the enf_EnableEvents() function.

B Field Descriptions

The fields of the CNF_PARTY_ADDED_EVENT _INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_PARTY_ADDED_EVENT_INFO_VERSION_0.

ConfHandle
specifies the conference device handle

szConfName
points to the conference device name

PartyHandle
specifies the party device handle

szPartyName
points to the party device name

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007 91
Dialogic Corporation

CNF_PARTY_INFO — party information

CNF_PARTY_INFO

92

typedef struct CNF_PARTY_INFO

{
unsigned int unvVersion; /* version of structure */
unsigned int unPartyCount; /* number of party handles in list */
SRL_DEVICE_HANDLE *pPartyList; /* pointer to list of party handles */

} CNF_PARTY_INFO, *PCNF_PARTY_INFO;
typedef const CNF_PARTY_INFO * CPCNF_PARTY_INFO;

Description

The CNF_PARTY_INFO data structure stores information on a party that is opened, added or
removed. This structure is used by the cnf_OpenParty(), cnf_AddParty(), and
cnf_RemoveParty() functions. This structure is also returned as the data to several events; for
example, the CNF_OPEN_PARTY termination event.

Field Descriptions

The fields of the CNF_PARTY_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_PARTY_INFO_VERSION_0.

unPartyCount
specifies the number of party handles in the list.

pPartyList
points to a list of party handles.

Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

information for removed party event — CNF_PARTY_REMOVED_EVENT_INFO

CNF_PARTY_REMOVED_EVENT_INFO

typedef struct CNF_PARTY_REMOVED_EVENT_INFO

{
unsigned int unVersion; /* version of structure */
SRL_DEVICE_HANDLE ConfHandle; /* conference device handle */
const char *szConfName; /* conference device name */
SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
const char *szPartyName; /* party device name */

3 CNF_PARTY_REMOVED_EVENT_INFO, *PCNF_PARTY_REMOVED_EVENT_INFO;
typedef const CNF_PARTY_REMOVED_EVENT_INFO * CPCNF_PARTY_REMOVED_EVENT_INFO;

B Description

The CNF_PARTY_REMOVED_EVENT_INFO data structure provides information about the
party after the application receives the CNFEV_PARTY_REMOVED notification event.
Notification events are enabled using the cnf_EnableEvents() function.

B Field Descriptions

The fields of the CNF_PARTY_REMOVED_EVENT _INFO data structure are described as
follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_PARTY_REMOVED_EVENT_INFO_VERSION_0.

ConfHandle
specifies the conference device handle

szConfName
points to the conference device name

PartyHandle
specifies the party device handle

szPartyName
points to the party device name

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007 93
Dialogic Corporation

CNF_VIDEO_LAYOUT_INFO — information for video layout

CNF_VIDEO_LAYOUT_INFO

typedef struct CNF_VIDEO_LAYOUT_INFO

{
unsigned int unvVersion; /* version of structure */
ELB_LAYOUT_SIZE unLayoutSize; /* layout screen size */
LB_FRAME_HANDLE LayoutHandle; /* layout region handle */

} CNF_VIDEO_LAYOUT_INFO, *PCNF_CVIDEO_LAYOUT_INFO;
typedef const CNF_VIDEO_LAYOUT_INFO, *PCNF_CVIDEO_LAYOUT_INFO;

B Description

The CNF_VIDEO_LAYOUT_INFO data structure provides information about the video layout.
Notification events are enabled using the cnf_EnableEvents() function.

B Field Descriptions

The fields of the CNF_VIDEO_LAYOUT _INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_VIDEO_LAYOUT_INFO_VERSION_0.

unLayoutSize
specifies the layout screen size. Possible values include:
* ELB_LAYOUT_SIZE_SUBQCIF - Layout size [128 x 96]
* ELB_LAYOUT_SIZE_QCIF — Layout size [176 x 144]
* ELB_LAYOUT_SIZE_CIF - Layout size [352 x 288]

LayoutHandle
points to the layout region handle

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

94 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

information about the visible party — CNF_VISIBLE_PARTY_INFO

CNF_VISIBLE_PARTY_INFO

typedef struct CNF_VISIBLE_PARTY_INFO

{
unsigned int unVersion; /* version of structure */
SRL_DEVICE_HANDLE PartyHandle; /* party device handle */
LB_FRAME_HANDLE RegionHandle; /* layout region handle */

3 CNF_VISIBLE_PARTY_INFO, *PCNF_VISIBLE_PARTY_INFO;
typedef const CNF_VISIBLE_PARTY_INFO * CPCNF_VISIBLE_PARTY_INFO;

B Description

The CNF_VISIBLE_PARTY_INFO data structure provides information about the visible party in a
specified conference. Notification events are enabled using the cnf_EnableEvents() function.

B Field Descriptions

The fields of the CNF_VISIBLE_PARTY_INFO data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_VISIBLE_PARTY_INFO_VERSION_0.

PartyHandle
specifies the party device handle

RegionHandle
specifies the region handle

H Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007 95
Dialogic Corporation

CNF_VISIBLE_PARTY_LIST — visible party list information

CNF_VISIBLE_PARTY_LIST

96

typedef struct CNF_VISIBLE_PARTY_LIST

{
unsigned int unvVersion; /* version of structure */
unsigned int uncount; /* size of visible party list */
PCNF__VISIBLE_PARTY_LIST pPartyList; /* pointer to visible party info list */

} CNF_VISIBLE_PARTY_LIST, *PCNF__ VISIBLE_PARTY_LIST;
typedef const CNF__VISIBLE_PARTY_LIST * CPCNF_CONF__VISIBLE_PARTY_LIST;

Description

The CNF_VISIBLE_PARTY_LIST data structure provides information about the parties visible in
a specified conference. Notification events are enabled using the cnf_EnableEvents() function.

Field Descriptions

The fields of the CNF_VISIBLE_PARTY _LIST data structure are described as follows:

unVersion
specifies the version of the data structure. Used to ensure that an application is binary
compatible with future changes to this data structure. The current version of this data structure
is CNF_VISIBLE_PARTY_LIST_VERSION_0.

unCount
specifies the visible party list size

pPartyList
points to the visible party information list

Example

For an example of this data structure, see Section 6.1, “Conferencing Example Code and Output”,
on page 99.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Error Codes 5

This chapter describes the error codes used by the Dialogic® Conferencing (CNF) API software.
Error codes are defined in cnferrs.h.

Dialogic® Conferencing (CNF) API library functions return a value that indicates the success or
failure of a function call. Success is indicated by CNF_SUCCESS, and failure is indicated by
CNF_ERROR. If a library function returns CNF_ERROR to indicate failure, use
cnf_GetErrorInfo() to obtain the reason for the error. Alternatively, you can use the standard
attribute function ATDV_LASTERR() to return the error code and ATDV_ERRMSGP() to
return the error description. These functions are described in the Dialogic® Standard Runtime
Library API Library Reference.

Note: The following functions cannot use the Dialogic® Standard Runtime Library standard attribute
functions to process errors: cnf_Close(), cnf_CloseConference(), and ecnf_CloseParty().

If an error occurs during execution of an asynchronous function, an error event, preceded by
“CNFEV_” is sent to the application. No change of state is triggered by this event. Upon receiving
the CNFEV_ERROR event, the application can retrieve the reason for the failure using
ATDV_LASTERR() and ATDV_ERRMSGP().

The error codes used by the conferencing software are described as follows:

ECNF_FIRMWARE
firmware error

ECNF_INVALID_ATTR
invalid device attribute

ECNF_INVALID_DEVICE
invalid device

ECNF_INVALID _EVENT
invalid device event

ECNF_INVALID _HANDLE
invalid device handle

ECNF_INVALID _NAME
invalid device name

ECNF_INVALID_PARM
invalid parameter

ECNF_INVALID_STATE
invalid device state for requested operation

ECNF_LIBRARY
library error

ECNF_MEMORY_ALLOC
memory allocation error

Dialogic® Conferencing API Library Reference — October 2007 97
Dialogic Corporation

Error Codes

ECNF_NOERROR
no error

ECNF_SUBSYSTEM
internal subsystem error

ECNF_SYSTEM
system error

ECNF_UNSUPPORTED_API
API not currently supported

ECNF_UNSUPPORTED_FUNC
requested functionality not supported

ECNF_UNSUPPORTED_TECH
technology not currently supported

98 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference 6
Information

Figure 1.

This chapter provides reference information about the following topic:

¢ Conferencing Example Code and Output, 99

Conferencing Example Code and Output

Written in the C++ programming language, the example code exercises Dialogic® Conferencing
(CNF) API functions and data structures. It is intended to illustrate how the Dialogic®
Conferencing (CNF) API functions and data structures are used in a simple application. It is not
intended to be used in a production environment.

The output from the example code is provided in Figure 2, “Conferencing (CNF) Example Code
Output”, on page 132 and Figure 3, “Conferencing (MCX) Example Code Output”, on page 139.

Conferencing Example Code

#include <cnflib._h>
#include <Ib_mtklib_h>
#include <srllib._h>
#include <iostream>

#ifdef WIN32

#else

#include <unistd.h>
#endif

using namespace std;

#define MAX_CNF_BRD_ATTR (ECNF_BRD_ATTR_END_OF_LIST - CNF_BRD_ATTR_BASE)
#define MAX_CNF_CONF_ATTR (ECNF_CONF_ATTR_END _OF LIST - CNF_CONF_ATTR_BASE)
#define MAX_CNF_PTY_ATTR (ECNF_PARTY_ATTR_END_OF_LIST - CNF_PARTY_ATTR_BASE)

LB_FRAME_HANDLE g_LayoutHandle;

/**
* @struct SRL_METAEVENT
*/
struct SRL_METAEVENT
{
long EventType; ///< Event type
SRL_DEVICE_HANDLE EventDevice; ///< Event device handle
void * pEventData; ///< Pointer to event data
long EventDatalLength; ///< Event data length
void * pEventUseriInfo; ///< Pointer to user defined data
b
typedef SRL_METAEVENT * PSRL_METAEVENT;
/**
* @enum CNF_TYPE
*/
Dialogic® Conferencing API Library Reference — October 2007 99

Dialogic Corporation

Supplementary Reference Information

typedef enum ECNF_TYPE

{
ECNF_TYPE_CNF = 0,
ECNF_TYPE_MCX =1
} ECNF_TYPE;
/**
* @fn srl_GetMetaEvent
*/

void srl_GetMetaEvent(PSRL_METAEVENT a_pMetaEvent);

/**
* @fn ProcessErrorinformation
*/

void ProcessErrorinformation();

/**
* @Ffn ProcessMetaEvent
*/
void ProcessMetaEvent(char * a_szString);

/**
* @fn Process conferencing event(s) functions.

*/

void Process_AddParty_Event();

void Process_Board_Event();

void Process_DisableEvents_Event();

void Process_EnableEvents_Event();

void Process_GetActiveTalkerList_Event();
void Process_GetAttributes_Event();

void Process_GetDeviceCount_Event();

void Process_GetDTMFControl_Event();

void Process_GetPartyList_Event();

void Process_GetVideoLayout_Event();

void Process_GetVisiblePartyList_Event();
void Process_OpenBoard_Event();

void Process_OpenConference_Event();

void Process_OpenParty_Event();

void Process_RemoveParty_Event();

void Process_ResetDevices_Event();

void Process_SetAttributes_Event();

void Process_SetDTMFControl_Event();

void Process_SetVideoLayout Event();

void Process_SetVisiblePartyList_Event();

/**
* @Ffn main
*/
int main(int nArgCount, char *pArgList[])
{
cout << ""Conferencing (CNF/MCX) Sample Application” << endl;
cout << " " << endl << endl;

std: :string szBrdName = "cnfB1";
ECNF_TYPE eType = ECNF_TYPE_CNF;

switch (nArgCount)

{
case 1:
// Use default cnfBl board name.
break;
100 Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

case 2:
// Use user specified board name.
szBrdName = pArgList[1];
if (szBrdName.compare(0, 3, "mcx", 3) == 0)
{
eType = ECNF_TYPE_MCX;
¥

break;

default:
cout << "Invalid number of arguments provided. defaulting to cnfBl." << endl << endl;
break;

}

cout << "Board Name is: " << szBrdName.c_str() << endl << endl;

/
* SETUP SRL MODE OF FUNCTIONALITY.

