
www.dialogic.com

Dialogic® Brooktrout® Fax Products SDK

Developer Guide

March 2020 931-132-12

page 2

Copyright and Legal Notice
Copyright © 1998-2020 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole or in
part without permission in writing from Dialogic Corporation at the address provided below.
All contents of this document are furnished for informational use only and are subject to change without notice and do
not represent a commitment on the part of Dialogic Corporation and its affiliates or subsidiaries ("Dialogic"). Reasonable
effort is made to ensure the accuracy of the information contained in the document. However, Dialogic does not warrant
the accuracy of this information and cannot accept responsibility for errors, inaccuracies or omissions that may be
contained in this document.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN
YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.
Dialogic products are not intended for use in certain safety-affecting situations. Please see
http://www.dialogic.com/company/terms-of-use.aspx for more details.
Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use only
in specific countries, and thus may not function properly in other countries. You are responsible for ensuring that your
use of such products occurs only in the countries where such use is suitable. For information on specific products, contact
Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.
It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this document,
in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more patents or other
intellectual property rights owned by third parties. Dialogic does not provide any intellectual property licenses with the
sale of Dialogic products other than a license to use such product in accordance with intellectual property owned or
validly licensed by Dialogic and no such licenses are provided except pursuant to a signed agreement with Dialogic. More
detailed information about such intellectual property is available from Dialogic's legal department at 3300 Boulevard de
la Côte-Vertu, Suite 112, Montreal, Quebec, Canada H4R 1P8. Dialogic encourages all users of its products to
procure all necessary intellectual property licenses required to implement any concepts or applications
and does not condone or encourage any intellectual property infringement and disclaims any responsibility
related thereto. These intellectual property licenses may differ from country to country and it is the
responsibility of those who develop the concepts or applications to be aware of and comply with different
national license requirements.
Dialogic, Dialogic Pro, Brooktrout, BorderNet, PowerMedia, PowerVille, PowerNova, ControlSwitch, I-Gate, Veraz,
Cantata, TruFax, and NMS Communications, among others as well as related logos, are either registered trademarks or
trademarks of Dialogic Corporation and its affiliates or subsidiaries. Dialogic's trademarks may be used publicly only
with permission from Dialogic. Such permission may only be granted by Dialogic's legal department at 3300 Boulevard
de la Côte-Vertu, Suite 112, Montreal, Quebec, Canada H4R 1P8. Any authorized use of Dialogic's trademarks will be
subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's
trademarks requires proper acknowledgement.
The names of actual companies and products mentioned herein are the trademarks of their respective owners.

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com
http://www.dialogic.com

page 3

Hardware Limited Warranty

Refer to the following Dialogic web site for information on hardware warranty information, which applies unless
different terms have been agreed to in a signed agreement between yourself and Dialogic Corporation or its subsidiaries.
The listed hardware warranty periods and terms are subject to change without notice. For purchases not made directly
from Dialogic please contact your direct vendor in connection with the warranty period and terms that they offer.

http://www.dialogic.com/warranties

http://www.dialogic.com/warranties

March 2020 4

Preface . 14

Introduction . 14

Related Documents . 15

Operating System Support . 15

Manual Conventions . 15

Updated Terminology . 17

Chapter 1 – Introduction to the Dialogic® Brooktrout®
Bfv API . 20

This chapter describes the Dialogic® Brooktrout® Bfv API and its
capabilities.

Bfv API and Associated Libraries . 21

The Bfv API Functions . 24

Administration, Management, and Configuration . 25

Administration and Initialization Functions and Macros . 25

Firmware Functions and Macros . 29

Configuration Functions . 29

Module Status and Monitoring Functions . 31

Debugging, Error Handling, and Return Values . 31

Miscellaneous Functions and Macros . 33

Call Control . 34

Bfv Call Control . 34

Contents

March 2020 5

Contents

BSMI-Level Call Control . 34

Media Processing . 36

Signal Generation and Tone Detection . 36

Voice Record and Play . 37

Fax Functions . 37

File Format Manipulation Functions . 39

The Infopkt Stream . 44

Fax Infopkt Parameters . 50

Chapter 2 – Developing Applications Using the Bfv API 54

This chapter describes how to develop applications with the Brooktrout
Fax Software.

Developing a Voice Application . 55

Recording and Playing Voice . 55

Recording Voice . 56

Playing Back the Voice Message . 57

Using Prompt Files . 57

Using the mkprompt Utility . 58

Creating a New Prompt File . 58

Updating an Existing Prompt File . 59

Developing a Fax Application . 59

Sending and Receiving a Fax . 59

Sending a Fax from One Channel to Another . 60

Sending a Fax to a Channel from an External Fax Machine 61

Using Bfv API Fax Functions . 62

Using High- and Low-Level Functions . 62

Sending a Fax Using Function Calls for Noninfopkt-Formatted Raw G3 Files 68

Receiving a Fax Using Function Calls for Noninfopkt-Formatted Raw G3 Files . . . 72

Sending a Fax Using Calls for TIFF-F Files . 74

Receiving a Fax Using Calls for TIFF-F Files . 75

Receiving and Storing a Fax in MMR or MR Format . 77

Accessing an Infopkt Stream from an Application . 82

Sending a TIFF-F Fax File Within an Infopkt Stream . 83

Combining Data on a Single Page Using TIFF-F Fax Files 84

Accessing a TIFF-F File from an Application . 86

March 2020 6

Contents

Determining Fax Status Information from an Application . 88

Chapter 3 – Debugging . 90

This chapter describes how to use the debugging tools.

Bfv API Debug Mode . 91

BfvDataFSK . 91

BfvLineDumpStructure . 91

Dump History . 92

Invoking Dump History . 93

Interpreting the Output . 95

Status Header Line . 96

Event Logging Lines . 96

Event Logging Line Format . 96

Parsed Command Information . 97

Utility Programs for Debugging . 99

btver . 99

connlist . 99

feature -q . 99

modinfo . 99

shoparam . 99

BSMI Debugging . 100

BSMI Message Tracing . 100

Running a Layer 2 Trace . 100

Understanding Trace Hexadecimal Strings . 103

VTTY Tracing Feature . 109

VTTY Console Commands . 110

VTTY Tracer GUI . 111

Call Tracer . 116

Command Syntax . 117

Arguments . 117

Configuration File Format . 118

Chapter 4 – Sample Applications and Utilities 120

This chapter describes the sample applications and utilities that come as
part of the Dialogic® Brooktrout® SDK.

March 2020 7

Contents

boardmon . 121

btver . 122

connlist . 123

csend . 124

deact . 125

debug_control . 127

decode . 128

dfax . 129

divert . 129

dlfax . 130

dstrip . 131

eccllvoice . 132

fax . 133

faxhl . 134

faxll . 135

faxml . 137

faxp . 138

faxpml . 138

feature . 139

firm . 141

firmload . 142

font . 143

ipstrip . 144

ivr . 145

mkdcx . 145

mkinfopk . 146

mkprompt . 148

mktiff . 148

modinfo . 149

playp . 150

rtp . 150

shoparam . 151

telreset . 151

telsave . 152

tfax . 153

tiffdump . 153

March 2020 8

Contents

tones . 154

transfer . 154

transferll . 156

trombone . 158

tstrip . 159

voice . 160

voiceraw . 162

wave . 163

Compiling Sample Applications Using Microsoft Developer Studio Project Files 165

Using Brooktrout Files . 166

Compiling Sample Applications Using Makefiles . 167

Combining the Sample Applications . 168

Compatibility for Compiling . 168

Chapter 5 – Transferring Calls . 169

This chapter describes transferring calls using the Bfv API-level and
BSMI-level call control functionality.

Making Call Transfers Using Bfv . 170

Making Hookflash Transfers . 173

Using Bfv Applications . 173

Using BSMI Applications . 174

Making Two B-Channel Transfers . 175

Making Call Transfers Using QSIG . 177

ISDN QSIG . 177

Supplementary Services Support . 177

Making Call Transfers Using Active Redirection (Japan) . 181

Making Explicit Call Transfers (ECT) With E1 ISDN and BRI . 183

Making Two-Channel Call Transfers (Tromboning) . 185

Setting up the Two-Channel Call Transfer . 186

Connecting Resources . 186

Actions During a Two-Channel Call Transfer . 189

Performing Echo Cancellation . 189

Playing Back Voice Recordings . 192

Terminating the Two-Channel Call Transfer . 194

Disconnecting Resources . 195

March 2020 9

Contents

Transferring Calls Using Release Link Trunk Transfer . 197

Using Bfv Applications . 197

Using BSMI Applications . 198

Call Control Sequence Diagrams . 199

Non-RLT Call Transfer . 199

RLT Call Transfer . 200

Sample Application . 202

Placing Calls on Hold Using BSMI . 205

Chapter 6 – Managing Fax and Voice over IP Sessions 207

This chapter describes how to develop applications that use the internet
for fax and voice media.

Managing Calls Using IP Telephony . 208

Adding IP Call Control using the Bfv API . 209

Outgoing IP Calls . 210

Incoming IP Calls . 211

Understanding SIP Functionality . 212

Using a SIP Proxy Server . 212

Verifying Dialed Strings . 212

Sample INVITE Request . 215

Call Progress Values . 223

SIP Options . 223

Understanding H.323 Functionality . 224

Using H.323 Address Forms . 225

Failover Based on Telephony Cause Codes . 228

Overview . 228

Common Failures . 228

Failover Scenarios . 229

Known Failures From Various Gateways . 230

H.323 and SIP . 230

SIP to Q.931 Conversion . 233

Processing Media Using the T.38 Protocol . 235

Sending and Receiving Faxes . 238

Configuring T.38, RTP and IP Call Control Activities . 239

Troubleshooting . 240

March 2020 10

Contents

Understanding the SIP Protocol . 241

Introduction to the SIP Protocol . 241

Overview of SIP Functionality . 242

Overview of Operation . 244

Using Third Party IP Stacks . 254

Integrating Bfv IP Fax . 255

Components . 256

Configuration . 257

Disable ECC Component . 257

Brooktrout SR140 Software-Based Integration - Linux . 257

TR1034 Board-Based Integration - Linux . 258

Call Negotiation . 259

Inbound Call . 259

Outbound Call . 260

SR140 Internet Aware Fax (IAF) Support over UDP . 262

Chapter 7 – Robbed Bit Signaling . 266

This chapter describes robbed bit signaling as used with BSMI-level call
control.

General Information . 266

Timer Definitions . 269

Timing Diagrams . 276

Wink Start & Delay Dial Signaling . 277

Incoming Call Processing . 278

Outgoing Call Processing . 280

Call Teardown Processing . 280

Wink Start with Feature Group B & D . 282

Incoming Call Processing . 282

Outgoing Call Processing . 284

Call Teardown Processing . 284

Immediate Start/Fixed Pause Signaling . 286

Incoming Call Processing (Immediate Start) . 286

Outgoing Call Processing (Fixed Pause Mode) . 288

Call Teardown Processing . 288

Ground Start Signaling . 290

March 2020 11

Contents

FXO Ground Start . 290

Incoming Call Processing . 290

Outgoing Call Processing . 292

Call Teardown Processing . 292

FXS Ground Start . 296

Incoming Call Processing . 296

Outgoing Call Processing . 298

Call Teardown Processing . 298

Loop Start Signaling . 302

FXO Loop Start . 303

Incoming Call Processing . 304

Outgoing Call Processing . 304

Call Teardown Processing . 304

FXS Loop Start . 309

Incoming Call Processing . 309

Outgoing Call Processing . 309

Call Teardown Processing . 310

Chapter 8 – ISDN Call Processing and Management 316

This chapter describes ISDN call processing using BSMI-level call
control.

ISDN Call Processing Overview . 318

Making an ISDN Incoming Call . 318

Making an ISDN Outgoing Call . 321

ISDN Overlapped Dialing . 323

ISDN Call Clearing - Initiated by Module . 323

ISDN Call Clearing - Initiated by Network . 325

Translating Q.931 to Simple Message Interface . 327

Using the overlap_rcv feature of L4L3mENABLE_PROTOCOL . 328

What is Overlap Receive? . 328

BSMI Reference Notes . 329

How Overlap Receive Mode Changes Call Control Events Presentation 330

Q.921/Q.931 Timers . 332

March 2020 12

Contents

Chapter 9 – Using the BSMI R2 Signaling Capability. 335

This chapter describes R2 signaling as used with BSMI-level call control.

CPE Signaling Model . 336

Enabling the R2 Protocol . 341

Protocol Parameter Mechanics . 347

Forward Channel . 348

Backward Channel . 349

R2 Call Control . 354

Outbound Call Setup . 355

Inbound Call Setup . 358

Call Tear Down . 360

Channel Blocking . 362

Chapter 10 – Packaging Your Application for Windows 363

This chapter describes how to package Dialogic® Brooktrout® software
so that you can deliver it to your customers as part of your product.

Package Options . 365

Installation . 366

Installing Modules . 366

Installing Virtual Modules (SR140) . 367

Installing Software . 367

Installing the Brooktrout Runtime Software . 367

About the Merge Module Feature . 375

Installing the Merge Module Feature . 385

Integrating the Modules . 385

Determining Versions of Microsoft Visual C Runtime Components 390

About Plug and Play Components . 392

Structure of the Brooktrout PnP Folder . 394

About the INF File . 395

About the Device Property Page . 395

Modifying Configuration Files . 397

User-Defined Configuration File (btcall.cfg) . 397

Call Control (callctrl.cfg) Configuration File . 398

Including the Brooktrout Configuration Tool . 398

March 2020 13

Contents

Downloading Firmware Files . 400

Removing Software . 401

Removing the Plug and Play Driver . 402

Appendix A – G3 Legacy Utilities . 404
This appendix describes legacy utilities that help manipulate raw G3 fax
files.

ASCII to Fax Conversion Utility (asctog3) . 406

Cut and Paste Utilities . 407

Cut Utility (g3chop) . 407

Paste Utility (g3combin) . 408

Epson to Fax Conversion Utility (epstog3) . 409

Fax Display and Edit Utility: Supershow (ss) . 411

G3 Conversion Utility (g3cvt) . 413

Print Utility (p) . 415

Appendix B – Recompiling On Linux Platforms. 417
Refer to “Recompiling on Linux Platforms” in the Dialogic® Brooktrout®
Fax Products SDK Installation and Configuration Guide.

Glossary . 418

Index . 421

March 2020 14

Preface

Introduction

The Dialogic® Brooktrout® Fax Products SDK Developer Guide describes
the Bfv API used to create applications to control the features of the
Dialogic® Brooktrout® TR1034 Fax Boards, Dialogic® Brooktrout®
TruFax® Fax Boards, and the Dialogic® Brooktrout® SR140 Fax Software.
The manual gives information about Call Transfer, IP functionality, and
BSMI functionality. Finally, it explains how one can include and package
software supporting Brooktrout® Fax Boards or Dialogic® Brooktrout®
SR140 Fax Software in your product.

The manual contains the following chapters:

 Chapters 1 through 4 provide information about:

 The structure of the BFv API
 How to develop applications using the Bfv API
 Debugging
 Sample applications

 Chapters 5 through 9 describe some advanced topics such as:

 Call Transfer
 Internet Fax Sessions
 Robbed bit signaling
 ISDN protocols
 R2 signaling

 Chapter 10 describes how to package software supporting Brooktrout
software or SR140 Fax in your product.

March 2020 15

 Appendix A provides instructions for a set of legacy G3 utility
programs.

 Appendix B provides instructions for recompiling the driver to
support new kernel patches.

 A glossary gives definitions for some of the terms used in the
manual.

A copy of this manual in Adobe Acrobat PDF format is installed in the
Documents directory on the Dialogic® Brooktrout®
TR1034/SR140/TruFax® SDK CD-ROM.

Related Documents

The Dialogic® Brooktrout® Bfv API Reference Manual is made up of
six volumes that contain the Bfv API function libraries, including the
Bfv API, BSMI API and messages.

The installation and configuration guide that came with your software
explains how to install the software (firmware, Bfv API, and driver for
the TR1034/SR140/TruFax® products) on your host system. It also
describes how to configure the driver, configure call control, and
download the firmware to a board.

For product information, white papers, FAQs, and more, access the
Dialogic web site at www.dialogic.com.

Operating System Support

See the latest Dialogic® Brooktrout® Release Notes that came with
your SDK for the supported operating systems and their versions. The
Release Notes are located in the Documents directory on the Dialogic®
Brooktrout® TR1034/SR140/TruFax® SDK CD-ROM.

Manual Conventions

This manual uses the following conventions:

 Italics denote the names of variables in the prototype of a function
and file names, directory names, and program names within the
general text.

March 2020 16

 The Courier font in bold indicates a command sequence entered
by the user at the system prompt, for example:

cd /Brooktrout/Boston/bfv.api

 The Courier font not bolded indicates system output, for example:

C:>Files installed.

 The Courier font also denotes programming code, such as C, C++,
Microsoft Visual Basic, and TSL. Programming code appears in
program examples.

 Bold indicates the data type of the prototype of a function, Bfv API
functions, dialog boxes, dialog box controls, windows, and menu
items.

 Square brackets [] indicate that the information to be typed is
optional.

 Angle brackets < > indicate that you must supply a value with the
parameter.

The Caution icon is used to indicate an action that could cause harm to the
software or hardware.

The Warning icon is used to indicate an action that could cause harm to
the user.

March 2020 17

Terminology

Updated Terminology

The current version of this document includes terminology that differs
from previous versions. Please note the changes below:

Former Terminology Replaced with...

Host-based fax Dialogic® Brooktrout® SR140 Fax Software

or

Brooktrout SR140 Fax Software

or

SR140 Software

or

SR140

Virtual modules

Virtual boards

Software modules

VoIP modules

SR140 virtual modules

TR1000 Series SDK Dialogic® Brooktrout® SDK

TR1000 Series Product Dialogic® Brooktrout® Fax Board

or

Brooktrout fax board

or

board

TR1000 Series Module

TR1000 Series Board

Brooktrout System Software Dialogic® Brooktrout® Runtime Software

March 2020 18

Dialogic® Brooktrout® TR1034 Fax Board Terminology

The Dialogic® Brooktrout® TR1034 Fax Board is also referred to
herein by one or more of the following terms, or like terms including
“TR1034”:

 Brooktrout TR1034 Fax Board

 Brooktrout TR1034 Board

 TR1034 Fax Board

 TR1034 Board

March 2020 19

Getting Technical Support

Dialogic provides technical services and support for customers who
have purchased hardware or software products from Dialogic. If you
purchased products from a reseller, please contact that reseller for
technical support.

To obtain technical support, please use the web site below:

www.dialogic.com/support

March 2020 20

1 - Introduction to the
Dialogic® Brooktrout®

Bfv API

This chapter describes the Dialogic® Brooktrout® Bfv API and its
capabilities.

The chapter has the following sections:

 Bfv API and Associated Libraries on page 21

 The Bfv API Functions on page 24

March 2020 21

Bfv API and Associated Libraries

The Bfv Application Programming Interface (API) provides a set of
functions that enables applications programmers to write
applications that run on the Dialogic® Brooktrout® SR140 Software
and Dialogic® Brooktrout® TR1034/TruFax telecommunications
products. Using the Bfv API, you can generate sophisticated,
multichannel voice and fax applications under Linux and Windows
operating systems.

The Bfv API comprises of several libraries that work together to give
flexibility in a variety of applications such as:

 Voice processing (Dialogic® Brooktrout® TR1034 Fax Boards
only) and signal generation and detection

 Fax
 Connection to a variety of telephony interfaces:
 T1 robbed bit

 T1/E1 PRI

 R2 CAS signaling

 Analog

 BRI

 QSIG

 IP (SIP and H.323)

The libraries include:

 Bfv API

Provides telephone line administration and initialization; board,
firmware, call control, and packet network configuration and
control; debugging and error handling, high-level call control for
analog, T1 robbed bit signaling, BRI, QSIG, and T1/E1 PRI; voice
play and record; signal generation and detection; fax
manipulation from high to low level; and file formatting for voice
and fax messages.

 Boston Simple Message Interface (BSMI)

Provides very low-level call control for T1/E1 ISDN and
R2 signaling. The Bfv API uses the BSMI library to handle the
T1/E1 call control, but the higher-level call control functions
manage BSMI for you.

March 2020 22

By using the Bfv API libraries, the application running on the host
processor can communicate through the driver and firmware to one
or more Dialogic® Brooktrout® boards.

Figure 1. Bfv Application Configuration

The TR1034 and TruFax® have an assigned module number as
indicated on the rotary switch on top of the board, so you can have
control over channels on individual boards in a multi-board system.
The Dialogic® Brooktrout® SR140 uses a module numbers starting
at 0x41 with up to a maximum of 120 channels per SR140 module.

The SR140 does the following:

 Works on supported Linux and Windows platforms running on
Linux and Windows platforms.

 Works with SIP and H.323 IP call control.

 Operates with only one IP stack at a time.

 Provides the same level of debugging and tracing that is
available on the TR1034 platform.

 After configuration and licensing, the same application supports
the SR140 and your hardware based T.38 solution.

Media on a Boston modules is driven by the Bfv API. Call control on
the TR1034/TruFax Boston module's can be driven by BSMI or the
Bfv API. SR140 Boston module can only be used with the Bfv API.

March 2020 23

The Bfv API libraries are based on the BTLINE structure, which is a
logical abstraction of a physical channel. Each active channel stores
its information within its own BTLINE structure. You can access
and modify the BTLINE information through the Bfv API functions.
You can access other information kept in the Bfv API library, using
macros found in btlib.h.

March 2020 24

The Bfv API Functions

The Bfv API functions in all the Bfv API libraries are separated into
categories according to the tasks they perform. They are:

 Configuration, Administration, and Management

 Administration and Initialization

 Firmware

 Configuration

 Debugging, Error Handling, and Return Values

 Miscellaneous (for example, _dll_ and getopt)

 Call Control

 High Level Call Control

 Low Level Call Control

 Media Processing

 Signal Generation and Detection

 Voice Play and Record

 Fax

 File Format Manipulation

In addition to the functions, Dialogic supplies macros to provide
information or perform a specific task.

March 2020 25

Administration, Management, and Configuration

Administration and Initialization Functions and
Macros

The administration and initialization functions allow you to:

 Attach and detach from a line or a session.

 Configure the module instead of using a user-defined
configuration file such as btcall.cfg.

 Interrupt a thread or process on an active line.

 Reset the specified channel.

 Get information about the module and channel address for the
specified channel.

 Get the number of available channels.

You can also use specialized functions to:

 Check for an address or facility.

 Download and query the feature set.

 Get information about and deactivate a board or SR140.

 Receive a packet containing Boston addresses and commands
and perform internal Bfv API processing on all commands with
the packet (requires the Boston command set).

The line administration and initialization macros allow you to:

 Get information about the current version of the Bfv API or
driver and some information about the operating system
environment.

 Clear an item.

 Get information about a line.

March 2020 26

The BTLINE Structure

When an application calls the BfvLineAttach (or BfvSessionAttach)
function to open and attach to a specified channel, the function
creates a separate BTLINE structure for the channel and returns a
pointer to the line structure. All information about the channel is
stored in its BTLINE structure, but only the line state, the line type,
and channel number are actually relevant. The BfvLineDetach (or
BfvSessionDetach) function deallocates a BTLINE structure.

Applications do not directly access the internal fields of the BTLINE
structure, but instead use functions and macros described in detail
in the Dialogic® Brooktrout® Bfv API Reference Manual:

LINE_HAS_CAP(lp, cap)

Confirms whether or not the line has the specified capability cap.

LINE_STATE(lp)

Returns or sets the line state of the specified line.

LINE_TYPE(lp)

Returns the line type of the specified line.

LINE_UNIT_NUM(lp)

Returns the channel number of the specified line.

A line is always in one of the following states:

LINE_STATE_AWAIT_TRAINING

LINE_STATE_CONNECTED

LINE_STATE_FAX_MODE

LINE_STATE_HOLDUP

LINE_STATE_IDLE

LINE_STATE_NOLOOP

LINE_STATE_OFF_HOOK

LINE_STATE_RCV_INFO

LINE_STATE_RESETTING

LINE_STATE_RETAIN

LINE_STATE_RINGING

LINE_STATE_TURNAROUND

March 2020 27

Hereafter each of the line states is referred to by the descriptive part
of its name only (for example, LINE_STATE_IDLE is referred to as
IDLE).

The current state of the line is stored in the BTLINE structure. A
pointer to this structure is passed as an argument to nearly all Bfv
API entry points and is provided to the application by the
BfvLineAttach function.

A number of functions and interrupts serve as inputs to the BTLINE
structure and affect the transition to different line states. Other
functions check the current line state.

Some functions conditionally branch to other points in the code, and
some prevent inappropriate action from occurring, for example,
frequent checking for CONNECTED before attempting to transmit
data.

The following is a partial list of the functions and interrupts and the
line state they set:

FUNCTION LINE STATE

BfvLineAnswer Sets the state to CONNECTED.

BfvLineAttach Initializes the state to IDLE.

BfvLineOriginateCall Sets the state to CONNECTED or OFF_HOOK
depending on the results from call
progress monitoring.

BfvLineReset Resets the state to IDLE.

BfvLineTerminateCall Sets the state to IDLE.

INTERRUPTS LINE STATE

Answer tone detect Sets the state to CONNECTED.

Direction change Sets the state to TURNAROUND.

Disconnect Sets the state to IDLE.

Received FSK data Sets the state to AWAIT_TRAINING.

Ring detect Sets the state to RINGING.

Training Sets the state to FAX_MODE.

March 2020 28

Channel Numbering

The Bfv API uses two numbering schemes when referencing
channels within a system. One is the unit number or ordinal channel
number; the other is the logical channel number.

The unit number is a number range 0…n-1, where n is the number of
channels in the system. The BfvLineAttach function uses the unit
number in its argument and returns a pointer to the BTLINE
structure, providing a means to reference the channel in future
function calls. For example, a system comprising two 60-channel
modules would have a unit number range of 0-119. The module that
had the firmware downloaded first would contain the channels
starting from 0.

The logical channel number is used together with the module
number to reference a work channel (also called a hardware channel)
in a system. The BfvSessionAttach function uses the module and
logical channel numbers in its arguments. Logical channels not only
include work channels traditionally considered to be channels, but
also administrative channels. The work channel number range for
logical channels is 2…n+1, where n is the number of work channels
on this hardware module.

Each module has a unique module number. For example, the same
system comprising two 60-channel modules could have the following
configuration:

 First module: Module 2, work channels 2-61

 Second module: Module 3, work channels 2-61

Each virtual module can have up to 120 channels.

The BfvSessionAttach function also returns a BTLINE structure;
other functions that accept a BTLINE structure as an argument can
use either that returned from BfvLineAttach or
BfvSessionAttach. When detaching, use the corresponding detach
functions BfvLineDetach or BfvSessionDetach.

March 2020 29

Firmware Functions and Macros

With the specialized firmware functions, you can:

 Download firmware to the module from a file or a buffer

 Get information about a module’s firmware configuration options

With the firmware macros, you can determine:

 Version number, build number, and date of the control processor
firmware

 Version number, build number, and date of the boot ROM
firmware

 Version number, build number, date of each DSP firmware, and
the number of DSPs on the module

Configuration Functions

The Bfv API provides functions that allow you to get the current
information about the telephony configuration, reset the telephony
state, and save telephony parameters to Non-Volatile RAM
(NVRAM).

You can also establish a connection between source and destination
telephony resources; get information about the connections, their
ports and classes; and clear all switching connections for a module.

March 2020 30

Configuration Files

The Bfv API uses several configuration files that let you configure
the Bfv API and driver, call control, and country-specific parameters.
These files are described below. Sample versions of the files are
stored in the directory /Brooktrout/Boston/config.

 The user-defined configuration file
A file that contains configuration parameters for the Bfv API and
driver. A sample of this file, called btcall.cfg, is provided with the
software, but you can write your own or modify/rename the
existing one. Many of the sample applications (see Sample
Applications and Utilities on page 120) use btcall.cfg.

 The call control configuration file

A user-supplied file that contains call control configuration
parameters. Several samples of this file are provided with the
software. One sample is called callctrl.cfg, while others have
names that specify the type of telephony interface. See the
directory /Brooktrout/Boston/config/samples.cfg for the names
of the files.

 The telephony configuration file
This file is obsolete and has been superseded by the call control
configuration file.

 The BT_CPARM.CFG file.
A read-only file that contains country-specific parameters.

March 2020 31

Module Status and Monitoring Functions

With the module status and monitoring functions, you can:

 Set and get the state of the module by reading the status LED.

 Set the module temperature threshold.

 Get the temperature of the module.

 Have the module perform a series of self tests and, optionally
report the results.

 Have the module notify the application of events or conditions on
the module such as a network alarm, network error,
H.100/H.110 clock event, temperature alarm, RTP/RTCP
transport layer events, and the general status of the module.

Debugging, Error Handling, and Return Values

Functions

Several Bfv API functions help you debug your application program
and discover/recover from errors.

You can enable debug mode so that the Bfv API prints commands,
data, interrupts, and status messages, or you can set up a function to
be used with Bfv API debug mode that directs output to a file or
filter (see Debugging on page 90).

When you install the Bfv API, you enable recording of the history of
the activity of the driver along with the hardware type, the firmware
version, and the boot ROM version. You can then use functions to
dump the buffer containing the driver’s history for a module and
channel to a file. You can also clear the history buffer for a module
and channel so that it contains information relevant to the current
application.

If you have a RES structure that contains returned error
information from a previous Bfv API call, you can use the
BfvErrorMessage function to create a short and a long error
message in a BTERR structure. Then, you can print either the long
or short message from the structure.

When you start call control using BfvCallCtrlInit, you can enable a
call control log file.

March 2020 32

Structures and Return Values

The Bfv API uses argument structures to pass values to and from
functions. The application declares the argument structure and
passes a pointer to it to the function. The argument structure type is
named args_...; for example, struct args_speech. The same
argument structure type is used for functions that are related or in
the same category.

Contained within the argument structure are structure fields that
are used for input and/or output. Each function that uses an
argument structure has marked the fields that are used for each
purpose. Not all fields are used by all functions taking any particular
argument structure type.

Result structures are the most commonly used structures to return
information to the function. They are:

RES Returns status information in res.status and some additional
information in res.line_status.

CALL_RES Returns information about a call such as its type and destination. If
applicable, information such as called party and redirect information
are returned as well.

March 2020 33

Miscellaneous Functions and Macros

Some administration functions and macros cannot be classified with
other functions, but are useful in various ways. For example:

 _dll... functions for use on Windows operating systems. These
functions call standard C library functions such as fopen, fclose,
fread, and fwrite; their arguments use the runtime library linked
with the DLL.

 The getopt function parses command line options in a Linux
environment. Most of the sample applications/utilities use this
function (see Sample Applications and Utilities on page 120).

 The BfvMemAllocFuncSet function allows you to write your
own functions to dynamically allocate and free memory instead
of using the Bfv API functions to do so.

 The sleep macro lets you write applications that sleep for a
defined period of time (in seconds). This macro is only defined for
environments that do not have built-in sleep functions.

March 2020 34

Call Control

Call control functions enable the application to set up, initiate,
connect, disconnect, and perform other tasks related to the telephone
network. Three forms of call control are available: Bfv high-level,
low-level and BSMI-level.

Bfv Call Control

High-level Bfv call control functions simplify the process of accessing
the telephone system. Some of the high-level functions call the
low-level Bfv call control functions to automatically perform the
low-level tasks. However, the high-level functions trade flexibility
and control for ease of programming.

With the Bfv low-level call control functions, you can perform T1
robbed bit, T1/E1 PRI, T1/E1 QSIG, E1 R2, analog, BRI, SIP, and
H.323 call control functionality. See Volume 2 of the Dialogic®
Brooktrout® Bfv API Reference Manual for the descriptions of the
Bfv call control functions.

BSMI-Level Call Control

The BSMI-level call control functions are used to facilitate
communications directly between the module and the telephony
lines. These are the Bfv API Boston Simple Message Interface
(BSMI) functions that use messages to communicate between the
module and the telephone lines. The collection of messages is the
interface to the telephony component of the Boston firmware and
provides all the facilities for management, call control, and
performance statistics monitoring. Control message naming
conventions in the BSMI are descriptive of the functions they serve
and make it easier to develop applications. When developing an
application, you do not need to have a detailed knowledge of the
protocol involved, although a general understanding of call models is
beneficial. You can use one of many different signaling protocols
such as T1/E1 PRI; R2; and Local Exchange Carriers (LEC) T1
Robbed Bit, Analog and BRI. See Robbed Bit Signaling on page 266 -
Using the BSMI R2 Signaling Capability on page 335 for more
information about the protocols.

Note: BSMI is not supported on QSIG, SIP, and H.323.

March 2020 35

Typically, the BSMI is used as one component of a system. Firmware
download, for example, is achieved using the call control functions of
the Bfv API. Through the Bfv API, you can perform all appropriate
configuration and management functions for the Brooktrout
products.

BSMI is used by the Bfv call control functions to perform call
processing. BSMI is a level lower than the Bfv API, providing
greater flexibility.

The host communicates with the module through the Control
Interface. The host application (referenced as L4) issues BSMI
control messages to configure the module or to instruct it to perform
a specific action, such as make a call, clear a call, or request the
status of an interface. The module-issued BSMI control messages
(referenced as L3) inform the host of the status of the interface, call
events, or an error condition.

BSMI supports the R2 signaling protocol. Using the BSMI host to
module messages, you can:

 Start and stop the R2 protocol on a particular timeslot on an E1
span.

 Block or unblock an idle B-channel (the ISDN channel that
handles data).

 Place an outbound call.

 Answer an inbound call.

 Disconnect a call.

 Reject an incoming call.

BSMI module to host messages respond to the host by:

 Starting and stopping the R2 protocol.

 Blocking or unblocking the B-channel.

 Seizing the line for an incoming call.

 Alerting the host and then connecting a call.

 Clearing a request.

 Notifying the host when the remote end phone is ringing.

 Notifying the host when the call is disconnected at the remote
end.

 Providing a protocol error or invalid command status message.

March 2020 36

Media Processing

Media processing refers to the operation that is performed on the
modules. Depending on the product configuration, it can include:

 Signal generation and detection

 Voice play and record

 Faxing

 File format manipulation

Signal Generation and Tone Detection

With the signal generation and tone detection functions, you can:

 Play call progress signals and generate other tone groups and
tone patterns.

 Get the next call progress code.

 Enable and disable DTMF detection.

 Discard tones from a buffer.

 Wait for a tone and return it as an ASCII character or return it
without disturbing the buffer.

 Play a tone for a specified time.

 Play a single frequency tone or a custom tone.

 Replace a tone in the buffer for reuse.

The module receives call progress signals generated by telcos and
Private Branch Exchanges (PBXs) before, during, and after dialing.
The module's call progress analysis processes then interprets them.

During call progress analysis, modules can report dial tone
detection, ring-back, busy signals, remote fax tone detection, and
other important information. Applications can use this information
to determine their next course of action, to display the status of a
call, or to track billing information. Applications can use postdialing
results, such as HUMAN and BUSY, to decide what redialing strategy
to use.

Modules can also generate and play DTMF and MF tone groups and
single tone patterns to send to the telco or PBX.

March 2020 37

Voice Record and Play

With the Bfv voice record and play functions, the application can:

 Open, play, and close a previously recorded prompt file.

 Record speech into an infopkt stream, a raw speech data buffer,
a raw speech file, or a wave file.

 Play back speech from an infopkt stream, a raw speech data
buffer, a raw speech file, or a wave file.

 Modify the volume and rate of a speech playback while it is in
progress.

The voice functions allow you to write Interactive Voice Recognition
systems where you can record prompts for later playback. You can
also build voice mail systems for recording and playing back
messages.

Fax Functions

The Bfv API provides a wealth of fax functions that allow you to
control every aspect of sending and receiving V.17 or V.34 faxes.

The fax functions are divided into high-, mid-, and low-level
functions. Volume 4, Fax Processing, in the Dialogic® Brooktrout®
Bfv API Reference Manual provides a detailed description of each Bfv
function.

Generally, the high-level functions simplify the process of
transmitting and receiving facsimiles. Since the high-level functions
incorporate many of the appropriate low-level functions to
automatically perform the basic low-level tasks, applications using
the high-level functions are freed to perform other tasks. For
example, the high-level function BfvFaxSend is constructed of
these mid- and low-level functions:

BfvFaxBeginSend

BfvFaxEndOfDocument

BfvFaxGetRemoteInfo

BfvFaxSendPage

BfvFaxSetLocalId

BfvFaxWaitForTraining

March 2020 38

The high-level functions trade the maximum flexibility and control
provided by the low-level functions for ease of programming.

The mid-level functions provide more flexibility and control than the
corresponding high-level functions, but they require more knowledge
of and attention to the basic steps involved in sending and receiving
facsimiles.

The low-level functions provide the greatest flexibility and control
over sending and receiving facsimiles, but they require extensive
knowledge of and attention to the basic steps involved in each of
these tasks. For example, applications can screen phone calls based
on an ID string or NSF information with the low-level functions, but
not with the high-level functions.

Both the high- and mid-level functions use only infopkt files, so the
distinction between them is measured in the flexibility and control
they provide. The low-level functions, however, use only raw data
files.

Combining the high-, mid-, and low-level functions within the same
application program is valid and useful. Need for the low-level calls
depends on the degree of flexibility and functionality an application
requires.

Table 1 contains a partial list of the high-, mid-, and low-level
functions that perform fax tasks.

Table 1. Fax Functions by Type

Type/Level Function Names

High-Level BfvFaxPoll
BfvFaxReceive
BfvFaxSend

March 2020 39

In addition, the fax functions are divided into two subgroups: those
that process infopkt-formatted data files and those that process
ASCII or G3 data files in other formats. For fax functions that
process raw ASCII or G3 data files rather than infopkt-formatted
data files, see Volume 4, Fax Processing, in the Dialogic®
Brooktrout® Bfv API Reference Manual.

File Format Manipulation Functions

Using the file format function calls, you can perform the following
infopkt operations:

 Open and close infopkt stream files

 Find the pointer position in an infopkt stream file

Mid-Level BfvFaxBegin
BfvFaxBeginReceive
BfvFaxBeginSend
BfvFaxEndReception
BfvFaxNextPage
BfvFaxReceivePage
BfvFaxReceivePages
BfvFaxSendPage
BfvFaxSetReceiveFmt
BfvFaxTurnaround

Low-Level BfvFaxBeginRaw
BfvFaxBeginSendRaw
BfvFaxEndOfDocument
BfvFaxGetLocalId
BfvFaxGetRemoteInfo
BfvFaxNextPageRaw
BfvFaxPageParams
BfvFaxReceiveData
BfvFaxReceiveFile
BfvFaxSendData
BfvFaxSendFile
BfvFaxStripParams
BfvFaxWaitForTraining

Table 1. Fax Functions by Type (Continued)

Type/Level Function Names

March 2020 40

 Look for an offset to a specific place in an infopkt file

 Read from and write to an infopkt stream file or buffer

 Put the last infopkt read back into the infopkt stream file

 Create your own function to handle user-defined infopkt files

Infopkts

An infopkt is a structure, consisting of a tag and associated data,
that organizes different data types (ASCII, voice, and fax data) into a
single structure for transmission or reception.

The Bfv functions can process voice and fax data that is stored in
files containing infopkt structures. Infopkt structures contain speech
or fax formatting and control parameters, speech or fax data, or
pointers to other data or infopkt files. These structures provide a
flexible and easily extendable method to combine and transmit
various types of data.

For voice applications, infopkts provide an easy means to build
sophisticated interactive voice systems. Using infopkts, a voice
application can create a master prompt file that builds all of the
system's prompts out of short phrases.

This scheme:

 Reduces the amount of disk space needed for storage.

 Enables the application to build new prompts as changing
demands on the system dictate.

 Simplifies the development of multilingual systems that can
translate recorded prompts to other languages on-the-fly.

For fax applications, infopkts provide a flexible means to transmit a
complex, computer-generated fax document.

A fax transmission consists of one or more documents. A document
consists of one or more pages containing the document parameters,
agreed upon by two communicating fax machines according to the
T.30 protocol, that do not change. A page consists of one or more
strips of data, converted from their original format to the established
document format for transmission.

To a fax machine, a document is a simple object with three
parameters: vertical resolution, length, and width. To a computer, a
document is often more complex.

March 2020 41

For example, fax applications might require the transmission of
ASCII data in fax format. The fax module converts the ASCII data to
G3 format in real-time. A file header and signature, already in
G3 fax format, can accompany the ASCII data. The infopkt structure
makes it easy to send a document of this type because it organizes
fax and ASCII data into a single structure for transmission and
reception.

The Bfv API defines and supports the infopkt types described on the
following pages:

 Tag Infopkts on page 41

 Data Infopkts on page 43

 Indirect Infopkts on page 43

 User-Defined Infopkts on page 44

Tag Infopkts Contain speech parameter structures (which describe the sample
rate, coding format, and data format of the speech or indicate the
end of speech playback), and fax parameter structures (which
describe a strip or page of data, the line parameters, or control
parameters). They are:

INFOPKT_ASCII_STRIP_PARAMETERS

Tag containing parameters for ASCII data strip.

INFOPKT_BEGINNING_OF_PAGE

Tag indicating the beginning of a new page with no new parameters
from the previous page.

INFOPKT_DOCUMENT_PARAMETERS

Tag indicating new page composition parameters. An infopkt stream
must begin with this infopkt type. This is used, for example, to
change the resolution between pages in the middle of a fax
transmission.

INFOPKT_EFF_PAGE_PARAMETERS

Tag containing enhanced fax format page parameters.

INFOPKT_END_OF_SPEECH

Tag indicating end of speech playback.

INFOPKT_FAX_HEADER

Tag specifying a header or footer to appear on all subsequent pages
of a fax transmission.

March 2020 42

INFOPKT_G3_STRIP_PARAMETERS

Tag containing parameters for G3 data strip.

INFOPKT_PAGE_PARAMETERS

Tag containing margin and padding parameters for a page.

INFOPKT_SPACE

Tag containing the spacing parameters for a fax page or a fax
overlay.

INFOPKT_SPEECH_PARAMETERS

Tag containing parameters for succeeding speech infopkts.

INFOPKT_T30_PARAMETERS

Tag containing T.30 line parameters bit rate and scan time. When
ECM is in use, the scan time specification has no effect.

March 2020 43

Data Infopkts Contain just the header and data, permitting applications to
organize large files as a sequence of small data infopkts. They are:

INFOPKT_ASCII

ASCII data.

INFOPKT_G3

G3 data.

INFOPKT_PROMPT_MAP

Used only in prompt files. Contains information on how to find each
of the phrases in the prompt file.

INFOPKT_SPEECH

Speech data in any of several coding formats.

Indirect Infopkts Contain a pointer to a file that contains either raw data (ASCII,
speech, or G3) or infopkts. They are:

INFOPKT_INDIR_ASCII

Pointer to an ASCII file.

INFOPKT_INDIR_DCX

Pointer to an Intel DCX fax file that contains PCX data and its own
header information.

INFOPKT_INDIR_G3

Filename of a G3 file.

INFOPKT_INDIR_INFOPKT

Pointer to another infopkt stream file.

INFOPKT_INDIR_SPEECH

Pointer to a raw speech file.

INFOPKT_INDIR_TIFF

Pointer to a TIFF-F file that contains G3 data and its own header
information.

INFOPKT_INDIR_WAVE

Pointer to a wave file that contains speech data and its own header
information.

March 2020 44

User-Defined Infopkts Contain a header (the document’s title, the subject of the document,
or the total number of pages that the document contains) and
user-defined information (document summary and statistics, etc.)
useful to an application. When the Bfv API encounters these infopkt
types, it ignores them. See the BfvInfopktUser function in Volume
4, Fax Processing, in the Dialogic® Brooktrout® Bfv API Reference
Manual. They are:

INFOPKT_USER0_USER1...._USER9

Infopkt containing a header and storage for user application
information. A maximum of ten user-defined infopkt types
(numbered 0 to 9) are included in an infopkt stream.

INFOPKT_ANNOTATION

Contains header and ASCII text, but is otherwise identical to the
user types described above.

The Infopkt Stream

An infopkt stream is a file or memory buffer containing concatenated
individual infopkts. The length of an infopkt stream is limited only
by the file size conventions specific to an operating system. The
BfvInfopktOpen function opens file-based infopkt streams, and the
BfvInfopktOpenMem function opens memory-based infopkt
streams.

For speech record and play applications, the first infopkt in the
infopkt stream depends on the type of speech file.

If the speech file is an indexed prompt file (see mkprompt on
page 148 in this manual, and the BfvPromptPlay function in
Volume 3 of the Dialogic® Brooktrout® Bfv API Reference Manual),
an INFOPKT_PROMPT_MAP infopkt begins the infopkt stream. An
INFOPKT_SPEECH_PARAMETERS infopkt begins each new speech file
embedded within the infopkt stream.

If the speech file is a simple speech file, one recorded with the
BfvSpeechRecord function, an INFOPKT_SPEECH_PARAMETERS
infopkt begins the infopkt stream.

March 2020 45

Creating an Infopkt Stream

The mkinfopk program, included on the distribution media, builds
an infopkt stream. It has the following command syntax:

mkinfopk -o output_fname {infopkt_type arg}...

For more detailed information on mkinfopk, see mkinfopk on
page 146 in this manual.

The decode program, also included on the distribution media, reads a
specified infopkt stream and lists the individual infopkts within the
stream. See Sample Applications and Utilities on page 120 in this
volume for more detailed information on how to use this utility.

Figure 2 illustrates how to create an infopkt stream to play either an
indexed prompt file or a simple speech file. You must create a
separate infopkt stream for each type.

-o output_fname Is the name of the output file.

infopkt_type Indicates the type of infopkt which follows.

arg Is the argument for the infopkt. Depending on
the infopkt_type, it is either a file name or a
dummy value.

March 2020 46

Figure 2. Flow Chart for Creating Infopkt Streams that Play
Speech

_PROMPT_MAP
Index to prompt file

Indexed Prompt File
(mkprompt)

_SPCH_PARAMS
smp rate, coding fmt, bits-

smp, afe rate, data fmt

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

_END_OF_SPEECH

_SPCH_PARAMS
smp rate, coding fmt, bits-

smp, afe rate, data fmt

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

_END_OF_SPEECH

em
b

ed
d

ed
 s

p
e

ec
h

 f
ile

em
b

ed
d

ed
 s

p
ee

c
h

 f
il

e

_SPCH_PARAMS
smp rate, coding fmt, bits-

smp, afe rate, data fmt

Simple Speech File
(mkinfopk)

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

_SPEECH
Speech Data

CVSD, ADPCM, PCM, OKI

March 2020 47

The following sample shows how to create an infopkt stream file to
test the fax functionality of your hardware and software:

mkinfopk -o fax.ips doc 1 ascii fax.c

Where:

For fax-receiving applications, an INFOPKT_DOCUMENT_PARAMETERS
infopkt begins each new G3 page within it. If the application uses a
nonstandard receive format (see the BfvFaxSetReceiveFmt
function in Volume 4, Fax Processing, in the Dialogic® Brooktrout®
Bfv API Reference Manual), it must also include a
G3_STRIP_PARAMTERS infopkt.

For fax-transmitting applications, an infopkt stream must begin
with an INFOPKT_DOCUMENT_PARAMETERS infopkt. Any type of
infopkt or combination of infopkts can follow the first
INFOPKT_DOCUMENT_PARAMETERS infopkt.

Within a fax-transmitting application, a new page is indicated when
one of the following infopkt types is encountered in an infopkt
stream:

INFOPKT_BEGINNING_OF_PAGE

INFOPKT_DOCUMENT_PARAMETERS

INFOPKT_T30_PARAMETERS

INF0PKT_FAX_HDR

Figure 3 on page 48 illustrates how to create an infopkt stream that
transmits G3 data. G3 data includes MH, MR, MMR, and PCX
formats.

fax.ips Is the name of the output infopkt stream file that contains
the ASCII file fax.c (the sample fax application program
included on your distribution CD).

doc Is required as the first infopkt in a stream (1 is its
argument). See mkinfopk on page 146 for more
information about doc.

ascii Indicates that the input file fax.c is an ASCII formatted
file.

fax.c Is the input file.

March 2020 48

Figure 3. Creating Infopkt Streams that Transmit Facsimiles

_DOC_PARAMS
res, len., width

optional/conditional

START

_T.30_PARAMS
bit rate, scan time

_PAGE_PARAMS

_STRIP_PARAMS
G3, ASCII

DATA
G3, ASCII

INDIR_DATA
G3, ASCII, DCX, TIFF

_B_O_P

*

*

*

*

March 2020 49

Infopkt Structure

Every infopkt consists of a header and data. The 4-byte header
consists of a type code and a length. The type code defines the
infopkt type, and the length field indicates the total length of the
infopkt, including the header. Data consists of raw data, formatting
parameters or, in the case of indirect infopkts, pointers to other files.

The maximum length of an individual infopkt is 30,000 bytes, but
Dialogic recommends limiting the size to approximately 1K. This
limit affects the size of infopkts only and has no effect on the size of a
fax document, since large fax documents are simply converted to
multiple infopkts within an infopkt stream.

When indirect infopkts point to other infopkt stream files, the
maximum nesting depth is three. All file names that occur in
indirect infopkts must be 0-terminated.

The infopkt.h file, located in the inc subdirectory, contains the
definitions of the infopkt structures.

See Appendix E in Volume 6 of the Dialogic® Brooktrout® Bfv API
Reference Manual for the parameter values and defaults of each tag
type infopkt.

Speech Infopkt Parameters

The INFOPKT_SPEECH_PARAMETERS infopkt defines the speech
parameters for infopkt-formatted speech files. These parameters
include the coding format, the compressed sample rate, the number
of bits per sample, the analog front end (afe) rate, and the data
format. In infopkt streams made up of simple speech files, this
infopkt begins the infopkt stream. In infopkt streams made up of
indexed prompt files, it begins each new speech file embedded in the
stream.

Applications use the BfvSpeechRecord function to record speech
in infopkt format (see the Dialogic® Brooktrout® Bfv API Reference
Manual, Volume 3 for a complete description). Valid settings for the
data coding format, compressed sample rate for playback, and
number of bits per sample are found with the BfvSpeechRecord
function.

March 2020 50

Fax Infopkt Parameters

The T.30 protocol requires two communicating fax machines to agree
on several transmission parameters at the beginning of a facsimile
transmission. These transmission parameters include the bit rate,
scan time, coding scheme, and the basic document format
parameters – vertical resolution, page width, and page length. The
least capable fax machine determines the values of these
parameters; both fax machines adjust to the final values.

Two infopkts:

INFOPKT_T30_PARAMETERS

INFOPKT_DOCUMENT_PARAMETERS

affect the parameters that are negotiated during the T.30 protocol
handshaking procedure.

The INFOPKT_T30_PARAMETERS infopkt specifies the desired values
of the transmission parameters. Normally the default values are
used, but INFOPKT_T30_PARAMETERS is useful, for example, for
setting a lower bit rate.

The INFOPKT_DOCUMENT_PARAMETERS infopkt sets the document
related parameters: vertical resolution, length, and width (only the
vertical resolution is programmable). These parameters format the
fax data that is sent out.

INFOPKT_DOCUMENT_PARAMETERS is required and specifies the
desired resolution. If it appears in the midst of an infopkt stream,
both machines might renegotiate to the new parameter values.

While document parameters define an entire fax document sent,
page parameters define an entire page only, and strip parameters
define horizontal strips of data within a page.

For ASCII data, there are page parameters and strip parameters.
For G3 data, there are strip parameters. Because page formatting
elements (top and bottom margins, etc.) are inherent in G3 data;
there are no separate page parameters.

The INFOPKT_PAGE_PARAMETERS infopkt defines the ASCII page
parameters, which apply only to pages. Its use is optional, and when
it is not included with ASCII data infopkts, the module uses the
default values (see Appendix E in Volume 6 of the Dialogic®
Brooktrout® Bfv API Reference Manual for default values).

March 2020 51

The strip parameters infopkts:

INFOPKT_ASCII_STRIP_PARAMETERS

INFOPKT_G3_STRIP_PARAMETERS

define the actual strips of data that make up a page and must
precede an ASCII or G3 data type infopkt only to change the default
or previously applied strip parameter values (see Volume 6,
Appendix E in the Dialogic® Brooktrout® Bfv API Reference Manual
for default values). Dialogic, however, recommends that you include
a strip parameter infopkt whenever you define a strip, even if the
default values are appropriate for the strip. Strip parameters
include the basic format of the data (that is, ASCII or G3 data) and
presentation parameters such as vertical resolution, width, and, in
the case of ASCII, left and right margins.

Strip parameters ensure that the strip data is sent out properly and
the received fax is displayed with the proper proportions. The
module converts strip data to the proper vertical resolution before
transmitting it.

For example, if the T.30 document resolution is set to fine resolution,
and a G3 strip is in normal resolution, the firmware converts the
data to fine resolution, replicating each line. Likewise, if the T.30
document resolution is set to normal resolution, and a G3 strip is in
fine resolution, the firmware converts the data to normal resolution,
removing every other line. If the T.30 document resolution and a
G3 strip resolution are the same, the module transmits the data
as-is. The vertical resolution of the strip data informs the module
when to convert data and how to convert it.

When ASCII strip data is sent to the module, the current vertical
resolution parameter is set to normal, even if an
INFOPKT_ASCII_STRIP_PARAMETERS infopkt is inserted into the
infopkt stream. Thus the resolution of any G3 strip data,
encountered later in the infopkt stream, is also assumed to be
normal, unless otherwise specified by an accompanying
INFOPKT_G3_STRIP_PARAMETERS infopkt.

When two consecutive G3 strips of data are sent to the module, an
INFOPKT_G3_STRIP_PARAMETERS infopkt must be inserted
between them. Since each G3 strip data ends with an RTC marker
(six consecutive end-of-line codes) that is interpreted by the module
as the end of the strip of data, an INFOPKT_G3_STRIP_PARAMETERS
infopkt is required to indicate the beginning of the second G3 strip.

March 2020 52

When a single G3 strip consists of multiple G3 infopkts, do not insert
an INFOPKT_G3_STRIP_PARAMETERS infopkt between the
G3 infopkts.

Figure 4 illustrates how an electronic mail document (ASCII),
accompanied by a cover sheet, a letterhead, and a signature, could be
delivered to a fax machine.

Figure 4. Conversion of a Partial Infopkt Stream to a Fax
Document

Part of the infopkt stream, a file containing a series of infopkts that
contains this fax example, is shown below:

INFOPKT_DOCUMENT_PARAMETERS

(Tag containing new page composition parameters; a fax infopkt
stream must begin with this infopkt type)

INFOPKT_G3_STRIP_PARAMETERS

(Parameter Structure)

lettrhed.g3

lettrbod.asc

sign.g3

The TRxxx series
of fax/voice boards
are now available...

Dialogic Corp

President

BOP (Beginning of page)

letterhead

Fax Document,
Page 1

G3_Strip_Parameters

Indir_G3(lettrhed.g3)

Ascii_Strip_Parameters

Indir_Ascii(Lettrbod.asc)

G3_Strip_Parameters

Indir_G3(sign.g3)

Doc_Parameters

G3_Strip_Parameters

G3 (data; cover sheet)

cover sheet

letter body

signature

Fax Document,
Page 2

Infopkt Stream

March 2020 53

This two-page document contains a G3 fax document as a cover page.

INFOPKT_G3

(Cover sheet; G3 data)

It is followed by a page boundary tag,
INFOPKT_BEGINNING_OF_PAGE. The data for the cover sheet is
stored in the infopkt stream.

INFOPKT_BEGINNING_OF_PAGE

(Cover sheet is on its own page)

INFOPKT_G3_STRIP_PARAMETERS

(Parameter Structure)

The second page starts with a G3 document containing the
letterhead. It is stored in a separate file.

INFOPKT_INDIR_G3

(Document letterhead; G3 file name)

INFOPKT_ASCII_STRIP_PARAMETERS

(Parameter Structure)

The next strip of the second page is ASCII data which is also stored
in a separate file.

INFOPKT_INDIR_ASCII

(Contents of E-Mail message; ASCII file name)

INFOPKT_G3_STRIP_PARAMETERS

(Parameter Structure)

The second page ends with G3 data, contains the signature, and is
also stored in a separate file.

INFOPKT_INDIR_G3

(Signature data is in infopkt structure; G3 data)

The bulk of most infopkt files are types INFOPKT_G3 and
INFOPKT_ASCII. Two files containing infopkts are concatenated.

March 2020 54

2 - Developing
Applications Using the Bfv

API

This chapter describes how to develop applications with the
Brooktrout Fax Software.

The chapter has the following sections:

 Developing a Voice Application on page 55

 Using Prompt Files on page 57

 Developing a Fax Application on page 59

March 2020 55

Developing a Voice Application

Recording and Playing Voice

The following steps for recording and playing back speech are
demonstrated:

 How to record voice

 How to play back previously recorded voice

These steps are the same for all supported operating systems.

To record and then play speech back, first select the voice channel on
which you want to record your message. Then, use the voice.c sample
program, included on your distribution CD, to record and play back
speech.

March 2020 56

Recording Voice

1. Prepare channel 2 to record your message:

voice -u 2 -r voice.ips

The command voice invokes the voice.c program, whose
arguments include:

The -u 2 argument selects channel 2 as the recording channel
and the -r argument places channel 2 in record mode. Voice.ips
is the speech infopkt stream file in which to store the voice
message. The channel waits for an incoming call.

Arguments

-c num Call the given number, else wait for ring.

-f Specify record coding format; use the number of
the format or one of the following names:

adpcm
adpcm32
adpcm24
pcm_ulaw
pcm_ulaw64
pcm_ulaw48
pcm_ulaw88
pcm_alaw
pcm_alaw64
pcm_alaw48
pcm_alaw88
g723-1
g723-1-53
g723-1-63
g729-a
sx7300
sx9600
gsm_610
gsm_660

1

2

3

 7

 8
 9
10
14
15

-l Loop forever, sending or receiving.

-n secs Specify recording time in seconds.

-p Play.

-r Record (default 10 seconds).

-u unitnum Use specified channel.

March 2020 57

2. Dial the phone number of the channel you selected. sure to have
all the necessary cables connected for the channel to receive a
call.

The voice.c program does not indicate when to begin recording.
Begin recording when the call is connected (when you no longer
hear ringing).

Playing Back the Voice Message

 Request that a channel (0 in the example) play back your
previously recorded message stored in voice.ips.

1. At the system prompt, type:

voice -u 0 -p voice.ips

2. Dial the phone number of the channel. You should hear your
recorded message.

Using Prompt Files

Prompt files are infopkt files that contain many individual speech
phrases in a single file. Each phrase is a partial or complete prompt
in infopkt format followed by an INFOPKT_END_OF_SPEECH infopkt
with mode value 1. The prompt file starts with an
INFOPKT_PROMPT_MAP infopkt, which contains file offsets to each
individual phrase.

The Bfv API contains functions that open and close a prompt file and
play individual phrases stored in it. For example, after an
application opens a Brooktrout prompt file, it can call the
BfvPromptPlay function to play any individual phrase, or it can
call the BfvPromptPlay function multiple times to concatenate
phrases and create a complete prompt.

Using Brooktrout prompt files provides two advantages. Since all of
the prompts are stored in a single file, tracking and maintaining
prompts is easier. And because you can combine phrases to create
complete prompts, you can reduce the amount of disk space needed
for overall speech storage.

March 2020 58

Using the mkprompt Utility

The mkprompt utility converts multiple infopkt files into a
Brooktrout prompt file and updates an existing Brooktrout prompt
file by adding new phrases or modifying existing phrases.

When you create a Brooktrout prompt file, the mkprompt utility
automatically assigns each infopkt file a phrase number,
sequentially, in the order that you enter each file name at the
command line. The mkprompt utility always assigns the phrase
number 0 to the first infopkt file you enter.

When you update a Brooktrout prompt file, you assign a phrase
number to each infopkt file you are adding to the existing Brooktrout
prompt file.

Since the mkprompt utility cannot return phrase numbers of
individual prompt files in a Brooktrout prompt file, be sure to keep
your own record. You might need this information when you update
your prompt file.

Both the mkprompt utility and the Bfv API permit you to include the
text of each phrase in the Brooktrout prompt file. Create an infopkt
file for each phrase in which the first infopkt in the file contains the
text annotation and the remaining infopkts contain the speech that
make up the phrase. The mkprompt utility treats the whole file as a
phrase infopkt, and the BfvPromptPlay function skips over the
annotated text.

Creating a New Prompt File

To create a new Brooktrout prompt file, at the command line type:

mkprompt prompt_file [phrase1.pkt phrase2.pkt...]

Where:

The mkprompt utility automatically assigns phrase 0 to the file you
enter as phrase1.pkt and sequentially numbers any additional files
in the order that you enter them.

prompt_file Specifies the name of the prompt file to create.

phrase1.pkt,
phrase2.pkt, ...

Provides the names of the infopkt-formatted.
Prompts files in the order in which you enter
them at the command line.

March 2020 59

Updating an Existing Prompt File

To update an existing Brooktrout prompt file, at the command line
type:

mkprompt -u phrase_num prompt_file phrase.pkt:

Where:

The mkprompt utility opens the existing Brooktrout prompt file and
append the new phrase if the phrase number you specify is new or
replace the old phrase whose phrase number matches the phrase
number you specify.

Developing a Fax Application

Sending and Receiving a Fax

The following are the step-by-step instructions for transmitting and
receiving a fax:

 How to create an infopkt stream using the mkinfopk utility.

 How to send a fax (an infopkt stream file) from one channel to
another channel in your system.

 How to send a fax from an external fax machine to one channel
in your system. This same fax is then transmitted back to the
same fax machine from the same channel in your system.

-u Specifies the update command.

phrase_num Provides the index number to assign the
infopkt-formatted input file.

prompt_file Provides the name of the prompt file.

phrase.pkt Provides the name of the infopkt-formatted prompt
file to add to the prompt file.

March 2020 60

Sending a Fax from One Channel to Another

 Use the fax sample program to send a fax from one channel to
another in your system.

1. Prepare channel 1 to receive a fax:

fax -u 1 -r recfile.ips

fax invokes the sample fax program with the following
arguments:

The channel is now set to receive a fax and is waiting for an
incoming call.

2. Send a fax from channel 0 to channel 1.

In a second window, type:

fax -u 0 -s wphonenum fax.ips

-u Specifies that the following number is the
number of the channel that receives a fax (in this
case channel 1 is used).

-r Places the channel (1) in receive mode.

recfile.ips Creates a file, recfile.ips, in which to receive a
fax.

-u Specifies that the following number is the
number of the channel that sends a fax (in this
case channel 0 is used).

-s Places the channel (0) in send mode.

w  In robbed-bit T1 TDM environments, checks
the signaling if w is the first character of the
string.

 In E&M immediate mode, causes the channel
to wait and see if the T1 slot is free.

 In E&M wink mode, causes the channel to
wait for a wink signal from the remote side.

 Anywhere else in the string, waits for dial
tone.

phonenum Specifies the phone number of the channel to
receive the fax (in this case channel 1).

fax.ips Sends the infopkt stream file fax.ips previously
created with the mkinfopk utility. Refer to The
Infopkt Stream on page 44

March 2020 61

Sending a Fax to a Channel from an External Fax
Machine

Use the fax.c sample program to send a fax from an external fax
machine to a channel in your system. Then send the same fax back to
the same fax machine from the same channel in your system.

1. Prepare channel 1 to receive a fax as you did in the previous
example. Use the same input file name recfile.ips used to send a
fax from one channel to another in the same system:

fax -u 1 -r recfile.ips

Channel 1 is now set to receive a fax and is waiting for an
incoming call.

2. At the fax machine, insert the sample fax in the fax machine and
call the channel's (channel 1) phone number in the normal way.
At the tone send your sample fax.

Wait for the selected channel to receive the sample fax.

3. Send the received fax back to the fax machine:

fax -u 1 -s wphonenum recfile.ips

This time, phonenum is the phone number of the external fax
machine.
You can examine the structure of the infopkt stream recfile.ips
before you transmit it back to the fax machine.

decode recfile.ips

March 2020 62

Using Bfv API Fax Functions

The following sections show how to send and receive facsimiles using
the high- and low-level function calls, noninfopkt function calls, and
TIFF-F function calls. It also shows how to send and receive
facsimiles in MR and MMR format, access infopkt streams and
TIFF-F fax files from an application, combine data on a single page
using TIFF-F fax files, interpret fax status information from an
application, and how to use prompt files.

The following declarations are assumed to be in effect for all
examples.

struct args_line_admin args_admin;
struct args_telephone args_tel;
struct args_speech args_speech;
struct args_fax args_fax;
struct args_fax_t30_params args_t30;
struct args_fax_page_params args_page;
struct args_fax_strip_params args_strip;
struct args_tone args_tone;
struct args_download args_download;
struct args_dh args_dh;
struct args_intlimit args_intlimit;
struct args_infopkt args_infopkt;
struct args_tiff args_tiff;
struct args_cc args_cc

Using High- and Low-Level Functions

The Bfv API library contains both high- and low-level function calls
(see Table 1 on page 38). Several low-level function calls are
combined into one high-level function to provide a quick and easy
method to send or receive a facsimile.

The low-level functions, on the other hand, provide more flexibility
and functionality than the higher level function calls.

Sending a Fax Using High-Level Function Calls A typical way to
send a fax using the high-level fax function calls is demonstrated
below. Each function is presented in sequential order, and the action
it performs is described beneath it.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

March 2020 63

Attaches to a free channel and gets a line pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named, usrcnfig.cfg.

BT_ZERO(args_infopkt);
args_infopkt.fname = name;
args_infopkt.fmode = "r";
ips = BfvInfopktOpen(&args_infopkt);

Opens the infopkt-formatted file called name for reading and
transmission.

BT_ZERO(args_tel);
args_tel.phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.func = userfunc;
args_tel.arg = userarg;
BfvLineOriginateCall(lp,&args_tel);

Dials the phone number, monitors call progress, calls the user
function to optionally decide when to terminate call progress.

BT_ZERO(args_fax);
args_fax.s_ips = ips;
args_fax.local_id = local_id;
BfvFaxSend(lp,&args_fax);

Transmits documents based on an infopkt stream.

BT_ZERO(args_infopkt);
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt);

Closes the infopkt stream file after the file is sent.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all memory for the attached line and closes the device.

Receiving a Fax Using High-Level Function Calls A typical way to
receive a fax using the high-level fax function calls is demonstrated
below. Each function is presented in sequential order, and the action
it performs is described beneath it.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

March 2020 64

Attaches to a free channel and gets a line pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO(args_infopkt);
args_infopkt.fname = name;
args_infopkt.fmode = "w";
ips = BfvInfopktOpen(&args_infopkt);

Opens the infopkt-formatted file called name for writing.

BT_ZERO(args_tel);
args_tel.timeout = 0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.

BfvLineAnswer (lp, &args_tel);

Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO(args_fax);
args_fax.r_ips = ips;
args_fax.local_id = local_id;
BfvFaxReceive (lp, &args_fax);

Receives fax pages and puts them into the infopkt stream ips.

BT_ZERO(args_infopkt);
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt);

Closes the infopkt stream file after the file is sent.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Closes the infopkt stream file after the file is received.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all memory for the attached line and closes the device.

March 2020 65

Sending a Fax Using Low-Level Infopkt Function Calls One way to
send a fax using the low-level infopkt fax function calls is
demonstrated below. Each function is presented in sequential order,
and the action it performs is listed beneath it.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a line pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO(args_infopkt);
args_infopkt.fname = name;
args_infopkt.fmode = "r";
ips = BfvInfopktOpen(&args_infopkt);

Opens the infopkt-formatted file called name for reading and
transmission.

BT_ZERO(args_cc);
args_cc.phonenum = "w7814499009";
args_cc.call_protocol_code = CALL_PROTOCOL_ FAX;
BfvCallSetup(lp,&args_cc);

Dials the phone number

BT_ZERO(args_cc);
args_cc.call_protocol_code = CALL_PROTOCOL_ FAX;
BfvCallWaitForComplete(lp,&args_cc);

Monitors call progress, calls the user function to optionally decide
when to terminate call progress.

BT_ZERO(args_fax);
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(lp,&args_fax);

Sets the local id.

BT_ZERO(args_fax);
args_fax.s_ips = ips;
BfvFaxBeginSend(lp, &args_fax);

Begins the handshaking procedure between the two machines.

BfvFaxGetRemoteInfo(lp, &args_fax);

Waits for the called machine to send its ID and capabilities.

BfvFaxWaitForTraining(lp, &args_fax);

March 2020 66

Waits for the completion of the Phase B handshaking procedure.

for (;;)
{
 BT_ZERO(args_fax);
 args_fax.s_ips = ips;
 if ((ret = BfvFaxNextPage(lp, &args_fax)) <= 0)
 break;
 BfvFaxSendPage(lp, &args_fax);
}

Loops through the infopkt stream, getting the next page and
transmitting it to the driver.

BfvFaxEndOfDocument(lp, &args_fax);

Finishes up when the infopkt stream is exhausted.

BT_ZERO(args_infopkt);
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt);

Closes the infopkt stream file after the file is sent.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all memory for the attached line and closes the device.

You can replace some low-level functions with a high-level function,
for example:

Receiving a Fax Using Low-Level Infopkt Function Calls One way
to receive a fax using the low-level infopkt fax function calls is
demonstrated below. Each function is presented in sequential order,
and the action it performs is described beneath it.

BfvCallSetup
BfvCallWaitForComplete

These low level functions are
replaced with the high level
function BfvLineOriginateCall.

BfvFaxSetLocalID
BfvFaxBeginSend
BfvFaxGetRemoteInfo
BfvFaxWaitForTraining
BfvFaxSendPage
BfvFaxEndOfDocument

These low level functions are
replaced with the high level
function BfvFaxSend.

March 2020 67

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a BTLINE pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp, &args_admin);

Resets the channel and sets the user-configured options in the
user-defined configuration file usrcnfig.cfg.

BT_ZERO(args_infopkt);
args_infopkt.fname = name;
args_infopkt.fmode = "w";
ips = BfvInfopktOpen(&args_infopkt);

Opens the infopkt-formatted file, name, to store the received fax.

BT_ZERO(args_tel);
args_tel.timeout = 0L;
BfvLineWaitForCall(lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.

BfvLineAnswer(lp, &args_tel);

Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO(args_fax);
args_fax.local_id = "Id_string";
BfvFaxSetLocalId(lp,&args_fax);

Sets the local ID to transmit to the sending machine.

BT_ZERO(args_fax);
BfvFaxBeginReceive(lp, &args_fax);

Begins the Phase B handshaking procedure.

BfvFaxGetRemoteInfo(lp, &args_fax);

Waits for the remote to send its ID and capabilities.

Note: The previous phone call is terminated by the application if the
remote fax's ID does not match the expected value.

BfvFaxWaitForTraining(lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

BT_ZERO(args_fax);
args_fax.r_ips = ips;
BfvFaxReceivePages(lp,&args_fax);

Receives and writes the fax data to the infopkt stream file pointed to
by ips.