/
int nSRLMode = SR_POLLMODE;
if (sr_setparm(SRL_DEVICE, SR_MODEID, &nSRLMode) == -1)
{
cout << "Error setting SRL mode !!" << endl;
return O;
¥
SRL_DEVICE_HANDLE BrdDevice;
SRL_DEVICE_HANDLE CnfDevice;
SRL_DEVICE_HANDLE PtyDevice;
/
* OPEN A BOARD DEVICE
*
* NOTE: THIS CALL IS EXPECTED TO FAIL DUE TO BAD PARAMETERS. TEST TO SEE IF
* ERROR HANDLING 1S WORKING CORRECTLY. PASSING INVALID DEVICE NAME.
/
if ((BrdDevice = cnf_Open(NULL, NULL, NULL)) == CNF_ERROR)
{
/77
// Good, we were expecting this to happen. Lets get the error information
cout << "cnf_Open failure!! : Expected failure due to the following"” << endl;
ProcessErroriInformation();
¥
/
* OPEN A BOARD DEVICE
*
* NOTE: THIS CALL IS EXPECTED TO FAIL DUE TO BAD PARAMETERS. TEST TO SEE IF
* ERROR HANDLING 1S WORKING CORRECTLY. PASSING INVALID DEVICE NAME.
/
if ((BrdDevice = cnf_Open(“blah_blah™, NULL, NULL)) == CNF_ERROR)
{
/77
// Good, we were expecting this to happen. Lets get the error information
cout << ""cnf_Open failure!! : Expected failure due to the following"” << endl;
ProcessErroriInformation();
¥
/
* OPEN A BOARD DEVICE.
/
if ((BrdDevice = cnf_Open(szBrdName.c_str(), NULL, NULL)) == CNF_ERROR)
{
cout << "cnf_Open failed !!" << endl;
ProcessErroriInformation();
¥
else
{
Dialogic® Conferencing API Library Reference — October 2007 101

Dialogic Corporation

Supplementary Reference Information

if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
¥
else
{
Process_OpenBoard_Event();
¥
}

/
* GET THE DEVICE COUNTS FOR THE BOARD DEVICE.

iT ((cnf_GetDeviceCount(BrdDevice, NULL)) == CNF_ERROR)
{
cout << "cnf_GetDeviceCount failed !!" << endl;
ProcessErroriInformation();
return O;
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
¥
else
{
Process_GetDeviceCount_Event();
¥
}

/
* RESET DEVICES ON THE BOARD DEVICE.

iT ((cnf_ResetDevices(BrdDevice, NULL, NULL)) == CNF_ERROR)
{
cout << "cnf_ResetDevices failed !!" << endl;
ProcessErroriInformation();
return O;
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_ResetDevices_Event();
3
}

/
* GET THE DEVICE COUNTS FOR THE BOARD DEVICE.

iT ((cnf_GetDeviceCount(BrdDevice, NULL)) == CNF_ERROR)
{

cout << "cnf_GetDeviceCount failed !!" << endl;
ProcessErroriInformation();
return O;

}

else

{
f (sr_waitevt(10000) == -1)

i

{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;

}

102 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

else
{
Process_GetDeviceCount_Event();
}
¥

/
* GET THE DTMF CONTROL INFORMATION FOR THE BOARD DEVICE.

/
if ((cnf_GetDTMFControl(BrdDevice, NULL)) == CNF_ERROR)
{
cout << "cnf_GetDTMFControl failed !!" << endl;
ProcessErrorinformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_GetDTMFControl_Event();
}
¥
/
* SET THE DTMF CONTROL INFORMATION FOR THE BOARD DEVICE.
/
CNF_DTMF_CONTROL_INFO DTMFControlInfo;
DTMFControlInfo.unVersion = CNF_DTMF_CONTROL_INFO_VERSION_O;
DTMFControl Info.eDTMFControlState = ECNF_ATTR_STATE_ENABLED;
DTMFControl Info.eVolumeUpDigit = ECNF_DTMF_DIGIT_POUND;
DTMFControl Info.eVolumeDownDigit = ECNF_DTMF_DIGIT_STAR;
DTMFControl Info.eVolumeResetDigit = ECNF_DTMF_DIGIT_5;
if ((cnf_SetDTMFControl (BrdDevice, &DTMFControllInfo, NULL)) == CNF_ERROR)
{
cout << "cnf_SetDTMFControl failed !!l" << endl;
ProcessErroriInformation();
¥
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_SetDTMFControl_Event();
}
}
/
* GET THE DTMF CONTROL INFORMATION FOR THE BOARD DEVICE.
/
if ((cnf_GetDTMFControl (BrdDevice, NULL)) == CNF_ERROR)
{
cout << "cnf_GetDTMFControl failed !!l" << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
Dialogic® Conferencing API Library Reference — October 2007 103

Dialogic Corporation

Supplementary Reference Information

}

else
{
Process_GetDTMFControl_Event();
}
}

/
* ENABLE BOARD DEVICE EVENTS.

/
unsigned int BrdEventList[10];
BrdEventList[0] = ECNF_BRD_EVT_CONF_OPENED;
BrdEventList[1] = ECNF_BRD_EVT_CONF_CLOSED;
BrdEventList[2] = ECNF_BRD_EVT_ACTIVE_TALKER;
BrdEventList[3] = ECNF_BRD_EVT_PARTY_ADDED;
BrdEventList[4] = ECNF_BRD_EVT_PARTY_REMOVED;
CNF_EVENT_INFO BrdEventinfo;
BrdEventInfo.unEventCount = 5;
BrdEventiInfo.punEventList = BrdEventList;
if (cnf_EnableEvents(BrdDevice, &BrdEventinfo, (void *)1) == CNF_ERROR)
{
cout << "cnf_EnableEvents failed !!" << endl;
ProcessErrorinformation();
return O;
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_EnableEvents_Event();
}
}
/
* GET ATTRIBUTES ON A BOARD DEVICE. FAILURE CASE.
/
CNF_ATTR BrdAttrList[MAX_CNF_BRD_ATTR];
CNF_ATTR_INFO BrdAttrinfo;
BrdAttrList[0].unAttribute = ECNF_CONF_ATTR_DTMF_MASK;
BrdAttrinfo.unAttrCount = 1;
BrdAttrinfo.pAttrList = BrdAttrList;
if (cnf_GetAttributes(BrdDevice, &BrdAttrinfo, NULL) == CNF_ERROR)
{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!! - Expected error
due to invalid attribute”™ << endl;
ProcessErroriInformation();
}
/
* GET ATTRIBUTES ON A BOARD DEVICE.
/
int nBrdAttr = CNF_BRD_ATTR_BASE;
{
for (int i = 0; i < MAX_CNF_BRD_ATTR; i++, nBrdAttr++)
{
BrdAttrList[i].unAttribute = nBrdAttr;
}
}
104 Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

BrdAttrinfo.unAttrCount = MAX_CNF_BRD_ATTR;
BrdAttrinfo.pAttrList = BrdAttrList;

if (cnf_GetAttributes(BrdDevice, &BrdAttrinfo, NULL) == CNF_ERROR)

{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!!" << endl;
ProcessErrorinformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_GetAttributes_Event();
}
¥

/
* SET ATTRIBUTES ON A BOARD DEVICE.

BrdAttrList[0].unAttribute = ECNF_BRD_ATTR_ACTIVE_TALKER;
BrdAttrList[0].unValue = ECNF_ATTR_STATE_ENABLED;

BrdAttrList[1].unAttribute = ECNF_BRD_ATTR_NOTIFY_INTERVAL;
BrdAttrList[1].unValue = 2000; // 2 Second interval for active talker events.
BrdAttrinfo.unAttrCount = 2;

BrdAttrinfo.pAttrList = BrdAttrList;

if (cnf_SetAttributes(BrdDevice, &BrdAttrinfo, NULL) == CNF_ERROR)

{
cout << "cnf_SetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!!" << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_SetAttributes_Event();
}
¥

/
* GET ATTRIBUTES ON A BOARD DEVICE.

/

nBrdAttr = CNF_BRD_ATTR_BASE;
{

for (int i = 0; i < MAX_CNF_BRD_ATTR; i++, nBrdAttr++)

{

BrdAttrList[i].unAttribute = nBrdAttr;

}

}

BrdAttrinfo.unAttrCount = MAX_CNF_BRD_ATTR;
BrdAttrinfo.pAttrList = BrdAttrList;

if (cnf_GetAttributes(BrdDevice, &BrdAttrinfo, NULL) == CNF_ERROR)

{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(BrdDevice) << " failed!!" << endl;
ProcessErroriInformation();
//return 0;
Dialogic® Conferencing API Library Reference — October 2007 105

Dialogic Corporation

Supplementary Reference Information

106

}

else

{

}

if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_GetAttributes_Event();

}

/

* OPEN A CONFERENCE DEVICE.

/

iT ((CnfDevice = cnf_OpenConference(BrdDevice, NULL, NULL, NULL)) == CNF_ERROR)

{

cout << "‘cnf_OpenConference failed !!" << endl;
ProcessErroriInformation();

¥

else

{

}

for (int 1 = 0; 1 < 2; 1++)

{
if (sr_waitevt(10000) == -1)
{

cout << "cnf_OpenConference on " << ATDV_NAMEP(BrdDevice) << " FAILED..."

cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
¥
else
{
Process_OpenConference_Event();
¥
}

/

* IF THIS IS A MEDIA CONFERENCE LETS SET THE VIDEO LAYOUT.

if (eType == ECNF_TYPE_MCX)

if (cnf_GetVideoLayout(CnfDevice, NULL) == CNF_ERROR)

{
cout << "cnf_GetVideoLayout failed !!" << endl;
ProcessErroriInformation();
3
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_GetVideoLayout_Event();
}
¥

LB_FRAME_HANDLE LayoutHandle = Ib_CreateLayoutTemplate(eLB_LAYOUT_TYPE_4_1);

if (LayoutHandle == MTK_ERROR)
{

cout << "lb_CreateLayoutTemplate failed !!" << endl;

}

else

{

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

<< endl;

Supplementary Reference Information

cout << "Created 4 region layout..." << endl;
}
CNF_VIDEO_LAYOUT_INFO Layoutlinfo;
LayoutInfo.elLayoutSize = elLB_LAYOUT_SIZE_CIF;
LayoutInfo.LayoutHandle = LayoutHandle;

if (cnf_SetVideoLayout(CnfDevice, &Layoutinfo, NULL) == CNF_ERROR)

{
cout << "cnf_SetVideolLayout failed !!" << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_SetVideoLayout_Event();
}
}

}

/
* ENABLE CONFERENCE DEVICE EVENTS.

/

unsigned int CnfEventList[10];
CnfEventList[0] = ECNF_CONF_EVT_PARTY_ADDED;
CnfEventList[1] = ECNF_CONF_EVT_PARTY_REMOVED;
CnfEventList[2] = ECNF_CONF_EVT_ACTIVE_TALKER;
CNF_EVENT_INFO CnfEventinfo;
CnfEventInfo.unEventCount = 3;
CnfEventlInfo.punEventList = CnfEventList;
if (cnf_EnableEvents(CnfDevice, &CnfEventinfo, (void *)1) == CNF_ERROR)
{

cout << "cnf_EnableEvents failed !!" << endl;

ProcessErrorinformation();

}
else
{

if (sr_waitevt(10000) == -1)

{

cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;

}

else

{

Process_EnableEvents_Event();

}
¥
/
* GET CONFERENCE DEVICE ATTRIBUTES. FAILURE CASE.

/

CNF_ATTR CnfAttrList[MAX_CNF_CONF_ATTR];
CNF_ATTR_INFO CnfAttrinfo;
CnfAttrList[0].unAttribute = ECNF_BRD_ATTR_NOTIFY_INTERVAL;
CnfAttrinfo.unAttrCount = 1;
CnfAttrinfo.pAttrList = CnfAttrList;
if (cnf_GetAttributes(CnfDevice, & CnfAttrinfo, NULL) == CNF_ERROR)
{

cout << "cnf_GetAttributes() on " << ATDV_NAMEP(CnfDevice) << " failed!! - Expected error

Dialogic® Conferencing API Library Reference — October 2007 107

Dialogic Corporation

Supplementary Reference Information

due to invalid attribute”™ << endl;
ProcessErroriInformation();

}

/
* GET CONFERENCE DEVICE ATTRIBUTES.

int nCnfAttr = CNF_CONF_ATTR_BASE;
for (int 1 = 0; 1 < MAX_CNF_CONF_ATTR; i++, nCnfAttr++)

{
CnfAttrList[i].unAttribute = nCnfAttr;

}

CnfAttrinfo.unAttrCount = MAX_CNF_CONF_ATTR;
CnfAttrinfo._pAttrList = CnfAttrList;

if (cnf_GetAttributes(CnfDevice, & CnfAttrinfo, NULL) == CNF_ERROR)

{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(CnfDevice) << " failed!!" << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
¥
else
{
Process_GetAttributes_Event();
¥
}

/
* SET CONFERENCE DEVICE ATTRIBUTES.

CnfAttrList[0].unAttribute = ECNF_CONF_ATTR_TONE_CLAMPING;
CnfAttrList[0].unValue = ECNF_ATTR_STATE_ENABLED;
CnfAttrList[1].unAttribute = ECNF_CONF_ATTR_DTMF_MASK;
CnfAttrList[1].unvValue = ECNF_DTMF_MASK_OP_SET | ECNF_DTMF_DIGIT_1 | ECNF_DTMF_DIGIT_2 |
ECNF_DTMF_DIGIT_3 | ECNF_DTMF_DIGIT_4;
CnfAttrinfo.unAttrCount = 2;
CnfAttrinfo._pAttrList = CnfAttrList;

///
// Lets set conference device attributes.
ifT (cnf_SetAttributes(CnfDevice, & CnfAttrinfo, NULL) == CNF_ERROR)

{
cout << "cnf_SetAttributes() - failed” << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
¥
else
{
Process_SetAttributes_Event();
¥
}

/
* GET CONFERENCE DEVICE ATTRIBUTES.

nCnfAttr = CNF_CONF_ATTR_BASE;

108 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

{
for (int i = 0; i < MAX_CNF_CONF_ATTR; i++, nCnfAttr++)
{
CnfAttrList[i].unAttribute = nCnfAttr;
}
}

CnfAttrinfo.unAttrCount = MAX_CNF_CONF_ATTR;
CnfAttrinfo.pAttrList = CnfAttrList;

if (cnf_GetAttributes(CnfDevice, & CnfAttrinfo, NULL) == CNF_ERROR)
{

cout << "cnf_GetAttributes() on " << ATDV_NAMEP(CnfDevice) << " failed!!" << endl;

ProcessErrorinformation();
¥
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_GetAttributes_Event();
}
}

/
* GET LIST OF PARTY"S ADDED TO A CONFERENCE.

if (cnf_GetPartyList(CnfDevice, NULL) == CNF_ERROR)

{
cout << "cnf_GetPartyList() - failed"” << endl;
ProcessErroriInformation();
¥
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_GetPartyList_Event();
}
}

/
* OPEN A PARTY DEVICE.

iT ((PtyDevice = cnf_OpenParty(BrdDevice, NULL, NULL, NULL)) == CNF_ERROR)

{

cout << "cnf_OpenParty() - failed" << endl;
ProcessErroriInformation();

}

else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_OpenParty_Event();
}
¥

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

109

Supplementary Reference Information

110

/
* GET PARTY DEVICE ATTRIBUTES.