March 2020 68

BT_ZERO(args_infopkt);
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt);

Closes the infopkt stream file after the file is sent.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

You can replace some low-level functions with a high-level function,
for example:

See the applications in the sample application directory for more
detailed information.

Sending a Fax Using Function Calls for
Noninfopkt-Formatted Raw G3 Files

One way to send a fax using function calls for noninfopkt-formatted
raw G3 files is demonstrated below. Each function is presented in
sequential order, and the action it performs is described beneath it.

This example sends a two-page fax whose page and strip data are
stored in noninfopkt-formatted files. The first page consists of a
Group 3 letterhead (ltrhd.g3), a body in ASCII (main.txt), and a
signature file in Group 3 (sig.G3). The second page is an ASCII file
(memo.txt).

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a line pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

BfvFaxBeginReceive
BfvFaxGetRemoteInfo
BfvFaxSetLocalId
BfvFaxWaitForTraining
BfvFaxReceivePages

These low level functions are
replaced with the high level function
BfvFaxReceive.

March 2020 69

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO(args_tel);
args_tel.phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.func = userfunc;
args_tel.arg = userarg;
BfvLineOriginateCall(lp,&args_tel);

Dials the phone number, monitors call progress, calls the user
function to optionally decide when to terminate call progress.

BT_ZERO(args_t30);
args_t30.bit_rate = BITRATE_14400;
args_t30.scan_time = SCANTIME_0;
BfvFaxT30Params(lp,&args_t30);

Configures the channel's maximum transmission rate. This function
is optional.

BT_ZERO(args_page);
args_page.top_margin = 0;
args_page.bottom_margin = 0;
args_page.length = 1143;
args_page.ascii_pad = 1;
args_page.image_pad = 0;
args_page.image_break = 0;
args_page.image_margin = 0;
BfvFaxPageParams(lp,&args_page);

Sets the page parameters: no top or bottom margins, a page length of
1143 (normal) G3 lines, no padding of short ASCII pages, no padding
of short images, no breaking of images, and no margins for images.

BT_ZERO(args_fax);
args_fax.resolution = RES_200H_200V;
args_fax.width = WIDTH_A4;
BfvFaxBeginSendRaw(lp, &args_fax);

Begins the handshaking procedure and indicates that the first page
is in fine resolution and has A4 width.

BfvFaxGetRemoteInfo(lp, &args_fax);

Waits for the called machine to send its ID and capabilities.

BfvFaxWaitForTraining(lp, &args_fax);

Waits for the completion of the Phase B handshaking procedure.

BT_ZERO(args_strip);
args_strip.fmt = DATA_G3;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams(lp,&args_strip);

March 2020 70

Sets the G3 strip parameters for the G3 strip ltrhd.g3.

BT_ZERO(args_fax);
args_fax.fname = "ltrhd.g3";
args_fax.fmt = DATA_G3;
BfvFaxSendFile(lp, &args_fax);

Sends the G3 letterhead data file ltrhd.g3 to the driver.

BT_ZERO(args_strip);
args_strip.fmt = DATA_ASCII;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
args_strip.left_margin = 5;
args_strip.right_margin = 0;
args_strip.line_spacing = 2;
args_strip.eof_char = 0x1a;
BfvFaxStripParams(lp,&args_strip);

Sets the ASCII parameters for the ASCII strip main.txt, since it
differs from the default.

BT_ZERO(args_fax);
args_fax.fname = "main.txt";
args_fax.fmt = DATA_ASCII;
BfvFaxSendFile(lp, &args_fax);

Sends the ASCII text body file main.txt to the driver.

BT_ZERO(args_strip);
args_strip.fmt = DATA_G3;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams(lp,&args_strip);

Sets the G3 strip parameters for the G3 strip sig.G3.

BT_ZERO(args_fax);
args_fax.fname = "sig.g3";
args_fax.fmt = DATA_G3;
BfvFaxSendFile(lp, &args_fax);

Sends the G3 signature file sig.G3 to the driver.

BT_ZERO(args_fax);
args_fax.resolution = RES_200H_100V;
args_fax.width = WIDTH_A4;
BfvFaxNextPageRaw(lp, &args_fax);

Sends an end-of-page command to the driver and indicates that
another page (normal resolution and A4 width) follows.

BT_ZERO(args_page);
args_page.top_margin = 5;
args_page.bottom_margin = 5;

March 2020 71

args_page.length = 1143;
args_page.ascii_pad = 0;
BfvFaxPageParams(lp,&args_page);

Sets the page parameters for this page since they differ from those of
the first page.

March 2020 72

BT_ZERO(args_fax);
args_fax.fname = "memo.txt";
args_fax.fmt = DATA_ASCII;
BfvFaxSendFile(lp, &args_fax);

Sends the ASCII text file, memo.txt the only file on the second page,
to the driver.

BfvFaxEndOfDocument(lp, &args_fax);

Indicates to the driver that the second page is the last page of the
transmission.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Receiving a Fax Using Function Calls for
Noninfopkt-Formatted Raw G3 Files

One way to receive a fax using function calls for
noninfopkt-formatted raw G3 files is demonstrated below. Each
function is presented in sequential order, and the action it performs
is described beneath it.

This example receives fax data into a buffer only and does not
include instructions for further processing the contents of the buffer.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a BTLINE pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options in the
user-defined configuration file usrcnfig.cfg.

BT_ZERO(args_tel);
args_tel.timeout = 0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.

March 2020 73

BfvLineAnswer (lp, &args_tel);

Answers the incoming call and sets the line state to CONNECTED

BT_ZERO(args_fax);
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(lp,&args_fax);

Sets the local ID to transmit to the sending machine.

BT_ZERO(args_fax);
BfvFaxBeginReceive(lp, &args_fax);

Begins the Phase B handshaking procedure.

BfvFaxGetRemoteInfo (lp, &args_fax);

Waits for the remote to send its ID and capabilities.

Note: The previous phone call is terminated by the application if the
remote fax machine's ID does not match the expected value.

BfvFaxWaitForTraining (lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

do
{
 BT_ZERO(args_fax);
 args_fax.buf = buf;
 args_fax.size = size;

 /* receive data into buffer */
 if (BfvFaxReceiveData(lp,&args_fax) <= 0)
 break;

 /* Process buffer contents */
 Process(buf);
}

Keeping track of the resolution of each page is the application's
responsibility.

When the function returns a 0 at exit from the loop, the application
must determine, from the value of args_fax.expect_another, if
there is another page to receive.

BfvFaxEndReception(lp, &args_fax);

Call this function when there are no more pages to receive.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

March 2020 74

Frees all the memory for the attached line and closes the device.

Sending a Fax Using Calls for TIFF-F Files

One way to send a fax using function calls for TIFF-F files is
demonstrated below. Each function is presented in sequential order,
and the action it performs is described beneath it.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a line pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO(args_tiff);
args_tiff.fname = name;
args_tiff.fmode = "r";
tp = BfvTiffOpen(&args_tiff);

Opens the TIFF-F file name for reading and transmission.

BT_ZERO(args_tel);
args_tel.phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;
args_tel.func = userfunc;
args_tel.arg = userarg;
BfvLineOriginateCall(lp,&args_tel);

Dials the phone number, monitors call progress, calls the user
function to optionally decide when to terminate call progress.

BT_ZERO(args_fax);
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(lp,&args_fax);

Sets the local id.

BT_ZERO(args_fax);
args_fax.s_tp = tp;
BfvFaxBeginSendTiff(lp,&args_fax);

Begins the Phase B handshaking procedure.

BfvFaxGetRemoteInfo(lp, &args_fax);

Waits for the called machine to send its ID and capabilities.

BfvFaxWaitForTraining(lp, &args_fax);

March 2020 75

Waits for the completion of the Phase B handshaking procedure.

for (;;)
{
 BT_ZERO(args_fax);
 args_fax.s_tp = tp;
 args_fax.combine = 0;
 if (BfvFaxNextPageTiff(lp,&args_fax) <= 0)
 break;
 BT_ZERO(args_fax);
 args_fax.s_tp = tp;
 if (BfvFaxSendPageTiff(lp,&args_fax) < 0)
 break;
}

Loops through the TIFF-F file, getting the next page and sending it
to the driver.

BfvFaxEndOfDocument(lp, &args_fax);

Finishes up when the TIFF data is exhausted.

BT_ZERO(args_tiff);
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

Closes the TIFF-F file after the file is received.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Receiving a Fax Using Calls for TIFF-F Files

One way to receive a fax using function calls for TIFF-F files is
demonstrated below. Each function is presented in sequential order,
and the action it performs is described beneath it.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a BTLINE pointer.

March 2020 76

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options in the
user-defined configuration file named usrcnfig.cfg.

BT_ZERO(args_tiff);
args_tiff.fname = name;
args_tiff.fmode = "w";
tp = BfvTiffOpen(&args_tiff);

Opens the TIFF-F file name to store the received fax.

BT_ZERO(args_tel);
args_tel.timeout = 0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs.

BfvLineAnswer (lp, &args_tel);

Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO(args_fax);
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(lp,&args_fax);

Sets the local ID to transmit to the sending machine.

BT_ZERO(args_fax);
BfvFaxBeginReceive(lp, &args_fax);

Begins the Phase B handshaking procedure.

BfvFaxGetRemoteInfo(lp, &args_fax);

Waits for the remote to send its ID and capabilities.

BfvFaxWaitForTraining(lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

do
{
 BT_ZERO(args_fax);
 args_fax.r_tp = tp;
}
while (BfvFaxRcvPageTiff(lp,&args_fax) > 0);

Receives and writes the fax data to the TIFF-F file pointed to by tp.

BfvFaxEndReception(lp, &args_fax);

After the last page is received, waits for the T.30 handshaking
confirmation sequence to complete.

March 2020 77

BT_ZERO(args_tiff);
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

Closes the TIFF file after the file is received.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Receiving and Storing a Fax in MMR or
MR Format

Receiving an Infopkt-Formatted Fax and Storing it in MMR Format

A typical way to receive a fax that is made up of infopkts and store it
in MMR format is demonstrated below. Each function is presented in
sequential order, and the action it performs is described beneath it.

When MR or MMR facsimiles are received in infopkt format, the
data format type specification is automatically included through the
g3strppkt infopkt structure. Retransmission of these infopkt files
is done the same way transmission of MH files is done (see Sending a
Fax Using Low-Level Infopkt Function Calls on page 65 for detailed
instructions).

The application controls the format of images received from the
channel; this format is independent of the format of data received by
the channel.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a line pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO(args_infopkt);
args_infopkt.fname = name;
args_infopkt.fmode = "w";
ips = BfvInfopktOpen(&args_infopkt);

Opens the infopkt-formatted file called name to store the received
fax.

March 2020 78

BT_ZERO(args_tel);
args_tel.timeout = 0L;
BfvLineWaitForCall (lp, &args_tel);

Waits without a timeout for an incoming call and performs call
screening when the call occurs

BfvLineAnswer (lp, &args_tel);

Answers the incoming call and sets the line state to CONNECTED.

BT_ZERO(args_fax);
args_fax.fmt = FMT_MMR_ALIGN_MSB;
BfvFaxSetReceiveFmt(lp,&args_fax);

Sets the format used to pass the received fax data from the channel
to the computer. In this example, MMR data format – byte aligned,
most significant bit first – is specified. See the fmt parameter
description for detailed information on all of the data format types
that are available through BfvFaxSetReceiveFmt.

BT_ZERO(args_fax);
args_fax.r_ips = ips;
args_fax.local_id = local_id;
BfvFaxReceive (lp, &args_fax);

Receives fax pages and puts them into the infopkt stream ips.

BT_ZERO(args_infopkt);
args_infopkt.ips = ips;
BfvInfopktClose (&args_infopkt);

Closes the infopkt stream file after the file is received.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Receiving a Noninfopkt-Formatted Fax and Storing It in MR Format

A typical way to receive a fax that is made up of noninfopkts and
store it in MR data format is demonstrated below. Each function is
presented in sequential order, and the action it performs is described
beneath it.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a BTLINE pointer.

March 2020 79

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options in the
user-defined configuration file usrcnfig.cfg.

BT_ZERO(args_tel);
args_tel.timeout = 0L;
BfvLineWaitForCall (lp, &args_tel);

Waits for the detection of an incoming call.

BfvLineAnswer (lp, &args_tel);

Answers the phone line by going off-hook.

BT_ZERO(args_fax);
args_fax.fmt = FMT_MR_UNALIGN_MSB;
BfvFaxSetReceiveFmt(lp,&args_fax);

Sets the format used to pass the received fax data from the channel
to the computer. In this example, MR data format – byte unaligned,
least significant bit first – is specified.

See the fmt parameter description for detailed information on all of
the data format types that are available through
BfvFaxSetReceiveFmt.

BT_ZERO(args_fax);
args_fax.local_id = "Id_string";
BfvFaxSetLocalID(lp,&args_fax);

Sets the local ID to transmit to the sending machine.

BT_ZERO(args_fax);
BfvFaxBeginReceive(lp, &args_fax);

Begins the Phase B handshaking procedure.

BfvFaxGetRemoteInfo(lp, &args_fax);

Waits for the remote end to send its ID and capabilities.

Note: The previous phone call is terminated by the application if the
remote fax machine's ID does not match the expected value.

BfvFaxWaitForTraining(lp, &args_fax);

Waits for the completion of the Phase B handshaking process.

do
{
 BT_ZERO(args_fax);
 args_fax.buf = buf;
 args_fax.size = size;

March 2020 80

 /* receive data into buffer */
 if (BfvFaxReceiveData(lp,&args_fax) <= 0)
 break;

 /* Process buffer contents */
 Process(buf);
}

Keeping track of the resolution and the data format (previously set
by BfvFaxSetReceiveFmt) of each page, is the application's
responsibility.

When the function returns a 0 at exit from the loop, the application
must determine, from the value of args_fax.expect_another, if
there is another page to receive.

BfvFaxEndReception(lp, &args_fax);

Call this function when there are no more pages to receive.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Sending a Noninfopkt-Formatted Fax Stored in MMR Format

One way to send a fax using function calls for noninfopkt-formatted
raw G3 files is demonstrated below. Each function is presented in
sequential order, and the action it performs is described beneath it.

This example sends a one-page fax whose page and strip data are
stored in noninfopkt-formatted files. The page consists of a Group 3
document (mmrdoc.g3) that is stored on disk in MMR format.

The application controls the format of images sent to the channel;
this format is independent of the format of data transmitted by the
channel.

BT_ZERO(args_admin);
args_admin.unit = unit;
lp = BfvLineAttach(&args_admin);

Attaches to a free channel and gets a line pointer.

args_admin.config_file_name = "usrcnfig.cfg";
BfvLineReset(lp,&args_admin);

Resets the channel and sets the user-configured options selected in
the user-defined configuration file named usrcnfig.cfg.

BT_ZERO(args_tel);
args_tel.phonenum = "w7814499009";
args_tel.call_protocol_code = CALL_PROTOCOL_FAX;

March 2020 81

args_tel.func = userfunc;
args_tel.arg = userarg;
BfvLineOriginateCall(lp,&args_tel);

Dials the phone number, monitors call progress, and calls the user
function to optionally decide when to terminate call progress.

BT_ZERO(args_t30);
args_t30.bit_rate = BITRATE_14400;
args_t30.scan_time = SCANTIME_0;
BfvFaxT30Params(lp,&args_t30);

Configures the channel's maximum transmission rate. This function
is optional.

BT_ZERO(args_page);
args_page.top_margin = 0;
args_page.bottom_margin = 0;
args_page.length = 1143;
args_page.ascii_pad = 1;
BfvFaxPageParams(lp,&args_page);

Sets the page parameters: no top or bottom margins, a page length of
1143 (normal) G3 lines, and no padding of short ASCII pages, no
padding of short images, no breaking of images, and no margins for
images.

BT_ZERO(args_fax);
args_fax.resolution = RES_200H_100V;
args_fax.width = WIDTH_A4;
BfvFaxBeginSendRaw(lp, &args_fax);

Begins the handshaking procedure and indicates that the first page
is in normal resolution and has A4 width.

BfvFaxGetRemoteInfo(lp, &args_fax);

Waits for the called machine to send its ID and capabilities.

BfvFaxWaitForTraining(lp, &args_fax);

Waits for the completion of the Phase B handshaking procedure.

BT_ZERO(args_strip);
args_strip.fmt = FMT_MMR_ALIGN_MSB;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams(lp,&args_strip);

Sets the G3 parameters for the G3 document mmrdoc.g3, since the
data format differs from the default (MH).

BT_ZERO(args_fax);
args_fax.fname = "mmrdoc.g3";
args_fax.fmt = FMT_MMR_ALIGN_MSB;
BfvFaxSendFile(lp, &args_fax);

March 2020 82

Sends the G3 document data file mmrdoc.g3 stored on disk in MMR
format, to the driver.

BfvFaxEndOfDocument(lp, &args_fax);

Indicates to the driver that this page is the last page of the
transmission.

BT_ZERO(args_tel);
BfvLineTerminateCall (lp, &args_tel);

Disconnect the call and sets the line state to IDLE.

BT_ZERO(args_admin);
BfvLineDetach (lp, &args_admin);

Frees all the memory for the attached line and closes the device.

Accessing an Infopkt Stream from an Application

The function calls BfvFaxSendPage and BfvFaxNextPage are
typically used in a loop. Both read infopkts from the infopkt stream
for processing.

BfvFaxSendPage reads infopkts and processes them in a loop.
When data (embedded or indirect) or strip parameter type infopkts
are encountered, the indicated parameters and data format (ASCII
or G3) commands are sent to the channel, the data is downloaded to
the driver buffer, and the next infopkt is read. If any other type of
infopkt is encountered, the current position in the infopkt stream
remains unchanged, and the function returns to the calling routine.

BfvFaxNextPage reads infopkts from the current position in the
infopkt stream. All consecutive infopkts of a new-page type,

INFOPKT_PAGE_PARAMETERS,
INFOPKT_T30_PARAMETERS,
INFOPKT_BEGINNING_OF_PAGE, or
INFOPKT_DOCUMENT_PARAMETERS,

are processed, and relevant data and a single end-of-page command
are sent to the channel. If no infopkts of a new-page type are found,
the current position in the infopkt stream remains unchanged, and
the function returns to the calling routine.

A program to read a file containing infopkts could look like this:

BT_ZERO(args_infopkt);
args_infopkt.fname = "filename";
args_infopkt.fmode = "r";
ips = BfvInfopktOpen(&args_infopkt);

March 2020 83

for (;;)
{
 BT_ZERO(args_infopkt);
 args_infopkt.ips = ips;
 args_infopkt.i_mode = INDIR_MODE_FOLLOW;
 if ((ip = BfvInfopktGet(&args_infopkt)) == NULL)
 break;
 process(ip);
}

With the flag set to INDIR_MODE_FOLLOW or
INDIR_MODE_FOLLOW_NOUSER, BfvInfopktGet follows indirect
infopkt links automatically, so the user sees only the actual data.
Other flags let the user examine a file without following indirect
infopkt links. See the BfvInfopktUser function in Volume 4, Fax
Processing, in the Dialogic® Brooktrout® Bfv API Reference Manual
for detailed information on how to access user-defined infopkts when
using the INDIR_MODE_FOLLOW_NOUSER flag.

Sending a TIFF-F Fax File Within an Infopkt Stream

Transmitting a fax stored as a TIFF-F file is accomplished using the
TIFF-F fax routines, as described earlier in this chapter, or using an
infopkt of type INFOPKT_INDIR_TIFF within an infopkt stream.

TIFF files contain resolution and width parameters for each page.
However, the same rules that apply to ordinary fax data streams
also apply to fax data streams that contain INDIR_TIFF infopkts:

 A DOCUMENT_PARAMETERS infopkt must be the first infopkt in
the stream, but the resolution specified by (the first page) of the
TIFF file takes precedence over the resolution specified by the
DOCUMENT_PARAMETERS infopkt. This rule is in effect only if
INDIR_TIFF occurs right after the DOCUMENT_PARAMETERS or
other infopkt types indicating beginning-of-page.

 To insert a page break between the last page of the first file and
the first page of the second file, one of the infopkt types that
indicate a beginning-of-page (see Accessing an Infopkt Stream
from an Application on page 82) must be present between
INDIR_TIFF infopkts.

 ASCII or G3 data are combined on a single page with the first or
last page of a TIFF file by constructing the stream with no
new-page type infopkt between the ASCII or G3 data and the
INDIR_TIFF infopkt. G3 strip parameter packets might be

March 2020 84

required (see Infopkts on page 40); the resolution and width of
the G3 data in a TIFF file is always specified in the TIFF file, not
in the G3 strip parameter packet.

Combining Data on a Single Page Using TIFF-F
Fax Files

Two methods exist for combining data on a single page using
TIFF-F files.

The first method uses an infopkt of type INFOPKT_INDIR_TIFF to
embed a TIFF-F file in an infopkt stream, as described in Sending a
TIFF-F Fax File Within an Infopkt Stream on page 83.

The second method uses the normal TIFF sending functions to
transmit a TIFF file that is preceded or succeeded by other G3 or
ASCII files that are transmitted with either the
noninfopkt-formatted raw data fax functions or the TIFF file fax
functions.

To use the second method successfully, the user must pay attention
to the combine argument of the BfvFaxNextPageTiff function (see
the function description in Volume 4, Fax Processing, in the
Dialogic® Brooktrout® Bfv API Reference Manual for detailed
information). When the combine argument is 1, the page information
for the TIFF G3 data is sent to the channel without beginning a new
page (do not call the BfvFaxStripParams function to do this).

For example, a program to send a page composed of ASCII combined
with G3 from a TIFF file that is combined with G3 from a raw file
could look like this:

/* Set up call prior */

/* Begin fax transmission, normal resolution, */
/* normal width */

BT_ZERO(args_fax);
args_fax.resolution = RES_200H_100V;
args_fax.width = WIDTH_A4;
BfvFaxBeginSendRaw(lp, &args_fax);
BfvFaxGetRemoteInfo(lp, &args_fax);
BfvFaxWaitForTraining(lp, &args_fax);
BT_ZERO(args_fax);
args_fax.fname = "ascii_file";
args_fax.fmt = DATA_ASCII;
BfvFaxSendFile(lp, &args_fax);
BT_ZERO(args_tiff);
args_tiff.fname = "tiff_file";
args_tiff.fmode = "r";

March 2020 85

tp = BfvTiffOpen(&args_tiff);
/* No BfvFaxStripParams call is needed here, */
/* due to a combine value of 1 */

BT_ZERO(args_fax);
args_fax.s_tp = tp;
args_fax.combine = 1;
BfvFaxNextPageTiff(lp,&args_fax);
BT_ZERO(args_fax);
args_fax.s_tp = tp;
BfvFaxSendPageTiff(lp,&args_fax);
BT_ZERO(args_tiff);
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

/* A call to BfvFaxStripParams must be done */
/* here for combination with previous G3 */
/* data (from TIFF file)*/

BT_ZERO(args_strip);
args_strip.fmt = DATA_G3;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams(lp,&args_strip);

BT_ZERO(args_fax);
args_fax.fname = "g3_file";
args_fax.fmt = DATA_G3;
BfvFaxSendFile(lp, &args_fax);
BfvFaxEndOfDocument(lp, &args_fax);

The previous example set the page resolution and width to fixed,
predetermined values. A slight variation permits you to use the
resolution and width values stored in the TIFF page for both the
page and the data strip within the page. The TIFF routines retain
these values until the data strip is sent.

/* set up call prior */

BT_ZERO(args_tiff);

args_tiff.fname = "tiff_file";
args_tiff.fmode = "r";
tp = BfvTiffOpen(&args_tiff);
BT_ZERO(args_fax);
args_fax.s_tp = tp;
BfvFaxBeginSendTiff(lp,&args_fax);
BfvFaxGetRemoteInfo(lp, &args_fax);
BfvFaxWaitForTraining(lp, &args_fax);
BT_ZERO(args_fax);
args_fax.fname = "ascii_file";
args_fax.fmt = DATA_ASCII;
BfvFaxSendFile(lp, &args_fax);
/* No BfvFaxStripParams call is needed here, */

March 2020 86

/* due to a combine value of 1 */
BT_ZERO(args_fax);
args_fax.s_tp = tp;

args_fax.combine = 1;
BfvFaxNextPageTiff(lp,&args_fax);
BT_ZERO(args_fax);
args_fax.s_tp = tp;
BfvFaxSendPageTiff(lp,&args_fax);
BT_ZERO(args_tiff);
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

/* A call to BfvFaxStripParams must be done */
/* here for combination with previous G3 */
/* data (from TIFF file)*/

BT_ZERO(args_strip);
args_strip.fmt = DATA_G3;
args_strip.resolution = RES_200H_100V;
args_strip.width = WIDTH_A4;
BfvFaxStripParams(lp,&args_strip);
BT_ZERO(args_fax);
args_fax.fname = "g3_file";
args_fax.fmt = DATA_G3;
BfvFaxSendFile(lp, &args_fax);
BfvFaxEndOfDocument(lp, &args_fax);

Accessing a TIFF-F File from an Application

Although applications can directly read and write TIFF-F files with
the Bfv API, some knowledge of TIFF-F file format is useful.

The BfvTiffOpen and BfvTiffClose functions open and close
TIFF-F files, respectively.

The BfvTiffReadIFD and BfvTiffReadImage functions read an
opened TIFF file. BfvTiffReadIFD calls a user-supplied function
repeatedly with IFD entry information stored in an IFD (Image File
Directory) for a particular page. The application can use fseek to
move to locations in the TIFF file as directed by the tags (using the
TIFF_FP(tp) macro to get the file pointer) and BfvTiffReadRes to
help determine the resolution, as is often needed. The
BfvTiffReadImage function puts data into a user-supplied buffer
until the end of the page is reached.

A sample program to read a TIFF-F file follows:

int main (int argc, char **argv)
{

int my_ifd_func();
TFILE *tp;

March 2020 87

unsigned char buf[1024];
int n;
struct args_tiff args_tiff;

BT_ZERO(args_tiff);
args_tiff.fname = "filename";
args_tiff.fmode = "r";
tp = BfvTiffOpen(&args_tiff);
for (;;)

{
args_tiff.tp = tp;
args_tiff.func = my_ifd_func;
args_tiff.arg = NULL;
if (BfvTiffReadIFD(&args_tiff) <= 0)

break;
args_tiff.buf = buf;
args_tiff.size = sizeof(buf);
if ((n = BfvTiffReadImage(&args_tiff)) <= 0)

break;
process_image(buf,n);

}
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

 return 0;

}

int my_ifd_func(TFILE *tp, struct ifd_field *ifd_field,
char *arg)
{

/* Does nothing,just returns */
return (0);

}

The BfvTiffWriteImage and BfvTiffWriteIFD functions are used
to write a new TIFF file. BfvTiffWriteImage receives data from a
user-supplied buffer until the end of the page is reached. The
BfvTiffWriteIFD function is called repeatedly with IFD entry
information. The application can use fseek to move to locations in the
TIFF file to determine the proper offsets to use for a given tag (using
the TIFF_FP(tp) macro to get the file pointer) and
BfvTiffWriteRes to help write the resolution as is often needed.

The presence of a certain set of tags is required to produce a valid
TIFF-F file; BfvTiffWriteIFD automatically takes care of the
STRIPOFFSETS and STRIPBYTECOUNTS tags, but the application is
responsible for all other tags.

A sample program to write a TIFF-F file follows:

int main (int argc, char **argv)

March 2020 88

{
TFILE *tp;
unsigned char buf[1024];
int n;
struct ifd_field ifd_field;
struct args_tiff args_tiff;

BT_ZERO(args_tiff);
args_tiff.fname = "filename";
args_tiff.fmode = "w";
tp = BfvTiffOpen(&args_tiff);
for (;;)
{

if ((n = get_image_data(buf)) <= 0)
break;

args_tiff.tp = tp;
args_tiff.buf = buf;
args_tiff.size = n;
if (BfvTiffWriteImage(&args_tiff) != 0)

break;
}

args_tiff.tp = tp;
args_tiff.buf = NULL;
args_tiff.size = 0;
BfvTiffWriteImage(&args_tiff);
args_tiff.ifd_field = &ifd_field;
while (determine_next_ifd(&ifd_field) > 0 &&

BfvTiffWriteIFD(&args_tiff) == 0);
args_tiff.ifd_field = NULL;
BfvTiffWriteIFD(&args_tiff);
args_tiff.tp = tp;
BfvTiffClose(&args_tiff);

Determining Fax Status Information from an Application

An in-progress fax transmission or reception has a number of
attributes that an application might find useful to access. The
application can use this information, for example, to update a fax
status information screen.

The information available to an application includes:

 Remote Fax Node Parameters

 Remote ID string

 Remote NSF/NSC/NSS

 Remote SSP/PWD/SUB

 Transfer Mode

 Transmitting

 Receiving

March 2020 89

 Current Page Transmission Parameters

 Bit rate

 Scan time

 ECM mode

 Compression format

 Resolution

 Width

This section explains how an application can access this information.

Remote Fax Node Parameters

The BfvFaxGetRemoteInfo returns the remote ID, remote
NSF/NSC/NSS values, and remote SSP/PWD/SUB values to the
application.

Transfer Mode

The application normally keeps track of its own operation mode
(transmitting or receiving), but it can also use the LINE_DCS (see
Volume 4, Fax Processing, in the Dialogic® Brooktrout® Bfv API
Reference Manual) macro to get this information.

Current Page Transmission Parameters

The application can use the LINE_DCS macro to access information
about the currently transmitting page; this information might
change between pages. The information includes the bit rate, scan
time, ECM mode, compression format, resolution, and width. The
values for the first page are available after the
BfvFaxWaitForTraining function has returned. Each time
renegotiation or retraining occurs, the Bfv API updates the values
available from the LINE_DCS macro.

March 2020 90

3 - Debugging

This chapter describes how to use the debugging tools.

The chapter has the following sections:

 Bfv API Debug Mode on page 91

 BfvDataFSK on page 91

 BfvLineDumpStructure on page 91

 Dump History on page 92

 Parsed Command Information on page 97

 Utility Programs for Debugging on page 99

 BSMI Debugging on page 100

March 2020 91

Bfv API Debug Mode

Some components of the Bfv API have their own unique debug
functions to produce debug information relevant only to that
component. The output from these functions is combined to provide a
unified debug output if desired.

The following table lists the component, function name and
reference:

By calling one of the DebugModeSet functions with an appropriate
value, the application can cause the Bfv API to print various status
and debugging information to the standard output. This output
includes commands sent and received and state information. The
application can change the debug mode output function to redirect
the output to a file or nonstandard display by calling one of the
DebugFuncSet functions.

The time-stamped output of the Bfv API debug mode is generated
until another call to one of the DebugModeSet functions disables it.

BfvDataFSK

BfvDataFSK is issued at any point during the execution of an
application to monitor the T.30 protocol procedure and to retrieve
FSK data. Issuing BfvDataFSK and reviewing the FSK data after
each function call is very useful as a debugging tool. See Volume
4,Fax Processing, in the Dialogic® Brooktrout® Bfv API Reference
Manual for detailed information on BfvDataFSK.

BfvLineDumpStructure

The BfvLineDumpStructure function (Volume 1, in the Dialogic®
Brooktrout® Bfv API Reference Manual) dumps the contents of the
BTLINE structure into a file. It writes each element of the line
structure individually.

March 2020 92

Use this call to create error report logs (along with the contents of
Dump History) and to track changing states of the line.

Dump History

Dump History (dh) is a stand-alone utility, which displays to the
screen a log of the interactions between the driver and channels,
modules, and applications. The size is specified at driver
configuration time. The default is a buffer size of approximately 1MB
for the entire driver.

To use the Dump History utility, you must enable the debug option
during installation of the driver. See the Dialogic® Brooktrout® Fax
Products SDK Installation and Configuration Guide section on
History Logging for your operating system for instructions on how to
enable the debug option. Once enabled, driver operations are
automatically logged with a time stamp in a circular buffer.

Using dump history, in any form, can have an effect an the system.
Enabling history at all, regardless of the configured size, slows the
operation of the driver down to a small degree. If the history size is
set to a very large value (e.g., a number of megabytes), then actually
getting the history slows the system down in ways that affects any
other Bfv API applications running.

This is because of several factors:

 The driver requires time to copy history memory. All other
standard driver operations are temporarily suspended.

 The history functions require time to parse the history memory
into readable form.

 High disk load while writing the many megabytes of history data
in a short time.

March 2020 93

Invoking Dump History

You can invoke Dump History from within an application or directly
from the command line.

 From within an application use the BfvHistoryDump...
functions. See Volume 1 of the Dialogic® Brooktrout® Bfv API
Reference Manual for detailed information on how to use the
BfvHistoryDump... functions.

 As a stand-alone utility, as follows:

dh [-C] [-f] [-r [-b]] [-R file offset] [-P pktver] [-H hdr_dir] module channel

-C Clear the history buffer, do not print
entries.

-f Display history output continuously until
the program is terminated by the user.
This option works best only on lightly
loaded systems. For best speed, use the
options -r -b, then later interpret the
output using -R.

-r Do a raw dump of the uninterpreted
history data in ASCII form.

-b Do dump as binary, for use with -r.

-R file offset Indicates that history interpretation is to
be done using a previously obtained binary
history file. (Such files are obtained from
system crash dumps or by processing the
output of dh -r -b). A filename and starting
offset in hex must be specified. When -R is
used, the module and channel numbers are
not required on the command line.

-P For use with -R. Forces the packet version
to the specified value (0 or 1).

-H hdr_dir Read from the directory hdr_dir to create
name tables. Used if modifications were
made to commands or additional command
header files are available after compilation
and distribution of the program.

module 1 channel 1 Main driver history.

module 0 The most recent application corresponding
to channel as an ordinal unit.

module FE The fixed application history corresponding
to channel as index.

March 2020 94

Normally all history is collected in a single main history buffer
accessible as module 1 channel 1. During driver configuration, you
can choose a number of physical history buffers and application
history buffers. If these are non-zero, additional history buffers are
created, and appropriate items are logged in those buffers rather
than the main log.

Under almost all conditions, the history should be configured for 0
physical histories and 0 application histories, and the only
module/channel combination which should be dumped is module 1
and channel 1.

Dump History (dh) is supplied with the device driver and resides in
boston/driver/<platform>/user on all systems.

The information provided by Dump History is very useful to Dialogic
Technical Services and Support in identifying and solving problems.

March 2020 95

Interpreting the Output

The output from Dump History consists of a status header line at the
beginning followed by command logging lines. The output looks
similar to this:

Hist Mod 1/Chan 1 Mon Jun 9 14:02:27 2003, Windows, V4700/B13/P5111/I25:
14:02:20.28.0000827C "PIPR: GDI_PHY_PIPR_MsgReceive (01 01 02 01)"
14:02:20.28.0000827D "PIPR: fnGenericPIPR_MsgReceive (01 01 02 01) NQ = 1 HQ = 0"
14:02:20.28.0000827E "PIPR: fnGenericPIPR_MsgReceive BufID = 518 (01 01 02 01)
 exit: norml msg"
14:02:20.28.0000827F "PIPR: GDI_PHY_PIPR_MsgReceive (01 01 02 01) exit:
 GDI_STS_OK"
14:02:20.28.00008280 "M2: Sending pkt len 000F prio 00 to (01 01 02 01)"
 Pkt bytes: 0D 00 04 01 01 02 01 02 02 FE 01 02 00 02 02
 L4 (01) ADMIN (02) FINISH (02) FIRMWARE_DOWNLOAD
14:02:20.28.00008281 "M2: Packet transferred successfully."
14:02:20.28.00008282 "UTL: GDI_UTL_BufferFree BufID = 518"
14:02:20.48.00008283 "PCI - Checking for intr/pkts"
14:02:20.48.00008284 "M2: Rcvd pkt len 0023, dest (01 01 01 01)"
14:02:20.48.00008285 "UTL: GDI_UTL_BufferAllocWait BufID = 519 all/user =
 240/172"
14:02:20.48.00008286 "M2: Queued incoming packet"
 Pkt bytes: 23 00 64 01 01 01 01 01 01 02 01 18 00 08 06 15
 0A 03 06 04 00 01 01 02 01 06 0B 02 00 20 03 00
 04 0C 01 C8 00
 L1A (01) ADMIN (08) EVENT (06) FLOW_CONTROL_STATUS
 (0A) CREDIT_INFO [03: Fix Uns List Unitless] LIST:
 (04) SUPPORTED_ADDRESS [00: Fix Uns Byte Unitless] 01 01 02 01
 (0B) FREE_BYTES [02: Fix Uns Long Unitless] 00032000
 (0C) FREE_PACKETS [01: Fix Uns Short Unitless] 00C8
14:02:20.48.00008287 "PIPR: GDI_PHY_PIPR_MsgSend"
14:02:20.48.00008288 "PIPR: fnPIPR_MsgSend BufID = 519 s(01 01 02 01) d(01 01 01
 01) NQ = 0 HQ = 0"
14:02:20.48.00008289 "PIPR: fnGenericPIPR_MsgReceive (01 01 01 01) NQ = 0 HQ = 1"
14:02:20.48.0000828A "PIPR: fnGenericPIPR_MsgReceive BufID = 519 (01 01 01 01)
 exit: high msg"
14:02:20.48.0000828B "UTL: GDI_UTL_BufferFree BufID = 519"
14:02:20.48.0000828C "PIPR: GDI_PHY_PIPR_MsgSend exit"
14:02:20.48.0000828D "PCI - Checking for packets to send"
14:02:20.52.0000828E "PCI - Checking for intr/pkts"
14:02:20.52.0000828F "M2: Rcvd pkt len 0017, dest (02 02 FE 01)"
14:02:20.52.00008290 "UTL: GDI_UTL_BufferAllocWait BufID = 51A all/user =
 240/172"

March 2020 96

14:02:20.52.00008291 "M2: Queued incoming packet"
 Pkt bytes: 17 00 24 02 02 FE 01 01 01 02 01 0C 00 08 03 04
 79 01 00 00 04 09 01 00 00
 LE (01) ADMIN (08) EVENT (03) FW_DOWNLOAD_FINISHED
 (79) CURRENT_STREAM [01: Fix Uns Short Unitless] 0000
 (09) DOWNLOAD_RESULT [01: Fix Uns Short Unitless] 0000
14:02:20.52.00008292 "PIPR: GDI_PHY_PIPR_MsgSend"
14:02:20.52.00008293 "PIPR: fnPIPR_MsgSend BufID = 51A s(01 01 02 01) d(02 02
 FE 01) NQ = 0 HQ = 0"
14:02:20.52.00008294 "PIPR: Dispatch (GDI_SIG_MSGPEND): Wakeup SlpHd = 88"
14:02:20.52.00008295 "PIPR: GDI_PHY_PIPR_MsgSend exit"
14:02:20.52.00008296 "PCI - Checking for packets to send"
14:02:20.52.00008297 "PIPR: GDI_APL_PIPR_MsgReceiveWait (02 02 FE 01) Awake
 SlpHd = 88 Rt = GDI_STS_OK"
14:02:20.52.00008298 "PIPR: GDI_APL_PIPR_MsgReceive (02 02 FE 01)"
14:02:20.52.00008299 "PIPR: fnGenericPIPR_MsgReceive (02 02 FE 01) NQ = 1 HQ = 0"
14:02:20.52.0000829A "PIPR: fnGenericPIPR_MsgReceive BufID = 51A (02 02 FE 01)
 exit: norml msg"
14:02:20.52.0000829B "PIPR: GDI_APL_PIPR_MsgReceive (02 02 FE 01)
 exit: GDI_STS_OK"
14:02:20.52.0000829C "PIPR: GDI_APL_PIPR_MsgReceiveWait exit: GDI_STS_OK"
14:02:20.52.0000829D "UTL: GDI_UTL_BufferFree BufID = 51A"
14:02:20.52.0000829E Ioctl ret #B0A
14:02:20.53.0000829F Ioctl MILL_SESSION_DESTROY #B0B

Status Header Line

Lists the module and channel number, the date and time the history
was dumped, the platform name, the driver version, build number,
PIPR version number (internal version), and ioctl interface version
number (internal communication mechanism).

Event Logging Lines

Contain information about each packet being sent or received and
other interactions taking place within the driver and between the
driver and its applications.

Event Logging Line Format

The event logging lines report the time the event occurred and
describe the particular event.

March 2020 97

Timing Information

Timing information is reported first and usually takes the form:

hr:min:sec.fracts.sequence

For example: 11:12:25.512934.0000827C

The sequence field counts each event added to the history entries
and is unique over all history buffers. Gaps in the sequence numbers
occur when events occur in other history buffers. Sequence numbers
are displayed in hex and wrap at 0xffffffff.

Event Descriptions

Each line gives information about some event that took place within
the driver. If a packet is sent or received, a line specifies the
direction. All or some of the packet data are displayed, and as much
as possible is parsed and displayed.

Interactions between applications and the driver are usually via ioctl
commands, which are shown starting with the word Ioctl.

Parsed Command Information

In both Bfv API debug mode output and dump history output,
commands appear parsed. In the history output, it appears after a
message saying whether the packet was sent or received, the packet
data, and a length value preceded by the letter 'L'. In Bfv API debug
mode output, it appears after a '>'(greater then symbol) or '<' (less
than symbol); indicating sent or received.

The commands in a packet appear one at a time (usually just one per
packet). Indented under each command are all of its tagged values
(often just called tags). List tags contain their own tags which are
further indented. For example.

(01) ADMIN (08) EVENT (03) FW_DOWNLOAD_FINISHED

(79) CURRENT_STREAM [01: Fix Uns Short Unitless] 0000

(09) DOWNLOAD_RESULT [01: Fix Uns Short Unitless] 0000

March 2020 98

First is the facility value in parentheses followed by the name of the
facility (01 and ADMIN). Next is the command verb value followed by
the name of the command verb (08 and EVENT). Last is the command
specifier value followed by the name of the command specifier (03
and FW_DOWNLOAD_FINISHED).

The example command contains 2 tags directly within it. Looking at
the first one, the line describing a tag starts with the tag ID value
and tag name (79 and CURRENT_STREAM). Next, in brackets, is the
tag type value (01) and its meaning (fixed unsigned short unitless).
At the end of the tag it either says LIST: if the type is a list, give the
value of the tag if it is a simple integer value (0000 in this case), give
a string value if it is an array of chars, or give a list of numbers if it is
an array of other integers.

March 2020 99

Utility Programs for Debugging

The following sample applications/utilities are available to help you
in debugging your applications by giving you information about
modules in the system such as the firmware, driver, connections, etc.

btver

btver gives you version information for the driver, Bfv API, boot
ROM firmware, control processor firmware, and DSP firmware. See
btver on page 122 for more information.

connlist

To find out the currently established call switching connections, use
the connlist program, which is described in detail in connlist on
page 123.

feature -q

With the -q option of the feature program, you can query the set of
features loaded on your module. feature is described in feature on
page 139.

modinfo

To find out about the active hardware and software modules on your
system as seen by the driver, use the modinfo program, which is
described in modinfo on page 149.

shoparam

shoparam is a stand-alone utility that displays the contents of the
line structure and all of the parameter values contained in the user
and read-only configuration files. See shoparam on page 151 for
more detailed information.

March 2020 100

BSMI Debugging

The debug output is controlled using the regular mechanisms
provided with the Bfv API. Included in the debug output are
diagnostic strings including BSMI message tracing and network
layer tracing.

BSMI Message Tracing

vtty The vtty program displays layer 2, 3, and 4 messages (depending on
user settings).

Command Syntax

vtty [-m <mod>] {-v]

Included in the debug output is a diagnostic message showing the
message identifier of all messages sent to the firmware from the
application, and all messages sent from the firmware to the
application.

Running a Layer 2 Trace

The diagnostic trace function allows you to trace Layer 2 messages
entering and leaving the framer (See Table 5 on page 110 for
command line syntax). The trace function displays link layer
protocol messages only, such as ISDN Q.931. The trace display
resembles a simple protocol analyzer, with the message type decoded
and its direction shown.

A trace shows Layer 2 messages being passed over the links, and
provides some protocol and routing information. It also displays the
received/transmitted message Information Frame in hexadecimal
format. This hexadecimal string contains Layer 2 ISDN frame
headers.

Arguments

-m <mod> Use specified module (default 2)

-v Turn on Bfv API debugging mode

March 2020 101

The trace information is embedded within the Bfv API debug output,
see Figure 5 for a sample output. See Table 2 for report heading
information:

Figure 5. Level 2 Trace Example

Ch# Time Direct SAPI TEI C/R Type N(s) N(r) P/F Size

--- ----- -------- ---- ---- --- -------- ---- ---- --- ------

 03 23B4 Xmit 3F 7F 0 teiReqst 0 0008

 FCFF030F23B501FF

 03 23BB Rcvd 3F 7F 1 teiAssgn 0 0008

 FEFF030F23B502C1

 03 23BB Xmit 00 60 0 SABME 1 0003

 03 23C1 Rcvd 00 60 0 UA 1 0003

 03 278D Xmit 00 60 0 Setup 00 00 0 0018

 00C1000008010105040288901801812C0735353532303030

 03 27C2 Rcvd 00 60 1 Prcdng 00 01 0 000B

 02C1000208018102180189

 03 27C2 Xmit 00 60 1 RR 01 0 0004

 03 27DD Rcvd 00 60 1 Alrtng 01 01 0 0008

 02C1020208018101

 03 27DD Xmit 00 60 1 RR 02 0 0004

 03 27FB Rcvd 00 60 1 Connct 02 01 0 0008

 02C1040208018107

 03 27FB Xmit 00 60 0 ConAck 01 03 0 0008

 00C102060801010F

 03 280C Rcvd 00 60 0 RR 02 0 0004

 03 2E43 Xmit 00 60 0 Discct 02 03 0 000C

 00C104060801014508028090

 03 2E5E Rcvd 00 60 1 Rlease 03 03 0 0008

 02C106060801814D

 03 2E5E Xmit 00 60 0 RelCom 03 04 0 0008

 00C106080801015A

 03 2E71 Rcvd 00 60 0 RR 04 0 0004

 00 09F3 Rcvd 00 00 1 Prcdng 00 01 0 000E

 0201000208028001021803A98381

March 2020 102

Table 2. Trace Report Values

Value Meaning

Ch# Lapdid number. This is an even number where
0=Port A
2=Port B

Time Hexadecimal timestamp incremented at 1 ms intervals.

Direct Direction of frame; possible values are Xmit (transmitted by module)
and Rcvd (received by module).

SAPI Service Access Point Identifier which identifies the type of D-channel
signaling performed; possible values are 00 (ISDN call control) or 63
(management procedures).

TEI Terminal Endpoint Identifier that identifies a particular endpoint
device.

C/R Command/Response bit that identifies the frame as either a command
(C) or response (R); possible values vary depending on whether the
module is performing user side or network side signaling. For user side,
0 indicates a command and 1 indicates a response. For network side,
0 indicates a response and 1 indicates a command.

Type Q.921 UNKNI message frame for unknown information frames or the
Q.931 message contained in the I (information) frame.

N(s) Sequence number assigned to the frame sent by the transmitting
device.

N(r) Expected sequence number of the next frame to be received from the
transmitting device.

P/F Poll/final bit which indicates the device is polling for a response from
the other end, sending a final frame in response to a command, or
neither. Possible values are 1 (polling for response or responding to
command) or 0 (not polling or unsolicited response).

If the message frame is a command (based on the C/R bit), this is a Poll
bit; if the message frame is a response, this is a Final bit.

Size Number of bytes in frame (shown in hexadecimal).

March 2020 103

Understanding Trace Hexadecimal Strings

The hexadecimal string displayed in the trace consists of the
following components:

 Information (I) Frame header

Note: A trace displays hexadecimal strings for I Frame messages
only. Supervisory (S Frame) messages, such as Receiver Ready
(RR), and Unnumbered (U Frame) messages, such as SABME
and UA, are not displayed in hexadecimal format.

 Message header
 Information Elements (IEs)

Interpreting the I Frame Header

The I Frame header contains Layer 2 routing and packet transaction
information. The first four bytes of the hexadecimal string comprise
the I Frame header.

Figure 6 compares the general format for an I Frame against the I
Frame for an example SETUP message, and illustrates the following
points:

 The trace automatically removes the 0x7E byte flags (binary
01111110) that normally indicate the start and end of the frame
and the Frame Check Sequence (FCS) values.

 A trace automatically interprets and displays I Frame header
elements such as the SAPI and TEI (refer to Table 2 for
descriptions of these elements).

 A value of 0 in the shaded bit position identifies the frame as an
I Frame.

00C10000 08010105040288901801812C0735353532303030

I Frame

03 278D Xmit 00 60 0 Setup 00 00 0 0018

Header

March 2020 104

Figure 6. I Frame Formats

Interpreting the Message Header

The Message header starts at byte offset 5 of the hexadecimal string.
For Q.931 call control messages, this header identifies the D-channel
message and references the call for which the message applies.

Figure 7 compares the general structure for a Message header
against the example SETUP message header, and illustrates the
following points:

 The Protocol Discriminator value is 0x08 for all Q.931 call
control messages.

 Modules assign 1-byte call reference values for Q.931 messages,
so the call reference length is always 0x01 and the third byte in
the Message header contains the call reference value (0x0001 in
the example).

Example

Byte

n - 2
n - 1

Bits

8 7 6 5 4 3 2 1

0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0

SAPI

TEI

N(s)

N(r)

Message

- - - - - - - - - - - - FCS - - - - - - - - - - - - -

0

1

0

P/F

C/R

General I Frame

Bits

8 7 6 5 4 3 2 1

0 0 0 0 0 0 0

1 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Example SETUP I Frame

Not Shown in Trace

Not Shown in Trace

See Figure 7

Not Shown in Trace

0

1

0

0

1

2

3

4

5

-

n

-

00

C1

00

00

See Figure 7

Message
Header

00C10000 08010105040288901801812C0735353532303030

03 278D Xmit 00 60 0 Setup 00 00 0 0018

March 2020 105

 The Message type value 0x05 identifies the D-channel message
as a SETUP; refer to Table 3 on page 105 for possible Q.931
message type values.

Figure 7. Message Structures

Example

Byte

Bits

8 7 6 5 4 3 2 1

0 0 0 0

General Message

Bits

8 7 6 5 4 3 2 1

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 1

Example SETUP Message

See Figure 8

1

2

3

-

08

01

01

05

Protocol Discriminator

Call ref length

Flag Call reference value

Message type0

Other Information Elements
(IEs) as required

See Figure 8

Table 3. Q.931 Message Types

Message Type Bits Hex Message

0 0 0 0 0 0 0 1 01 Alerting

0 0 0 0 0 0 1 0 02 Call Proceeding

0 0 0 0 0 1 1 1 07 Connect

0 0 0 0 1 1 1 1 0F Connect Acknowledge

0 0 0 0 0 0 1 1 03 Progress

0 0 0 0 0 1 0 1 05 Setup

0 0 0 0 1 1 0 1 0D Setup Acknowledge

0 1 0 0 0 1 0 1 45 Disconnect

0 1 0 0 1 1 0 1 4D Release

0 1 0 1 1 0 1 0 5A Release Complete

0 1 0 0 0 1 1 0 46 Restart

0 1 0 0 1 1 1 0 4E Restart Acknowledge

March 2020 106

Interpreting Information Elements

For Q.931 call control messages, the first Information Element (IE)
starts at byte offset 9 in the hexadecimal string. Each message can
contain several IEs of either fixed (single byte) or variable length.

Figure 8 on page 107 compares the general IE format against the
first IE contained in the example SETUP message, and illustrates
the following points:

 A value of 0 in the shaded bit position indicates a variable-length
IE; a value of 1 in that position indicates a single byte IE.

Note: Single byte IEs are commonly used for locking codeset shifts.
Locking shift IEs appear only after all variable-length IEs
within the message. Refer to the Bellcore Technical Reference
TR-TSY-000268 for more information on the structure and use
of single byte IEs and codeset shifts.

 The IE identifier value 0x04 indicates a Bearer Capability IE;
refer to Table 4 on page 107 for possible IE identifier values. IEs
appear in messages in ascending order according to their
identifier number.

 The 2-byte length of the IE value indicates that it contains only
the required structures for a Bearer Capability IE.

 The IE contents indicate an information transfer capability of
unrestricted digital information (0x88) and a transfer rate/mode
equal to 64 kbps/circuit mode (0x90).

0 1 1 1 1 0 1 1 7B Information

0 1 1 0 1 1 1 0 6E Notify

0 1 1 1 1 1 0 1 7D Status

0 1 1 1 0 1 0 1 75 Status Enquiry

Table 3. Q.931 Message Types (Continued)

Message Type Bits Hex Message

IEs

00C10000080101050 4028890 180181 2C0735353532303030

03 278D Xmit 00 60 0 Setup 00 00 0 0018

March 2020 107

Figure 8. IE Formats

p

Byte8 7 6 5 4 3 2 1

0

8 7 6 5 4 3 2 1

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 1 0 0 0

1 0 0 1 0 0 0 0

1

2

3

-

04IE Identifier

Length of IE (in bytes)

Contents of IE

02

88

90

Transfer capability

Transfer mode and rate

Table 4. Q.931 Information Element Identifiers

IE Identifier Bits Hex Information Element

0 0 0 0 0 1 0 0 04 Bearer capability

0 0 0 0 1 0 0 0 08 Cause

0 0 0 1 0 1 0 0 14 Call state

0 0 0 1 1 0 0 0 18 Channel identification

0 0 0 1 1 1 1 0 1E Progress indicator

0 0 1 0 1 1 0 0 2C Keypad

0 0 1 1 0 1 0 0 34 Signal

0 1 0 0 0 0 0 0 40 Information rate

0 1 0 0 0 0 1 0 42 End-to-end transit delay

0 1 0 0 0 0 1 1 43 Transit delay selection and indication

0 1 0 0 0 1 0 0 44 Packet-layer binary parameters

0 1 0 0 0 1 0 1 45 Packet-layer window size

0 1 0 0 0 1 1 0 46 Packet size

0 1 1 0 1 1 0 0 6C Calling party number

0 1 1 0 1 1 0 1 6D Calling party subaddress

March 2020 108

For additional information on Layer 2 and ISDN message headers
and processing, refer to the following documents:

 CCITT Recommendation I.441

 Bellcore Technical References TR-TSY-000268 and
TR-TSY-000793

0 1 1 1 0 0 0 0 70 Called party number

0 1 1 1 0 0 0 1 71 Called party subaddress

0 1 1 1 1 0 0 0 78 Transit network selection

0 1 1 1 1 0 0 1 79 Restart indicator

0 1 1 1 1 1 0 0 7C Low-layer compatibility

0 1 1 1 1 1 0 1 7D High-layer compatibility

Table 4. Q.931 Information Element Identifiers (Continued)

IE Identifier Bits Hex Information Element

March 2020 109

VTTY Tracing Feature

The VTTY tracing provides access to control processor internals and
diagnostic tracing information. Two VTTY applications are provided:

 VTTY Console Commands on page 110

 VTTY Tracer GUI on page 111 (Windows operating systems
only)

These applications allow users to enter commands that enable
tracing capabilities or retrieve any saved information blocks.

Each trace message is prefixed with a time stamp in the same format
used for the call control trace files and the Bfv API application debug
log files.

The time reference for this time stamp is the local host time.

March 2020 110

VTTY Console Commands

Specifically, you can use the VTTY commands to show argument
information, tracing information, access memory locations and get
help. Table 5 shows the command syntax and describes the action
that is performed. (See Table 2 on page 102 for a definition of
“lapdid”.

Table 5. VTTY Commands

Command Meaning

> help

> ?

Returns a menu of supported commands with syntax.
Same as help.

The following commands are show commands that return information specific to the arguments.

> s ? Returns a menu of supported show command arguments with syntax.

> s tmr Returns a display of ISDN timer structures.

> s lap <lapdid#> Returns a display of ISDN lap structures for provided lapdid.

> s <lapdid#> Returns a display of Layer 2 statistics for the provided lapdid.

> s q931 <lapdid#> Returns a display of Q931 information for the provided lapdid.

> s pump <lapdid#> Returns a display of pump channel information for the provided lapdid.

The following commands are trace commands that enable/disable tracing information specific to the
arguments.

> t ? Returns a menu of supported trace command arguments with syntax.

> t Toggles the tracing of Bfv API messages between layers 3 and 4.

> t smi Same as t, toggles the tracing of Bfv API messages between layers 3 and
4.

> L <lapdid#> <level> Enables Layer 2 tracing for level=1 or disables tracing for level=0 on the
provided lapdid.

> l <level> Enables Layer 2 tracing for level=1 or disables tracing for level=0 on the
provided lapdid.

> ww <address> <value> Writes the 16-bit form of the value provided to the address provided.

> wl <address> <value> Writes the 32-bit form of the value provided to the address provided.

> dump <address>
<length>

Returns a display of the memory contents starting at the provided
address.

March 2020 111

VTTY Tracer GUI

The VTTY Tracer graphical user interface provides access to control
processor internals and diagnostic tracing information from a
Windows environment.

 To start the VTTY Tracer, enter:

vtty_tracer.exe

The VTTY Tracer screen is displayed.

Setting Output Options

From the main screen, you can change the tracer output options.

1. Click Settings|Options. The Tracing Options dialog is
displayed.

March 2020 112

Set where the trace output is saved, either screen or file. The
maximum file size is set in MBytes. Once a file reaches its
maximum size, the tracing output loops back to the beginning of
the file. The user always has the number of MBytes of
information entered.
You can change these options any time during execution (while
tracing or before connecting to a module).

2. Click OK to save your tracing options.

Connecting to a Module

 Use the File menu to connect to a module:

1. Click File, Connect to Module or click on the button to
connect to the module. The VTTY Tracer dialog is displayed.

2. Choose an available module from the drop down box. The Select
a module to connect to drop down box contains a list of all
modules available on the system that are traced.

March 2020 113

3. Click OK. The connection confirmation is displayed in the VTTY
Tracer screen:

Using the Trace Menu

When you choose options from the Trace menu, multiple items are
selected. When complete the selected items are checked, for example:

When Trace|Custom Command is selected, the Custom
Command dialog is displayed:

Use the Custom Command only under the guidance of Dialogic
Technical Services and Support.

March 2020 114

Using the Memory Menu

Click the Memory menu to read and write predefined sizes of
memory.

Using the Memory menu requires extreme care. Reading or writing
memory to the module can cause irreparable harm. This menu should
never be used unless explicitly directed to do so by Dialogic Technical
Services and Support. See Getting Technical Support on page 19.

Using the Show Menu

The Show menu causes a set of predefined variables to be displayed:

Each menu choice produces a dialog box where another selection is
made from a drop down box. Once selected, output is displayed in the
main trace screen. See Figure 9.

Show Menu
Options

Information About

LAPDID The specified D-channel

LAP The LAP-D (Q.921) protocol

Q931 The Q.931 ISDN call control protocol

DASS The DASS-2 call control protocol

DPNSS The DPNSS-1 call control protocol

Pump Internal operations

March 2020 115

VTTY Trace Results

Figure 9 shows the results of a VTTY trace.

Figure 9. VTTY Trace Example

Each trace message (for both screen and trace file output) is prefixed
with a time stamp in the same format used for the call control trace
files and the Bfv API application debug log files.

The time reference for this time stamp is the local host time.

March 2020 116

Call Tracer

Dialogic provides a Call Tracer command line utility that collects call
trace information in an active system. The output is intended for
Dialogic Technical Services and Support, but it is important that all
users know how to use Call Tracer to create the output file, if
Dialogic Technical Services and Support personnel request it. The
Call Tracer utility can be started before or after starting the client
application. If you want to trace the initialization section of the
client application, start the Call Tracer before the client application.

For information on how to start the Call Tracer, type brktcctrace -
?. Exit the Call Tracer application by typing ‘q’ or ‘Control-C’, or by
closing the command console window. The Call Tracer application
reads trace filter settings from a text configuration file called
filtersettings.cfg. The output is logged to a file name of your choosing.

For log information internal to the Call Tracer, the application
maintains its own log file that is located in the current working
directory of the application. The tracer logs all warning, error and
panic level messages by default.

The Call Tracer utility, and a sample configuration file, can be found
in the \Brooktrout\Boston\utils\winnt\bin directory when
installing the Brooktrout SDK, or in the \Brooktrout\bin directory
when installing just the Dialogic® Brooktrout® Runtime Software.

Note: Any paths in the command line argument that contain spaces
should be added between double quotes.

The Brooktrout Tracer opens ports 4010 and 4020 - 4024 by default.
BFV applications such as modinfo, features, and btver may be
blocked by a Firewall. On Windows, a Firewall dialog box will pop-up
informing the user that the application is attempting to open a port.

 To disable the Firewall dialog box perform one of the following:

 Open ports 4010 and 4020 to 4024: Firewall configuration

 Allow the applications using BFV to open the ports: Firewall
configuration

 On Windows, disable the Brooktrout Tracer by setting "Number
of Client Ports" to 1 on the Brooktrout Configuration Tool
Advanced Mode in the menu Options, Tracer Connection
Settings. This option is not desired since it will prevent tracing
BFV application at runtime

March 2020 117

Command Syntax

brktcctrace [-o <path_string>] [-i <path_string>] [-t
<duration/sec>] [-x <max_file_size>] [-n <max_num_files>]
[-h]

Arguments

-o <path_string> Fully qualified path of the output file including the log file name.
example: c:\Brooktrout\brktlog.txt. The path containing spaces
should be added between double quotes. This is a mandatory
parameter. The Brooktrout Tracer will create an individual file for
each process using the Brooktrout API and append the client port
number to the end of the log file name. In the example above the log
files would be named c:\Brooktrout\brktlog_xxxx.txt.

-i <path_string> Path of the input filter configuration file including the file name.
Path containing spaces should be added between double quotes.

-t <duration/sec> Time duration for the Call Tracer to stay connected to the clients in
seconds (default zero-infinite).

-x <max_file_size> Maximum size of the log file in Megabytes (default 1000).

-n <max_num_files> Maximum number of log files to create (default 1).

-h Help

An example of using brktcctrace to create a call trace file:

brktcctrace -x 10 -n 5 -o c:\Brooktrout\brktlog.txt

In this case, the logging application creates the brktlog_xxxx.txt file
where xxxx represents the client port number. Since a configuration
file was not specified, the logging process enables the default log
settings. While the logging process continues, logs are always
written to the specified file until the log file size reaches 10MB then
the log file is cleared and relogging starts all over again and saves
the log file for example, as brktlog_xxxx.txt.1, brktlog_xxxx.txt.2,
brktlog_xxxx.txt.3, etc.

Logging stops after the fifth log file has been created. When the
logging application records the fifth logging file, it then starts
overwriting the first log file for example, brktlog_xxxx.txt.

March 2020 118

Configuration File Format

This section describes the filter configuration file format. Because
the configuration file is optional, there is no default.

Lines that start with a ‘#’ character are comments only.

The filter settings are not case sensitive. All the settings are printed
in upper case for uniformity. If the configuration file has multiple
entries for the same filter settings, the first setting is used.

For example: If the filter settings configuration file contains the
following:

BFV.BFV.DEBUG_PRINT_CMD = OFF
BFV.BFV.DEBUG_PRINT_INTR = OFF
BFV.BFV.DEBUG_MON = OFF
BFV.BFV.DEBUG_ERR = OFF
BFV.BFV.DEBUG_PRINT_CMD = ON

then BFV.BFV.DEBUG_PRINT_CMD=OFF setting is used.

March 2020 119

The following configuration file is an example of what Dialogic
Technical Services and Support would request.

###

Filter Settings Configuration File

##

DEFAULT_CONFIG = AUTO

#---

BFV Valid Values:

ON

OFF

Default: ON, except for DEBUG_ENTRY_EXIT_ARGS

#---

BFV.BFV.DEBUG_PRINT_CMD = ON

BFV.BFV.DEBUG_PRINT_INTR = ON

BFV.BFV.DEBUG_MON = ON

BFV.BFV.DEBUG_ERR = ON

BFV.BFV.DEBUG_DEBUG = ON

BFV.BFV.DEBUG_ACCULIB = ON

BFV.BFV.DEBUG_ENTRY_EXIT = ON

BFV.BFV.DEBUG_ENTRY_EXIT_ARGS = ON

#---

ECC Valid Values:

NONE

ERROR

WARNING

BASIC

VERBOSE

Default: VERBOSE

#---

ECC.ECC_API = VERBOSE

ECC.ECC_HOST_MODULE = VERBOSE

ECC.ECC_INTERNAL = VERBOSE

ECC.ECC_IP_STACK = VERBOSE

ECC.ECC_L3L4 = VERBOSE

ECC.ECC_L4L3 = VERBOSE

March 2020 120

4 - Sample Applications and Utilities

This chapter describes the sample applications and utilities that
come as part of the Dialogic® Brooktrout® SDK.

Dialogic includes a large collection of sample application programs
and utilities with the Bfv API.

Sources for the sample applications are located in either
boston/bfv.api/app.src or boston/bfv.api/bapp.src, except for a few
applications whose directories are stated in the text. The application
makefiles appear and compilation is performed in either
boston/bfv.api/<platform>/app.src or
boston/bfv.api/<platform>/bapp.src (where <platform> represents
the name of the operating system in use). Many of the bapp.src
program executables are also distributed in this directory.

The chapter has the following sections:

 An alphabetical list of all the sample applications

 Compiling Sample Applications Using Microsoft Developer
Studio Project Files on page 165

 Compiling Sample Applications Using Makefiles on page 167

Note: Source code to utilities such as vtty are provided for
convenience to allow application re-building if desired. Sample
applications are provided to demonstrate how to use Bfv API
functionality.

March 2020 121

boardmon

The boardmon program monitors the condition of a module. It
provide Ethernet link status (as determined by BfvBoardNotify)
when monitoring a board with an enabled Ethernet interface.It
displays the module temperature, the status of the Ethernet port
and monitors one or more telephony spans on the module. It reports
the state of the signaling bits and alarms. It also counts the errors
(e.g., framing errors, CRC errors, clock slips, BPVs) on each span. It
only works with spans that are configured for robbed-bit signaling
and where telephony connections have been made.

The spans are numbered starting from 1 which is the first interface
on a module.

The btcall.cfg file is the user-defined configuration file. The
boardmon application is found in the bapp.src directory.

Command Syntax

boardmon [-m <mod>] [-s] [-d] [-v] [-h]

While the program is running you can press a key to reset the error
counters or to quit. When running under Linux, you must press
Enter after pressing the key.

Arguments

-m <mod> Use specified module (default 2)

-s Use specified span only [1-4] (default all)

-d Enable program debug mode

-v Enable Bfv API debug mode

-h Help

1 Reset error counters for span 1

2 Reset error counters for span 2

3 Reset error counters for span 3

4 Reset error counters for span 4

r or R Reset error counters for all spans

q or Q Quit the program

March 2020 122

Sample boardmon Output

Board Temperature: 105.8F 41.0C
Ethernet link 0: UP

Mod 0x03 Span 1 No Alarms FRM 000000 CRC 000000 BPV 000000 SLIP 000000

 Ch: 1 5 9 13 17 21 Last reset: 11/30 14:42:11
 In: a.aa .aaa aaaa .aaa aa.a aaa.
 b.bb .bbb bbbb .bbb bb.b bbb.
 c.cc .ccc cccc .ccc cc.c ccc.
 d.dd .ddd dddd .ddd dd.d ddd.

Out: A.AA .AAA AAAA .AAA AA.A AAA.
 B.BB .BBB BBBB .BBB BB.B BBB.
 C.CC .CCC CCCC .CCC CC.C CCC.
 D.DD .DDD DDDD .DDD DD.D DDD.

Mod 0x03 Span 2 LOS FRM 000002 CRC 000000 BPV 000000 SLIP 000001
 Ch: 1 5 9 13 17 21 Last reset: 11/30 14:42:11
 In: aa..
 bb..
 cc..
 dd..

Out: AA..
 BB..
 CC..
 DD..

btver

The btver program displays version information for the driver, Bfv
API, boot ROM firmware, control processor firmware, and DSP
firmware.

The btcall.cfg file is the user-defined configuration file. The btver
program is found in the bapp.src directory. The Bfv API debug mode
is turned on.

March 2020 123

Command Syntax

btver [-m <mod>] [-v]

The firmware must be downloaded on a module to obtain its control
processor and DSP information.

connlist

The connlist program lists currently established call switching
connections. Full-duplex connections are always reported as a pair of
simplex TRANSMIT-ONLY connections, where the source and
destination endpoints are swapped for the two halves of the
full-duplex connection.

The Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The connlist program is found in the
bapp.src directory.

Command Syntax

connlist [-m <mod>] [-v]

A receive connection between two given points is identical to a
transmit connection between those same points with the source and
destination interchanged.

Arguments

-m <mod> Display version info for specified module only.
Otherwise display for all.

-v Turn on Bfv API debug mode.

Arguments

-m <mod> Module number for connections (default 2).

-v Turn on Bfv API debug mode.

March 2020 124

csend

This application uses low-level, noninfopkt, raw-data, fax-sending
routines to send facsimiles. It allows sending a single fax page either
in standard fax format from an MH/MSB G3 data file or in an
enhanced fax format (e.g. JPEG, JBIG) from an EFF data file. T.30
holdup is used to check on the receiver's capabilities before deciding
which type of file to send.

The Bfv API debug mode is turned on. The btcall.cfg file is the
configuration file. The csend program is found in the app.src
directory.

Command Syntax

csend [-u <unitno>] [-v] [-c <EFF_file>] [-g <G3 file>]
[-e <EFF_OPT>] <phone number>

March 2020 125

deact

The deact program deactivates a hardware module, marking it as
dead.

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The deact program is found in the bapp.src
directory.

Arguments

-c <EFF_file> Color or other enhanced fax file, default: c1.jpg

-e <EFF_opt> Enhanced Fax Format (EFF) options, default: 3

OR together the following hex values:

1 = JPEG Enable

2 = Full Color

4 = Default tables

8 = 12-bit (vs. 8-bit)

10 = No Subsampling

20 = Custom Illuminant

40 = Custom Gamut

100 = JBIG

200 = JBIG L0

400 = Lossless Color

800 = MRC

1000 = MRC

2000 = MRC

4000 = Plane Interleave

8000 = Page Length Strip

-g <G3 file> Black and white MH file, default: eagle.301

<phone number> The telephone number to call.

-u <unitnum> Use specified channel number.

-v Turn on Bfv API debug mode.

March 2020 126

Command Syntax

deact [-a] [-s] <mod>

Arguments

-a Deactivate all modules on the board containing
<mod>.

-s The value of <mod> is interpreted as a cPCI slot
number.

<mod> Module to deactivate.

March 2020 127

debug_control

The debug_control utility allows a user to selectively turn on logging
remotely in an application. The application gives the user the ability
to control all the debug options available in the
BfvDebugModeSetAdv function.

The debug_control utility is in the bapp.src directory.

Command Syntax

debug_control [-v] [-u chan]

 [-d debug_mode [-f file1 [-f file2 [-m max_size]]]]

 [-F 0|1 [-a]]

 [-c debug_type[,...] [-l level] [-L file]]

At least one of -d, -F, or -c is required.