CNF_ATTR PtyAttrList[MAX_CNF_PTY_ATTR];
int nPtyAttr = CNF_PARTY_ATTR_BASE;

{
for (int i = 0; i < MAX_CNF_PTY_ATTR; i++, nPtyAttr++)

{
PtyAttrList[i].unAttribute = nPtyAttr;
¥
}

CNF_ATTR_INFO PtyAttrinfo;
PtyAttrinfo.unAttrCount = MAX_CNF_PTY_ATTR;
PtyAttrinfo.pAttrList = PtyAttrList;

if (cnf_GetAttributes(PtyDevice, &PtyAttrinfo, NULL) == CNF_ERROR)

{

cout << "cnf_GetAttributes() - failed” << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
}
else

{

Process_GetAttributes_Event();
}
}

/
* SET PARTY DEVICE ATTRIBUTES.

PtyAttrList[0].unAttribute = ECNF_PARTY_ATTR_TARIFF_TONE;
PtyAttrList[0].unValue = ECNF_ATTR_STATE_ENABLED;
PtyAttrList[1].unAttribute = ECNF_PARTY_ATTR_COACH;
PtyAttrList[1].unValue = ECNF_ATTR_STATE_ENABLED;

PtyAttrinfo.unAttrCount = 2;
PtyAttrinfo.pAttrList = PtyAttrList;

if (cnf_SetAttributes(PtyDevice, &PtyAttrinfo, NULL) == CNF_ERROR)
{
cout << "cnf_SetAttributes() - failed” << endl;
ProcessErrorinformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
}
else
{
Process_SetAttributes_Event();
}
}

/
* ADD A PARTY TO A CONFERENCE.

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

CNF_PARTY_INFO Ptylnfo;

PtyInfo.unPartyCount = 1;

PtylInfo.pPartyList = new SRL_DEVICE_HANDLE[1];
PtyInfo.pPartyList[0] = PtyDevice;

if (cnf_AddParty(CnfDevice, &Ptylnfo, (void *)&CnfDevice) == CNF_ERROR)

{
cout << "cnf_AddParty() - failed” << endl;
ProcessErrorinformation();
}
else
{
for (int 1 = 0; 1 < 3; i++)
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed" << endl;
}
else
{
Process_AddParty_Event();
}
}
}

/
* OPEN MULTIPLE PARTY DEVICES.

const unsigned int unPtyCount = 5;
SRL_DEVICE_HANDLE * pPtyDeviceList = new SRL_DEVICE_HANDLE[unPtyCount];

{
for (unsigned int i = 0; i < unPtyCount; i++)
{
it ((pPtyDeviceList[i] = cnf_OpenParty(BrdDevice, NULL, NULL, NULL)) == CNF_ERROR)
{
cout << "cnf_OpenParty() - failed" << endl;
ProcessErrorinformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_OpenParty_Event();
}
}
}
¥
bool bMultiPartyAdded = false;
/
* ADD MULTIPLE PARTY"S TO A CONFERENCE.
/
PtylInfo.unPartyCount = unPtyCount;
PtylInfo.pPartyList = pPtyDeviceList;
if (cnf_AddParty(CnfDevice, &Ptylnfo, NULL) == CNF_ERROR)
{
cout << "cnf_AddParty() - failed” << endl;
ProcessErroriInformation();
¥
else
{
Dialogic® Conferencing API Library Reference — October 2007 111

Dialogic Corporation

Supplementary Reference Information

bMultiPartyAdded = true;
int nPtyEvtCount = unPtyCount * 2 + 1;
for (int 1 = 0; 1 < nPtyEvtCount; i++)
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_AddParty_Event();
}
¥
}

/
* GET LIST OF PARTYIES ADDED TO A CONFERENCE.

ifT (cnf_GetPartyList(CnfDevice, NULL) == CNF_ERROR)
{
cout << "cnf_GetPartyList() - failed"” << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
¥
else
{
Process_GetPartyList_Event();
}

[}

f (eType == ECNF_TYPE_MCX)

- -

/
* SET LIST OF VISIBLE PARTY"S.

LB_FRAME_HANDLE RegionHandleList[10];

size_t RegionHandleListSize = 10;

iT (Ib_GetRegionList(g_LayoutHandle, RegionHandleList, &RegionHandleListSize) ==
MTK_SUCCESS)

{

// e expect to get 4 regions in the list. Lets check...

if (RegionHandleListSize 1= 4)

{
cout << "Received invalid region handle list size..." << endl;

¥

else

{
CNF_VISIBLE_PARTY_INFO VisiblePartylnfolList[4];
for (int i = 0; i < RegionHandleListSize; i++)
{

VisiblePartylnfoList[i].PartyHandle = pPtyDevicelList[i];
VisiblePartylInfoList[i].RegionHandle = RegionHandleList[i];
}
CNF_VISIBLE_PARTY_LIST VisiblePartylInfo;
VisiblePartyInfo.unCount = 4;
VisiblePartyInfo.pPartyList = VisiblePartylInfolList;
it (cnf_SetVisiblePartyList(CnfDevice, &VisiblePartylnfo, NULL) == CNF_ERROR)
{
112 Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

cout << "cnf_SetVisiblePartyList() - failed” << endl;
ProcessErroriInformation();

}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
¥
else
{
Process_SetVisiblePartyList_Event();
¥
3
}
}
else
{
cout << "Ib_GetRegionList() - failed" << endl;
}

/
* GET LIST OF VISIBLE PARTY"S.

/
if (cnf_GetVisiblePartyList(CnfDevice, NULL) == CNF_ERROR)
{
cout << "cnf_GetVisiblePartyList() - failed” << endl;
ProcessErroriInformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_GetVisiblePartyList_Event();
}
}
¥
/
* GET PARTY DEVICE ATTRIBUTES.
/
nPtyAttr = CNF_PARTY_ATTR_BASE;
{
for (int 1 = 0; 1 < MAX_CNF_PTY_ATTR; i++, nPtyAttr++)
{
PtyAttrList[i].unAttribute = nPtyAttr;
}
¥
PtyAttrinfo.unAttrCount = MAX_CNF_PTY_ATTR;
PtyAttrinfo.pAttrList = PtyAttrList;
if (cnf_GetAttributes(PtyDevice, &PtyAttrinfo, NULL) == CNF_ERROR)
{
cout << "cnf_GetAttributes() - failed” << endl;
ProcessErroriInformation();
¥
else
{
if (sr_waitevt(10000) == -1)
{
Dialogic® Conferencing API Library Reference — October 2007 113

Dialogic Corporation

Supplementary Reference Information

114

cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
¥
else
{
Process_GetAttributes_Event();
¥

3

/
* SET PARTY DEVICE ATTRIBUTES.

PtyAttrList[0].unAttribute = ECNF_PARTY_ATTR_TARIFF_TONE;
PtyAttrList[0].unValue = ECNF_ATTR_STATE_DISABLED;
PtyAttrList[1].unAttribute = ECNF_PARTY_ATTR_COACH;
PtyAttrList[1].unValue = ECNF_ATTR_STATE_DISABLED;

PtyAttrinfo.unAttrCount = 2;
PtyAttrinfo.pAttrList = PtyAttrList;

if (cnf_SetAttributes(PtyDevice, &PtyAttrinfo, NULL) == CNF_ERROR)
{
cout << "cnf_SetAttributes() - failed” << endl;
ProcessErrorinformation();
}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
}
else
{
Process_SetAttributes_Event();
}
}

/
* GET PARTY DEVICE ATTRIBUTES.

nPtyAttr = CNF_PARTY_ATTR_BASE;

{
for (int i = 0; i < MAX_CNF_PTY_ATTR; i++, nPtyAttr++)
{
PtyAttrList[i].unAttribute = nPtyAttr;
¥
}

PtyAttrinfo.unAttrCount = MAX_CNF_PTY_ATTR;
PtyAttrinfo.pAttrList = PtyAttrList;

ifT (cnf_GetAttributes(PtyDevice, &PtyAttrinfo, NULL) == CNF_ERROR)

{
cout << "cnf_GetAttributes() - failed” << endl;

ProcessErroriInformation();

}
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(PtyDevice) << endl;
¥
else
{

Process_GetAttributes_Event();
}

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

REMOVE PARTY FROM A CONFERENCE.

CONFERENCE DEVICES, WE SHOULD EXPECT TO GET THE CNFEV_PARTY_REMOVED
NOTIFICATION EVENT ON BOTH THE BOARD AND CONFERENCE DEVICE HANDLES,

*

*

* NOTE: SINCE WE HAVE ENABLED THE PARTY REMOVED EVENT ON BOTH THE BOARD AND
*

*

* IN ADDITION TO THE CNFEV_REMOVE_PARTY TERMINATION EVENT.

/
iT (cnf_RemoveParty(CnfDevice, &PtyInfo, NULL) == CNF_ERROR)
{
cout << "cnf_RemoveParty() - failed"” << endl;
ProcessErroriInformation();
¥
else
{
for (int 1 = 0; i < 3; i++)
{
it (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_RemoveParty_Event();
}
}
¥
/
* CLOSE MULTIPLE PARTY DEVICE.
/
{
for (unsigned int i = 0; 1 < unPtyCount; i++)
{
iT (cnf_CloseParty(pPtyDeviceList[i], NULL) == CNF_ERROR)
{
cout << "cnf_CloseParty() - failed"” << endl << endl;
ProcessErroriInformation();
}
else
{
cout << "cnf_CloseParty() - successful™ << endl << endl;
if (bMultiPartyAdded == true)
{
for (int 1 = 0; 1 < 2; 1++)
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_RemoveParty_Event();
}
¥
}
}
}
¥
/
* DISABLE CONFERENCE DEVICE EVENTS.
Dialogic® Conferencing API Library Reference — October 2007 115

Dialogic Corporation

Supplementary Reference Information

116

if (cnf_DisableEvents(CnfDevice, & CnfEventinfo, (void *)1) == CNF_ERROR)
{

cout << "cnf_DisableEvents failed !!" << endl;

ProcessErroriInformation();

}

else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl;
}
else
{
Process_DisableEvents_Event();
}
}

/
CLOSE A CONFERENCE DEVICE.

{

iT (cnf_CloseConference(CnfDevice, NULL) == CNF_ERROR)

cout << "cnf_CloseConference() for " << ATDV_NAMEP(CnfDevice) << " FAILED" << endl;
cout << "\tError - " << ATDV_LASTERR(CnfDevice) << endl;

else
{
for (int 1 = 0; 1 < 1; i++)
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(CnfDevice) << endl << endl;
}
else
{
Process_Board_Event();
}
¥

cout << "cnf_CloseConference() - successful™ << endl << endl;

}

/
* CLOSE A PARTY DEVICE.

if (cnf_CloseParty(PtyDevice, NULL) == CNF_ERROR)

cout << "cnf_CloseParty failed !!1" << endl << endl;
ProcessErroriInformation();

}

else

{

cout << "cnf_CloseParty() - successful !l" << endl << endl;

}

/
* DISABLE BOARD DEVICE EVENTS.

unsigned int BrdDisableEventList[10];
BrdDisableEventList[0] = ECNF_BRD_EVT_CONF_OPENED;
BrdDisableEventList[1] = ECNF_BRD_EVT_CONF_CLOSED;
BrdDisableEventList[2] = ECNF_BRD_EVT_ACTIVE_TALKER;
BrdDisableEventList[3] = ECNF_BRD_EVT_PARTY_ADDED;
BrdDisableEventList[4] = ECNF_BRD_EVT_PARTY_REMOVED;

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

BrdDisableEventList[5] = ECNF_CONF_ATTR_TONE_CLAMPING;
CNF_EVENT_INFO BrdDisableEventinfo;
BrdDisableEventiInfo.unEventCount = 5;
BrdDisableEventInfo.punEventList = &BrdDisableEventList[0];

if (cnf_DisableEvents(BrdDevice, &BrdDisableEventinfo, (void *)1) == CNF_ERROR)

{
cout << "cnf_DisableEvents failed !l" << endl;
ProcessErroriInformation();
¥
else
{
if (sr_waitevt(10000) == -1)
{
cout << "sr_waitevt failed - " << ATDV_ERRMSGP(BrdDevice) << endl;
}
else
{
Process_DisableEvents_Event();
}
}
/

* CLOSE THE BOARD DEVICE.

if (cnf_Close(BrdDevice, NULL) == CNF_ERROR)
{

cout << "cnf_Close failed !!l" << endl << endl;
ProcessErroriInformation();

}

else

{

cout << "cnf_Close() - Successful” << endl << endl;

}

return O;

}

/**
* @fn Process_DisableEvents_Event
*/
void Process_DisableEvents_Event()
{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);
PCNF_EVENT_INFO plInfo = (PCNF_EVENT_INFO) Data.pEventData;

switch (Data.EventType)

{

case CNFEV_DISABLE_EVENT:

{
cout << "cnf_DisableEvents on ' << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<

endl;
cout << '"\tReceived following event information:" << endl;
cout << "\t Event Count: " << plInfo->unEventCount << endl;
for (int i = 0; i < pInfo->unEventCount; i++)
{
cout << "\t Event: " << plInfo->punEventList[i] << endl;

}
cout << "\t Event User Info: " << Data.pEventUseriInfo << endl << endl;

}

break;

Dialogic® Conferencing API Library Reference — October 2007 117

Dialogic Corporation

Supplementary Reference Information

case CNFEV_DISABLE_EVENT_FAIL:

{
cout << "cnf_DisableEvents() on " << ATDV_NAMEP(Data.EventDevice) << ' FAILED" <<
endl;
cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
cout << "\t Event Count: " << plnfo->unEventCount << endl;
for (int 1 = 0; i1 < pInfo->unEventCount; i++)
{
cout << "\t Event: " << plInfo->punEventList[i] << endl;
}
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
3
break;
default:
{
cout << "Process_DisableEvents_Event - UNEXPECTED EVENT" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
}
break;
}:
}
/**
* @Ffn ProcessEnableEventsEvent
*/
void Process_EnableEvents_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_EVENT_INFO plInfo = (PCNF_EVENT_INFO) Data.pEventData;

if (Data.EventType == CNFEV_ENABLE_EVENT)

{
cout << "cnf_EnableEvents on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" << endl;
cout << "\tReceived following event information:" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << "\t Event Data: ' << Data.pEventData << endl;
if (pInfo)
cout << "\t Event Count: " << plnfo->unEventCount << endl;
for (int 1 = 0; i1 < pInfo->unEventCount; i++)
{
cout << "\t Event: " << plInfo->punEventList[i] << endl;
}
¥
cout << "\tEvent Data Length: " << Data.EventDatalength << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
}
else
{
cout << "cnf_EnableEvents on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" << endl;
cout << "\tEvent: " << Data.EventType << endl;
cout << "\t Event Count: " << plnfo->unEventCount << endl;
for (int i = 0; i1 < plInfo->unEventCount; i++)
{
cout << "\t Event: " << plInfo->punEventList[i] << endl;
}
cout << endl;
118 Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

3
}

/**
* @fn srl_GetMetaEvent
*/

Supplementary Reference Information

void srl_GetMetaEvent(PSRL_METAEVENT a_pMetaEvent)

{

a_pMetaEvent->EventType
a_pMetaEvent->EventDevice
a_pMetaEvent->EventDatalLength
a_pMetaEvent->pEventData
a_pMetaEvent->pEventUserInfo

}

/**

* @fn ProcessErrorinfo

*/

void ProcessErrorinformation()

{

= sr_getevttype();
sr_getevtdev();
sr_getevtlen();
sr_getevtdatap();
sr_getUserContext();

PCNF_ERROR_INFO pErrorinfo = new CNF_ERROR_INFO;
if (cnf_GetErrorinfo(pErrorinfo) == CNF_ERROR)

cout << "cnf_GetErrorinfo() FAILED!!" << endl;

{
}
else
{
cout << "\t Error Code: "
cout << "\t Error String:
cout << "\tAdditional Info: "
}
¥
/**
* @fn Process_AddParty_Event
*/
void Process_AddParty_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

switch (Data.EventType)

{
case CNFEV_ADD_PARTY:

{

<< pErroriInfo->unkErrorCode << endl;
<< pErrorinfo->szErrorString << endl;
<< pErrorinfo->szAdditionalInfo << endl << endl;

PCNF_PARTY_INFO pInfo = (PCNF_PARTY_INFO) Data.pEventData;

cout << "cnf_AddParty() on "

<< ATDV_NAMEP(Data.EventDevice) <<

cout << '"\tReceived following event information:" << endl;
cout << "\t Party Count: "
for (int i = 0; i < pInfo->unPartyCount; i++)

{

<< pInfo->unPartyCount << endl;

" SUCCESSFUL™

cout << "\t Party Handle: " << plInfo->pPartyList[i] << endl;

}

cout << '\t Event User Info:

}

break;

case CNFEV_PARTY_ADDED:
{

<< Data.pEventUserInfo << endl << endl;

PCNF_PARTY_ADDED_EVENT_INFO plInfo
cout << "Received PARTY ADDED notification event..." << endl;

cout << "\tConference Handle:

cout << '\t Conference Name: "

cout << "\t Party Handle:

cout << "\t Party Name: "

<<
<<
<<
<<

<< endl;

(PCNF_PARTY_ADDED_EVENT_INFO) Data.pEventData;

pInfo->ConfHandle << endl;
pInfo->szConfName << endl;
pInfo->PartyHandle << endl;
pInfo->szPartyName << endl;

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

119

Supplementary Reference Information

cout << "\t Event Device: " << Data.EventDevice << endl << endl;

}

break;

case CNFEV_ADD_PARTY_FAIL:

{
PCNF_PARTY_INFO plInfo = (PCNF_PARTY_INFO) Data.pEventData;
cout << "cnf_AddParty() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" << endl;
cout << "\tError - " << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "\t Party Count: " << plnfo->unPartyCount << endl;
for (int 1 = 0; i1 < pInfo->unPartyCount; i++)
{
cout << "\t Party Handle: " << plInfo->pPartyList[i] << endl;
}
cout << endl;
3
break;
default:
{
cout << "Process_AddParty_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << ""\tEvent Device: " << Data.EventDevice << endl << endl;
}
break;

}
3

void Process_Board_Event()

{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

if (Data.EventType == CNFEV_CONF_CLOSED)

{
PCNF_CONF_CLOSED_EVENT_INFO pInfo = (PCNF_CONF_CLOSED_EVENT_INFO) Data.pEventData;
cout << "Received CONFERENCE CLOSED notification event..." << endl;
cout << "\t Conference Name: " << plInfo->szConfName << endl;
cout << "\t Event Device: " << Data.EventDevice << endl << endl;
}
else
{
//ProcessRemovePartyEvent();
}

}

void Process_GetActiveTalkerList_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_ACTIVE_TALKER_INFO plnfo = (PCNF_ACTIVE_TALKER_INFO) Data.pEventData;

iT (Data.EventType == CNFEV_GET_ACTIVE_TALKER)
{

cout << "cnf_GetActiveTalkerList() - Successful™ << endl;
cout << "\tReceived following event information:" << endl;

cout << "\t Event: " << Data.EventType << endl;
if (pInfo)
cout << "\t Event Data: " << plInfo << endl;
cout << "\t Party Count: " << plnfo->unPartyCount << endl;
for (int i = 0; i < pInfo->unPartyCount; i++)
{

cout << "\t Party Info: Party[" << i << "] - Handle[" << plInfo->pPartyList[i] <<
"] - Device Name["™ << ATDV_NAMEP(pInfo->pPartyList[i]) << "]" << endl;

120 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

}
}
else
{
cout << "\t INVALID PINFO POINTER..." << endl;
}
cout << "\tEvent Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
}
else
{
cout << "cnf_GetActiveTalkerList() - Failed” << endl;
cout << "\tEvent: " << Data.EventType << endl << endl;
¥
3
/**
* @fn Process_GetAttributes_Event
*/
void Process_GetAttributes_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_ATTR_INFO plInfo = (PCNF_ATTR_INFO) Data.pEventData;

switch (Data.EventType)
{
case CNFEV_GET_ATTRIBUTE:
{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL " << endl;
cout << ""\tReceived following event information:" << endl;
if (plInfo)
{
cout << "\t Attribute Count: " << plnfo->unAttrCount << endl;
for (int i = 0; i < pInfo->unAttrCount; i++)
{
cout << "\t Attribute Info: Attribute[" << pInfo->pAttrList[i].unAttribute << "]
Value[0x" << hex << pInfo->pAttrList[i].unValue << dec << "]" << endl;

}
¥
else
{
cout << "\t INVALID DATA POINTER..." << endl;
¥
cout << "\tEvent Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
¥
break;

case CNFEV_GET_ATTRIBUTE_FAIL:

{
cout << "cnf_GetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" << endl;
cout << "\tError - " << ATDV_LASTERR(Data.EventDevice) << endl;
if (pInfo)

cout << "\t Attribute Count: " << plnfo->unAttrCount << endl;
for (int 1 = 0; 1 < plnfo->unAttrCount; i++)
{
cout << "\t Attribute Info: Attribute[" << plInfo->pAttrList[i].unAttribute << "]
Value[" << pInfo->pAttrList[i].unValue << "]" << endl;

}

else

Dialogic® Conferencing API Library Reference — October 2007 121
Dialogic Corporation

Supplementary Reference Information

{
cout << "\t INVALID DATA POINTER..." << endl;
¥
}
break;
default:
{
cout << "Process_GCetAttributes_Event() - Unexpected event'" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << ""\tEvent Device: " << Data.EventDevice << endl << endl;
}
break;
}
}
/**
* @fn Process_GetDeviceCount_Event
*/
void Process_GetDeviceCount_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_DEVICE_COUNT_INFO pInfo = (PCNF_DEVICE_COUNT_INFO) Data.pEventData;

switch (Data.EventType)

{
case CNFEV_GET_DEVICE_COUNT:
{
cout << "cnf_GetDeviceCount() on " << ATDV_NAMEP(Data.EventDevice) << ' SUCCESSFUL "
<< endl;
cout << "\tReceived following event information:" << endl;
cout << "\t Event Data: " << Data.pEventData << endl;
cout << "\t Free Party Devices: " << plInfo->unFreePartyCount << endl;
cout << "\tFree Conference Devices: " << plnfo->unFreeConfCount << endl;
cout << "\t Max Party Devices: " << plInfo->unMaxPartyCount << endl;
cout << "\t Max Conference Devices: " << plnfo->unMaxConfCount << endl;
cout << "\t Event Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUserlInfo << endl << endl;
}
break;
case CNFEV_GET_DEVICE_COUNT_FAIL:
{
cout << "cnf_GetDeviceCount() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
cout << "\tError - " << ATDV_LASTERR(Data.EventDevice) << endl;
}
break;
default:
{
cout << "Process_GetDeviceCount_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
}
break;
3
}
/**
* @fn Process_GetDTMFControl_Event
*/
122 Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

void Process_GetDTMFControl_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);
PCNF_DTMF_CONTROL_INFO pInfo = (PCNF_DTMF_CONTROL_INFO) Data.pEventData;

switch (Data.EventType)

{
case CNFEV_GET_DTMF_CONTROL:
cout << "cnf_GetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
cout << '"\tReceived following event information:" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << "\t Event Data: " << Data.pEventData << endl;
cout << "\t DTMF Control State: " << plnfo->eDTMFControlState << endl;
cout << "\t Volume Up Digit: " << plnfo->eVolumeUpDigit << endl;
cout << "\t Volume Down Digit: " << plInfo->eVolumeDownDigit << endl;
cout << "\t Volume Reset Digit: " << pInfo->eVolumeResetDigit << endl;
cout << "\t Event Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUseriInfo << endl << endl;
break;
case CNFEV_GET_DTMF_CONTROL_FAIL:
cout << "cnf_GetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
cout << "ATDV_LASTERR : ' << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : ' << ATDV_ERRMSGP(Data.EventDevice) << endl;
break;
default:
cout << "Process_GetDTMFControl_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << '"\tEvent Device: " << Data.EventDevice << endl << endl;
break;
¥
3
/**
* @fn Process_GetPartyList_Event
*/
void Process_GetPartyList_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);
PCNF_PARTY_INFO plInfo = (PCNF_PARTY_INFO) Data.pEventData;

if (Data.EventType == CNFEV_GET_PARTY_LIST)
{
cout << "cnf_GetPartyList() - Successful” << endl;
cout << "\tReceived following event information:" << endl;

cout << "\t Event: " << Data.EventType << endl;
if (piInfo)
{
cout << "\t Event Data: " << pInfo << endl;
cout << "\t Party Count: " << plInfo->unPartyCount << endl;
for (int 1 = 0; 1 < plInfo->unPartyCount; i++)
{

cout << "\t Party Info: Party[" << 1 << "] - Handle[" << plInfo->pPartyList[i] <<
"] - Device Name[" << ATDV_NAMEP(plInfo->pPartyList[i]) << "]" << endl;

}
}
else
{
cout << "\t INVALID PINFO POINTER..." << endl;
Dialogic® Conferencing API Library Reference — October 2007 123

Dialogic Corporation

Supplementary Reference Information

}
cout << "\tEvent Data Length: " << Data.EventDatalength << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
3
else
{
cout << "cnf_GetPartyList() - Failed"” << endl;
cout << "\tEvent: " << Data.EventType << endl;
}
}
/**
* @Ffn ProcessMetaEvent
*/
void ProcessMetaEvent(char * a_szString)
{

SRL_METAEVENT MetaData;
srl_GetMetaEvent(&MetaData);
cout << a_szString << endl;
cout << '"\tReceived following event information:" << endl;

cout << "\t Event: " << MetaData.EventType << endl;

cout << "\t Event Data: " << MetaData.pEventData << endl;

cout << "\tEvent Data Length: " << MetaData.EventDatalLength << endl;
cout << "\t Event Device: " << MetaData.EventDevice << endl;
cout << "\t Event User Info: " << MetaData.pEventUserInfo << endl << endl;
}
/**

* @fn Process_OpenBoard_Event

*/
void Process_OpenBoard_Event()

{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

switch (Data.EventType)