The -u option is required for -d and -F.

Arguments

-d = Set Bfv API debug mode, optionally with file or
files with limit.

debug_mode = Numerical debug mode value used with
BfvDebugModeSet (for example, 255)

-F = Turn on function entry/exit debugging, optionally
with arguments:

1 - enable
0 - disable
-a - use arguments

-c = Turn on call control debugging, optionally with
level or file.

debug_type = api | l3l4 | l4l3 | int | host | ip (one
or more)

level = none | error | warning | basic |
verbose(default)

-v = Turn on local Bfv API debug mode.

March 2020 128

decode

The decode program reads a specified infopkt stream file and lists
the individual infopkts that comprise the stream.

The decode program is found in the app.src directory.

Command Syntax

decode [-f] <filename>

Example

decode filename.ips

Arguments

-f Directs decode to follow indirect infopkts and
decode the contents, instead of listing file names.

<filename> The name of the infopkt stream file to read.

March 2020 129

dfax

The dfax program uses the low-level Intel DCX fax transmitting and
receiving routines to send and receive facsimiles.

The Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The dfax program is found in the app.src
directory.

Command Syntax

dfax [-u <unitno>] [-v] -s <phoneno> <dcx_file>

or

dfax [-u <unitno>] [-v] -r <dcx_file>

divert

The divert program waits for an incoming call from a caller. It then
can do several things:

1. Set the -d num option to divert the call to a given number by
calling BfvLineDivert() and providing a reason specified by option
-e. Option -s specifies the second channel to use to divert the call.
If option -s is not specified, Bfv picks the first available channel
number on the same module of the channel number specified in
option -u.

2. If option -d is not specified and the incoming call was diverted,
option -j rejects the diverted call. If option -j is not specified, the
software accepts the call. The call is determined to be diverted by
the value of args_cc.cres.redir_reason being equal to something
other than DIVERT_NONE (0).

Arguments

<dcx_file> The name of the file to send or receive.

-r Receive mode.

-s <phoneno> Send to the specified phone number.

-u <unitno> Channel number.

-v Turn on Bfv API debug mode.

March 2020 130

3. If the incoming call is accepted, the divert program uses the
speed_infopkt_file recording and playing routines to record and
play speech.

Command Syntax

divert [-d <num>] [-e <reason>] -j [-u <unitnum>]
[-s <unitnum>] <infopkt_file> -p -r

dlfax

The dlfax program uses the highest level infopkt sending routines to
send facsimiles and the dialing database functions to implement
dialing restrictions. If you include the -c argument, the application
uses the dialing restrictions of the specified country. If you include
the -l argument, the application only lists the contents of the
dialing database; it does not dial.

Note: If you change the country code between runs of the dlfax
sample, it can cause incorrect blacklisting of phone numbers.
When you change the country code, delete the dialdb file
created by the sample.

Pre-blacklisted numbers do not work when using the -c option. To
test this functionality, set the country code in the user-defined
configuration file to the desired country.

 Arguments

-d <num> Divert to a given number, or else wait for a
diverted-to call.

-e <reason> If -d, then -e specifies the redir_reason (default
is DIVERT_UNCONDITIONAL).

-j If waiting for a diverted-to call, reject the
diverted-to call.

-u <unitnum> Use specified unit number.

-s <unitnum> Use specified unit number for second LP.

<infopkt_file> Name of the file to play or record to.

-p Play.

-r Record. The default is 10 seconds.

March 2020 131

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The dlfax program is found in the app.src
directory.

Command Syntax

dlfax -l

or

dlfax [options] <infopkt file>

dstrip

The dstrip program writes out individual PCX pages from a DCX
file. The first page is written to g3data.301, the second to
g3data.302, and so on, until all of the pages are written.

This utility converts image data stored in a DCX file to raw PCX
format. It is typically used with one of the utilities described in
Appendix A, G3 Legacy Utilities on page 404.

The dstrip program is found in the app.src directory.

Command Syntax

dstrip [-o <output_base>]<dcx_filename>

Arguments

-c <ccode> Use the dialing restrictions for the
country specified by ccode. This value
must be one of the numeric values listed
in ccode.h.

<infopkt file> The name of the infopkt file to send.

-l List contents of the dialing database.

-s <num> Send to given phone number.

-u <unitnum> Use specified channel number.

Arguments

<dcx_filename> Specify the name of the DCX file to convert to
PCX format.

-o <output_base> Use the supplied output file name base to
form file names instead of “g3data”.

March 2020 132

eccllvoice

The eccllvoice program is used to record and play speech and
establish the call using the low-level call control function. It uses the
speech-infopkt-file recording and playing routines to record and play
speech. Recording continues for a maximum of ten seconds or the
time specified in the -n option.

eccllvoice uses low-level call control function calls as shown in the
following table.

Pressing # on the telephone keypad immediately terminates
playback or recording.

Pressing the following keys on the telephone keypad affect the speed
and volume at which the application plays back speech:

1 = increases the gain
2 = decreases the gain
3 = increases the speed
4 = decreases the speed

The Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The eccllvoice program is found in the
app.src directory.

Command Syntax

eccllvoice [options] infopktfile

In Place Of: Functions Used:

BfvLineOriginateCall BfvCallSetup
BfvCallWaitForComplete

BfvLineWaitForCall BfvCallRingDetect
BfvCallWaitForSetup

BfvLineAnswer BfvCallAccept
BfvCallWaitForAccept

BfvLineTerminateCall BfvCallDisconnect
BfvCallWaitForRelease

Arguments

-c <num> Call given number, else wait for ring.

March 2020 133

Requires one -p or -r argument.

fax

The fax program uses the highest level infopkt file fax sending and
receiving routines to send or receive facsimiles. The local ID is
specified from the command line. This application is very similar to
faxhl.c.

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The fax program is found in the app.src
directory.

-f Specify record coding format1; use the number of
the format or one of the following names. If there
is no number specified, you must use the name.

adpcm
adpcm32
adpcm24
pcm_ulaw
pcm_ulaw64
pcm_ulaw48
pcm_ulaw88
pcm_alaw
pcm_alaw64
pcm_alaw48
pcm_alaw88

 1

 2

 3

-l Loop forever, sending or receiving.

-n <secs> Specify recording time in seconds.

-p Play.

-r Record (default 10 seconds).

-u <unitnum> Use specified channel.

-v Enable Bfv API debug mode.

1. Not all coding formats and rate combinations are available on all
products.

March 2020 134

Command Syntax

fax [options] <infopktfile>

Requires one -s or -r argument.

faxhl

The faxhl program uses the highest level infopkt file fax sending and
receiving routines to send or receive facsimiles. The local ID is
specified from the command line. This application is very similar to
fax.c.

The Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The faxhl program is found in the app.src
directory.

Command Syntax

faxhl [options] <infopktfile>

Requires one -s or -r argument.

Arguments

<infopktfile> Name of the file to send or receive.

-l <string> Set local ID.

-L Loop for testing.

-r Receive a fax.

-s <num> Send to given phone number.

-u <unitnum> Use specific channel number.

-w On receive, do not wait for ring.

Arguments

<infopktfile> Name of the file to send or receive.

-l <string> Set local ID.

-r Receive a fax.

-s <num> Send to given phone number.

-u <unitum> Use specific channel number.

-v Turn on Bfv API debug mode.

March 2020 135

faxll

The faxll program uses the low-level non-infopkt raw data fax
sending and receiving routines to send or receive facsimiles. This
application uses the BfvFaxSendFile function, so 128-byte
Brooktrout headers are not permitted. It also uses the user function
feature of BfvLineOriginateCall to print call progress values.

Use the -g or -a argument to specify that the next raw data file
contains G3 or ASCII data, respectively. If a file contains fine
resolution data, use the -F argument. Use the -b argument to
specify a page break.

The Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The faxll program is found in the app.src
directory.

Note: The routine contains an example of handling SIP 183 Session
Progress message headers on an outgoing call. This capability
can be implemented by compiling faxll.c with a
SIP_PROGRESS_HEADERS compiler directive. A non-zero
return from the call progress function (cp_func) causes a User
Interrupt, which terminates the call with a SIP CANCEL
message.

March 2020 136

Command Syntax

faxll [-u <unitno>] [-v] [-h] [-H] -s <phoneno>

 [-F] [-E #] [-g] [-a] [-p] <file> [-b] ...

 or

faxll [-u <unitno>] [-v] [-p] -r <g3file> ...

Arguments

-a <files> The following files are raw ASCII text.

-b Beginning of page.

-E # The next page is an enhanced fax format page.
specifies the format, which is created by ORing the
following hex values:
 1 = JPEG Enable

 2 = Full Color

 4 = Default tables

8 = 12bit (vs. 8bit)

 10 = No Subsampling

 20 = Custom Illuminant

 40 = Custom Gamut

 100 = JBIG

 200 = JBIG L0

 400 = Lossless Color

800,1000,2000 = MRC

 4000 = Plane Interleave

 8000 = Page Length Strip

-F The next page is fine resolution, otherwise normal.

-g The following files are raw G3 data (default).

<g3file> Name of the file to receive.

-h/-H Insert a page header.

-p The following files are raw PCX data or receive PCX
data.

-r Receive mode.

-s <phoneno> Send to the specified phone number.

-u <unitno> Unit number.

-v Turn on Bfv API debug mode.

March 2020 137

When sending, the application can mix G3 and ASCII files.

Example

-g f1 f2 -a f3 -b -g f4

When receiving, each file name in the list receives a page of G3 data,
so make sure that enough file names appear in the list to
accommodate all pages of incoming data.

faxml

The faxml program uses the mid-level infopkt file fax sending and
receiving routines to send or receive facsimiles.

The Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The faxml program is found in the app.src
directory.

Command Syntax

faxml[-u <unitno>][-v] -s <phoneno> <infopktfile>

or

faxml[-u <unitno>][-v] -r <infopktfile>

Arguments

<infopktfile> Name of the file to send or receive.

-r Receive mode.

-s <phonenum> Send to the specified phone number.

-u <unitno> Unit number.

-v Turn on Bfv API debug mode.

March 2020 138

faxp

The faxp program uses the highest level infopkt file fax polling
routines to send and/or receive facsimiles. You must specify if the
program is going to call (-c) or answer (-a) and one send file (-s),
one receive file (-r), or one of both.

This program performs the ordinary sending and receiving functions
and all possible polling variations. The local ID is specified from the
command line.

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The faxp program is found in the app.src
directory.

Command Syntax

faxp [options]

Requires one -c or -a argument and one -s or -r argument or one of
each.

faxpml

The faxpml program uses the medium level infopkt file fax polling
routines to send and/or receive facsimiles. It performs ordinary
sending and receiving functions and all polling variations. Users can
enter the local ID at the command line.

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file.

The faxpml program is found in the app.src directory.

Arguments

-a Answer.

-c <num> Dial given phone number.

-L Loop for testing.

-r <infopktfile> File to receive, if permitted.

-s <infopktfile> File to send, if permitted.

-u <unitnum> Use specified channel.

March 2020 139

Command Syntax

faxpml [options]

Requires one -s or one -r argument or one of each, and one -c or one
-a argument.

feature

The feature program manipulates feature set data on the product. It
can query or download feature set data.

Feature set data contains licensing information specific to a given
module. The licensing information contains information as to what
features the user can access, how many channels are available, etc.

The btcall.cfg file is the user-defined configuration file. The feature
program is found in the bapp.src directory. Bfv API debug mode is
turned on.

Arguments

-a Answer.

-c <num> Dial given phone number.

-L Loop for testing.

-r <infopktfile> File to receive, if permitted.

-s <infopktfile> File to send, if permitted.

-u <unitnum> Use specified channel number.

March 2020 140

Command Syntax

feature [-m <mod>] <action>

feature downloads ASCII license (feature) files by default, and can
also accept binary data if you use the -b option.

When using the -q option, the value displayed for each feature on an
SR140 module reflects the total value of this feature for all active
SR140 licenses, not for the module itself. It may be higher than a
single module can utilize.

Arguments

-m <mod> Apply action to specified module (default 2)

Actions

-d <feature_file> Download ASCII feature file.

-b Perform download using binary file.

-q Query loaded feature set.

-v Enable Bfv API debug mode.

March 2020 141

firm

The firm program is used to download firmware. The firmware
consists of several types, by number, which must be downloaded in
the proper sequence. firmload automatically takes care of identifying
the proper files and downloading them in the correct sequence.

The sequence is as follows:

Type 2 (PROC_APP) = Control processor firmware

Type 1 (DSP_APP) = DSP firmware

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The firm program is found in the bapp.src
directory.

Command Syntax

firm [-m <mod>] [-c <conf_spec>] -t <type>
 <firmware_file>

If the download type is 2 (PROC_APP), the driver attempts to
reestablish communications with the destination module. If the
module was previously marked as dead, it might become usable
again.

Arguments

-m <mod> Module number to download to (default 2)

-c <conf_spec> Firmware configuration specification number.
This is reported by modinfo -c. This only
applies to PROC_APP firmware. The current
meaning of the configuration specification
value is the number of channels for which to
configure the firmware.

-t <type> Type of firmware downloaded:

1 = DSP_APP
2 = PROC_APP

<firmware_file> Firmware file to download

March 2020 142

firmload

The firmload program is used to download a complete set of
standard firmware files to all hardware modules on all boards in a
system. The standard firmware files are listed in Chapter 9 in the
Dialogic® Brooktrout® Fax Products SDK Installation and
Configuration Guide and in the Dialogic® Brooktrout® Release
Notes. Downloads, by default, are attempted for all hardware
modules in the range 2 through 0xFD.

The firmware consists of several types, by number, that must be
downloaded in the proper sequence. firmload automatically takes
care of identifying the proper files and downloading them in the
correct sequence.

The sequence is as follows:

Type 2 (PROC_APP) = Control processor firmware

Type 1 (DSP_APP) = DSP firmware

Bfv API debug mode is turned on. The firmload program is found in
the bapp.src directory.

This program was previously a script/batch file. The old version of
firmload is supplied as firmload_old in the bapp.src directory.

Command Syntax

firmload [-c <conf_spec>] [-d] [-b 0|1][-q] [-e] <firmware_dir> [<module_num>
...]

Arguments

-c <conf_spec> Firmware configuration specification number. This
is reported by modinfo -c. This only applies to
PROC_APP firmware. The current meaning of the
configuration specification value is the number of
channels to configure the firmware.

-d Do not download the DSP firmware.

-q Quiet mode (disable Bfv API debug mode).

-e Stop on the first error. Normally download
continues through the entire available module
sequence.

March 2020 143

The firmload program ensures that the required firmware files exist
in the specified directory before beginning a download. There are
multiple possibilities for some of the firmware file names. These are
listed in the following list in search order. firmload looks for the
following:

Example

firmload Brooktrout/Boston/fw

font

The font program downloads ASCII fonts for fax transmission and
reports on font download status.

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The font program is found in the bapp.src
directory.

Command Syntax

font [-m <mod>] [-q] [-d] [-v]

One of -q or -d is required. When -d is specified, fonts are
downloaded as specified in the user-defined configuration file,
btcall.cfg. Up to seven user fonts (0 - 6) and a default font (255) are
downloaded.

<firmware_dir> Directory containing firmware files.

<module_num> Optional module numbers that have firmware
downloaded.

Firmware Type file name

PROC_APP cp.bin

DSP_APP dsp1000.hex, dsp1000_ld.hex, dsp1000_v34.hex

Arguments

-m <mod> Use specified module (default 2).

-q Report download status of fonts.

-d Download fonts as specified in btcall.cfg.

-v Turn on Bfv API debug mode.

March 2020 144

ipstrip

The ipstrip program removes the infopkt header from the G3 or
speech data in a specified infopkt stream file and writes each page of
the converted data to a file, g3data.30x. The first page of converted
data is written to the file g3data.301, the second to the file
g3data.302, the third to the file g3data.303, and so on until the
entire infopkt stream file is converted. All speech data is placed in a
single file.

This utility is typically used to convert:

 Received fax data previously converted to an infopkt stream file
back to G3 format.

(See mkinfopk on page 146 for detailed information on how to
create an infopkt stream file.)

 Speech data recorded using the BfvSpeechRecord function to a
raw speech format.

The ipstrip program is found in the app.src directory.

Command Syntax

ipstrip [-h] [-o <output_base>] <filename>

Arguments

-h Puts a 128-byte Brooktrout header at the
beginning of each file. The addition of this
header causes the utility to store the resolution
and width of each page within the file.

-o <output_base> Uses supplied output file name base to form file
names instead of “g3data”.

<filename> Specifies the name of the infopkt stream file,
consisting of packetized G3 or speech data, to
convert to raw format.

March 2020 145

ivr

The ivr program is a small, interactive, voice-response system that
permits users to receive a fax, send a fax, record a message and play
a message. It uses the speech infopkt-file recording and playing
routines and the highest level infopkt-file fax receiving and sending
routines.

The ivr_msg subdirectory contains all prerecorded files, and all new
files are created in that subdirectory.

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The ivr program is found in the app.src
directory.

Command Syntax

ivr [options]

mkdcx

The mkdcx program creates a DCX file from a collection of raw PCX
files.

The mkdcx program is found in the app.src directory.

Command Syntax

mkdcx -o <dcx_file> <pcxfilename>...

Arguments

-L Loop for testing.

-u <unitnum> Channel number.

Arguments

-o <dcx_file> The name of the output DCX file.

<pcxfilename> The name of one of the input raw PCX files that
is one of the pages of the DCX file. Any number
of pcxfilename arguments are permitted.

March 2020 146

mkinfopk

The mkinfopk program builds an infopkt stream file.

The mkinfopk program is found in the app.src directory.

Command Syntax

mkinfopk -o <output_fname> [-i <input_fname>]
{infopkt_type arg}...

The type infopkt_type is indicated by one of the following:

Arguments

-o <output_fname> The name of the output file.

-i <input_fname> Infopkt type specifications are included in the
file input_fname instead of the command line.

infopkt_type The type of infopkt that follows.

arg An argument value for the infopkt. Depending
on the corresponding infopkt_type, arg is
either a file name or a dummy value.

Data type ascii, g3, speech, and annot.

For data and indirect infopkts, the required
argument is a file name.

The annot type infopkt accepts either an ASCII
file name or the argument @. If you pass mkinfopk
the argument @, mkinfopk prompts you to enter a
text annotation.

Indirect type indir[infopkt], indirascii, indirg3,
indirtiff, indirspeech, indirdcx, and
indirwave.

Note: The word indir is an abbreviation for
indirinfopkt.

March 2020 147

At least one space must be inserted between each command line
argument. If you enter mkinfopk at the command line without
specifying any arguments, mkinfopk displays a list of all the possible
arguments.

An example of using mkinfopk to create an infopkt stream file:

mkinfopk -o faxstrem.ips doc @ g3_strip 1
 indirg3 letrhead.g3 g3_strip 1 indirg3 salute.g3
 ascii_strip 1 ascii letrbody.asc g3_strip 1
 indirg3 signatur.g3

Note: 1 is a dummy value when it follows the g3_strip and other
infopkts.

Tag type doc, g3_strip, ascii_strip, page, t30, bop,
spi, eos, fax_hdr, eff.

For tag (parameter setting) infopkts, the
argument value is not normally used, and
mkinfopk inserts a dummy value. When you do
not specify an argument value, mkinfopk uses
hard-coded default parameter values. If, however,
arg is the @ character, mkinfopk prompts you to
enter parameter values for this infopkt. (The bop
type does not have parameters, so the @ character
has no effect on it.) When you specify the
fax_hdr infopkt type, mkinfopk prompts you for
the label format text, whether or not @ is used.

For a fax infopkt stream file, the first infopkt type
must be doc.

For a speech infopkt stream file, the first infopkt
type must be spi.

March 2020 148

mkprompt

The mkprompt program creates or updates a prompt file from
infopkt files that contain individual phrases. When updating, you
can specify an existing phrase number or a new phrase number.

The mkprompt program is found in the app.src directory.

Command Syntax

mkprompt <prompt_file> [<phrase_ipkt>]...

or

mkprompt -u <phrase_num> <prompt_file> <phrase_ipkt>

mktiff

The mktiff program creates a TIFF-F file from a collection of raw
G3 files in MH/MSB format with EOLs byte-aligned.

The mktiff program is found in the app.src directory.

Command Syntax

mktiff -o <tiff_file> <g3filename>...

Arguments

<prompt_file> Name of the prompt file to create or
update.

<phrase_ipkt> Name(s) of the infopkt file(s) to use for
creating or updating the prompt file.

-u <phrase_num> Update phrase_num; otherwise create.

Arguments

-o <tiff_file> Is the name of the output TIFF-F file.

<g3filename> Is the name of one of the input raw G3 files that is
one of the pages of the TIFF file. Any number of
g3file name arguments are permitted.

March 2020 149

If a raw G3 file has a 128-byte Brooktrout header (it is a btG3 file),
mktiff uses the resolution, width, and number of scan lines from the
header when storing the information for that page in the new TIFF
file. If it does not encounter a header or if the number of scan lines is
0, mktiff counts the actual number of scan lines in the G3 input file.

modinfo

The modinfo program lists information about active hardware and
software modules maintained within the driver.

The modinfo program is found in the bapp.src directory.

Command Syntax

modinfo [-p] [-c] [-s] [-h] [-H] [-a] [mod]

Each module found is listed, along with whatever hardware or
channel information is available. If a module has been marked by
the driver as dead, it is listed as *DEAD*.

Configuration values shown when using the -c option is supplied to
firm or firmload applications when downloading type 2 (PROC_APP)
firmware.

Configuration information from the module’s PCI configuration
space is displayed using the -p option.

The number of channels listed is the total number of channels
supported by the module, including its administrative channel. The
total is normally one more than the number of work channels, which
are mapped into ordinal channel numbers.

Argument

-p List PCI configuration information.

-c List firmware configuration options.

mod Module number whose status is to be
printed, otherwise all.

-s Display cPCI slot and CPU information.

-h Display hardware resource information.

-H Display the hardware information reported
by the firmware.

-a Use all previous options.

March 2020 150

For example, a module with 48 work channels is listed as having 49
channels, and a module with no work channels (no firmware
downloaded) is listed as having one channel.

playp

The playp program waits for a call, then plays the specified sequence
of phrases from the specified prompt file until the sequence
completes or until the user presses the # key.

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The playp program is found in the app.src
directory.

Command Syntax

playp [-u <unit>] <prompt_file> <phrase_num>...

rtp

The rtp program displays the information in received RTP/RTCP
events on an individual channel or on all channels. The btcall.cfg file
is the configuration file. The rtp program is found in the app.src
directory.

Command Syntax

rtp [-u <unitno>] [-v]

or

rtp [-a] [-v]

Arguments

-u <unit> Channel number (default is 0).

<prompt_file> File from which to play the phrase.

<phrase_num> Phrase number or numbers to play.

March 2020 151

Arguments

-a All Channels

-u <unitno> Channel number.

-v Turn on Bfv API debug mode.

shoparam

The shoparam program displays the contents of the line structure
and the parameter values set in a user-defined configuration file and
the read-only parameters taken from the country configuration file.

shoparam does not work unless a module is present in the system,
the driver is installed and running, and the firmware is loaded and
running on the module.

The shoparam program is found in the app.src directory.

Command Syntax

shoparam <user configuration filename>

telreset

The telreset program resets the telephony configuration state so that
new telephony and call switching information is loaded using
BfvLineReset.

The telreset program is found in the bapp.src directory.

Bfv API debug mode is turned on.

Argument

<user configuration
 filename>

Specifies the name of the user-defined
configuration file. The name used by
many other applications is btcall.cfg.

March 2020 152

Command Syntax

telreset [-m <mod>]

telsave

The telsave program writes telephony parameters to a module’s
Non-Volatile RAM (NVRAM).

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The file callctrl.cfg is the call control
configuration file. The telsave program is found in the bapp.src
directory.

Command Syntax

telsave [-m <mod>] [-v] -s

Arguments

-m <mod> Use the specified module (default 2).

Arguments

-m <mod> Write to the specified module (default 2)

-v Turn on Bfv API debug mode

-s Save telephony data (required)

March 2020 153

tfax

The tfax program uses the low-level TIFF-F file fax sending and
receiving routines to send and receive facsimiles.

Bfv API debug mode is turned on. The btcall.cfg file is the
configuration file. The tfax program is found in the app.src directory.

Command Syntax

tfax [-u <unitno>] [-v] -s <phoneno> <tiff_file>

or

tfax [-u <unitno>] [-v] -r <tiff_file>

tiffdump

The tiffdump program displays the contents of a TIFF-F file. It
displays each of the image file directory entries.

Bfv API debug mode is turned on. The tiffdump program is found in
the app.src directory.

Command Syntax

tiffdump [-d] <tiff_filename>

Arguments

-r Receive mode.

-s <phoneno> Send mode.

<tiff_file> Name of the file to send or receive.

-u <unitno> Channel number.

-v Turn on Bfv API debug mode.

Arguments

<tiff_filename> Specifies the name of the TIFF-F file to display.

-d Causes tiffdump to list all of the ways the file
deviates from the TIFF-F specification and to
indicate whether Brooktrout Fax Software
tolerates the deviation.

March 2020 154

tones

The tones program uses DTMF detection routines to detect and
display incoming touchtones and DTMF generation and single
frequency tone generation routines to produce touchtones and other
tones.

Bfv API debug mode is turned on. The btcall.cfg file is the
configuration file. The tones program is found in the app.src
directory.

Command Syntax

tones [options]

Requires one -p or -g argument.

transfer

The transfer program waits and accepts an incoming call from one
caller (caller A). It then calls BfvLineTransfer() to transfer the call
to another caller (caller C). During the transfer or while the transfer
is occurring, the program can run in one of two modes, supervised
and unsupervised. In supervised mode, the program does not
complete the transfer until it receives a response from caller C. If the
response is 1 (ACCEPT), transfer completes the transfer. If the
response is 2 (REJECT), transfer cancels the call transfer. In
unsupervised mode, transfer completes the call transfer right away.

The btcall.cfg file is the user configuration file and the file callctrl.cfg
is the call control configuration file.

Arguments

-c <num> Call given number, else wait for ring.

-g Get tones and display them.

-p Play tones (0,1,2,3,4,5,6,7,8,9,*,#,A,B,C,D).

-r Turn on RFC 2833 support for detecting incoming
DTMF digits as RTP events. This parameter is
only valid for the SR140.

-u <unitnum> Channel number.

-v Turn on Bfv API debug mode.

March 2020 155

Command Syntax

transfer [options] phonenum

Arguments

phonenum Caller C’s telephone number.

options

-u unit_num The unit number to use.
Value: 0 to (max channels-1)

-m b_channel_mode The channel mode used if the protocol can do 1
or 2 B-channel transfer. If the protocol
supports both, transfer capability is
LINE_XFER_ALL.

Different protocols support different modes:

 Hookflash supports 1 B-channel transfers.
 RLT supports 2 B-channel transfers.
 ETSI BRI, ETSI PRI, T1-ISDN, NTT BRI,

and NTT PRI support both 1 and 2
B-channel transfers.

Values: 1, 2

Note: This option does not support the
LINE_XFER_TWO_CHAN_NEEDS_NAILUP
transfer capability.

-s SUPERVISED mode
prompt_file

Turns on supervised mode.

Value: a valid prompt file.

-t line_state Transfer is completed at different states while
making the call in unsupervised mode. In
supervised mode, the only state allowed to
complete transfer is BST_CONNECTED.

Value: BST_DIAL_COMPLETE
BST_ALERTING
BST_CONNECTED

-h If transfer capability is
LINE_XFER_TWO_CHAN, this option puts
the first call on the first bchannel on hold
before making the enquiry call on the second
bchannel.

March 2020 156

Examples

 Assume that 110 is phone number of caller C.

1. Transfer using 1 B-channel and complete transfer at the state
BST_DIAL_COMPLETE:

transfer.exe -u 0 -m 1 -t bst_dial_complete w110

2. Transfer using 1 B-channel and complete transfer at the state
BST_ALERTING:

transfer.exe -u 0 -m 1 -t bst_alerting w110

3. Transfer using 2 B-channels and complete transfer at the state
BST_DIAL_COMPLETE:

transfer.exe -u 0 -m 2 -t bst_dial_complete w110

4. Transfer using 2 B-channels in supervised mode, and ACCEPT
the transfer. Caller C presses 1 to accept the call:

transfer.exe -u 0 -m 2 -t bst_connected -s
prompt_file.pkt w110

transferll

The transferll program performs the same function as transfer
except that transfer uses high-level call control and transferll uses
low-level call control.

If transfer capability is
LINE_XFER_TWO_CHAN_NEEDS_NAILUP (where the
BfvCallSWConnect() function connects the two channels), the high
level BfvLineTransfer() transfer function performs this switch
connection automatically. However the low level
BfvCallWaitTransferComplete() transfer function provides an
option to choose the disable_auto_sw_connect field of the args_cc
struct. If disable_auto_sw_connect is true, the application must
perform the switch connection.

March 2020 157

The following list shows the call control functions used by transfer
and transferll.

Command Syntax

transfer [options] phonenum

transfer transferll

BfvLineTransfer BfvCallHold and

BfvCallWaitForHold

BfvCallSetup and

BfvCallWaitForComplete

BfvCallTransferComplete and

BfvCallWaitTransferComplete

BfvLineHold BfvCallHold and

BfvCallWaitForHold

BfvLineRetrieve BfvCallRetrieve and

BfvCallWaitForRetrieve

Arguments

phonenum Caller C’s telephone number.

options

-u unit_num The unit number to use.
Value: 0 to (max channels-1)

March 2020 158

trombone

The trombone program sets up a two channel (trombone) call
transfer. After the two channels have been connected together, the
trombone program records speech from one of the callers. The
program starts by waiting for an inbound call on the primary
channel. When an inbound call is detected, the application answers
and plays a welcome voice prompt to the caller. After playing the

-m b_channel_mode The channel mode used if the protocol can do 1
or 2 B-channel transfer. If the protocol
supports both, transfer capability is
LINE_XFER_ALL.

Different protocols support different modes:

 Hookflash supports 1 B-channel transfers.
 RLT supports 2 B-channel transfers.
 ETSI BRI, ETSI PRI, T1-ISDN, NTT BRI,

and NTT PRI support both 1 and 2
B-channel transfers.

Values: 1, 2

Note: This option does not support the
LINE_XFER_TWO_CHAN_NEEDS_NAILUP
transfer capability.

-s SUPERVISED mode
prompt_file

Turns on supervised mode.

Value: a valid prompt file.

-t line_state Transfer is completed at different states while
making the call in unsupervised mode. In
supervised mode, the only state allowed to
complete transfer is BST_CONNECTED.

Value: BST_DIAL_COMPLETE
BST_ALERTING
BST_CONNECTED

-d Disables auto switch connection if transfer
capability is
LINE_XFER_TWO_CHAN_NEEDS_NAILUP.

-h If transfer capability is
LINE_XFER_TWO_CHAN, this option puts
the first call on the first bchannel on hold
before making the enquiry call on the second
bchannel.

March 2020 159

welcome prompt, the program dials an outbound call on the
secondary channel. When the outbound call on the secondary
channel is answered, the program connects the two parties together
with a full duplex connection and records speech from the primary
caller. The program terminates the tromboned call when either the
recording session reaches a maximum timeout value or either of the
callers hangs up.

The trombone program is found in the app.src directory.

The trombone program is a multithreaded application that needs to
link to the Osi library in addition to a Boston library. To build the
trombone program, go to the bfv.api/<OS>/app.src directory and
run the make utility with a command line argument of “others”. For
example:

(WIndows OS) c:\Brooktrout\boston\bfv.api\winnt\app.src> nmake others

(Linux OS) [root@RedHat9 bapp.src]$ make others

Command Syntax

trombone [options]

tstrip

The tstrip program writes individual G3 pages from a TIFF-F file. By
default, the first page is written to g3data.301, the second to
g3data.302, and so on, until all of the pages are written. This utility
converts received fax data stored in a TIFF-F file to raw G3 format.
It is typically used with one of the utilities described in Appendix A,
G3 Legacy Utilities on page 404.

Arguments

-p <unitnum> Primary channel number (Required).

-s <unitnum> Secondary Channel number (Required).

-w <infopkt_file> Welcome prompt file name (Required).

-r <infopkt_file> Recorded file name (Required).

-n <secs> Record timeout in seconds [10 secs (Default)].

-d <num> Phone number to dial [“1234” (Default)].

-v <num> Enable or disable debugging [0-Off, 1-On
(Default)].

March 2020 160

The tstrip program is found in the app.src directory. Bfv API debug
mode is turned on.

Command Syntax

tstrip [-h] [-o <output_base>] [-r] <tiff_filename>

TIFF-F pages are internally constructed so that the image data is
partitioned into strips. If a page that uses MMR data format is
constructed in this way, there are multiple MMR end of data
markers (known as EOFBs), one after each strip of data.

In such cases, the data read for different strips cannot simply be
concatenated together, since an EOFB indicates an end of page.
Because of this, tstrip treats each such strip as a separate page.

voice

The voice program uses the speech-infopkt-file recording and playing
routines to record and play speech. Recording begins when you start
speaking. Recording continues for a maximum of ten seconds or the
time specified in the -n option.

Pressing # on the telephone keypad immediately terminates
playback or recording.

Arguments

-h Adds a 128-byte Brooktrout header to the
beginning of each file. This header includes the
resolution, width, and number of scan lines.

-o <outbase> Uses supplied output file name base to form file
names instead of “g3data”.

-r Instructs tstrip to leave the data format as is.
Normally tstrip forces the output into MSB format,
the standard assumed by all other programs
provided by Dialogic.

<tiff_filename> Specifies the name of the TIFF-F file to convert to
G3 format.

March 2020 161

Pressing the following keys on the telephone keypad affect the speed
and volume at which the application plays back speech:

1 = increases the gain
2 = decreases the gain
3 = increases the speed
4 = decreases the speed

Bfv API debug mode is turned on.

The btcall.cfg file is the user-defined configuration file. The voice
program is found in the app.src directory.

Command Syntax

voice [options] <infopktfile>

Not all coding formats and rate combinations are available on all
products.

Requires one -p or -r argument.

Arguments

-c <num> Call given number, else wait for ring.

-f Specify record coding format; use the number of
the format or one of the following names. If there
is no number specified, you must use the name.

adpcm
adpcm32
adpcm24
pcm_ulaw
pcm_ulaw64
pcm_ulaw48
pcm_ulaw88
pcm_alaw
pcm_alaw64
pcm_alaw48
pcm_alaw88

 1

 2

 3

<infopkt_file> Name of the file to play or record.

-l Loop forever, sending or receiving.

-n <secs> Specify recording time in seconds.

-p Play.

-r Record (default 10 seconds).

-u <unitnum> Use specified channel.

March 2020 162

voiceraw

The voiceraw program uses the raw speech data file recording and
playing routines to record and play speech. Recording begins when
you start speaking. Recording continues for a maximum of ten
seconds or the time specified in the -n option.

Pressing # on the telephone keypad immediately terminates
playback or recording.

Pressing the following keys on the telephone keypad affect the speed
and volume at which the application plays back speech:

1 = increases the gain
2 = decreases the gain
3 = increases the speed
4 = decreases the speed

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The voiceraw program is found in the
app.src directory.

March 2020 163

Command Syntax

voiceraw [options] <speechfile>

Not all coding formats and rate combinations are available on all
products.

Requires one -p or -r argument.

wave

The wave program uses the speech-wave-file recording and playing
routines to record and play speech. Recording begins when you start
speaking. Recording continues for a maximum of ten seconds or the
time specified in the -n option.

Pressing # on the telephone keypad immediately terminates
playback or recording.

Arguments

-c <num> Call given number, else wait for ring.