{
case CNFEV_OPEN:
{
cout << "cnf_Open() - Successful™ << endl;
cout << "\tReceived following event information:" << endl;
cout << "\t Event Data: " << Data.pEventData << endl;
cout << "\tEvent Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
¥
break;
default:
{
cout << "cnf_Open() - Failed” << endl;
cout << "\tEvent: " << Data.EventType << endl;
}
break;
}:

¥

void Process_OpenConference_Event()

{
SRL_METAEVENT Data;

srl_GetMetaEvent(&Data);

switch (Data.EventType)

{
case CNFEV_OPEN_CONF:

124 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

{
PCNF_OPEN_CONF_RESULT plInfo = (PCNF_OPEN_CONF_RESULT) Data.pEventData;
cout << ""cnf_OpenConference() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL "
<< endl;
cout << '"\tReceived following event information:" << endl;
cout << '"\tConference Device: " << plInfo->ConfHandle << endl;
cout << "\t Conference Name: " << plInfo->szConfName << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << "\t Event User Info: " << Data.pEventUseriInfo << endl << endl;
}
break;

case CNFEV_CONF_OPENED:

{
PCNF_CONF_OPENED_EVENT_INFO plInfo = (PCNF_CONF_OPENED_EVENT_INFO) Data.pEventData;
cout << "Received CONFERENCE OPENED notification event..." << endl;
cout << ""\tConference Handle: " << plInfo->ConfHandle << endl;
cout << "\t Conference Name: " << plInfo->szConfName << endl;
cout << "\t Event Device: " << Data.EventDevice << endl << endl;
}
break;

case CNFEV_OPEN_CONF_FAIL:

{
PCNF_OPEN_CONF_RESULT pInfo = (PCNF_OPEN_CONF_RESULT) Data.pEventData;
cout << "cnf_OpenConference() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED " <<
endl;
cout << '"\tConference Device: " << plInfo->ConfHandle << endl << endl;
cout << "ATDV_LASTERR : ' << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
cnf_CloseConference(plnfo->ConfHandle, NULL);
}
break;
default:
{
cout << "Process_OpenConference_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << '"\tEvent Device: " << Data.EventDevice << endl << endl;
}
break;
}:
¥

void Process_OpenParty_Event()

{
SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

switch(Data.EventType)

{
case CNFEV_OPEN_PARTY:
{
PCNF_OPEN_PARTY_RESULT plInfo = (PCNF_OPEN_PARTY_RESULT) Data.pEventData;
cout << "cnf_OpenParty() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL " <<
endl;
cout << '"\tReceived following event information:" << endl;
cout << '\t Party Device: " << plInfo->PartyHandle << endl;
cout << "\t Party Name: " << plInfo->szPartyName << endl;
cout << "\t Event Device: " << Data.EventDevice << endl;
cout << '"\tEvent User Info: " << Data.pEventUserInfo << endl << endl;
}
break;
case CNFEV_OPEN_PARTY_FAIL:
Dialogic® Conferencing API Library Reference — October 2007 125

Dialogic Corporation

Supplementary Reference Information

126

{
PCNF_OPEN_PARTY_RESULT plInfo = (PCNF_OPEN_PARTY_RESULT) Data.pEventData;
cout << "cnf_OpenParty() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED " << endl;
cout << "\tParty Device: " << plInfo->PartyHandle << endl;
cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
cnf_CloseParty(pInfo->PartyHandle, NULL);
3
break;
default:
{
cout << "Process_OpenParty_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << ""\tEvent Device: " << Data.EventDevice << endl << endl;
3
break;
}:
}
/**

* @fn Process_RemoveParty_Event

*/

void Process_RemoveParty_Event()

{
SRL_METAEVENT

Data;

srl_GetMetaEvent(&Data);

switch (Data.EventType)

{
case CNFEV_REMOVE_PARTY:
{
PCNF_PARTY_INFO plInfo = (PCNF_PARTY_INFO) Data.pEventData;
cout << "cnf_RemoveParty() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
cout << "\tReceived following event information:" << endl;
cout << "\t Party Count: " << plnfo->unPartyCount << endl;
for (int i = 0; i < pInfo->unPartyCount; i++)
{
cout << "\t Party Handle: " << plInfo->pPartyList[i] << endl;
¥
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
}
break;

case CNFEV_PARTY_REMOVED:

{

PCNF_PARTY_REMOVED_EVENT_INFO plInfo = (PCNF_PARTY_REMOVED_EVENT_INFO) Data.pEventData;

cout

cout

cout

cout

cout

cout
}

break;

default:
{

<< "Received PARTY REMOVED notification event..." << endl;

<< "\tConference Handle: " << plInfo->ConfHandle << endl;

<< "\t Conference Name: " << plInfo->szConfName << endl;

<< "\t Party Handle: " << plInfo->PartyHandle << endl;

<< "\t Party Name: " << plnfo->szPartyName << endl;

<< "\t Event Device: " << Data.EventDevice << endl << endl;

PCNF_PARTY_INFO plInfo = (PCNF_PARTY_INFO) Data.pEventData;

cout
cout

<< "cnf_RemoveParty() - Failed" << endl;
<< "\tEvent: " << Data.EventType << endl;

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

cout << "\t Party Count: " << plInfo->unPartyCount << endl;
for (int i = 0; i < pInfo->unPartyCount; i++)
{
cout << "\t Party Handle: " << plInfo->pPartyList[i] << endl;
3
cout << endl;
¥
break;
}
¥
/**
* @fn Process_ResetDevices_Event
*/
void Process_ResetDevices_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

switch (Data.EventType)

{
case CNFEV_RESET_DEVICES:
{
cout << "cnf_ResetDevices() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL " <<
endl;
cout << '"\tReceived following event information:" << endl;
cout << "\t Event Data: " << Data.pEventData << endl;
cout << '"\tEvent Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event User Info: " << Data.pEventUseriInfo << endl << endl;
}
break;
case CNFEV_RESET_DEVICES_FAIL:
{
cout << "cnf_ResetDevices() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED " <<
endl;
cout << "ATDV_LASTERR : ' << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : ' << ATDV_ERRMSGP(Data.EventDevice) << endl;
}
break;
default:
{
cout << "Process_ResetDevices_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << '"\tEvent Device: " << Data.EventDevice << endl << endl;
}
break;
}:
¥
/**
* @fn Process_SetAttributes_Event
*/
void Process_SetAttributes_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_ATTR_INFO pInfo = (PCNF_ATTR_INFO) Data.pEventData;
switch (Data.EventType)

{
case CNFEV_SET_ATTRIBUTE:

Dialogic® Conferencing API Library Reference — October 2007 127
Dialogic Corporation

Supplementary Reference Information

{
cout << "cnf_SetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
cout << "\tReceived following event information:" << endl;
if (piInfo)
{

cout << "\t Attribute Count: " << plInfo->unAttrCount << endl;
PCNF_ATTR pAttrList = pInfo->pAttrList;
iT (pAttrList)
{

for (int i = 0; 1 < plInfo->unAttrCount; i++)

{

cout << "\t Attribute Info: Attribute[" << pAttrList[i].unAttribute << "]
Value[0x" << hex << pAttrList[i].unValue << dec << "]" << endl;

¥
}
else
{
cout << "\t INVALID ATTRIBUTE LIST POINTER..." << endl;
}
}
else
{
cout << "\t INVALID PINFO POINTER..." << endl;
}
cout << "\tEvent Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event User Info: " << Data.pEventUserinfo << endl << endl;
¥
break;

case CNFEV_SET_ATTRIBUTE_FAIL:

{
cout << "cnf_SetAttributes() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<
endl;
if (pInfo)

cout << "\t Attribute Count: " << plInfo->unAttrCount << endl;
PCNF_ATTR pAttrList = plInfo->pAttrList;

iT (pAttrList)
{
for (int i = 0; 1 < plInfo->unAttrCount; i++)
{
cout << "\t Attribute Info: Attribute[" << pAttrList[i].unAttribute << "]
Value[" << pAttrList[i].unValue << "]" << endl;

}

else

{
cout << "\t INVALID ATTRIBUTE LIST POINTER..." << endl;
}
3

else

{
cout << "\t INVALID PINFO POINTER..." << endl;
3
}

break;

default:
{

128 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

};

/**

Supplementary Reference Information

cout << "Process_SetAttributes_Event() - Unexpected event'" << endl;

cout << "\t Event: " << Data.EventType << endl;

cout << '"\tEvent Device: " << Data.EventDevice << endl << endl;
}
break;

* @fn Process_SetDTMFControl_Event

*/

void Process_SetDTMFControl_Event()

{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

switch(Data.EventType)

{

endl;

endl;

/**

case CNFEV_SET_DTMF_CONTROL:
cout << "cnf_SetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<

cout << '"\tReceived following event information:" << endl;

cout << "\t Event Data: ' << Data.pEventData << endl;
cout << "\t Event Data Length: " << Data.EventDatalLength << endl;
cout << "\t Event User Info: " << Data.pEventUseriInfo << endl << endl;

break;

case CNFEV_SET_DTMF_CONTROL_FAIL:
cout << "cnf_SetDTMFControl() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<

cout << "ATDV_LASTERR : ' << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : ' << ATDV_ERRMSGP(Data.EventDevice) << endl;
break;

default:

cout << "Process_SetDTMFControl_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;

cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
break;

* @fn Process_GetVideolLayout_Event

*/

void Process_GetVideoLayout_Event()

{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_VIDEQ_LAYOUT_INFO plInfo = (PCNF_VIDEO_LAYOUT_INFO) Data.pEventData;

switch(Data.EventType)

{
case CNFEV_GET_VIDEO_LAYOUT:
cout << "cnf_GetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<
endl;
cout << '"\tReceived following event information:" << endl;
it (pInfo)
cout << "\t Layout Handle: " << plInfo->LayoutHandle << endl;
cout << "\t Layout Size: " << plInfo->elLayoutSize << endl;
g_LayoutHandle = plnfo->LayoutHandle;
eLB_LAYOUT_TYPE eType;
Dialogic® Conferencing API Library Reference — October 2007 129

Dialogic Corporation

Supplementary Reference Information

130

endl;

/x>

iT (Ib_GetType(pInfo->LayoutHandle, &eType) == MTK_SUCCESS)

{
cout << "\t Layout Type: " << eType << endl;

}
¥
else
{

cout << "\tlnvalid pINFO pointer."™ << endl;
¥
cout << "\t Event User Info: " << Data.pEventUseriInfo << endl << endl;
break;

case CNFEV_GET_VIDEO_LAYOUT_FAIL:
cout << "cnf_GetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << ' FAILED" <<

cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
break;

default:
cout << "Process_GetVideoLayout_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
break;

* @fn Process_SetVideolLayout_Event

*/

void Process_SetVideoLayout_Event()

{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_VIDEO_LAYOUT_INFO plInfo = (PCNF_VIDEO_LAYOUT_ INFO) Data.pEventData;

switch(Data.EventType)

{

endl;

endl;

case CNFEV_SET_VIDEO_LAYOUT:
cout << "cnf_SetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << " SUCCESSFUL" <<

cout << "\tReceived following event information:" << endl;

cout << "\t Layout Handle: " << plInfo->LayoutHandle << endl;
cout << "\t Layout Size: " << plnfo->eLayoutSize << endl;
g_LayoutHandle = plInfo->LayoutHandle;

eLB_LAYOUT_TYPE eType;

if (Ib_GetType(plnfo->LayoutHandle, &eType) == MTK_SUCCESS)

{
cout << "\t Layout Type: " << eType << endl;
}
cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
break;

case CNFEV_SET VIDEO_LAYOUT FAIL:
cout << "cnf_SetVideoLayout() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED" <<

cout << "ATDV_LASTERR : ' << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
break;

default:
cout << "Process_SetVideoLayout_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << ""\tEvent Device: " << Data.EventDevice << endl << endl;

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

break;

/**

* @fn Process_GetVisiblePartyList_Event
*/

void Process_GetVisiblePartyList_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_VISIBLE_PARTY_LIST pInfo = (PCNF_VISIBLE_PARTY_LIST) Data.pEventData;

switch(Data.EventType)
{
case CNFEV_GET_VISIBLE_PARTY_LIST:
cout << "cnf_GetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << "
SUCCESSFUL" << endl;
cout << '"\tReceived following event information:" << endl;
it (pInfo)

for (unsigned int i = 0; i < pInfo->unCount; i++)
{
PCNF_VISIBLE_PARTY_INFO pVPI = &(pInfo->pPartyList[i]);
cout << "\tVisiblePartyList[" << i << "] --- Party Handle: " << pVPI->PartyHandle
<< " Region Handle: " << pVPI->RegionHandle << endl;
}
}
else
{
cout << "Received invalid data pointer..." << endl;
}
cout << "\t Event User Info: " << Data.pEventUserInfo << endl << endl;
break;

case CNFEV_GET_VISIBLE_PARTY_LIST_FAIL:
cout << "cnf_GetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED"

<< endl;
cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
break;
default:
cout << "Process_GetVisiblePartyList_Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << "\tEvent Device: " << Data.EventDevice << endl << endl;
break;
}
¥
/**
* @fn Process_SetVisiblePartyList_Event
*/
void Process_SetVisiblePartyList_Event()
{

SRL_METAEVENT Data;
srl_GetMetaEvent(&Data);

PCNF_VISIBLE_PARTY_LIST pInfo = (PCNF_VISIBLE_PARTY_LIST) Data.pEventData;

switch(Data.EventType)

{
case CNFEV_SET_VISIBLE_PARTY_LIST:

cout << "cnf_SetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << "

Dialogic® Conferencing API Library Reference — October 2007 131
Dialogic Corporation

Supplementary Reference Information

SUCCESSFUL" << endl;
cout << "\tReceived following event information:" << endl;

if (piInfo)
{
for (unsigned int i1 = 0; 1 < pInfo->unCount; i++)
{
PCNF_VISIBLE_PARTY_INFO pVPI = &(pInfo->pPartyList[i]);
cout << "\tVisiblePartyList[" << i << '] --- Party Handle: " << pVPl->PartyHandle
<< " Region Handle: " << pVPI->RegionHandle << endl;
}
¥
else
{
cout << "Received invalid data pointer..." << endl;
¥
cout << "\t Event User Info: " << Data.pEventUserlInfo << endl << endl;
break;

case CNFEV_SET VISIBLE_PARTY_LIST_FAIL:
cout << "cnf_SetVisiblePartyList() on " << ATDV_NAMEP(Data.EventDevice) << " FAILED"

<< endl;
cout << "ATDV_LASTERR : " << ATDV_LASTERR(Data.EventDevice) << endl;
cout << "ATDV_ERRMSGP : " << ATDV_ERRMSGP(Data.EventDevice) << endl;
break;

default:
cout << "Process_SetVisiblePartyList _Event() - Unexpected event" << endl;
cout << "\t Event: " << Data.EventType << endl;
cout << ""\tEvent Device: " << Data.EventDevice << endl << endl;
break;
}
}

Figure 2. Conferencing (CNF) Example Code Output

Conferencing (CNF) Example Code

Board Name is: cnfBl

cnf_Open failure!! : Expected failure due to the following Error Code: 4 Error String: Invalid
parameter in function call

Additional Info: Invalid parameter - a_szBrdName is NULL

cnf_Open failure!! : Expected failure due to the following Error Code: 3Error String: Invalid
device name provided by user

Additional Info: Invalid device name [blah_blah] specified
cnf_Open() - Successful

Received following event information:
Event Data: 0O
Event Data Length: 10
Event Device: 1
Event User Info: O

cnf_GetDeviceCount() on cnfBl SUCCESSFUL
Received following event information:
Event Data: 0x8723e68
Free Party Devices: 60
Free Conference Devices: 30
Max Party Devices: 60
Max Conference Devices: 30

132 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Event Data Length:
Event Device:
Event User Info:

20
1
0

cnf_ResetDevices() on cnfBl SUCCESSFUL

Received following event
Event Data: 0O
Event Data Length: 10
Event User Info: O

cnf_GetDeviceCount() on
Received following event
Event Data:

Free Party Devices:

Free Conference Devices:
Max Party Devices:

Max Conference Devices:
Event Data Length:

Event Device:

Event User Info:

cnf_GetDTMFControl () on
Received following event
Event:

Event Data:

DTMF Control State:
Volume Up Digit:

Volume Down Digit:
Volume Reset Digit:
Event Data Length:

Event Device:

Event User Info:

cnf_SetDTMFControl() on
Received following event
Event Data:

Event Data Length:

Event User Info:

cnf_GetDTMFControl() on
Received following event
Event:

Event Data:

DTMF Control State:
Volume Up Digit:

Volume Down Digit:
Volume Reset Digit:
Event Data Length:

Event Device:

Event User Info:

information:

cnfB1l SUCCESSFUL
information:
0x873al1f8

60

30

60

30

20

1

(0]

cnfB1l SUCCESSFUL
information:
49164
0x873a188

1

2048

1024

16

20

1

(0]

cnfB1l SUCCESSFUL
information:

(0]

10

(0]

cnfB1l SUCCESSFUL
information:
49164
0x873a188

1

2048

1024

16

20

1

(0]

cnf_EnableEvents on cnfBl SUCCESSFUL

event
49162

Received following
Event:
Event Data:
Event Count: 5
Event: 301
Event: 302
Event: 305
Event: 303
Event: 304
Event Data Length: 32
Event Device: 1
Event User Info: Ox1

information:

0x873a288

cnf_GetAttributes() on cnfBl failed!! -

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

133

Supplementary Reference Information

134

Expected error due

to invalid attribute Error Code: 5

Error String: Invalid attribute provided by user
Additional Info: Attribute[102] not a valid device attribute

cnf_GetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x7d0]
Event Data Length:
Event User Info:

cnf_SetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x7d0]
Event Data Length:
Event User Info:

cnf_GetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x7d0]

) on cnfB1l SUCCESSFUL
event information:

3

Attribute[1]

Attribute[2]
Attribute[3]

48

0]

) on cnfB1l SUCCESSFUL
event information:

2
Attribute[1]

Attribute[3]

36
0

) on cnfB1l SUCCESSFUL
event information:

3
Attribute[1]

Attribute[2]

Attribute[3]

Event Data Length: 48
Event User Info: O

Received CONFERENCE OPENED notification event...
Conference Handle: 2
Conference Name: cnfB1C1
Event Device: 1

cnf_OpenConference() on cnfBl SUCCESSFUL
Received following event information:

Conference Device:
Conference Name:
Event Device:
Event User Info:

2
cnfB1C1
1
(0]

cnf_EnableEvents on cnfB1C1l SUCCESSFUL

Received following
Event:

Event Data:

Event Count:
Event:

Event:

event information:
49162

0x873bc00

3

401

402

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

Event: 404

Event Data Length: 24
Event Device: 2

Event User Info: Ox1

cnf_GetAttributes() on cnfB1Cl failed!! -

Expected error due to invalid attribute
Error Code: 5
Error String: Invalid attribute provided by user
Additional Info: Attribute[3] not a valid device attribute

cnf_GetAttributes() on cnfB1C1l SUCCESSFUL
Received following event information:
Attribute Count: 3
Attribute Info: Attribute[101]

Value[0x1]
Attribute Info: Attribute[102]

Value[0x0]
Attribute Info: Attribute[103]

Value[0x0]
Event Data Length: 48
Event User Info: O

cnf_SetAttributes() on cnfB1C1l SUCCESSFUL
Received following event information:
Attribute Count: 2
Attribute Info: Attribute[101]

Value[0x1]
Attribute Info: Attribute[102]

Value[0x40000f]
Event Data Length: 36
Event User Info: O

cnf_GetAttributes() on cnfB1C1l SUCCESSFUL
Received following event information:
Attribute Count: 3
Attribute Info: Attribute[101]

Value[0x1]
Attribute Info: Attribute[102]

Value[0x1007]
Attribute Info: Attribute[103]

Value[0x0]
Event Data Length: 48

Event User Info: O
sr_waitevt failed - No error

cnf_OpenParty() on cnfB1l SUCCESSFUL
Received following event information:
Party Device: 3
Party Name: cnfB1P1
Event Device: 1
Event User Info: O

cnf_GetAttributes() on cnfB1P1 SUCCESSFUL
Received following event information:
Attribute Count: 7
Attribute Info: Attribute[201]

Dialogic® Conferencing API Library Reference — October 2007 135
Dialogic Corporation

Supplementary Reference Information

136

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Event Data Length:
Event User Info:

cnf_SetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x1]
Event Data Length:
Event User Info:

Received PARTY ADDED notification event...

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

Received PARTY ADDED notification event...

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

cnf_AddParty() on
Received following
Party Count:

Party Handle:
Event User Info:

Attribute[202]

Attribute[203]

Attribute[204]

Attribute[205]

Attribute[206]

Attribute[207]

96
0

) on cnfB1P1 SUCCESSFUL

event information:
2
Attribute[201]

Attribute[202]

36
0

2
cnfB1C1
3
cnfB1P1
1

2
cnfB1C1
3
cnfB1P1
2

cnfB1C1 SUCCESSFUL
event information:
1

3

Oxbff2e6f8

cnf_OpenParty() on cnfBl SUCCESSFUL

Received following
Party Device: 4

event information:

Party Name: cnfB1P2

Event Device: 1
Event User Info: O

cnf_OpenParty() on cnfBl SUCCESSFUL

Received following
Party Device: 5

event information:

Party Name: cnfB1P3

Event Device: 1

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

Event User Info: O

cnf_OpenParty() on cnfB1l SUCCESSFUL
Received following event information:
Party Device: 6
Party Name: cnfB1P4
Event Device: 1
Event User Info: O

cnf_OpenParty() on cnfBl SUCCESSFUL
Received following event information:
Party Device: 7
Party Name: cnfB1P5
Event Device: 1
Event User Info: O

cnf_OpenParty() on cnfB1l SUCCESSFUL
Received following event information:
Party Device: 8
Party Name: cnfB1P6
Event Device: 1
Event User Info: O

cnf_AddParty() - failed
Error Code: 15
Error String: Functionality currently not supported
Additional Info: Cannot add more than 1 party

cnf_GetPartyList() - Successful
Received following event information:
Event: 49167
Event Data: 0x8761bb8
Party Count: 1
Party Info: Party[0] - Handle[3]
- Device Name[cnfB1P1]
Event Data Length: 16
Event Device: 2
Event User Info: O

cnf_GetAttributes() on cnfB1P1 SUCCESSFUL
Received following event information:
Attribute Count: 7
Attribute Info: Attribute[201]

Value[0x1]
Attribute Info: Attribute[202]

Value[0x1]
Attribute Info: Attribute[203]

Value[0x0]
Attribute Info: Attribute[204]

Value[0x0]
Attribute Info: Attribute[205]

Value[0x0]
Attribute Info: Attribute[206]

Value[0x0]
Attribute Info: Attribute[207]

Value[0x1]
Event Data Length: 96
Event User Info: O

cnf_SetAttributes() on cnfB1P1 SUCCESSFUL

Dialogic® Conferencing API Library Reference — October 2007 137
Dialogic Corporation

Supplementary Reference Information

138

Received following
Attribute Count:
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Event Data Length:
Event User Info:

cnf_GetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x1]
Event Data Length:
Event User Info:

Received PARTY REMOVED notification event...

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

Received PARTY REMOVED notification event...

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

event information:
2
Attribute[201]

Attribute[202]

36
0

) on cnfB1P1 SUCCESSFUL
event information:

7

Attribute[201]

Attribute[202]

Attribute[203]

Attribute[204]

Attribute[205]

Attribute[206]

Attribute[207]

96
0

2
cnfB1C1
3
cnfB1P1
1

2
cnfB1C1
3
cnfB1P1
2

cnf_RemoveParty() on cnfB1C1 SUCCESSFUL
Received following event information:

Party Count:

Party Handle:
Event User Info:
cnf_CloseParty()
cnf_CloseParty()
cnf_CloseParty()

cnf_CloseParty()

cnf_CloseParty()

1

3

(0]
successful
successful
successful

successful

successful

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

cnf_DisableEvents on cnfB1C1 SUCCESSFUL
Received following event information:
Event Count: 3

Event: 401
Event: 402
Event: 404

Event User Info: Ox1
Received CONFERENCE CLOSED notification event...

Conference Name: cnfB1C1
Event Device: 1

cnf_CloseConference() - successful
cnf_CloseParty() - successful 1!!

cnf_DisableEvents on cnfBl SUCCESSFUL
Received following event information:
Event Count: 5

Event: 301
Event: 302
Event: 305
Event: 303
Event: 304

Event User Info: Ox1

cnf_Close() - Successful
Figure 3. Conferencing (MCX) Example Code Output

Conferencing (MCX) Example Code

Board Name is: mcxBl

cnf_Open failure!! : Expected failure due to the following
Error Code: 4
Error String: Invalid parameter

in function call
Additional Info: Invalid parameter - a_szBrdName is NULL

cnf_Open failure!! : Expected failure due to the following
Error Code: 3
Error String: Invalid device name provided by user
Additional Info: Invalid device name [blah_blah] specified

cnf_Open() - Successful
Received following event information:
Event Data: 0O
Event Data Length: 10
Event Device: 1
Event User Info: O

cnf_GetDeviceCount() on mcxB1l SUCCESSFUL
Received following event information:
Event Data: 0x96al630
Free Party Devices: 60
Free Conference Devices: 30
Max Party Devices: 60
Max Conference Devices: 30
Event Data Length: 20
Event Device: 1
Event User Info: O

Dialogic® Conferencing API Library Reference — October 2007 139
Dialogic Corporation

Supplementary Reference Information

140

cnf_ResetDevices() on mcxBl SUCCESSFUL

Received following event
Event Data: 0O
Event Data Length: 10
Event User Info: O

cnf_GetDeviceCount() on
Received following event
Event Data:

Free Party Devices:

Free Conference Devices:
Max Party Devices:

Max Conference Devices:

Event Data Length:

Event Device:

Event User Info:

cnf_GetDTMFControl () on
Received following event
Event:

Event Data:

DTMF Control State:
Volume Up Digit:

Volume Down Digit:
Volume Reset Digit:
Event Data Length:

Event Device:

Event User Info:

cnf_SetDTMFControl () on
Received following event
Event Data:

Event Data Length:

Event User Info:

cnf_GetDTMFControl () on
Received following event
Event:

Event Data:

DTMF Control State:
Volume Up Digit:

Volume Down Digit:
Volume Reset Digit:
Event Data Length:

Event Device:

Event User Info:

information:

mcxB1 SUCCESSFUL
information:
0x96a1630

61

30

60

30

20

1

0

mcxB1 SUCCESSFUL
information:
49164
0x969f7e8

1

2048

1024

16

20

1

0

mcxB1 SUCCESSFUL
information:

0

10

0

mcxB1 SUCCESSFUL
information:
49164
0x969f7e8

1

2048

1024

16

20

1

0

cnf_EnableEvents on mcxB1l SUCCESSFUL

Received following event
Event: 49162

information:

Event Data: 0x96b8a90

Event Count: 5
Event: 301
Event: 302
Event: 305
Event: 303
Event: 304
Event Data Length: 32
Event Device: 1
Event User Info: Ox1

cnf_GetAttributes() on mcxBl failed!! -

Expected error due to invalid attribute

Error Code: 5
Error String: Invalid

attribute provided by user

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

Additional Info: Attribute[102] not a valid device attribute

cnf_GetAttributes() on mcxBl SUCCESSFUL
Received following event information:
Attribute Count: 3
Attribute Info: Attribute[1]

Value[0x1]
Attribute Info: Attribute[2]

Value[0x0]
Attribute Info: Attribute[3]

Value[0x1d01]
Event Data Length: 48
Event User Info: O

cnf_SetAttributes() on mcxBl SUCCESSFUL
Received following event information:
Attribute Count: 2
Attribute Info: Attribute[1]

Value[0x1]
Attribute Info: Attribute[3]

Value[0x7d0]
Event Data Length: 36
Event User Info: O

cnf_GetAttributes() on mcxBl SUCCESSFUL

Received following event information:
Attribute Count: 3
Attribute Info: Attribute[1]

Value[0x1]
Attribute Info: Attribute[2]

Value[0x0]
Attribute Info: Attribute[3]

Value[0x1d01]
Event Data Length: 48
Event User Info: O

cnf_OpenConference() on mcxBl SUCCESSFUL
Received following event information:
Conference Device: 2
Conference Name: mcxB1C1
Event Device: 1
Event User Info: O

Received CONFERENCE OPENED notification event...
Conference Handle: 2
Conference Name: mcxB1C1
Event Device: 1

cnf_GetVideolLayout() on mcxB1Cl SUCCESSFUL
Received following event information:
Layout Handle: 256
Layout Size:
Layout Type:
Event User Info:

[eNeN

Created 4 region layout. ..
cnf_SetVideolLayout() on mcxB1Cl SUCCESSFUL
Received following event information:

Dialogic® Conferencing API Library Reference — October 2007 141
Dialogic Corporation

Supplementary Reference Information

142

Layout Handle: 256

Layout
Layout
Event User

Size: 2
Type: 401
Info: 0

cnf_EnableEvents on mcxB1C1 SUCCESSFUL

Received following
Event:

Event Data:

Event Count:
Event:

Event:

Event:

Event Data Length:
Event Device:
Event User Info:

cnf_GetAttributes(
Expected error due
Error Code: 5

event information:
49162

0x96b9830

3

401

402

404

24

2

Oox1

) on mcxB1C1 failed!! -
to invalid attribute

Error String: Invalid attribute provided by user
Additional Info: Attribute[3] not a valid device attribute

cnf_GetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x3]
Attribute Info:

Value[0x3e8]
Event Data Length:
Event User Info:

cnf_SetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x40000f]
Event Data Length:
Event User Info:

cnf_GetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x3]
Attribute Info:

Value[0x3e8]
Event Data Length:
Event User Info:

) on mcxB1C1 SUCCESSFUL
event information:

3

Attribute[101]

Attribute[102]

Attribute[103]

48

(0]

) on mcxB1C1 SUCCESSFUL
event information:

2
Attribute[101]

Attribute[102]

36

(0]

) on mcxB1C1 SUCCESSFUL
event information:

3

Attribute[101]

Attribute[102]

Attribute[103]

48

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

cnf_GetPartyList() - Successful
Received following event information:
Event: 49167
Event Data: 0x96b9610

Party Count: O
Event Data Length: 12

Event Device: 2

Event User Info: O

cnf_OpenParty() on mcxB1P1 SUCCESSFUL
Received following event information:
Party Device: 3
Party Name: mcxB1P1
Event Device: 3
Event User Info: O

cnf_GetAttributes() on mcxB1P1l SUCCESSFUL
Received following event information:
Attribute Count: 7
Attribute Info: Attribute[201]

Value[0x0]
Attribute Info: Attribute[202]

Value[Ox7fffac]
Attribute Info: Attribute[203]

Value[0x420]
Attribute Info: Attribute[204]

Value[0x1]
Attribute Info: Attribute[205]

Value[0x0]
Attribute Info: Attribute[206]

Value[Oxccccc]
Attribute Info: Attribute[207]

Value[0x420]
Event Data Length: 96
Event User Info: O

cnf_SetAttributes() on mcxB1P1 SUCCESSFUL
Received following event information:
Attribute Count: 2
Attribute Info: Attribute[201]

Value[0x1]
Attribute Info: Attribute[202]

Value[0x1]
Event Data Length: 36
Event User Info: O

Received PARTY ADDED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 3
Party Name: mcxB1P1
Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
Conference Name: mcxB1C1
Party Handle: 3
Party Name: mcxB1P1

Dialogic® Conferencing API Library Reference — October 2007 143
Dialogic Corporation

Supplementary Reference Information

Event Device: 1

cnf_AddParty() on mcxB1Cl SUCCESSFUL
Received following event information:
Party Count: 1
Party Handle: 3
Event User Info: Oxbff60468

cnf_OpenParty() on mcxB1P2 SUCCESSFUL
Received following event information:
Party Device: 5
Party Name: mcxB1P2
Event Device: 5
Event User Info: O

cnf_OpenParty() on mcxB1P3 SUCCESSFUL
Received following event information:
Party Device: 7
Party Name: mcxB1P3
Event Device: 7
Event User Info: O

cnf_OpenParty() on mcxB1P4 SUCCESSFUL
Received following event information:
Party Device: 9
Party Name: mcxB1lP4
Event Device: 9
Event User Info: O

cnf_OpenParty() on mcxB1P5 SUCCESSFUL
Received following event information:
Party Device: 11
Party Name: mcxB1P5
Event Device: 11
Event User Info: O

cnf_OpenParty() on mcxB1P6 SUCCESSFUL
Received following event information:
Party Device: 13
Party Name: mcxB1P6
Event Device: 13
Event User Info: O

Received PARTY ADDED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 5
Party Name: mcxB1P2
Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 7
Party Name: mcxB1P3
Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 9
Party Name: mcxB1P4
Event Device: 2

Received PARTY ADDED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l

144 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Party Handle: 11
Party Name: mcxB1P5
Event Device: 2

Received PARTY ADDED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

Received PARTY ADDED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

Received PARTY ADDED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

Received PARTY ADDED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

Received PARTY ADDED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

Received PARTY ADDED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

cnf_AddParty() on
Received following
Party Count:

Party Handle:
Party Handle:
Party Handle:
Party Handle:
Party Handle:
Event User Info:

event...
2

mcxB1C1

13

mcxB1P6

2

event. ..
2

mcxB1C1

5

mcxB1P2

1

event...
2

mcxB1C1

7

mcxB1P3

1

event. ..
2

mcxB1C1

9

mcxB1P4

1

event...
2

mcxB1C1

11

mcxB1P5

1

event. ..
2

mcxB1C1

13

mcxB1P6

1

mcxB1C1 SUCCESSFUL
event information:
5

5

7

9

11

13

0

cnf_GetPartyList() - Successful
Received following event information:
Event: 49167
Event Data: 0x96elf68
Party Count: 6
Party Info: Party[0] - Handle[3]
- Device Name[mcxB1P1]
Party Info: Party[1] - Handle[5]
- Device Name[mcxB1P2]
Party Info: Party[2] - Handle[7]

Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

145

Supplementary Reference Information

- Device Name[mcxB1P3]
Party Info: Party[3] - Handle[9]

- Device Name[mcxB1P4]
Party Info: Party[4] -
Handle[11] - Device Name[mcxB1P5]
Party Info: Party[5] -
Handle[13] - Device Name[mcxB1P6]
Event Data Length: 36
Event Device: 2
Event User Info: O

cnf_SetVisiblePartyList() on mcxB1C1 SUCCESSFUL
Received following event information:

VisiblePartyList[0] --- Party Handle: 5 Region Handle: 257
VisiblePartyList[1] --- Party Handle: 7 Region Handle: 258
VisiblePartyList[2] --- Party Handle: 9 Region Handle: 259
VisiblePartyList[3] --- Party Handle: 11 Region Handle: 260

Event User Info: O

cnf_GetVisiblePartyList() on mcxB1C1 SUCCESSFUL
Received following event information:

VisiblePartyList[0] --- Party Handle: 5 Region Handle: 257
VisiblePartyList[1] --- Party Handle: 7 Region Handle: 258
VisiblePartyList[2] --- Party Handle: 9 Region Handle: 259
VisiblePartyList[3] --- Party Handle: 11 Region Handle: 260

Event User Info: O

cnf_GetAttributes() on mcxB1P1 SUCCESSFUL

Received following
Attribute Count:
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x7fffac]
Attribute Info:

Value[0x420]
Attribute Info:

Value[0x1]
Attribute Info:

Value[0x0]
Attribute Info:

Value[0xccccc]
Attribute Info:

Value[0x420]
Event Data Length:
Event User Info:

cnf_SetAttributes(
Received following
Attribute Count:
Attribute Info:

Value[0x0]
Attribute Info:

Value[0x0]
Event Data Length:

event information:
7
Attribute[201]

Attribute[202]

Attribute[203]

Attribute[204]

Attribute[205]

Attribute[206]

Attribute[207]

96

0

) on mcxB1P1 SUCCESSFUL
event information:

2

Attribute[201]

Attribute[202]

36

Event User Info: O

146 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Supplementary Reference Information

cnf_GetAttributes() on mcxB1P1l SUCCESSFUL
Received following event information:
Attribute Count: 7
Attribute Info: Attribute[201]

Value[0x0]
Attribute Info: Attribute[202]

Value[Ox7fffac]
Attribute Info: Attribute[203]

Value[0x420]
Attribute Info: Attribute[204]

Value[0x1]
Attribute Info: Attribute[205]

Value[0x0]
Attribute Info: Attribute[206]

Value[Oxccccc]
Attribute Info: Attribute[207]

Value[0x420]
Event Data Length: 96
Event User Info: O

Received PARTY REMOVED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 3
Party Name: mcxB1P1
Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
Conference Name: mcxB1C1
Party Handle: 3
Party Name: mcxB1P1
Event Device: 1

cnf_RemoveParty() on mcxB1C1l SUCCESSFUL
Received following event information:
Party Count: 1
Party Handle: 3
Event User Info: O

cnf_CloseParty() - successful
Received PARTY REMOVED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 5
Party Name: mcxB1P2
Event Device: 2

Received PARTY REMOVED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 5
Party Name: mcxB1P2
Event Device: 1

cnf_CloseParty() - successful
Received PARTY REMOVED notification event...
Conference Handle: 2
Conference Name: mcxB1C1l
Party Handle: 7

Dialogic® Conferencing API Library Reference — October 2007 147
Dialogic Corporation

Supplementary Reference Information

148

Party Name:
Event Device:

mcxB1P3
2

Received PARTY REMOVED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

cnf_CloseParty()

2
mcxB1C1
7
mcxB1P3
1

- successful

Received PARTY REMOVED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

2
mcxB1C1
9
mcxB1P4
2

Received PARTY REMOVED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

cnf_CloseParty()

2
mcxB1C1
9
mcxB1P4
1

- successful

Received PARTY REMOVED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

2
mcxB1C1
11
mcxB1P5
2

Received PARTY REMOVED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

cnf_CloseParty()

2
mcxB1C1
11
mcxB1P5
1

- successful

Received PARTY REMOVED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

2
mcxB1C1
13
mcxB1P6
2

Received PARTY REMOVED notification

Conference Handle:
Conference Name:
Party Handle:
Party Name:

Event Device:

cnf_DisableEvents

Event Count:
Event:
Event:
Event:

2
mcxB1C1
13
mcxB1P6
1

event. ..

event. ..

event...

event...

event. ..

event. ..

event...

on mcxB1C1 SUCCESSFUL
Received following event information:

3

401
402
404

Event User Info: Ox1

Received CONFERENCE CLOSED notification event...
Conference Name:
Event Device:

mcxB1C1
1

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

cnf_CloseConference() - successful

cnf_CloseParty() - successful !!

cnf_DisableEvents on mcxB1l SUCCESSFUL

Received following
Event Count:
Event:

Event:

Event:

Event:

Event:

Event User Info:

event information:
5

301

302

305

303

304

Oox1

cnf_Close() - Successful

Dialogic® Conferencing API Library Reference — October 2007

Dialogic Corporation

Supplementary Reference Information

149

Supplementary Reference Information

150 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Glossary

active talker: A participant in a conference who is providing “non-silence” energy.

automatic gain control (AGC): An electronic circuit used to maintain the audio signal volume at a constant
level. AGC maintains nearly constant gain during voice signals, thereby avoiding distortion, and optimizes the
perceptual quality of voice signals by using a new method to process silence intervals (background noise).
asynchronous function: A function that allows program execution to continue without waiting for a task to
complete. To implement an asynchronous function, an application-defined event handler must be enabled to trap
and process the completed event. Contrast with synchronous function.

bit mask: A pattern which selects or ignores specific bits in a bit-mapped control or status field.

bitmap: An entity of data (byte or word) in which individual bits contain independent control or status
information.

board device: A board-level object that maps to a virtual board.

buffer: A block of memory or temporary storage device that holds data until it can be processed. It is used to
compensate for the difference in the rate of the flow of information (or time occurrence of events) when
transmitting data from one device to another.

bus: An electronic path that allows communication between multiple points or devices in a system.

busy device: A device that has one of the following characteristics: is stopped, being configured, has a
multitasking or non-multitasking function active on it, or I/O function active on it.

channel device: A channel-level object that can be manipulated by a physical library, such as an individual
telephone line connection. A channel is also a subdevice of a board.