-f Specify coding format; use the number of the
format or one of the following names. If there is no
number specified, you must use the name.

adpcm
adpcm32
adpcm24
pcm_ulaw
pcm_ulaw64
pcm_ulaw48
pcm_ulaw88
pcm_alaw
pcm_alaw64
pcm_alaw48
pcm_alaw88

 1

 2

 3

-l Loop forever, sending or receiving.

-n <secs> Specify recording time in seconds.

-p Play.

-r Record (default 10 seconds).

<speechfile> Name of the file to play or record.

-u <unitnum> Use specified channel.

March 2020 164

Pressing the following keys on the telephone keypad affect the speed
and volume at which the application plays back speech:

1 = increases the gain
2 = decreases the gain
3 = increases the speed
4 = decreases the speed

Bfv API debug mode is turned on. The btcall.cfg file is the user-
defined configuration file. The wave program is found in the app.src
directory.

Command Syntax

wave [options] <wavefile>

Requires one -p or -r argument.

Note: Using 8-bit 8 kHz and 8-bit 11 kHz Linear recording formats
for .wav files can produce poor quality with extra noise. If
recording in Linear format, use 16-bit 8 kHz for .wav files.
These rates produce better quality recording and are much
closer to the format used on the phone line.

Arguments (Options)

-c <num> Call given number, else wait for ring.
-f Specify record coding format; use the number of

the format or one of the following names. If
there is no number specified, you must use the
name.
pcm_ulaw
pcm_ulaw64
pcm_ulaw88
pcm_alaw
pcm_alaw64
pcm_alaw88
linear
linear128
linear176
linear64
linear88

2

3

4

-l Loop forever, sending or receiving.
-n <secs> Specify recording time in seconds.
-p Play.
-r Record (default 10 seconds).
-u <unitnum> Use specified channel.
<wavefile> Name of the file to play or record.

March 2020 165

Compiling Sample Applications Using Microsoft
Developer Studio Project Files

The Brooktrout SDK CD includes Microsoft Developer Studio Project
files for all samples in the bfv.api\app.src samples directory,
including project files for the following versions of Visual Studio:

 Visual Studio 6.0

 Visual Studio .NET 2003

 Visual Studio 2005

 Visual Studio 2008

 Visual Studio 2015 (recommended)

These sample applications function only on Windows systems.

Note: In Visual Studio 6.0, the development environment was called
"Workspace". In subsequent versions of Visual Studio, it is
called a "Solution".

Using any of the versions of the compiler above, you can view, edit,
debug, test, link, compile, and build applications combining the
sample files with your product files. You can also use makefiles
provided for all operating systems (See “Compiling Sample
Applications Using Makefiles” on page 167).

Note: Microsoft has ended support for Visual Studio 6.0, Visual
Studio .NET 2003, Visual Studio 2005, and Visual Studio 2008
compilers. Therefore, in future releases, Dialogic may not be
able to support applications using the Bfv API that are
compiled with these compilers.

Notes for 64-bit Sample Application Compiling

 Windows: You must set up the compiler environment specifically
to build for amd64/x64. In this case, the makefile stores the
executables in a subdirectory called x64.

 Linux: The makefile will normally build 32-bit applications. To
build 64-bit applications, define the symbol BUILD_64 to 1 on
the make command line (e.g., "make BUILD_64=1"). In this case,
the makefile stores the executables in a subdirectory called 64.

March 2020 166

Using Brooktrout Files

Dialogic has created a Visual Studio Workspace/Solution dsp file and
vcproj file for each Brooktrout SDK sample in the
\Brooktrout\Boston\bfv.api\winnt\app.src directory in the
Brooktrout SDK InstallShield package. You can see all the samples
from a single workspace/solution by opening these files from the
compiler application.

Table 6. File Naming Conventions

The individual project files have Win32 Debug and Win32 Release
options included, both options link to the dynamic version of the "C"
runtime library and to the dynamic version of the Bfv library
(bostdlld.dll).

The workspace/solution is constructed so that each of the individual
project settings provide the include and library paths rather than
being stored in the global setting for Visual Studio itself.

To create an exe file using Developer Studio Project files, follow the
instructions sent with your Windows software product.

Note: Files for Visual Studio 2005, 2008, and 2015 are appended to
include "2005", "2008", and "2015", respectively. For example,
bftdump_2005.vcproj, bftdump_2008.vcproj, and
bftdump_2015.vcproj.

Type of File File Name Compiler Version

workspace/solution bfv_samples.dsw 6.0

workspace/solution bfv_samples.sln .NET 2003 and later

dsp files samplename.dsp 6.0

vcproj files samplename.vcproj .NET 2003 and later

March 2020 167

Compiling Sample Applications Using Makefiles

The sample applications are distributed in source form and are
compiled using the supplied makefile(s). The makefile(s) come set up
to link the application programs with the Brooktrout Bfv API
library.

 To compile the sample applications:

1. Change to the /Brooktrout /Boston/bfv.api/<platform>/app.src
directory.

For the operating system you are using, substitute its name for
<platform> in the following instructions and use the appropriate
location where the installed files are located (that is, /usr/sys for
Linux; and C: for Windows.

2. Compile the sample programs in the app.src directory using
make.

The program name make is used to refer to the standard make
program used with the compiler. The name of this program is
make on all platforms except Windows; on that platform the name
is nmake.

3. Change to the/Brooktrout/Boston/bfv.api/<platform>/bapp.src
directory.

4. Compile the sample programs in the bapp.src directory using
make.

The sample programs are compiled and executable.

Note: If you compile in the x64 environment, the makefile stores the
executables in a subdirectory called x64.

March 2020 168

Combining the Sample Applications

The sample applications provided with the Brooktrout SDK are
combined or modified in a variety of ways to demonstrate key
capabilities. Typically, combining these applications can require
modifications to configuration files, such as callctrl.cfg.

Compatibility for Compiling

The current Brooktrout SDK is compatible with all prior Brooktrout
SDK versions 6.0 and later. The Brooktrout SDK does not require
recompiling of applications if they are linked to the DLL (Windows)
or Shared Object (Linux) version of the Bfv library and the
BT_API_SET_VER macro is used.

March 2020 169

5 - Transferring Calls

This chapter describes transferring calls using the Bfv API-level and
BSMI-level call control functionality.

Note: The Dialogic® Brooktrout® SR140 Fax Software does not
support this functionality.

Call transfer is a method of redirecting an incoming call to an
internal line or “transferring” it from one channel to another
channel. The phone network can also manage and disconnect the
call. Call transfer functionality is supported on the board and inside
a public switch. Depending on the protocol in your network,
transfers use either the same channel for transfers, such as an
analog line, or use two B-channels for transfers, such as explicit call
transfer in Europe.

This chapter has the following sections:

 Making Call Transfers Using Bfv on page 170
 Making Hookflash Transfers on page 173
 Making Two B-Channel Transfers on page 175
 Making Call Transfers Using QSIG on page 177
 Making Call Transfers Using Active Redirection (Japan) on

page 181
 Making Explicit Call Transfers (ECT) With E1 ISDN and BRI on

page 183
 Making Two-Channel Call Transfers (Tromboning) on page 185
 Transferring Calls Using Release Link Trunk Transfer on

page 197
 Placing Calls on Hold Using BSMI on page 205

March 2020 170

Making Call Transfers Using Bfv

The diagram in Figure 10 illustrates a transfer using the
BfvLineTransfer high level call transfer function.

The application issues a BfvLineTransfer function call to transfer
a call. BfvLineTransferCapabilityQuery checks the transfer
capability through LINE_XFER_ queries. If the line is capable of the
transfer type requested (such as transferring using two B-channels,
LINE_XFER_TWO_CHAN), then the call is placed on hold with
BfvCallHold while the other line is checked for availability with
BfvCallSetup. The call is transferred and supervised until either
party ends the call. BfvLineTransferComplete notifies the
application that the lines are connected.

If all conditions follow true, the application successfully transfers the
call. If a statement runs into a false condition, only the enquiry call
ends.

For more information on the messages, please refer to Volume 2 in
the Dialogic® Brooktrout® Bfv APIs Reference Manual for specific
messages.

March 2020 171

Figure 10. High-level Call Transfer using Bfv

BfvLineTransfer

BfvLineTransfer-
CapabilityQuery

LINE_XFER_
 SINGLE

LINE_XFER_
 ALL

False LINE_XFER_
TWO_CHAN

False LINE_XFER_NONE

False

True

True True

BfvCallHoldBfvCallWaitFor
 Hold

BfvCallSetup
 (Enquiry)

supervised Successful
Yes No

2nd Channel
Specified

False

BfvLineTransfer
Complete

BfvLineTransfer
 Cancel

True

End

transfer_line_
state

BST_ALERTINGBST_DIAL_COMPLETE

BfvCallWaitFor
BfvCallWaitFor

 Complete
BfvCallWaitFor

Alerting
Complete where

CP is ring or
connected

BST_CONNECTED

March 2020 172

Figure 11. Low-level Call Transfer using Bfv

BfvLineTransfer
Complete

BfvLineTransfer
 Cancel

BfvCallTransfer
Complete

 BfvCallWait
TransferComplete

End

BfvCallRetrieve

BfvCallWaitFor
Retrieve

End
BfvCallWaitFor

Release

March 2020 173

Making Hookflash Transfers

You can make hookflash call transfers using either the Bfv- level
API or BSMI-level API. There are two types of hookflash transfers:

 Analog loop start signaling

Transfers using loop start signaling commonly use hookflash.
Hookflash allows for both blind and attended transfers using the
same channel. In a blind transfer, the application drops out of the
call before the transfer completes. In an attended transfer, the
application waits until the call is successfully connected to a new
number before completing the transfer.

 T1 Robbed Bit signaling

T1 Robbed Bit hookflash transfers use E&M signaling to generate
a hookflash (wink) and initiate dial tone recall to transfer a call
using a single channel.

Using Bfv Applications

To configure using the Dialogic® Brooktrout® Configuration Tool
(Windows only):

 Set each port’s Protocol Options to T1 Robbed Bit or Analog.

 Set the Flash Hook Duration between 1 - 500. These are 10ms
units.

 "Set the Protocol File for:

 "T1 RBS:

C:\Brooktrout\Boston\config\winkstart.lec

 Analog:

C:\Brooktrout\Boston\config\analog_loopstart_us.lec

 Set the Transfer Variant to Hookflash.

 Set the country_code in BTCall Parameters to 0010 (US).

Note: You must be in Advanced Mode in the Brooktrout Configuration
Tool to configure BTCall Parameters.

March 2020 174

To configure using configuration files:

 Call Control Configuration File (callctrl.cfg)

 Set the port configuration

T1 Robbed Bit:
port_config=t1_robbed_bit

Analog:
port_config=analog

 Set the protocol file

T1 Robbed Bit:
protocol_file=C:\Brooktrout\Boston\config\winkstart.lec

Analog:

protocol_file=C:\Brooktrout\Boston\config\analog_loopstart_us.lec

 Set the transfer_variant

transfer_variant=hookflash

 Set the flash duration

flash_hook_duration=50

 User-Defined Configuration File (btcall.cfg)

 Set the country code

country_code 0010

Hookflash transfer is the only T1 Robbed Bit and
analog explicit call transfer method.

For more information on configuration, refer to the Dialogic®
Brooktrout® Fax Products SDK Installation and Configuration
Guide.

Using BSMI Applications

In T1 and analog BSMI applications, use L4L3mTX_HOOKFLASH
to set the duration of the hookflash signal. The field to set the signal
is:

L4_to_L3_struct.data.signal_duration_data = 0;

March 2020 175

The duration of the hookflash signal is in milliseconds. The default
value is 0, which is equal to 500ms in duration. The maximum
setting is 64k.

For more information on configuration, refer to the Dialogic®
Brooktrout® Fax Products SDK Installation and Configuration
Guide.

Making Two B-Channel Transfers

When making a two B-channel transfer, the central office connects
two outside calls through the central office, freeing the B-channels to
take more calls. You can only transfer calls using two B-channels on
T1 ISDN PRI configurations.

Bfv maintains a maximum of two calls per B-channel. Of these two
calls, only one call is on hold at a time. Bfv provides a hold function
using BfvCallHold in your application:

BfvCallHold(lp, &args);

See page 205 for more information about putting a call on hold using
BSMI.

To configure using the Brooktrout Configuration Tool (Windows only):

 Set each port’s Protocol Options to T1 ISDN.

 Set your network’s Protocol, such as AT&T PUB 41449.

 Set your network’s Switch Type, such as AT&T #4 ESS.

 Set the Transfer Variant to Two B-Channel.

 Set the country_code in BTCall Parameters to 0010 (US).

Note: You must be in Advanced Mode in the Brooktrout Configuration
Tool to configure BTCall Parameters.

To configure each port using configuration files:

 Call Control Configuration File (callctrl.cfg)

 Set the port configuration

port_config=t1_isdn

March 2020 176

 Set the protocol

protocol=att

 Set the transfer_variant

transfer_variant=tbct

 User-Defined Configuration File (btcall.cfg)

 Set the country code using the btcall.cfg configuration file:

country_code 0010

For more information on the BfvCallHold function, refer to
Volume 2, in the Dialogic® Brooktrout® Bfv APIs Reference Manual.
For more information on configuration, refer to the Dialogic®
Brooktrout® Fax Products SDK Installation and Configuration
Guide.

March 2020 177

Making Call Transfers Using QSIG

ISDN QSIG

QSIG is an ISO standard that defines the ISDN signaling and
control methods used to link PBXs in private ISDN networks. The
standard extends the “Q” point in the ISDN logical reference model,
which was established by the ITU-T in its Q.93x series of
recommendations that defined the basic functions of ISDN switching
systems.

QSIG is an ISDN based protocol for signaling between nodes of a
Private Integrated Services Network (PISN). In particular, QSIG
allows compatibility among products in a multi-vendor environment.

QSIG is only specified for the ISDN Interface Type Point-to-Point,
that is you cannot configure or use this protocol in conjunction with a
Point-to-Multi-Point interface.

Supplementary Services Support

QSIG supports the following supplementary services:

 Calling Line Identification Presentation (Caller ID)

 Calling Line Identification Restriction

 Advice of Charge

 Call Diversion (Unconditional, Busy and Not Responding)

 Call Transfer

 Name Identification

This service uses the same caller ID functions that are used with
other protocols: BfvLineWaitForCall and BfvCallWaitForSetup.

Calling Line Identification
Restriction

Uses the BfvCallSetup function which allows the Bfv application to
set call presentation and screening on a per call basis.

Advice of Charge (AOC) Supplementary service enables a user to receive information on the
recorded charges for a call when the call is terminated.

March 2020 178

Call Diversion Call Diversion (Unconditional, Busy and Not Responding) contains
three scenarios:

 Originating - the board places a call and the far end attempts to
divert the call to a different destination. You can set Originating
to enable or disable through the call configuration file using
enable_call_diversion flag.

 Served - the board receives an incoming call and attempts to
divert it. This service requires new Bfv API calls to initiate and
wait for the diversion to complete. However, it is possible for a
call to fail to divert. You use BfvCallDivert,
BFfvCallWaitForDivert, and BfvLineDivert. Once the call is
diverted, it is terminated. The application uses
BfvLineTerminteCall after a successful call diversion to make
sure that the call has been released completely.

 Diverted To - the board receives an incoming call that is diverted
by another party. This service uses call_res.redir_number and
call_res.redir_reason that is returned by the
BfvLineWaitForCall or BfvCallWaitForSetup which notifies
the Bfv application that the incoming call is being diverted from
another party. As a result, the phone number of the device that
diverts the call and the reason for the diversion is provided. The
Bfv application has the option to refuse the diverted call through
BfvCallReject followed by BfvCallWaitForRelease.

Note: You must set the QSIG control parameter, disable_alerting to
On in order for the call to be rejected and retained by the party
attempting to divert the call. If this parameter is not set to On,
then the incoming call is terminated.

You can manually send an alerting message through
BfvCallSendAlerting and is used when alerting is disabled in
the call control configuration file and when the application wants
to send an alerting message to the remote end rather than answer
the call.

Call Transfer QSIG supports two B-channel transfer. Both channels must support
the TBCT capability. This is accomplished through the
BfvLineTransferCapabilityQuery. However you must connect the
2-B channels so that both parties can communicate while the
transfer occurs. The application then uses BfvCallSwitchConnect
function to connect both B-channels. For further details, see
Volume 2, Bfv-Level Call Control and Call Switching, Dialogic®
Brooktrout® Bfv APIs Reference Manual.

March 2020 179

Name Identification This feature allows the Bfv API to see the text name of the user
similar to Caller ID on an analog phone line. Therefore, if the
network provides the calling party, the calling party’s name is
reported through BfvLineWaitForCall/BfvCallWaitForSetup
functions located in the res.calling_party_subaddress field of the
args structures.

Table 7 lists the Bfv APIs that are associated with QSIG and are
documented in detail in Volume 2, Bfv-Level Call Control and Call
Switching, Dialogic® Brooktrout® Bfv APIs Reference Manual.

* Supported only on the QSIG protocol.

For detailed information concerning the Bfv API QSIG call control
configuration functions and data structures, see Volume 2, Bfv-Level
Call Control and Call Switching, Dialogic® Brooktrout® Bfv APIs
Reference Manual.

To configure using the Brooktrout Configuration Tool (Windows
only):

 Set each port's Protocol Options to T1 QSIG or E1 QSIG.

 Set the Transfer Variant to QSIG.

To configure using configuration files:

 Call Control Configuration File (callctrl.cfg)

 "Set the port configuration

port_config=t1_qsig BOLD

or

port_config=e1_qsig BOLD

Table 7. Bfv APIs Associated with QSIG

BfvLineWaitforCall

BfvCallWaitForSetup

BfvCallTransferCapabilityQuery

BfvCallDivert*

BfvCallWaitForDivert*

BfvCallSendAlerting*

BfvLineDivert*

March 2020 180

 Set the transfer variant using the callctrl.cfg configuration file:

transfer_variant=qsig

 User-Defined Configuration File (btcall.cfg)

 Set the country code using the btcall.cfg configuration file:

country_code 0010 BOLD

For more information on configuration, refer to Volume 6 in the
Dialogic® Brooktrout® Fax Products SDK Installation and
Configuration Guide.

March 2020 181

Making Call Transfers Using Active Redirection
(Japan)

To transfer calls in Japan, use Active Redirection, a call transfer
method that uses the central office or a PBX to transfer calls. Active
redirecting is only available for T1 ISDN PRI and ISDN BRI.

To configure using the Brooktrout Configuration Tool (Windows only):

 Set port’s Protocol Options to T1 ISDN or BRI.
 Set the network Protocol to JATE (Japan) INS-1500.
 Set the network Switch Type to Japan.
 Set the Transfer Variant to Jate ISDN.
 Set the country_code in BTCall Parameters to 0810.

Note: You must be in Advanced Mode in the Brooktrout Configuration
Tool to configure BTCall Parameters.

March 2020 182

To configure each port using configuration files:

 Call Control Configuration File (callctrl.cfg)

 Set the port configuration

T1 ISDN:
port_config=t1_isdn

ISDN BRI
port_config=bri

 Set the protocol
T1 ISDN:

protocol=ntt

 Set the switch type

T1 ISDN:
switch_type=ntt

 Set the transfer variant

transfer_variant=ntt

For ISDN BRI with point-to-multipoint configuration, set:

transfer_variant=ntt_mp

 User-Defined Configuration File (btcall.cfg)

 Set the country code

country_code 0810

For more information on the Brooktrout Configuration Tool, refer to the
chapter on using the Brooktrout Configuration Tool in the Dialogic®
Brooktrout® Fax Products SDK Installation and Configuration
Guide.

March 2020 183

Making Explicit Call Transfers (ECT)
With E1 ISDN and BRI

Explicit call transfer (ECT) with E1 ISDN transfers calls using
either a single B-channel or two B-channels using switch resources
in the central office or PBX. Explicit call transfer is only used with
the Bfv API, and is available on ISDN PRI (E1) and ISDN BRI.

To configure using the Brooktrout Configuration Tool (Windows only):

 Set each port’s Protocol Options to E1 ISDN or BRI.

 Set your network’s Protocol to the appropriate protocol type, such
as EURO.

 Set your network’s Switch Type to the appropriate switch type, set
to Unknown/ITU conformant.

 Set the Transfer Variant to Explicit Call Transfer.

 Set the country_code in BTCall Parameters, leave as the default
0010.

Note: You must be in Advanced Mode in the Brooktrout Configuration
Tool to configure BTCall Parameters.

To configure using configuration files:

 Call Control Configuration File (callctrl.cfg):

 Set the port configuration

E1 ISDN

port_config=e1_isdn

ISDN BRI

port_config=bri

 Set the protocol

E1 ISDN

protocol=EURO

 Set the switch type:

March 2020 184

E1 ISDN

switch_type=unknown

 Set the transfer variant

transfer_variant=etsi_exp_link

You can also choose implicit link by setting:

transfer_variant=etsi_imp_link

 User-Defined Configuration File (btcall.cfg)

 Set the country code

country_code 0010

Your application should support the European Telecommunication
Standards Institute (ETSI) recommendations for Explicit Call
Transfer. Call hold should also be implemented in the application
using BfvCallHold, based upon recommendations from ETSI.

For more information on BfvCallHold, refer to the Volume 2,
Bfv API Reference Manual. For more information on the Brooktrout
Configuration Tool, refer to the chapter on using the Brooktrout
Configuration Tool in the Dialogic® Brooktrout® Fax Products SDK
Installation and Configuration Guide.

March 2020 185

Making Two-Channel Call Transfers (Tromboning)

This section provides information about creating a two-channel call
transfer (trombone call transfer).

A two-channel call transfer occurs when an application connects a
calling party to a called party with a full duplex connection, while
maintaining control of both calls. For some applications, this method
of transfer provides redundancy with no added benefits. However,
for applications that require monitoring or functionality not provided
by the caller and called resources, this method supports the
additional functionality. The Bfv API manages two-channel transfer
by transferring an existing call to another channel and becoming a
link in the network rather than an end-point for either channel.

An application might use this method of call transfer to monitor or
record the calls.

When configuring your module for two channel call transfer activities,
establish a maximum of 5 channels per DSP configuration.

The section contains the following:

 Setting up the Two-Channel Call Transfer on page 186

 Actions During a Two-Channel Call Transfer on page 189

 Terminating the Two-Channel Call Transfer on page 194

 Disconnecting Resources on page 195

March 2020 186

Setting up the Two-Channel Call Transfer

In the typical two way call transfer application, the application
detects an incoming call and answers the call. The application then
performs voice playback functions as needed to get a person's phone
number. The application then makes an outbound call on another
channel by dialing that person's phone number. When the person
answers the call, the application connects the two parties together
and monitors both resources to provide additional functionality.

Connecting Resources

To create the two-channel call transfer and perform the required
additional functionality, the application must connect various
hardware resources. These resources are network timeslots for a
T1/E1 phone line or channels. Each resource has an input slot and
an output slot. When connecting two resources together, one
resource must be defined as the source and the other resource
defined as the destination. The application should define the
connection type between the two resources as “transmit” because the
Brooktrout hardware maintains connections as transmits.

To understand the basic connections that exist between a channel
and a network timeslot, see Figure 12. These connections are defined
in the Call Control Configuration File, callctrl.cfg. The connection
lines represent both signaling and voice data. When making a
two-channel call transfer, the application should modify only the
voice data connections.

Figure 12. Connections for Standard (non-transfer) Operation

Channel 0

In
Ref In
Out

Channel 1

In
Ref In
Out

TSlot 1

Out In

TSlot 0

Out In

March 2020 187

In Figure 12 the output slot of Channel 0 transmits to the input slot
of network timeslot 0, while the output slot of network timeslot 0
transmits to the input slot of Channel 0. The connections between
Channel 0 and network timeslot 0 create a full duplex voice session.
Also observe that the output slot of Channel 1 transmits to the input
slot of network timeslot 1, while the output slot of network timeslot 1
transmits to the input slot of Channel 1.

Use the following Bfv functions to access or change the connection
information that is maintained on the Brooktrout hardware:

 BfvCallSWClearConns()

Clears resource connection

 BfvCallSWConnect()

Connects or disconnects resources

 BfvCallSWGetConns()
Queries for connection information

 BfvCallSWGetInfo()

Provides information about the two-channel call

Refer to Volume 1 of the Dialogic® Brooktrout® Bfv APIs Reference
Manual for further information on these functions.

The BfvCallSWConnect() and BfvCallSWGetConns() functions
are the most important when setting up a two-channel call transfer.
Before creating a two-channel call transfer, call the
BfvCallSWGetConns() function to get the current connection data
that is stored on the module. Store this information in a local
variable where it is easily accessed and restored when disconnecting
the two-channel call transfer (see Terminating the Two-Channel Call
Transfer on page 194).

When connecting and disconnecting resources, the application
should primarily use the BfvCallSWConnect() function. The
application must provide all connections with a source and
destination resource. The following rule is very important when
connecting resources together:

A source resource can have many destination resources, but a
destination resource must have only one source resource.

Before setting up the two-channel call transfer, remove any existing
connections that conflict with the transfer connections.

March 2020 188

For a model of a two-channel call transfer, see Figure 13. The OUT
label represents the source of the connection and the IN label
represents the destination of the connection.

Figure 13. Connections for a Two-Channel Call Transfer

The application removed the connection from the output of
Channel 0 to the input of network timeslot 0 and the connection
from the output of Channel 1 to the input of network timeslot 1. If
these connections were not removed from Figure 12 on page 186,
then Channel 0 and network timeslot 1 would both be attempting to
transmit to the input of network timeslot 0, violating the above rule.

The application created a new connection from the output of network
timeslot 0 to the input of network timeslot 1 and another new
connection from the output of network timeslot 1 to the input of
network timeslot 0 (see Figure 13 on page 188).

Using this model, Channel 0 can record the data that is being
transmitted from the network timeslot 0 and Channel 1 can record
the data that is being transmitted from network timeslot 1.

Because of firmware requirements, when disconnecting resources, you
have to invert the source and destination resources. For example, if you
made a transmit connection from the output slot of Channel 0 to the input
slot of network timeslot 0, where Channel 0 is the source, then you must
disconnect from the input slot of network timeslot 0 to the output slot of
Channel 0.

Channel 1

In Out

Channel 0

In Out

TSlot 1

Out In

TSlot 0

Out In

Person B Person A

March 2020 189

Actions During a Two-Channel Call Transfer

After the application establishes a two-channel call transfer, it can
then perform voice playback and voice recognition. In addition to
these voice actions, the application must provide secondary
functionality. For example, when performing voice recognition
during a two-channel call transfer, the application must configure
echo cancellation in the channel correctly. Also, when performing
voice playback to a caller, the application must place the other caller
on hold to avoid providing the original caller with two source inputs.

Performing Echo Cancellation

When a caller sends voice data over the telephone network, the
network reflects some of that data back as input data. The reflected
data is then mixed in with valid input voice data from the remote
end. The channel that is connected to the telephone network must be
able to remove the reflected data from the valid input data. This
technique is called echo cancellation.

When a channel performs echo cancellation, it analyzes the voice
data that is being sent out into the telephone network. When this
voice data reappears as input voice data (the echo), the channel
removes the data from the input data stream. What is left is the
actual voice data from the remote end.

When the application creates a two-channel call transfer, the two
callers become sources of the reflected data. The application must
configure the echo cancellation portion of the channel resource to
remove repeated input from two sources by using its reference signal
slot (the channel’s reference number is 1). The application must also
call the BfvSpeechEchoCancelControl() function to configure the
channel to accept an input reference signal on slot #1.

March 2020 190

For example, your application could create a connection from the
output slot of Network resource 1 to the reference input slot of
Channel 0 by calling the BfvSpeechEchoCancelControl() and
BfvCallSWConnect() functions with the following arguments:

BT_ZERO(speech_args);
/* Configure channel to get its input reference signal from slot #1. */
Speech_args.echoc_op = ECHOC_OP_ALT_INPUT_ENABLE;
BfvSpeechEchoCancelControl (lp, &speech_args);

BT_ZERO(args);
args.conn_mode = CALL_SW_TRANSMIT_ONLY_DEF;
args.src_port_class = CALL_SW_PORT_NETWORK_DEF;
args.src_port_unit = 0;
args.src_stream = 0;
args.src_slot = 1; /* Network Timeslot */
args.dest_port_class = CALL_SW_PORT_CHANNEL_DEF;
args.dest_port_unit = 2; /* Logical DSP Channel Number */
args.dest_stream = 0;
args.dest_slot = 1; /* Reference Slot */
BfvCallSWConnect (lp, &args);

March 2020 191

Figure 14 on page 191 shows the connections required to configure
the echo canceller on a channel during a two-channel call transfer
while recording from person A. The application sends the final echo
cancelled data up to the host for recording.

Figure 14. Required Connections for Echo Cancellation

Channel 1

In Ref_In

Out
In

TSlot 0

Person A

Host

Out Ref_Out

Channel 1

In Ref_InOut Ref_Out

In
Out

TSlot 1

Person B

March 2020 192

Playing Back Voice Recordings

Voice playback during a two-channel call transfer can take one of
two forms.

 The voice application plays voice data to both callers.

In this example, the channel playing the voice data is the source
resource and the network timeslots are the destination resources.
Before voice playback begins, to avoid providing the destinations
with more than one source, the application must disconnect the
full duplex connection between the network timeslots. This
ensures that the two network timeslots can't transmit data to
each other. After voice playback has ended, the application can
re-establish the full duplex connection between the network
timeslots. Refer to Figure 15 for this situation.

Figure 15. Playing Voice Data To Two-Channels

 The voice application plays data to one caller while placing the
other caller on hold.

In this example, the channel transmits voice data to just one
network timeslot. The application must place the other network
timeslot on hold (disconnecting it from the full duplex connection
using the BfvCallSWConnect() function) to avoid providing the
network timeslot that is receiving the playback data with a
second source input.
When your application terminates the full duplex connection to
the network timeslot that is not receiving playback data, the
caller might hear noise. To prevent this, connect the input slot of
the network timeslot to the output slot of an idle channel (an idle

Channel 0

In Out

TSlot 1

Person B

Channel 1

In Out

Out In

TSlot 0

Person A

Out In

March 2020 193

channel provides silence generation on its output). After playback
is completed, the application can re-establish the full duplex
connection.

The following series of illustrations demonstrate the changes.

In Figure 16, there is a full duplex connection between channel 0 and
TSlot 0, and another full duplex connection between channel 1 and
TSlot 1.

Figure 16. Standard Full Duplex Connections

In Figure 17, there is a full duplex connection between TSlot 0 and
TSlot 1. Channel 0 is recording the caller on TSlot 0. The application
connected TSlot 1 to the reference input of channel 0 to provide echo
cancellation.

Figure 17. A Connected Two Channel Transfer.

Channel 0

In
Ref In
Out

TSlot 1

Channel 1

In

Out In Out In

Ref In
Out

TSlot 0

Channel 0

In
Ref In
Out

Channel 1

In
Ref In
Out

TSlot 1

Out In

TSlot 0

Out In

(Silence)

March 2020 194

In Figure 18, the application places the caller on TSlot 1 on hold and
generates silence from channel 1 to the caller. There is a full duplex
connection between channel 0 and TSlot 0. Channel 0 is playing a
voice prompt to the caller on TSlot 0 while recording.

To take the caller on TSlot 1 off hold, re-establish the connections as
they were in Figure 17.

Figure 18. Playing the Voice Prompt and Generating Silence

Terminating the Two-Channel Call Transfer

Your application terminates a two-channel call transfer by deleting
the transfer connections and restoring the original connections that
were present before the two-channel call transfer was created. After
terminating a two-channel call transfer, the application remains
connected to the original caller (person A). There are three situations
that cause a two-channel call transfer to be terminated:

 If the application detects a recognition signal that indicates
terminating the two-channel call.

The application hangs up on the called party (person B) while
staying connected to the original calling party (person A).

 The called party hangs up.

The application alerts the original caller of the remote hang up,
then disconnects the called party while staying connected to the
original calling party.

 The original calling party hangs up.

The application should then disconnect the entire two-channel
call transfer and wait for another call.

Channel 0

In Out

Out Out InIn

TSlot 0 TSlot 1

Ref In
Channel 1

In Out
Ref In

(Silence)

March 2020 195

Disconnecting Resources

When disconnecting resources, invert the source and destination
resources so that the firmware responds appropriately.

Due to firmware requirements, when disconnecting resources, invert the
source and destination resources. For example, if you made a transmit
connection from the output slot of Channel 0 to the input slot of network
timeslot 0, where Channel 0 is the source, then you must disconnect
from the input slot of network timeslot 0 to the output slot of Channel 0.

Use the BfvCallSWConnect() function to disconnect connections.
For example, if you made a transmit connection from the output of
Channel 0 to the input of network timeslot 0, where Channel 0 is the
source, then you must disconnect from the input of network
timeslot 0 to the output of Channel 0. The following source code
shows this:

BT_ZERO(args);

args.conn_mode = CALL_SW_DISCONNECT_DEF;

args.src_port_class = CALL_SW_PORT_NETWORK_DEF;

args.src_port_unit = 0;

args.src_stream = 0;

args.src_slot = 0; /* Network Timeslot */

args.dest_port_class = CALL_SW_PORT_CHANNEL_DEF;

args.dest_port_unit = 2; /* Logical DSP Channel Number */

args.dest_stream = 0;

args.dest_slot = 0;

BfvCallSWConnect (lp, &args);

If the application stored the original connection information in a
local variable before creating the two-channel call transfer, restore
the original connection by calling the BfvCallSWConnect function
and referencing the local variable.

March 2020 196

If the application configured the echo canceller in the channel to get
an input reference signal from slot #1, then the application must
remove this configuration to return the echo canceller to its default
behavior. To do this the application must call the
BfvSpeechEchoCancelControl() function (See Volume 3 of the
Dialogic® Brooktrout® Bfv APIs Reference Manual). For example:

BT_ZERO(speech_args);

speech_args.echoc_op = ECHOC_OP_ALT_INPUT_DISABLE;

BfvSpeechEchoCancelControl (lp, &speech_args);

Calling the BfvLineReset() function on a channel also returns the
echo canceller to its default behavior.

March 2020 197

Transferring Calls Using Release Link Trunk Transfer

Release Link Trunk is an explicit call transfer method for Nortel
DMS-250 switches and is only available for Nortel switches.

The host application initiates the Release Link Trunk (RLT) action,
but the call transfer is completed within the public switch network.
Calls come into the network on two B-channels. Each channel
maintains its call and both channels are busy. When the call
finishes, the B-channels are torn down.

Using Bfv Applications

Set Release Link Trunk in your Bfv application using the
BfvLineTransfer argument:

args.lp_second_Channel

A zero (0) value transfers calls over a single channel, such as an
analog line.

To configure using the Brooktrout Configuration Tool (Windows only):

 Set each port’s Protocol Options to T1 ISDN.

 Set the Protocol to Northern Telecom NIS A211-1.

 Set the Switch Type to Northern Telecom DMS-250.

 Set the Transfer Variant to Release Link Trunk (DMS-100 or
DMS-250).

 Set the country_code in BTCall Parameters to 0010 (US).

Note: You must be in Advanced Mode in the Brooktrout Configuration
Tool to configure BTCall Parameters.

To configure using configuration files:

 Call Control Configuration File (callctrl.cfg)

 Set the port configuration:

port_config=t1_isdn

March 2020 198

 Set the protocol

protocol=nortel

 Set the switch type

switch_type=nti_dms250

 Set the transfer variant

transfer_variant=rlt

 User-Defined Configuration File (btcall.cfg)

 Set the country code

country_code 0010

Using BSMI Applications

Call transfer RLT functionality in BSMI is set in
L4L3CALL_REQUEST:

rlt_service = 1

Note: RLT is set with any non-zero value.