CO (Central Office): A local phone network exchange, the telephone company facility where subscriber lines
are linked, through switches, to other subscriber lines (including local and long distance lines). The term “Central

Office” is used in North America. The rest of the world calls it “PTT”, for Post, Telephone, and Telegraph.

coach: A participant in a conference that can be heard by pupils only. A mentoring relationship exists between a
coach and a pupil.

conferee: Participant in a conference call. Synonym of party.
conference: Ability for three or more participants in a call to communicate with one another in the same call.
conferencing: Ability to perform a conference.

conference bridging: Ability for all participants in two or more established conferences to speak to and/or
listen to one another.

Dialogic® Conferencing API Library Reference — October 2007 151
Dialogic Corporation

configuration file: An unformatted ASCII file that stores device initialization information for an application.

configuration manager: A utility with a graphical user interface (GUI) that enables you to add new boards to
your system, start and stop system service, and work with board configuration data. Also known as DCM.

CT Bus: Computer Telephony bus. A time division multiplexing communications bus that provides 4096 time
slots for transmission of digital information between CT Bus products. See TDM bus.

data structure: Programming term for a data element consisting of fields, where each field may have a different
type definition and length. A group of data structure elements usually share a common purpose or functionality.

device: A computer peripheral or component controlled through a software device driver. A Dialog® voice and/or
network interface expansion board is considered a physical board containing one or more logical board devices, and

each channel or time slot on the board is a device.

device channel: A voice data path that processes one incoming or outgoing call at a time (equivalent to the
terminal equipment terminating a phone line).

device driver: Software that acts as an interface between an application and hardware devices.

device handle: Numerical reference to a device, obtained when a device is opened using xx_open(), where xx is
the prefix defining the device to be opened. The device handle is used for all operations on that device.

device name: Literal reference to a device, used to gain access to the device via an xx_open() function, where
xx is the prefix defining the device to be opened.

DM3: Refers to Dialogic® mediastream processing architecture, which is open, layered, and flexible,
encompassing hardware as well as software components. A whole set of products from Dialogic are built on DM3
architecture.

driver: A software module which provides a defined interface between a program and the firmware interface.

DTMF (Dual-Tone Multifrequency): Push-button or touch-tone dialing based on transmitting a high- and a
low-frequency tone to identify each digit on a telephone keypad.

E1: A CEPT digital telephony format devised by the CCITT, used in Europe and other countries around the world.
A digital transmission channel that carries data at the rate of 2.048 Mbps (DS-1 level). CEPT stands for the
Conference of European Postal and Telecommunication Administrations. Contrast with T1.

extended attribute functions: A class of functions that take one input parameter and return device-specific
information. For instance, a voice device’s extended attribute function returns information specific to the voice
devices. Extended attribute function names are case-sensitive and must be in capital letters. See also standard
runtime library (SRL).

firmware: A set of program instructions that reside on an expansion board.

idle device: A device that has no functions active on it.

party: A participant in a conference. Synonym of conferee.

152 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

pupil: A participant in a conference that has a mentoring relationship with a coach.

resource: Functionality (for example, conferencing) that can be assigned to a call. Resources are shared when
functionality is selectively assigned to a call and may be shared among multiple calls. Resources are dedicated
when functionality is fixed to the one call.

RFU: Reserved for future use.
route: Assign a resource to a time slot.
SRL: See Standard Runtime Library.

standard attribute functions: Class of functions that take one input parameter (a valid device handle) and
return generic information about the device. For instance, standard attribute functions return IRQ and error
information for all device types. Standard attribute function names are case-sensitive and must be in capital letters.
Standard attribute functions for all Dialogic® devices are contained in the SRL. See standard runtime library (SRL).

standard runtime library (SRL): A Dialogic® software resource containing event management and standard
attribute functions and data structures used by all Dialogic® devices, but which return data unique to the device.

synchronous function: Blocks program execution until a value is returned by the device. Also called a
blocking function. Contrast with asynchronous function.

T1: A digital line transmitting at 1.544 Mbps over 2 pairs of twisted wires. Designed to handle a minimum of 24
voice conversations or channels, each conversation digitized at 64 Kbps. T1 is a digital transmission standard in
North America. Contrast with E1.

TDM (Time Division Multiplexing): A technique for transmitting multiple voice, data, or video signals
simultaneously over the same transmission medium. TDM is a digital technique that interleaves groups of bits from
each signal, one after another. Each group is assigned its own “time slot” and can be identified and extracted at the
receiving end. See also time slot.

TDM bus: Time division multiplexing bus. A resource sharing bus such as the SCbus or CT Bus that allows
information to be transmitted and received among resources over multiple data lines.

termination condition: An event or condition which, when present, causes a process to stop.

termination event: An event that is generated when an asynchronous function terminates. See also
asynchronous function.

thread (Windows®): The executable instructions stored in the address space of a process that the operating
system actually executes. All processes have at least one thread, but no thread belongs to more than one process. A
multithreaded process has more than one thread that are executed seemingly simultaneously. When the last thread
finishes its task, then the process terminates. The main thread is also referred to as a primary thread; both main and
primary thread refer to the first thread started in a process. A thread of execution is just a synonym for thread.

tone clamping: (DTMF tone clamping) Mutes DTMF tones heard in a conference. If a confereee’s phone
generates a tone, the DTMF signal will not interfere with the conference. Applies to transmitted audio into the
conference and does not affect DTMF function.

Dialogic® Conferencing API Library Reference — October 2007 153
Dialogic Corporation

time division multiplexing (TDM): See TDM (Time Division Multiplexing).

time slot: The smallest, switchable data unit on a TDM bus. A time slot consists of 8 consecutive bits of data.
One time slot is equivalent to a data path with a bandwidth of 64 kbps. In a digital telephony environment, a
normally continuous and individual communication (for example, someone speaking on a telephone) is (1)
digitized, (2) broken up into pieces consisting of a fixed number of bits, (3) combined with pieces of other
individual communications in a regularly repeating, timed sequence (multiplexed), and (4) transmitted serially over
a single telephone line. The process happens at such a fast rate that, once the pieces are sorted out and put back
together again at the receiving end, the speech is normal and continuous. Each individual, pieced-together
communication is called a time slot.

154 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

Index

A CNF_ERROR_INFO data structure 84
CNF_EVENT_INFO data structure 85
cnf_GetActiveTalker() 27

active talkers

get list 27

notification interval 29, 56 cnf_GetAttributes() 29

setting 29, 56 cnf_GetDeviceCount() 32
adding parties 14 cnf_GetDTMFControl() 34
ATDV_ERRMSGP() 97 cnf_GetErrorInfo() 36, 97
ATDV_LASTERR() 97 cnf_GetPartyList() 37, 39, 41, 61, 63
attributes cnf_Open() 43

getting 29 CNF_OPEN_CONF_INFO data structure 86

setting 56 CNF_OPEN_CONF_RESULT data structure 87
automatic gain control, setting 30, 57 CNF OPEN INFO data structure 88
auxiliary functions 10 CNF_OPEN_PARTY_INFO data structure 89

CNF_OPEN_PARTY_RESULT data structure 90

B cnf_OpenConference() 45

cnf_OpenEx() 47
cnf_OpenParty() 49
CNF_PARTY_ADDED_EVENT_INFO data structure 91

broadcast mode, setting 30, 57

C CNF_PARTY_INFO data structure 92

closing CNF_PARTY_REMOVED_EVENT_INFO data
conference device 18 structure 93
party device 20 cnf_SetDTMFControl() 59

virtual board device 16
CNF board device 47
CNF_ACTIVE_TALKER_INFO data structure 72
cnf_AddParty() 14
CNF_ATTR data structure 73
CNF_ATTR_INFO data structure 74
cnf_Close() 16
CNF_CLOSE_CONF_INFO data structure 75
CNF_CLOSE_INFO data structure 76
CNF_CLOSE_PARTY_INFO data structure 77
cnf_CloseConference() 18
cnf_CloseParty() 20
CNF_CONF_CLOSED_EVENT_INFO data structure 78
CNF_CONF_OPENED_EVENT_INFO data structure 79,

94, 95, 96

CNF_DEVICE_COUNT_INFO data structure 80
cnf_DisableEvents() 22
CNF_DTMF_CONTROL_INFO data structure 81
CNF_DTMF_EVENT_INFO data structure 83
cnf_EnableEvents() 24

cnferrs.h 97

CNFEV_ADD_PARTY event 14
CNFEV_ADD_PARTY_FAIL event 14
CNFEV_ENABLE_EVENT event 23, 25
CNFEV_ENABLE_EVENT_FAIL event 23, 25
CNFEV_GET_ACTIVE_TALKER event 27
CNFEV_GET_ACTIVE_TALKER_FAIL event 27
CNFEV_GET_ATTR event 30
CNFEV_GET_ATTR_FAIL event 30
CNFEV_GET_DEVICE_COUNT event 32
CNFEV_GET_DEVICE_COUNT_FAIL event 32
CNFEV_GET_DTMF_CONTROL event 34
CNFEV_GET_DTMF_CONTROL_FAIL event 34
CNFEV_GET_PARTY_LIST event 37, 39, 41, 61, 63

CNFEV_GET_PARTY_LIST _FAIL event 37, 39, 41, 61,
63

CNFEV_OPEN event 43
CNFEV_OPEN_CONF event 46
CNFEV_OPEN_CONF_FAIL event 46
CNFEV_OPEN_FAIL event 43

Dialogic® Conferencing API Library Reference — October 2007 155
Dialogic Corporation

CNFEV_OPEN_PARTY event 49 0
CNFEV_OPEN_PARTY_FAIL event 50 .
CNFEV_SET_DTMF_CONTROL event 59 OPemCI;%lference device 45
CNFEV_SET_DTMF_CONTROL_FAIL event 59 party device 49
cnfevts.h 65 virtual board device 43
coach mode, setting 30, 57

code example 99 P

conference management functions 10

) . . parties
configuration functions 10 adding 14
closing 20
D getting list 37, 39, 41, 61, 63
opening 49
data structures 71 removing 51
dev_Connect() 14 party mode, setting 30, 57
device management functions 9
disabling events 22
DTMF digits S
getting 34 structures 71
setting 59 syntax conventions 13

setting mask 30, 57

-

tariff tone, setting 30, 57

termination events 65

E

echo cancellation, setting 30, 57
enabling events 24 tone clamping, setting 29, 30, 56, 57
error codes 97

error processing function 11, 36

events V

disabling 22 virtual board device
enabling 24 closing 16
list 65 opening 43
types 65

example code 99

F

function categories 9
function syntax conventions 13

functions
example code 99

M

MCX board device 47

N

notification events 65, 68

156 Dialogic® Conferencing API Library Reference — October 2007
Dialogic Corporation

	Contents
	Revision History
	About This Publication
	Purpose
	Applicability
	Intended Audience
	How to Use This Publication
	Related Information

	1. Function Summary by Category
	1.1 Device Management Functions
	1.2 Conference Management Functions
	1.3 Configuration Functions
	1.4 Auxiliary Functions
	1.5 Multimedia Conferencing Functions
	1.6 Error Processing Function

	2. Function Information
	2.1 Function Syntax Conventions
	cnf_AddParty()
	cnf_Close()
	cnf_CloseConference()
	cnf_CloseParty()
	cnf_DisableEvents()
	cnf_EnableEvents()
	cnf_GetActiveTalkerList()
	cnf_GetAttributes()
	cnf_GetDeviceCount()
	cnf_GetDTMFControl()
	cnf_GetErrorInfo()
	cnf_GetPartyList()
	cnf_GetVideoLayout()
	cnf_GetVisiblePartyList()
	cnf_Open()
	cnf_OpenConference()
	cnf_OpenEx()
	cnf_OpenParty()
	cnf_RemoveParty()
	cnf_ResetDevices()
	cnf_SetAttributes()
	cnf_SetDTMFControl()
	cnf_SetVideoLayout()
	cnf_SetVisiblePartyList()

	3. Events
	3.1 Event Types
	3.2 Termination Events
	3.3 Notification Events

	4. Data Structures
	CNF_ACTIVE_TALKER_INFO
	CNF_ATTR
	CNF_ATTR_INFO
	CNF_CLOSE_CONF_INFO
	CNF_CLOSE_INFO
	CNF_CLOSE_PARTY_INFO
	CNF_CONF_CLOSED_EVENT_INFO
	CNF_CONF_OPENED_EVENT_INFO
	CNF_DEVICE_COUNT_INFO
	CNF_DTMF_CONTROL_INFO
	CNF_DTMF_EVENT_INFO
	CNF_ERROR_INFO
	CNF_EVENT_INFO
	CNF_OPEN_CONF_INFO
	CNF_OPEN_CONF_RESULT
	CNF_OPEN_INFO
	CNF_OPEN_PARTY_INFO
	CNF_OPEN_PARTY_RESULT
	CNF_PARTY_ADDED_EVENT_INFO
	CNF_PARTY_INFO
	CNF_PARTY_REMOVED_EVENT_INFO
	CNF_VIDEO_LAYOUT_INFO
	CNF_VISIBLE_PARTY_INFO
	CNF_VISIBLE_PARTY_LIST

	5. Error Codes
	6. Supplementary Reference Information
	6.1 Conferencing Example Code and Output

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Updated TIPs settings to fix web compatibility issue. The PDF documents can be opened with Acrobat and Reader 4.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