The destination number is set in L4L3CALL_REQUEST:

data.call_req_data.redirect_num.num_digits = 0;

RLT functionality in BSMI requires the D-channel set in
L4L3mENABLE_PROTOCOL with:

‘switch_type’ = IISDNstDMS-250

and

‘variant’ = IISDNvarNORTEL_CUSTOM

If the switch does not support RLT, an L3L4mALERTING message
is received and the call is not transferred.

Applications with RLT release PRI-ISDN circuits after call transfer
occurs, releasing corresponding circuits. A call comes through a
B-channel, the caller requests a number and that call is transferred

March 2020 199

from one B-channel to the other B-channel. The calls are connected
inside the public switch and remain active. The application tears
down both B-channels and releases the link.

Calls without RLT are extended and subsequently bridged to a third
party. The third party maintains the call and circuits are kept active
and in service. This ties up additional circuits on the PRI trunk.

For more information on L4L3mENABLE_PROTOCOL and
L3L4mALERTING, please refer to Volume 5, in the Dialogic®
Brooktrout® Bfv APIs Reference Manual.

Call Control Sequence Diagrams

The charts below describe call transfer using BSMI, both with the
RLT functionality of the DMS-250, and the traditional method (for
purposes of comparison).

In both calls, the board receives an incoming call and determines
that the call needs to be rerouted to an alternate destination. In the
non-RLT call transfer configuration, the application initiates an
outbound call to the reroute destination and uses the TSI matrix to
pass incoming data from the call originator to the reroute
destination.

Non-RLT Call Transfer

Network Host

SETUP ===> L3L4mSETUP_IND (B1) The host receives the incoming call on
B-channel #1. From the
IISDN_CALLED_PARTY info, the host
determines that this call needs to be rerouted
to an alternate branch office.

===> L3L4mSET_TSI

src=IISDNtsiLINE_A+1

dst=IISDNtsiLINE_A+2

src=IISDNtsiLINE_A+2

dst=IISDNtsiLINE_A+1

The host cross-connects B1 and B2.

Map B1 to B2 on Span A.

Map B2 to B1 on Span A.

SETUP <=== L4L3mCALL_REQUEST (B2) The host initiates the outbound call on B2,
where the call transfer occurs.

March 2020 200

The call is transferred by the board, but it must maintain active call
setup on both B-channels for the duration of the call.

RLT Call Transfer

ALERTING ===> L3L4mALERTING (B2) Call setup completes normally on B-channel
#2 with receipt of ALERTING and
CONNECT.

CONNECT ===> L3L4mCONNECT (B2)

ALERTING <=== L4L3mALERTING (B1) Now that B-channel #2 is set up, continue
with normal call setup on B1, sending
alerting and connect.

CONNECT <=== L4L3mCONNECT (B1)

Network Host

SETUP ===> L3L4mSETUP_IND (B1) The host receives an incoming call on
B-channel #1. From the
IISDN_CALLED_PARTY info, the host
application determines this call needs to be
rerouted to an alternate branch office.

SETUP <=== L4L3mCALL_REQUEST (B2)
rtl_service = 1

The host initiates outbound call on B2,
setting the rlt_service flag to ‘1’.

ALERTING ===> L3L4mALERTING (B2)
includes 0x1c (FACILITY) IE with
call_id.

The network sends an ALERTING message
with the FACILITY info element containing
the call ID for the second link.

CONNECT ===> L3L4mCONNECT (B2)

FACILITY <=== L4L3mFACILITY_REQUEST The host initiates the transfer and release
process by sending a FACILITY message.
The call_ref and l4_ref parameters of the
initial (B1) call sends a
L4L3mFACILITY_REQUEST message,
and the application populates the
IISDN_CALL_ID field with the call_id
information retrieved from the ALERTING
message of the second call (B2).

March 2020 201

Once the network establishes a direct connection between the
originator of the first call and the final destination of the second call,
it sends DISCONNECT messages for both B1 and B2. The calls are
released on the board (and the board does not need to keep two
B-channels established), but the switch maintains the actual
connections between the originator and the reroute destination.

DISCONNECT=====>L3L4mDISCONNECT (B1)

DISCONNECT=====>L3L4mDISCONNECT (B2)

For more information about the messages, see Volume 5, in the
Dialogic® Brooktrout® Bfv APIs Reference Manual.

March 2020 202

Sample Application

The following code fragments show the relevant BSMI control
messages used in RLT transfer.

/***/
/********** send_call_req ****/
/***/
void send_call_req(int spyder_chan,int bchan,unsigned char rlt)
{
L4_to_L3_struct *L4L3cntlp;
L4_to_L3_struct msg;
L4L3cntlp = &msg;

/* Populate the header stuff here */
zero_msg(L4L3cntlp);
L4L3cntlp->lapdid = spyder_chan;
L4L3cntlp->msgtype = L4L3mCALL_REQUEST;
L4L3cntlp->L4_ref = 1;
L4L3cntlp->call_ref = 0;

/* Populate the call request stuff here */
L4L3cntlp->data.call_req_data.bchannel = bchan;
L4L3cntlp->data.call_req_data.interface = 0xff;
L4L3cntlp->data.call_req_data.call_type = PRIcalltyp64K;
L4L3cntlp->data.call_req_data.rlt_service = rlt;

L4L3cntlp->data.call_req_data.called_party.num_digits = 6;
L4L3cntlp->data.call_req_data.called_party.num_type = PRInumtUNKNOWN;
L4L3cntlp->data.call_req_data.called_party.num_plan = PRInumpUNKNOWN;
L4L3cntlp->data.call_req_data.called_party.digits[0] = '6';
L4L3cntlp->data.call_req_data.called_party.digits[1] = '0';
L4L3cntlp->data.call_req_data.called_party.digits[2] = '3';
L4L3cntlp->data.call_req_data.called_party.digits[3] = '8';
L4L3cntlp->data.call_req_data.called_party.digits[4] = '9';
L4L3cntlp->data.call_req_data.called_party.digits[5] = '8';
L4L3cntlp->data.call_req_data.redirect_num.num_digits = 0;
pridrv_tx_cntl_buf(L4L3cntlp);

printf("%d: Snd L4L3mCALL_REQUEST \n", spyder_chan);
} /* end of send_call_req */

March 2020 203

/***/
/********** Send alerting ****/
/***/
void send_alert(int spy_chan, int call_ref)
{
L4_to_L3_struct *L4L3cntlp;
L4_to_L3_struct msg;

L4L3cntlp = &msg;

zero_msg(L4L3cntlp);
L4L3cntlp->lapdid = spy_chan;
L4L3cntlp->L4_ref = 0;
L4L3cntlp->call_ref = call_ref;

printf("%d: Snd L4L3mALERTING_REQUEST \n", spy_chan);
L4L3cntlp->msgtype = L4L3mALERTING_REQUEST;

if (spy_chan == NETWORK) /* we know the net is sending a facility */
{
L4L3cntlp->data.al_con_data.interface= 0xff;
L4L3cntlp->data.al_con_data.bchannel= g_bchan;
L4L3cntlp->data.al_con_data.ie_count = 1;
L4L3cntlp->data.al_con_data.ie.ie_id = 0x1c; /* facility */
L4L3cntlp->data.al_con_data.ie.ie_length = 0x0e;
L4L3cntlp->data.al_con_data.ie.ie_data[0] = 0x91; /*rose*/
L4L3cntlp->data.al_con_data.ie.ie_data[1] = 0xbe; /*rlt*/
L4L3cntlp->data.al_con_data.ie.ie_data[2] = 0xa2; /*RR*/
L4L3cntlp->data.al_con_data.ie.ie_data[3] = 0x09; /*length*/
L4L3cntlp->data.al_con_data.ie.ie_data[4] = 0x02; /*id tag*/
L4L3cntlp->data.al_con_data.ie.ie_data[5] = 0x01; /*id len*/
L4L3cntlp->data.al_con_data.ie.ie_data[6] = 0x01; /*inv id*/
L4L3cntlp->data.al_con_data.ie.ie_data[7] = 0x02; /*seq tag*/
L4L3cntlp->data.al_con_data.ie.ie_data[8] = 0x01; /*seq len*/
L4L3cntlp->data.al_con_data.ie.ie_data[9] = 0x01; /*op tag*/
L4L3cntlp->data.al_con_data.ie.ie_data[11] = 0x01;/*op len*/
L4L3cntlp->data.al_con_data.ie.ie_data[12] = 0x80; /*op val*/
L4L3cntlp->data.al_con_data.ie.ie_data[13] = 0; /*callid*/
L4L3cntlp->data.al_con_data.ie.ie_data[14] = 0;
}
pridrv_tx_cntl_buf(L4L3cntlp);

}

March 2020 204

/***/
/************** Send facility ****/
/***/

/* Send L4L3mFACILITY */
void send_facility(int spy_chan, int call_ref)
{
L4_to_L3_struct *L4L3cntlp;
L4_to_L3_struct msg;
unsigned char*ieptr;

L4L3cntlp = &msg;

zero_msg(L4L3cntlp);
L4L3cntlp->lapdid = spy_chan;
L4L3cntlp->L4_ref = 0;
L4L3cntlp->call_ref = call_ref;
L4L3cntlp->msgtype = L4L3mFACILITY_REQUEST;
printf("%d: Snd L4L3mFACILITY_REQUEST\n", spy_chan);
L4L3cntlp->data.facility_data.call_id.len = 1;
L4L3cntlp->data.facility_data.call_id.call_id[0]= 2;
pridrv_tx_cntl_buf(L4L3cntlp);

}

March 2020 205

Placing Calls on Hold Using BSMI

When you invoke hold functions in BSMI, the host sends an
L4L3mUNIVERSAL message to the board with the
data.universal.msg_id field set to a value in Table 8, also
detailed in Example 1. The board accepts messages from either the
host (using an L4L3mUNIVERSAL message) and passes them to
the network, or takes network messages and passes them to the host
(in an L3L4mUNIVERSAL message).

Additional Informational Elements (IE) are added normally to the
application. If sending an MT_DL_HOLD_REJ or an
MT_DL_RETRIEVE_REJ message, add a CAUSE IE (see
Example 2).

L3L4mUNIVERSAL messages are received with the
data.universal.msg_id field set to a value from Table 8. If IEs
are contained within the message
(l34msg->data.universal.ie_count > 0), messages are
handled normally.

Table 8. Call Hold Values for L4L3mUNIVERSAL messages

#define MT_DL_HOLD 0x24 //ITU-T Q.932 subclass 8.1

#define MT_DL_HOLD_ACK 0x28 //ITU-T Q.932 subclass 8.1

#define MT_DL_HOLD_REJ 0x30 //ITU-T Q.932 subclass 8.1

#define MT_DL_RETRIEVE 0x31 //ITU-T Q.932 subclass 8.1

#define MT_DL_RETRIEVE_ACK 0x33 //ITU-T Q.932 subclass 8.1, must contain a
CAUSE IE

#define MT_DL_RETRIEVE_REJ 0x37 //ITU-T Q.932 subclass 8.1, must contain a
CAUSE IE

#define MT_DL_STATUS 0x7D //ITU-T Q.931 subclass 84.4, not used in
L4L3mUNIVERSAL messages

March 2020 206

Example 1

memset(&l43msg,0,sizeof(L4_to_L3_struct));
l43msg->msgtype = L4L3mUNIVERSAL;
l43msg->data.universal.msg_id = MT_DL_RETRIEVE;

Example 2

#define IEID_CAUSE 0x08 //CAUSE IE ID code
#define EXTENSION_BIT 0x80 //extension bit for an octet
memset(&l43msg,0,sizeof(L4_to_L3_struct));
l43msg->msgtype = L4L3mUNIVERSAL;
l43msg->data.universal.msg_id = MT_DL_RETRIEVE_REJ;
l43msg->data.universal.ie_count = 1; //must equal all IEs
l43msg->data.universal.ie.ie_id = IEID_CAUSE;
l43msg->data.universal.ie.ie_length = 2;
l43msg->data.universal.ie.ie_data[0] = EXTENSION_BIT | Coding_standard |
Location; //where Coding_standard and Location are from ITU-T Q.850

// subclause 2.2.2 and 2.2.3 respectively
l43msg->data.universal.ie.ie_data[1] = EXTENSION_BIT | Cause ; //where Cause
is from ITU-T Q.850 subclause 2.2.5

For more information on L4L3mUNIVERSAL and
L3L4mUNIVERSAL, see Volume 5, in the Dialogic® Brooktrout®
Bfv APIs Reference Manual.

March 2020 207

6 - Managing Fax and Voice over IP
Sessions

This chapter describes how to develop applications that use the
internet for fax and voice media.

To establish Internet Protocol (IP) sessions, Dialogic uses the
Session Initiation Protocol (SIP) and the H.323 Protocol.

To manage fax and voice media, Dialogic uses T.38 and RTP
protocols. This chapter has the following sections:

 Managing Calls Using IP Telephony on page 208

 Failover Based on Telephony Cause Codes on page 228

 Configuring T.38, RTP and IP Call Control Activities on
page 239

 Troubleshooting on page 240

 Understanding the SIP Protocol on page 241

 Using Third Party IP Stacks on page 254

 SR140 Internet Aware Fax (IAF) Support over UDP on page 262

March 2020 208

Managing Calls Using IP Telephony

The Bfv API supports fax functionality over IP networks using the
Session Initiation Protocol (SIP) and the H.323 protocol as well as
the PSTN network (using ISDN, RBS, R2 MFC, and analog loop
start call control protocols) through a common and consistent
programming interface. This flexibility helps you to develop fax
applications that can place and receive calls over traditional PSTN
and IP transports using the TR1034-N or Brooktrout SR140.

Note: Be aware of the following regarding IP calls:

 H.323 (fast or slow start) or SIP is used to establish calls over the
IP network.

 The TR1034-N and Brooktrout SR140 support T.38, G.711 fax
pass-through, and audio calls.

 The TR1034 board module supports T.38, G.711 fax pass-
through, and audio calls on some models

 Brooktrout SR140 and TR1034 both use RTP sessions before the
T.38 transmission is established. The RTP contains the
CED/ANSam or CNG tones used to establish a fax call.

All channels on a given module must be configured for IP call control
or for PSTN call control. Dialogic does not support combined modes
of call control on a given module. Multiple modules within a system
can be configured to support several modes of call control, each
module being configured to support only one mode.

For proper operation, the Brooktrout SR140 or the TR1034 Ethernet
interface (the one used for IP call control) should be wired to a
common hub or switch. Figure 19 on page 209 shows a typical
network wiring configuration.

March 2020 209

Figure 19. SIP Configuration Model

With dual-purpose modules in place, end-users can choose between
PSTN or IP mode. Your applications can determine whether the
module supports the IP or PSTN mode either at runtime or
installation.

Adding IP Call Control using the Bfv API

Because the Dialogic® Brooktrout® Bfv API uniformly supports a
wide set of transports including IP, you can use the same
applications to manage calls over IP as when using the PSTN. You
can configure IP call control using the Dialogic® Brooktrout®
Configuration Tool (a GUI product) or by setting values in call
control configuration files.

March 2020 210

Outgoing IP Calls

Your application manages outgoing calls if it performs the following:

 Uses the function calls from the table below
 Does not do syntax validation of the dial string
 Relies on the return status from the BfvLineOriginateCall

function to determine call completion success.

In this case the application is unaware of the mode of transport
(PSTN or IP):

See Sample INVITE Request on page 215 for more information about
using Bfv function calls.

BfvCallDisconnect Starts the process of terminating a telephone call.

BfvCallSetup Starts the process of dialing an outgoing
telephone call.

BfvCallStatus Retrieves the channel’s current call state.

BfvLineDialString Places the line in an OFF_HOOK state, dials the
digits specified, and returns after dialing the last
digit.

BfvLineOrigCallDB Checks the specified dialing database for the
specified telephone number, returns the amount
of time to wait before dialing, and then places the
call on an outgoing line and updates the dialing
database.

BfvLineOriginateCall Dials an outgoing call (equivalent to the
BfvCallSetup and BfvCallWaitForComplete lower
level function calls.)

BfvLineTerminateCall Terminates the current call (equivalent to the
BfvCallDisconnect and BfvCallWaitForRelease
lower level function calls.)

BfvLineTransfer
CapabilityQuery

Indicates the transfer capability of a channel.
Also provides an application with information to
determine whether two particular lines are paired
to perform a two B-channel call transfer. (Not
supported on IP).

BfvWaitForComplete Waits for the outgoing telephone call to finish.

BfvWaitForRelease Waits for the termination of a telephone call to
finish.

March 2020 211

Incoming IP Calls

Your application can receive incoming IP calls if it uses function calls
from the table below

In this case the application is unaware of the mode of transport
(PSTN or IP):

Channels are either PSTN or IP, but not both. You can not have
PSTN and IP on the same channel. If the first module is IP, then the
first set of channels is IP. If the first module is PSTN, then the first
set of channels is PSTN. The first module defined by lowest module
number, for example, Module 2 gets channels assigned first, then
Module 3 gets channels assigned next, and so forth.

BfvCallAccept Starts answering an incoming telephone
call.

BfvCallDisconnect Starts the process of terminating a telephone
call.

BfvCallReject Rejects an incoming telephone call.
BfvCallRingDetect Enables or disables the detection of incoming

phone calls.
BfvCallStatus Retrieves the channel’s current call state.
BfvCallWaitForAccept Finishes the process of answering an

incoming telephone call.
BfvCallWaitForSetup Waits for an incoming call and returns all

available information about the call to the
application.

BfvLineAnswer Answers incoming call (equivalent to the
BfvCallAccept lower level function call).

BfvLineTerminateCall Terminates the current call (Equivalent to
the lower level BfvCallDisconnect and
BfvCallWaitForRelease lower level function
calls).

BfvLineTransferCapability
Query

Indicates the transfer capability of a
channel. Also provides an application with
information to determine whether two
particular lines are paired to perform a two
B-channel call transfer. (Not supported on
IP.)

BfvLineWaitForCall Waits for incoming call (equivalent to the
BfvCallWaitForSetup lower level function
call).

BfvWaitForRelease Waits for the termination of a telephone call
to finish.

March 2020 212

Understanding SIP Functionality

The following section provides information about SIP functionality
and processes. For a detailed introduction to the SIP protocol, see
Introduction to the SIP Protocol on page 241.

Using a SIP Proxy Server

To make an outgoing connection using IP, your application must
know the IP address of a local proxy server which is responsible for
forwarding the SIP call towards its final destination. In a typical
environment, the proxy server is the local IP to PSTN gateway. For
more information about using proxy servers, see Understanding the
SIP Protocol on page 241.

To receive incoming calls using the internet, you must register your
location so that proxy servers can locate you.

For more information about configuring proxy servers, see the
installation and configuration guide that came with your software
and the Dialogic® Brooktrout® Dialogic® Brooktrout® Bfv API
Reference Manual, Volume 6, Appendix A.

Verifying Dialed Strings

If your application either does syntax verification/modification of the
dialed string or it is desirable to do number translation or lookup
without modifying the application, then the application needs to
perform number translation.

Channel numbers enable your application to differentiate between
types of call in the context of the Call Control Bfv API. SIP and other
IP protocols use a Uniform Resource Identifier (URI). The software
detects and recognizes the format of the dial string and sends the
call to the appropriate channel. In Brooktrout SDK 4.0 and beyond,
the dial strings follow the URI syntax, so tel: and fax formats are not
supported and must be reformatted by your application.

Prefixes to dial strings are provided as a means for your application
to behave intelligently by supporting channel selection in hybrid
systems. Prefixes are optional.

Using prefixes, dial strings can also be pre-qualified by your
application as in the following example:

March 2020 213

SIP/T38://xxxxx@brooktrout.com

SIP/T38://+01-781-555-1212

ISDN://+01-781-449-9009

When the current fax.c sample program is compiled, it takes
command line parameters to define the number dialed. With no
changes to the source code, you can replace the number with a URI
to allow it to take advantage of T.38. The sample program is
effectively IP-enabled purely by virtue of the dial string it uses.

In a SIP environment, the following command:

fax –u 0 –s xxxxx@brooktrout.com foo.pkt

initiates the following sequence of events:

1. Call control processes the URI dial string.

2. Sends it to the SIP protocol stack.

3. The SIP protocol stack sends it to the SIP redirect server.

4. The SIP redirect server tells the SIP stack where calls to
brooktrout.com should go.

Note: Redirect and proxy servers are optional. You can send an
INVITE directly to a user client.

5. SIP stack places the call there.

6. Remote SIP proxy optionally redirects call to where it ought to go.

If the phone number string contains a prefix or characters followed
by a colon(:) and the prefix is not SIP, the software sends a return
status indicating that the number the application dialed was invalid.

March 2020 214

The following are valid dial string examples for a SIP channel.
Comments are shown in italics.

Joe Smith<sip:Joe@somewhere.com> SIP endpoint address.
sip:800-555-1212@somewhere.com Endpoint gateway specified.
sip:800-555-1212@myproxy.com Proxy explicitly specified.
800-555-1212@Somewhere.com Endpoint gateway specified.
800-555-1212@myproxy.com Proxy explicitly specified.
800-555-1212 Will use default proxy server.
+1(800)555-1212 Will use default proxy server.
192.168.1.45 Valid, but not recommended.
Joe@192.168.1.1 Valid, but not recommended.
sip:somewhere.com User part (left side of ‘@') is implied.
sip:joe@somewhere.com:9876 An explicit port specification.
sip:011442871234@somewhere.com;user=phone Specifies that user part is a phone number.

Using prefixed dial strings would have the same effect, as in:

fax -u 0 -s sip:xxxxx@brooktrout.com foo.pkt

Using an alternative URI scheme:

fax -u 0 -s 781-555-1212@cisco-gw.brooktrout.com foo.pkt

 initiates the following sequence of events:

1. Call Control processes the URI dial string, sends it to the SIP
protocol stack.

2. SIP stack places the SIP call to the Cisco XXXX Gateway.

3. The Cisco Gateway places the call on the PSTN, sending call
progress information to the SIP stack and connect the call with a
RTP stream.

4. When the Cisco Gateway identifies the call as a fax call it will
then send a T.38 Re-INVITE

5. A 200 OK is sent to connect the T.38 stream.

6. The fax is then sent and the call is torn down.

No SIP proxy or redirect server is required if not configured or
needed for point to point calls.

Again, using prefixed dial strings would have the same effect as in:

-u 0 -s sip:781-433-9454@cisco-gw.brooktrout.com foo.pkt

March 2020 215

Sample INVITE Request

The following sample uses the Bfv API to send the INVITE request.

March 2020 216

CALL CONTROL CONFIGURATION FILE

l3l4_trace=none
 l4l3_trace=none
 api_trace=none
 internal_trace=none
 host_module_trace=none
 ip_stack_trace=none
 trace_file=c:\Brooktrout\Boston\config\ecc.log
 max_trace_files=1
 max_trace_file_size=10
[module.6]
 channels=60
 set_api=bfv
[module.6/clock_config]
 clock_mode=master
 clock_source=internal
[module.6/ethernet.1]
 dhcp=disabled
 ip_address=10.50.50.50
 ip_netmask=255.255.255.0
 ip_gateway=10.50.50.1
 ip_broadcast=0.0.0.0
 media_port_min=56000
 media_port_max=56999
 ethernet_speed=auto
 ethernet_duplex=half
 ethernet_flow_control=auto
 ip_arp_timeout=10
[module.6/port.1]
 port_config=inactive
[module.6/port.2]
 port_config=inactive
[module.6/host_cc.1]
 host_module=1
 number_of_channels=60
[host_module.1]
 module_library=brktsip.dll
 enabled=true
[host_module.1/parameters]
 sip_max_sessions=256
 sip_Max-Forwards=70
 sip_From=Anonymous <sip:no_from_info@anonymous.invalid>
 sip_Contact=0.0.0.0:0
 sip_ContactV6=
 sip_username=user@brooktrout.com
 sip_session_name=session_name

March 2020 217

 sip_session_description=session_description
 sip_description_URI=user@brooktrout.com
 sip_email=email@brooktrout.com
 sip_phone=+1-4085551212
 sip_user_agent=Brktsip/6.4.0B2 (Dialogic)
[host_module.1/t38parameters]
 t38_fax_rate_management=transferredTCF
 fax_transport_protocol=t38_only
 t38_fax_udp_ec=t38UDPRedundancy
 rtp_ced_enable=true
 t38_max_bit_rate=33600
 t38_fax_version=3
 media_passthrough_timeout_inbound=1000
 media_passthrough_timeout_outbound=4000
 media_renegotiate_delay_inbound=1000
 media_renegotiate_delay_outbound=-1
 t38_fax_fill_bit_removal=false
 t38_fax_transcoding_jbig=false
 t38_fax_transcoding_mmr=false
 t38_t30_fastnotify=false
 t38_type_of_service=0
 t38_UDPTL_redundancy_depth_control=5
 t38_UDPTL_redundancy_depth_image=2
[host_module.1/rtp]
 rtp_frame_duration=20
 rtp_jitter_buffer_depth=100
 rtp_codec=pcmu pcma
 rtp_silence_control=inband
 t38_offer_as_ced=true
 rtp_type_of_service=0
 rtp_voice_frame_replacement=0

BFV APPLICATION

BT_ZERO(args);
args.phonenum = "201021000@10.50.50.21"
args.call_protocol_code = CALL_PROTOCOL_FAX
BfvLineOriginateCall(lp, &args);

March 2020 218

SIP INVITE

1 INVITE sip:200021000@10.50.50.21 SIP/2.0
2 From: <sip:user@brooktrout.com>;tag=87d05c0-0-13c4-55013-6b38-24b4c0c9-6b38
3 To: <sip:200021000@10.50.50.21>
4 Call-ID: 8b9eb30-0-13c4-55013-6b38-5b0d867b-6b38
5 CSeq: 1 INVITE
6 Via: SIP/2.0/UDP 10.50.50.100:5060;branch=z9hG4bK-6b38-1a2d3d2-790c92e7
7 Supported: timer
8 Max-Forwards: 70
9 User-Agent: Brktsip/6.4.0B2 (Dialogic)
10 Contact: <sip:10.50.50.100>
11 Content-Type: application/sdp
12 Content-Length: 295
13 v=0
14 o=user@brooktrout.com 2209016249 0542990000 IN IP4 10.50.50.100
15 s=session_name
16 i=session_description
17 e=email@brooktrout.com
18 p=+1-4085551212
19 t=0 0
20 m=audio 56000 RTP/AVP 0
21 c=IN IP4 10.50.50.50
22 a=rtpmap:0 pcmu/8000
23 m=audio 56000 RTP/AVP 8
24 c=IN IP4 10.50.50.50
25 a=rtpmap:8 pcma/8000
INVITE sip:10.50.50.100:5060 SIP/2.0
Via: SIP/2.0/UDP 10.50.50.21:5060;branch=z9hG4bK026C8
Remote-Party-ID:

<sip:201021000@10.50.50.21>;party=calling;screen=no;privacy=off
From: <sip:201021000@10.50.50.21>;tag=913F0-1145
To: <sip:user@brooktrout.com>;tag=87d05c0-0-13c4-55013-6b38-24b4c0c9-6b38
Date: Tue, 26 Apr 2011 23:36:18 GMT
Call-ID: 8b9eb30-0-13c4-55013-6b38-5b0d867b-6b38
Supported: 100rel,timer,resource-priority,replaces,sdp-anat
Min-SE: 1800
Cisco-Guid: 3452201248-1871974880-2147975719-3150639659
User-Agent: Cisco-SIPGateway/IOS-12.x
Allow: INVITE, OPTIONS, BYE, CANCEL, ACK, PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY,

INFO, REGISTER
CSeq: 101 INVITE
Max-Forwards: 70
Timestamp: 1303860978
Contact: <sip:201021000@10.50.50.21:5060>
Expires: 180
Allow-Events: telephone-event

March 2020 219

Supported: precondition
Content-Type: application/sdp
Content-Length: 459
04/26 16:27:49.48 ECC Stack: INFO - TRANSPORT -
v=0
o=CiscoSystemsSIP-GW-UserAgent 6809 6043 IN IP4 10.50.50.21
s=SIP Call
c=IN IP4 10.50.50.21
t=0 0
m=image 17414 udptl t38
c=IN IP4 10.50.50.21
a=T38FaxVersion:3
a=T38MaxBitRate:33600
a=T38FaxFillBitRemoval:0
a=T38FaxTranscodingMMR:0
a=T38FaxTranscodingJBIG:0
a=T38FaxRateManagement:transferredTCF
a=T38FaxMaxBuffer:200
a=T38FaxMaxDatagram:180
a=T38FaxUdpEC:t38UDPRedundancy
m=audio 0 RTP/AVP 8
c=IN IP4 10.50.50.21
a=rtpmap:8 PCMA/8000

26 SIP/2.0 200 OK
27 From: <sip:201021000@10.50.50.21>;tag=913F0-1145
28 To: <sip:user@brooktrout.com>;tag=87d05c0-0-13c4-55013-6b38-24b4c0c9-6b38
29 Call-ID: 8b9eb30-0-13c4-55013-6b38-5b0d867b-6b38
30 CSeq: 101 INVITE
31 Via: SIP/2.0/UDP 10.50.50.21:5060;branch=z9hG4bK026C8
32 Supported: timer
33 User-Agent: Brktsip/6.4.0B2 (Dialogic)
34 Contact: <sip:10.50.50.100>
35 Content-Type: application/sdp
36 Content-Length: 407
37 v=0
38 o=user@brooktrout.com 2209016255 0989137000 IN IP4 10.50.50.100
39 s=session_name
40 i=session_description
41 e=email@brooktrout.com
42 p=+1-4085551212
43 t=0 0
44 m=image 56004 udptl t38
45 c=IN IP4 10.50.50.50
46 a=T38FaxVersion:3
47 a=T38MaxBitRate:33600
48 a=T38FaxRateManagement:transferredTCF

March 2020 220

49 a=T38FaxMaxBuffer:200
50 a=T38FaxMaxDatagram:72
51 a=T38FaxUdpEC:t38UDPRedundancy
52 m=audio 0 RTP/AVP 8
53 c=IN IP4 10.50.50.50

March 2020 221

SIP INVITE DESCRIPTION

1 Defined by args.phonenum field passed to BfvLineOriginateCall().
2 Defined by the sip_From setting in the call control configuration file.
3 Defined by args.phonenum field passed to BfvLineOriginateCall().
4 Defined by the current domain of the UAC.
5 Generated internally.
6 Defined by the IP of the primary NIC (network interface controller).
7 Generated internally.
8 Defined by the sip_Max-Forwards setting in the call control configuration

file.
9 Defined by the sip_user_agent setting in the call control configuration file.
10 Defined by the sip_Contact setting in the call control configuration file

(default is the IP address of the primary NIC).
11 Generated internally.
12 Generated internally.
13 Generated internally.
14 Defined by the sip_username setting in the call control configuration file

and IP address of primary NIC.
15 Defined by the sip_session_name setting in the call control configuration

file.
16 Defined by the sip_session_description setting in the call control

configuration file.
17 Defined by the sip_email setting in the call control configuration file.
18 Defined by the sip_phone setting in the call control configuration file.
19 Generated internally.
20 Defined by the media_port_min and media_port_max settings in the call control

configuration file.
21 Defined by the ip_address setting in the call control configuration file.
22 Generated internally.
23 Defined by the media_port_min and media_port_max settings in the call control

configuration file.
24 Defined by the ip_address setting in the call control configuration file.
25 Generated internally.
26 Generated internally in response to the SIP INVITE.
27 Generated from the received SIP INVITE From header
28 Generated from the received SIP INVITE To header
29 Generated from the received SIP INVITE Call-ID header
30 Generated from the received SIP INVITE CSeq header
31 Generated from the received SIP INVITE CSeq header
32 Generated internally.
33 Defined by the sip_user_agent setting in the call control configuration file.
34 Defined by the sip_Contact setting in the call control configuration file

(default is the IP address of the primary NIC).
35 Generated internally.
36 Generated internally.
37 Generated internally.
38 Defined by the sip_username setting in the call control configuration file

March 2020 222

and IP address of primary NIC.
39 Defined by the sip_session_name setting in the call control configuration

file.
40 Defined by the sip_session_description setting in the call control

configuration file.
41 Defined by the sip_email setting in the call control configuration file.
42 Defined by the sip_phone setting in the call control configuration file.
43 Generated internally.
44 Defined by the media_port_min and media_port_max settings in the call control

configuration file.
45 Defined by the ip_address setting in the call control configuration file.
46 Defined by the common value in the INVITE and by the t38_fax_version settings

in the call control configuration file.
47 Defined by the common value in the INVITE and by the t38_max_bit_rate settings

in the call control configuration file.
48 Defined by the common value in the INVITE and by the t38_fax_rate_management

settings in the call control configuration file.
49 Defined by the common value in the INVITE and by the t38_fax_max_buffer

settings in the call control configuration file.
50 Defined by the common value in the INVITE and by the t38_fax_max_datagram_recv

settings in the call control configuration file.
51 Defined by the common value in the INVITE and by the t38_fax_udp_ec settings

in the call control configuration file.
52 Defined by the INVITE and port set to 0 to disable
53 Defined by the ip_address setting in the call control configuration file.

March 2020 223

Call Progress Values

Brooktrout Bfv API has mapped all possible IP call INVITE
responses to Bfv call progress values. See Table 9 for values for
functions that provide a final call progress value:

Table 9. Mapping of SIP responses to Bfv FCP values

SIP Options

SIP User Agents such as SIP Gateways or Session Border
Controllers (SBC) are sometimes configured to transmit OPTIONS
requests to other SIP endpoints. This is done in an attempt to query
the operational status of SIP entities that the Gateway or SBC is
configured to communicate with.

If a SIP endpoint fails to respond to the OPTIONS request or if the
SIP endpoint returns a failure response, the Gateway or SBC can
designate the SIP endpoint as unreachable or out-of-service and re-
route SIP calls as appropriate.

The Dialogic Brooktrout SIP stack responds to incoming OPTIONS
requests automatically with a 200 (OK) response. The 200 (OK)
response transmitted by the Dialogic Brooktrout SIP stack contains
the following Allow header:

Allow: INVITE, ACK, CANCEL, BYE OPTIONS

In addition, the 200 (OK) response also contains the following
Accept header:

SIP
response
code

Bfv final call Progress code

486 Busy here FCP_BUSY1

600 Busy everywhere FCP_ROBUSY

503 Service Unavailable FCP_SITINTC

180 Ringing FCP_RING1

200 OK (when in response to an INVITE
when SDP media type and subtypes are
image and T.38 respectively.)

FCP_ANSWER_TONE_DETECT

March 2020 224

Accept: application/sdp

The ability to transmit SIP OPTIONS requests is not supported by
the Dialogic Brooktrout SIP stack implementation.

Understanding H.323 Functionality

This Brooktrout SDK supports the H.323 protocol (version 4 and
Annex D), providing end point functionality only. Our current H.323
implementation does not operate as a gateway or H.323 Gatekeeper,
but you can configure your application to communicate with a
gateway or H.323 Gatekeeper.

The H.323 implementation supports both a primary and alternate
H.323 Gatekeeper. When an application is configured to
communicate with a Gatekeeper, all the RAS messages exchanged
with the Gatekeeper are done inside of the H.323 implementation
without requiring the application to get involved. The H.323
implementation registers the end points transport address and alias
information with the Gatekeeper and resolves destination alias
addresses with the Gatekeeper. If the application turns on alternate
Gatekeeper support and the primary Gatekeeper becomes
unavailable, the H.323 implementation automatically falls back to
an alternate Gatekeeper without involving the application.

Multiple Protocols SIP and H.323 can co-exist in the same system. You can configure a
single hardware module or Brooktrout SR140 module to support
either SIP or H.323, selecting which protocol stack to use on a per-
module basis. The protocols can operate simultaneously on different
modules.

Supporting Media The H.323 implementation supports T.38 (Fax Media) and RTP
media over UDP (H.323 Annex D).

The H.323 implementation supports the ability to negotiate a pseudo
G.711 media session with the intent of renegotiating to a T.38 media
session even when RTP prompt playback/record capability is not
desired.

This functionality is required to interoperate with certain supported
equipment. Media renegotiation to T.38 is also supported after a call
is setup.

March 2020 225

The H.323 implementation supports basic call control functionality,
specifically outbound call setup and teardown and inbound call
detection, answering, and teardown. See the sections on Outgoing IP
Calls on page 210 and Incoming IP Calls on page 211 for information
about the functions that support these activities.

Using H.323 Address Forms

To allow applications to work for both SIP and H.323, the dialstring
field for BfvLineOriginateCall and BfvCallSetup accepts a
format of phone_number@ip_address (a current SIP format).

The phone number is an optional field as is the port in the
ip_address. The existing H.323 dialstrings remain unchanged and
are still supported as described below. This option provides a unified
way of placing a non-gatekeeper call that works for both SIP and
H.323.

Examples of supported dialstrings for H.323:

1234@208.242.99.10
1234@208.242.99.10:1720

Dialogic products accept the following H.323 Called Party Address
forms:

 A transport address

 An E.164 alias

 A H.323 ID alias

Unless noted, the rules below also apply to an H.323 Calling Party
Address.

Transport Address
(IP Address)

This Called Party Address must start with the identifier “TA:”
followed by the transport address.

A transport address consists of an IP address followed by the “:”
character followed by a port number or another H.323 address.

A port number is not required and, if it is not specified, then the
software uses the default H.323 port of 1720.

IP address followed by a port number example:

TA:198.133.219.25:1721

March 2020 226

IPv6 addresses are also supported and need to be in hexadecimal
notation, inside brackets. For example;

[HHHH:HHHH:HHHH:HHHH:HHHH:HHHH:HHHH:HHHH]

E.164 Alias
(Phone Number)

This Called Party Address can start with the optional identifier
“TEL:”, followed by one or more E.164 address destinations. Turn on
H.323 Gatekeeper support when using E.164 aliases.

An E.164 alias is a phone number that is up to 128 characters long
and includes the characters 0 – 9, *, #. You can set the terminal’s
E.164 alias using the h323_e164alias parameter in the call control
configuration file. You can specify multiple aliases, each starting on
a new line using the same parameter name.

E.164 alias example:

TEL:7814494100

or

7814494100

Extension and Subaddress information is related to E.164 addresses.
Extension and Subaddress are not supported for H.323 Calling Party
Addresses.

An Extension starts with the identifier “EXT:” followed by an E.164
address or the identifier “EXTID:” followed by an H.323 ID. H.323
IDs are explained in the next section.

A Subaddress starts with the identifier “SUB:” followed by an E.164
address.

H.323 ID Alias
(Name)

This Called Party Address must start with the identifier “NAME:”
followed by an H.323 ID. Turn on H.323 Gatekeeper support when
using H.323 ID aliases.

An H.323 ID is a text string that is up to 256 Unicode characters
long. You can set the terminal’s H.323 ID alias using the
h323_h323IDalias parameter in the call control configuration file.
You can specify multiple aliases, each starting on a new line using
the same parameter name.

H.323 alias example:

NAME:JohnSmith

March 2020 227

Different types of H.323 Called Party Addresses are joined together
to create a hybrid address by using the delimiting character. The
delimiting character is the comma. Example of reaching the
destination 7814494100 by going through an H.323 gateway located
at IP address 198.133.219.25:

TA:198.133.219.25,TEL:7814494100

or
TA:198.133.219.25,7814494100

March 2020 228

Failover Based on Telephony Cause Codes

Overview

Identifying call failures within an IP telephony network allows an
application to re-route calls depending on the failure. In many cases,
the failover to other network devices occurs seamlessly when the
network has the following:

 H.323 Gatekeepers

 SIP Registrar Servers or SIP Redirect Servers

In cases where the network does not have these components, the
failover responsibility falls on the application.

Typically, in the absence of gatekeepers or other call routing devices,
the telephony endpoint, under the control of the application, is in
direct contact with the gateway. In this network configuration, the
application must be able to identify the various types of failures in
order to effectively manage the call routes.

Common Failures

The following are some common failures:

 Unreachable IP address

 Reachable IP address with no SIP/H.323 response

 Gateway SIP/H.323 channels exceeded

 Gateway PSTN channels exceeded

 Gateway with responding SIP/H.323 and PSTN down (no PSTN
cable connected)

 Gateway with responding SIP/H.323 and PSTN down due to an
alarm

 Gateway with responding SIP/H.323 and PSTN up but not
waiting for calls

 Gateway failure during an active call by disconnecting the
network cable on Brooktrout SR140

 Gateway failure during an active call by disconnecting the
network cable on the gateway

March 2020 229

 Gateway failure during an active call by disconnecting the PSTN
cable.

Applications needing specific information about a call failure can use
the cause codes reported by BfvLineTerminateCall. However,
using cause codes to determine failover scenarios is complicated. In
most cases, the cause codes supplied by the gateway are
manufacturer-specific and depend on the protocol being used.

Therefore, if you use any particular code in determining a failover
scenario (where re-routing should occur), you should consider the
context including the protocol and the gateway manufacturer.

Failover Scenarios

Refer to Table 10 to determine failover scenarios. The table shows
cause codes that have been found uniformly consistent with
conditions requiring re-routing.

Note that cause codes 18 and 1000 are for cases where the gateway is
unreachable or inoperative.

The cause codes in this table are suggested based on data collected
from various Gateways (shown in Table 11). Entries with “-” specify
scenarios for which no data was collected.

March 2020 230

Table 10. Failover Cause Codes

Known Failures From Various Gateways

H.323 and SIP

In Table 11, the entries are divided between H.323 and SIP. In the
case of H.323, cause codes are sent by the gateway as values
corresponding to Q.931 error codes. These are returned unaltered by
BfvLineTerminateCall. In the case of SIP, the gateway sends SIP
error codes which are then translated by BfvLineTerminateCall
into Q.931 error codes before being returned.

Using cause codes to determine failover scenarios is complicated. In
most cases, the cause codes supplied by the gateway are
manufacturer-specific and depend on the protocol being used.
Applications needing specific information about a call failure can use
the cause codes reported by BfvLineTerminateCall or
BfvCallWaitForComplete(). Note when the Bfv API function returns
BT_STATUS_TIMEOUT, the cause code will not be valid.

Description Cause Code

No user responding 18

Call Rejected 21

Destination out of order 27

Network out of order 38

Temporary failure 41

Requested circuit channel not avail 44

Service/optio not avail; unavail;
unspecified

63

No dial tone 1000

March 2020 231

Table 11. Known Failover Cause Code Data

Scenario SR140
Protocol

GnuGK Alcatel Avaya SIP
Control

Cisco

2821

CCM6.01 CCM6.1 Quintum IM1010

H.323

Unreachable IP
Address

H.323 1000 1000 1000 1000 1000 1000 1000 1000 1000

Reachable IP address
with no SIP/H.323
responds

H.323 1000 1000 1000 1000 1000 1000 1000 1000 1000

Gateway failure during
an active call by
disconnecting the
network cable on the
Brooktrout SR140

H.323 0, 16 0, 16 0, 16 0, 16 0, 16 0, 16 0, 16 0, 16 0, 16

Gateway failure during
an active call by
disconnecting the
network cable on the
gateway

H.323 0 0 0 0 0 0 0 0 0

Gateway with
responding SIP/H323
and PSTN down (no
PSTN cable connected)

H.323 1000 27 34 - 1000 1 1 17 -

Gateway with
responding SIP/H.323
and PSTN down due to
an alarm

H.323 17 27 34 - - - - 0 -

Gateway SIP/H.323
channels exceeded

H.323 1000 34 1000 - 1000 63, 41 44 1000 -

Gateway PSTN
channels exceeded

H.323 17 - - - - - - - -

Gateway failure during
an active call by
disconnecting the
PSTN cable

H.323 0 0 38 - 34 34 34 16 -

Gateway with
responding SIP/H.323
and PSTN up but not
waiting for calls

H.323 17 27 34 - 44 44 44 41 -

March 2020 232

SIP

Unreachable IP
address

SIP 18 18 18 18 18 18 18 18 18

Reachable IP address
with no SIP/H.323
responds

SIP 41 41 41 41 41 41 41 41 41

Gateway failure during
an active call by
disconnecting the
network cable on
Brooktrout SR140

SIP 41 41 41 41 41 41 41 41 41

Gateway failure during
an active call by
disconnecting the
network cable on the
gateway

SIP 18 18 18 18 18 18 18 18 18

Gateway with
responding SIP/H.323
and PSTN down (no
PSTN cable connected)

SIP - 41 - 41 1 1 1 17 41

Gateway with
responding SIP/H.323
and PSTN down due to
an alarm

SIP - 41 - - - - - - 41

Gateway SIP/H.323
channels exceeded

SIP - 21 - 41 41 41 41 17 -

Gateway PSTN
channels exceeded

SIP - - - - - - - 0 41

Gateway failure during
an active call by
disconnecting the
PSTN cable

SIP - 0 - 16 16 16 16 16 16

Gateway with
responding SIP/H.323
and PSTN up but not
waiting for calls

SIP - 41 - 41 41 41 41 41 41

Scenario SR140
Protocol

GnuGK Alcatel Avaya SIP
Control

Cisco

2821

CCM6.01 CCM6.1 Quintum IM1010

March 2020 233

SIP to Q.931 Conversion

Table 12 shows the translation performed to create Q.931 codes from
SIP error codes.

Table 12. SIP to Q.931 Conversion

SIP Cause
Code

Description Q.931 Cause Code

200 OK 16

400 Bad Request 41

401 Unauthorized 21

402 Payment required 21

403 Forbidden 21

404 Not found 1

405 Method not allowed 63

406 Not acceptable 79

407 Proxy authentication required 21

408 Request timeout 102

409 Conflict 41

410 Gone 22

413 Request entity too long 127

414 Request-URI too long 127

415 Unsupported media type 79

416 Unsupported URI Scheme 127

420 Extension required 127

423 Interval too brief 127

480 Temporarily unavailable 18

481 Call leg/transaction does not
exist

41

March 2020 234

482 Loop detected 25

484 Address incomplete 28

485 Ambiguous 1

486 Busy here 17

487 Request Cancelled 21

488 Not acceptable here 31

500 Internal server error 41

501 Not implemented 79

502 Bad gateway 38

503 Service unavailable 41

504 Server time-out 102

505 Version not supported 127

513 Message Too Large 127

600 Busy everywhere 17

603 Decline 21

604 Does not exist anywhere 1

606 Not acceptable 31

SIP Cause
Code

Description Q.931 Cause Code

March 2020 235

Processing Media Using the T.38 Protocol

The Brooktrout SDK supports real-time sending and receiving faxes
over IP following the T.38 protocol for exchanging messages and
data through IP fax gateways or IAF devices over an IP network.

Because Brooktrout’s Bfv Call Control API uniformly supports a
wide set of transports including IP, you can use the same fax
functions for fax over IP as when sending faxes over the PSTN. You
can configure your system using the Brooktrout Configuration Tool
(a GUI product) or by editing user-defined files.

Using standard fax machines over the PSTN, the following
information is presented.

 The sender of a fax gets immediate notification of a fax being
sent successfully.

 The receiver gets information on the sender’s telephone number
and the time the fax was received.

Bfv’s IP fax support provides this information as well.

Traditionally, faxing has been done over the TDM telephone
network, as defined in the ITU specification T.30. In a traditional
PSTN based T.30-only fax transmission, sending a fax requires three
fax components:

T.30 Protocol Engine While T.30 is a mature technology, an effective T.30 implementation
is complex due in large part to the challenge of connecting with the
installed base of 120 million fax machines whose own compliance to
the standard varies considerably.

Image Conversion Engine The sending device must adapt (scale and transcode) the image to
the capabilities of the receiver. The receiver must check the received
file for errors and try to correct ones that occur.

Modem This is the vehicle to carry the protocol and image data across the
PSTN network.

March 2020 236

While the method of transport is different, IP environments support
the functionality of these elements.

There are two types of devices used to implement T.38: an endpoint
and a T.38-aware gateway. TR1034-based applications form
endpoints. The following diagram shows how they support a likely IP
fax scenario:

The endpoint uses the T.30 protocol to negotiate the connection and
performs the image conversion. The gateway simply passes the fax
between a PSTN and IP connection.

Brooktrout
Fax Server

Receiving
Fax MachineScaling/

transcoding

T.30 /
V.34

T.30 /
V.34

PSTN

Brooktrout
Fax Server

Receiving
Fax Machine

Endpoint

T.30 /
T.38

T.30 /
T.38

PSTN

IP

Gateway

March 2020 237

In endpoint facsimile devices, such as a network fax server, the
T.38 protocol provides the equivalent to the modem in traditional
faxing. In a gateway, the T.38 protocol is used to translate
T.30 protocol and image data from the modems in the gateway to and
from the IP endpoint connection, using the following procedure.

1. With T.38 in an endpoint, the application connects a T.38 fax
server to an IP network and transmits the T.30 protocol and fax
image data to the receiving gateway using T.38 packets over the
IP network.

2. The receiving T.38 gateway, in turn, translates the T.38 packets
and repackages them into T.30 protocol signals and transfers
them to the receiving fax machine using modem modulation.

3. The receiving fax machine has a T.30 protocol engine that
communicates with the T.30 protocol engine in the fax server
through the gateway.

4. With T.38 in a gateway, the sending fax machine sends a fax
using modem modulation to transport T.30 protocol and image
data to a gateway via the PSTN.

5. The gateway demodulates the incoming T.30 fax signals and
image data and repackages them into T.38 packets.

6. The gateway then sends the T.38 packets to a T.38 endpoint,
which then delivers the packets in T.30 protocol so the endpoint
can receive the fax.

Gateway-to-gateway scenarios are also possible where two fax
machines communicate using two gateways. In that case, the
T.30 protocol engines in the two fax machines are transported across
the packet network using T.38.

March 2020 238

This diagram shows how the protocols work together during the call:

In all cases the application must establish the call first using the IP
call control protocol. The call control protocol is responsible for the
initial call set up and tear down.

Sending and Receiving Faxes

Your application can perform transport independent fax
transmission and reception using the Bfv API fax functions. The
application is unaware of the mode of transport (PSTN or SIP).
Dialogic supports all fax functions for Fax over IP. See Volume 4,
Fax Processing, in the Dialogic® Brooktrout® Bfv API Reference
Manual for more information about Fax functions.

PSTN

End-to-end T.30 Protocol management

IP

T.30
protocol

stack
T38

UDP or
TCP

T38
Demodulation
Remodulation

V.17
T.30

protocol
stack

March 2020 239

Configuring T.38, RTP and IP Call Control Activities

If your application runs on Windows systems, you can use the
Brooktrout Configuration Tool to configure call control. Use the IP
Call Control Module configuration window to modify values for:

 General information

 IP parameters for both SIP and H.323

 T.38 parameters

 RTP parameters

You can also use the following files to configure call control:

 The user-defined configuration file

The user-defined configuration file (btcall.cfg) contains
configuration parameters for the Bfv API and driver.

 The call control configuration file

The call control configuration file (callctrl.cfg) contains
configuration parameters that define how the user wants the
Bfv API to configure the modules for call control.

See the Dialogic® Brooktrout® Fax Products SDK Installation and
Configuration Guide that came with your software for information
about using the Configuration Tool or Appendix A of the Dialogic®
Brooktrout® Bfv APIs Reference Manual, Volume 6 for file
configuration to configure your system and applications to support
fax over IP.

March 2020 240

Troubleshooting

You can use any existing Bfv problem solving tools to troubleshoot
your T.38 application. Use the log files created by these tools to
understand what is happening and modify your application. See
Debugging on page 90 for more information about these tools.

Dialogic has provided a debug_control mode for T.38 problem solving
(use under guidance of Dialogic Technical Services and Support). See
Volume 1 of the Dialogic® Brooktrout® Bfv API Reference Manual
for more information.

March 2020 241

Understanding the SIP Protocol

You can use the Session Initiation Protocol (SIP), an
application-layer control (signaling) protocol, to create, modify, and
terminate sessions with one or more participants.

These sessions include internet telephone calls, multimedia
distribution, and multimedia conferences. SIP invitations used to
create sessions carry session descriptions that allow participants to
agree on a set of compatible media types. SIP makes use of elements
called proxy servers to help do the following:

 Route requests to the user's current location

 Authenticate and authorize users for services

 Implement provider call-routing policies

 Provide features to users.

SIP also provides a registration function that allows users to
upload their current locations for use by proxy servers.

SIP runs on top of several different transport protocols.

This section has the following sections:

 Introduction to the SIP Protocol on page 241

 Overview of SIP Functionality on page 242

 SIP works with both IPv4 and IPv6. on page 243

Introduction to the SIP Protocol

There are many applications of the internet that require the creation
and management of a session (a session is considered to be an
exchange of data between an association of participants). The
implementation of these applications is complicated by the practices
of participants: users might move between endpoints, they might be
addressable by multiple names, and they might communicate in
several different media - sometimes simultaneously. (For copyright
information on this section, see page 253.)

March 2020 242

Numerous protocols carry various forms of real-time multimedia
session data such as voice, video, or text messages. The Session
Initiation Protocol (SIP) works in concert with these protocols by
enabling internet endpoints (called user agents) to discover one
another and to agree on a characterization of a session they would
like to share.

For locating prospective session participants, and for other
functions, SIP enables the creation of an infrastructure of network
hosts (called proxy servers) to which user agents can send
registrations, invitations to sessions, and other requests. SIP is an
agile, general-purpose tool for creating, modifying, and terminating
sessions that works independently of underlying transport protocols,
regardless of the type of session being established.

Overview of SIP Functionality

SIP is an application-layer control protocol that can establish,
modify, and terminate multimedia sessions (conferences) such as
internet telephony calls. SIP can also invite participants to already
existing sessions, such as multicast conferences. Media is added to
(and removed from) an existing session. SIP transparently supports
name mapping and redirection services, supporting personal
mobility - users can maintain a single externally visible identifier
regardless of their network location.

SIP supports five facets of establishing and terminating multimedia
communications:

 User location: determination of the end system to be used for
communication;

 User availability: determination of the willingness of the called
party to engage in communications;

 User capabilities: determination of the media and media
parameters to be used;

 Session setup: “ringing”, establishment of session parameters at
both called and calling party;

 Session management: including transfer and termination of
sessions, modifying session parameters, and invoking services.

March 2020 243

SIP is not a vertically integrated communications system. SIP is
rather a component that is used with other IETF protocols to build a
complete multimedia architecture. Typically, these architectures
include protocols such as the Real-time Transport Protocol (RTP)
(RFC 1889 [28]) for transporting real-time data and providing QoS
feedback, the Real-Time streaming protocol (RTSP) (RFC 2326 [29])
for controlling delivery of streaming media, the Media Gateway
Control Protocol (MEGACO) (RFC 3015 [30]) for controlling
gateways to the Public Switched Telephone Network (PSTN), and
the Session Description Protocol (SDP) (RFC 2327 [1]) for describing
multimedia sessions. Therefore, SIP should be used in conjunction
with other protocols in order to provide complete services to the
users. However, the basic functionality and operation of SIP does not
depend on any of these protocols.

SIP does not provide services. Rather, SIP provides primitives that
are used to implement different services. For example, SIP can
locate a user and deliver an opaque object to the current location. If
this primitive is used to deliver a session description written in SDP,
for instance, the endpoints can agree on the parameters of a session.
If the same primitive is used to deliver a photo of the caller as well as
the session description, a “caller ID” service is easily implemented.
As this example shows, a single primitive is typically used to provide
several different services.

SIP does not offer conference control services such as floor control or
voting and does not prescribe how a conference is to be managed. SIP
is used to initiate a session that uses some other conference control
protocol. Since SIP messages and the sessions they establish can
pass through entirely different networks, SIP cannot, and does not,
provide any kind of network resource reservation capabilities.

The nature of the services provided make security particularly
important. To that end, SIP provides a suite of security services,
which include denial-of-service prevention, authentication (both user
to user and proxy to user), integrity protection, and encryption and
privacy services.

SIP works with both IPv4 and IPv6.

March 2020 244

Overview of Operation

This section introduces the basic operations of SIP using simple
examples. This section is tutorial in nature and does not contain any
normative statements.

The first example shows the basic functions of SIP:

 Locating an end point

 Signaling a desire to communicate

 Negotiating session parameters to establish the session

 Tearing down the established session

Figure 20 on page 246 shows a typical example of a SIP message
exchange between two users, Caller A and Caller B. (Each message
is labeled with the letter “F” and a number for reference by the text.)
In this example, Caller A uses a SIP application on a PC (referred to
as a softphone) to call Caller B on the SIP phone over the internet.
Also shown are two SIP proxy servers that act on behalf of Caller A
and Caller B to facilitate the session establishment. This typical
arrangement is often referred to as the “SIP trapezoid” as shown by
the geometric shape of the dotted lines in Figure 20 on page 246.

Caller A “calls” Caller B using Caller B’s SIP identity, a type of
Uniform Resource Identifier (URI) called a SIP URI. It has a similar
form to an email address, typically containing a user name and a
host name. In this case, it is sip:callerb@biloxi.com, where biloxi.com
is the domain of Caller B's SIP service provider. Caller A has a SIP
URI of sip:callera@atlanta.com. Caller A might have typed in
Caller B's URI or perhaps clicked on a hyperlink or an entry in an
address book. SIP also provides a secure URI, called a SIPS URI. An
example would be sips:callerb@biloxi.com. A call made to a SIPS URI
guarantees that secure, encrypted transport (namely TLS) is used to
carry all SIP messages from the caller to the domain of the callee.
From there, the request is sent securely to the callee, but with
security mechanisms that depend on the policy of the domain of the
callee.

SIP is based on an HTTP-like request/response transaction model.
Each transaction consists of a request that invokes a particular
method, or function, on the server and at least one response. In this
example, the transaction begins with Caller A's softphone sending
an INVITE request addressed to Caller B's SIP URI. INVITE is an
example of a SIP method that specifies the action that the requester
(Caller A) wants the server (Caller B) to take. The INVITE request

March 2020 245

contains a number of header fields. Header fields are named
attributes that provide additional information about a message. The
ones present in an INVITE include the following:

 Unique identifier for the call

 Destination address

 Caller A's address

 Information about the type of session that Caller A wishes to
establish with Caller B

March 2020 246

The INVITE (message F1 in Figure 20) might look like this:

 atlanta.com . . . biloxi.com
 . proxy proxy .
 . .
 A's . b's
 softphone SIP Phone
 | | | |
 | INVITE F1 | | |
 |--------------->| INVITE F2 | |
 | 100 Trying F3 |--------------->| INVITE F4 |
 |<---------------| 100 Trying F5 |--------------->|
 | |<-------------- | 180 Ringing F6 |
 | | 180 Ringing F7 |<---------------|
 | 180 Ringing F8 |<---------------| 200 OK F9 |
 |<---------------| 200 OK F10 |<---------------|
 | 200 OK F11 |<---------------| |
 |<---------------| | |
 | ACK F12 |
 |--->|
 | Media Session |
 |<==>|
 | BYE F13 |
 |<---|
 | 200 OK F14 |
 |--->|
 | |

Figure 20. SIP Session Setup Example With Sip Trapezoid

INVITE sip:b@biloxi.com SIP/2.0
Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds
Max-Forwards: 70
To: b <sip:b@biloxi.com>
From: A <sip:a@atlanta.com>;tag=1928301774
Call-ID: a84b4c76e66710@pc33.atlanta.com
CSeq: 314159 INVITE
Contact: <sip:a@pc33.atlanta.com>
Content-Type: application/sdp
Content-Length: 142

(A's SDP not shown)
INVITE Message

Note: Caller A's SDP not shown

March 2020 247

The first line of the text-encoded message contains the method name
(INVITE). The lines that follow are a list of header fields. This
example contains a minimum required set. The header fields are
briefly described below:

Via Contains the address (pc33.atlanta.com) at which Caller A is
expecting to receive responses to this request. It also contains a
branch parameter that identifies this transaction.

To Contains a display name (Caller B) and a SIP or SIPS URI
(sip:callerb@biloxi.com) towards which the request was originally
directed. Display names are described in RFC 2822 [3].

From Also contains a display name (Caller A) and a SIP or SIPS URI
(sip:callera@atlanta.com) that indicate the originator of the request.

This header field also has a tag parameter containing a random
string (1928301774) that was added to the URI by the softphone. It
is used for identification purposes.

Call-ID Contains a globally unique identifier for this call, generated by the
combination of a random string and the softphone's host name or IP
address. The combination of the To tag, From tag, and Call-ID
completely defines a peer-to-peer SIP relationship between Caller A
and Caller B and is referred to as a dialog.

CSeq (or Command Sequence) contains an integer and a method name.
The CSeq number is incremented for each new request within a
dialog and is a traditional sequence number.

Contact Contains a SIP or SIPS URI that represents a direct route to contact
Caller A, usually composed of a username at a fully qualified domain
name (FQDN). While an FQDN is preferred, many end systems do
not have registered domain names, so IP addresses are permitted.
While the Via header field tells other elements where to send the
response, the Contact header field tells other elements where to send
future requests.

Max-Forwards Serves to limit the number of hops a request can make on the way to
its destination. It consists of an integer that is decremented by one at
each hop.

Content-Type Contains a description of the message body (not shown).

March 2020 248

Content-Length Contains an octet (byte) count of the message body.

The details of the session, such as the type of media, codec, or
sampling rate, are not described using SIP. Rather, the body of a SIP
message contains a description of the session, encoded in some other
protocol format. One such format is the Session Description Protocol
(SDP) (RFC 2327 [1]). This SDP message (not shown in the example)
is carried by the SIP message in a way that is analogous to a
document attachment being carried by an email message, or a web
page being carried in an HTTP message.

Since the softphone does not know the location of Caller B or the SIP
server in the biloxi.com domain, the softphone sends the INVITE to
the SIP server that serves Caller A's domain, atlanta.com. The
address of the atlanta.com SIP server could have been configured in
Caller A's softphone, or it could have been discovered by the
Dynamic Host Configuration Protocol (DHCP), for example.

The atlanta.com SIP server is a type of SIP server known as a proxy
server. A proxy server receives SIP requests and forwards them on
behalf of the requestor. In this example, the proxy server receives
the INVITE request and sends a 100 (Trying) response back to
Caller A's softphone. The 100 (Trying) response indicates that the
INVITE has been received and that the proxy is working on
Caller A’s behalf to route the INVITE to the destination. Responses
in SIP use a three-digit code followed by a descriptive phrase. This
response contains the same To, From, Call-ID, CSeq and branch
parameter in the Via as the INVITE, which allows Caller A's
softphone to correlate this response to the sent INVITE. The
atlanta.com proxy server locates the proxy server at biloxi.com,
possibly by performing a particular type of DNS (Domain Name
Service) lookup to find the SIP server that serves the biloxi.com
domain. This is described in [4]. As a result, it obtains the IP address
of the biloxi.com proxy server and forwards, or proxies, the INVITE
request there. Before forwarding the request, the atlanta.com proxy
server adds an additional Via header field value that contains its
own address (the INVITE already contains Caller A's address in the
first Via). The biloxi.com proxy server receives the INVITE and
responds with a 100 (Trying) response back to the atlanta.com proxy
server to indicate that it has received the INVITE and is processing
the request. The proxy server consults a database, generically called
a location service, that contains the current IP address of Caller B.
The biloxi.com proxy server adds another Via header field value with
its own address to the INVITE and proxies it to Caller B's SIP
phone.

March 2020 249

Caller B's SIP phone receives the INVITE and alerts Caller B to the
incoming call from Caller A so that Caller B can decide whether to
answer the call, that is, Caller B's phone rings. Caller B's SIP phone
indicates this in a 180 (Ringing) response, which is routed back
through the two proxies in the reverse direction. Each proxy uses the
Via header field to determine where to send the response and
removes its own address from the top. As a result, although DNS and
location service lookups were required to route the initial INVITE,
the 180 (Ringing) response is returned to the caller without lookups
or without state being maintained in the proxies. This also has the
desirable property that each proxy that sees the INVITE also sees all
responses to the INVITE.

When Caller A's softphone receives the 180 (Ringing) response, it
passes this information to Caller A, perhaps using an audio ringback
tone or by displaying a message on Caller A's screen.

In this example, Caller B decides to answer the call. When he picks
up the handset, the SIP phone sends a 200 (OK) response to indicate
that the call has been answered. The 200 (OK) contains a message
body with the SDP media description of the type of session that
Caller B is willing to establish with Caller A. As a result, there is a
two-phase exchange of SDP messages: Caller A sent one to Caller B,
and Caller B sent one back to Caller A. This two-phase exchange
provides basic negotiation capabilities and is based on a simple
offer/answer model of SDP exchange. If Caller B did not wish to
answer the call or was busy on another call, an error response would
have been sent instead of the 200 (OK), which would have resulted in
no media session being established. The 200 (OK) (message F9 in
Figure 20 on page 246) might look like this as Caller B sends it out:

SIP/2.0 200 OK
 Via: SIP/2.0/UDP server10.biloxi.com; branch=z9hG4bKnashds8;

received=192.0.2.3
 Via: SIP/2.0/UDP bigbox3.site3.atlanta.com; branch=z9hG4bK77ef4c2312983.1;

received=192.0.2.2
 Via: SIP/2.0/UDP pc33.atlanta.com; branch=z9hG4bK776asdhds;

received=192.0.2.1
 To: b <sip:b@biloxi.com>;tag=a6c85cf
 From: A <sip:a@atlanta.com>;tag=1928301774
 Call-ID: a84b4c76e66710@pc33.atlanta.com
 CSeq: 314159 INVITE
 Contact: <sip:b@192.0.2.4>
 Content-Type: application/sdp
 Content-Length: 131

(Caller B's SDP not shown)

March 2020 250

The first line of the response contains the response code (200) and
the reason phrase (OK). The remaining lines contain header fields.
The Via, To, From, Call-ID, and CSeq header fields are copied from
the INVITE request. (There are three Via header field values - one
added by Caller A's SIP phone, one added by the atlanta.com proxy,
and one added by the biloxi.com proxy.) Caller B's SIP phone has
added a tag parameter to the To header field. This tag is
incorporated by both endpoints into the dialog and is included in all
future requests and responses in this call. The Contact header field
contains a URI at which Caller B can be directly reached at a SIP
phone. The Content-Type and Content-Length refer to the message
body (not shown) that contains Caller B's SDP media information.

In addition to DNS and location service lookups shown in this
example, proxy servers can make flexible “routing decisions” to
decide where to send a request. For example, if Caller B's SIP phone
returned a 486 (Busy Here) response, the biloxi.com proxy server
could proxy the INVITE to Caller B's voicemail server. A proxy
server can also send an INVITE to a number of locations at the same
time. This type of parallel search is known as forking (see below).

In this case, the 200 (OK) is routed back through the two proxies and
is received by Caller A's softphone, which then stops the ringback
tone and indicates that the call has been answered. Finally,
Caller A's softphone sends an acknowledgement message, ACK, to
Caller B's SIP phone to confirm the reception of the final response
(200 (OK)). In this example, the ACK is sent directly from Caller A's
softphone to Caller B's SIP phone, bypassing the two proxies. This
occurs because the endpoints have learned each other's address from
the Contact header fields through the INVITE/200 (OK) exchange,
which was not known when the initial INVITE was sent. The
lookups performed by the two proxies are no longer needed, so the
proxies drop out of the call flow. This completes the
INVITE/200/ACK three-way handshake used to establish SIP
sessions.

Caller A and Caller B's media session has now begun, and they send
media packets using the format to which they agreed in the
exchange of SDP. In general, the end-to-end media packets take a
different path from the SIP signaling messages.

March 2020 251

During the session, either Caller A or Caller B may decide to change
the characteristics of the media session. This is accomplished by
sending a re-INVITE containing a new media description. This
re-INVITE references the existing dialog so that the other party
knows that it is to modify an existing session instead of establishing
a new session. The other party sends a 200 (OK) to accept the
change. The requestor responds to the 200 (OK) with an ACK. If the
other party does not accept the change, he sends an error response
such as 488 (Not Acceptable Here), which also receives an ACK.
However, the failure of the re-INVITE does not cause the existing
call to fail - the session continues using the previously negotiated
characteristics.

At the end of the call, Caller B disconnects (hangs up) first and
generates a BYE message. This BYE is routed directly to Caller A's
softphone, again bypassing the proxies. Caller A confirms receipt of
the BYE with a 200 (OK) response, which terminates the session and
the BYE transaction. No ACK is sent - an ACK is only sent in
response to an INVITE request. The reasons for this special
handling for INVITE relate to the reliability mechanisms in SIP, the
length of time it can take for a ringing phone to be answered, and
forking. For this reason, request handling in SIP is often classified
as either INVITE or non- INVITE, referring to all other methods
besides INVITE.

In some cases, it may be useful for proxies in the SIP signaling path
to see all the messaging between the endpoints for the duration of
the session. For example, if the biloxi.com proxy server wished to
remain in the SIP messaging path beyond the initial INVITE, it
would add to the INVITE a required routing header field known as
Record- Route that contained a URI resolving to the hostname or IP
address of the proxy. This information would be received by both
Caller B's SIP phone and (due to the Record-Route header field being
passed back in the 200 (OK)) Caller A's softphone and stored for the
duration of the dialog. The biloxi.com proxy server would then
receive and proxy the ACK, BYE, and 200 (OK) to the BYE. Each
proxy can independently decide to receive subsequent messages, and
those messages pass through all proxies that elect to receive it. This
capability is frequently used for proxies that are providing mid-call
features.

March 2020 252

Registration is another common operation in SIP. Registration is one
way that the biloxi.com server can learn the current location of
Caller B. Upon initialization, and at periodic intervals, Caller B's
SIP phone sends REGISTER messages to a server in the biloxi.com
domain known as a SIP registrar. The REGISTER messages
associate Caller B's SIP or SIPS URI (sip:callerb@biloxi.com) with
the machine into which he is currently logged (conveyed as a SIP or
SIPS URI in the Contact header field). The registrar writes this
association, also called a binding, to a database, called the location
service, where it is used by the proxy in the biloxi.com domain.
Often, a registrar server for a domain is co-located with the proxy for
that domain. It is an important concept that the distinction between
types of SIP servers is logical, not physical.

Caller B is not limited to registering from a single device. For
example, both the SIP phone at home and the one in the office could
send registrations. This information is stored together in the location
service and allows a proxy to perform various types of searches to
locate Caller B. Similarly, more than one user is registered on a
single device at the same time.

The location service is just an abstract concept. It generally contains
information that allows a proxy to input a URI and receive a set of
zero or more URIs that tell the proxy where to send the request.
Registrations are one way to create this information, but not the only
way. Arbitrary mapping functions are configured at the discretion of
the administrator.

Finally, it is important to note that in SIP, registration is used for
routing incoming SIP requests and has no role in authorizing
outgoing requests. Authorization and authentication are handled in
SIP either on a request-by-request basis with a challenge/response
mechanism, or by using a lower layer scheme.

March 2020 253

Full Copyright Statement

Copyright (C) The Internet Society (2002). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and
derivative works that comment on or otherwise explain it or assist in its
implementation may be prepared, copied, published and distributed, in whole or in
part, without restriction of any kind, provided that the above copyright notice and this
paragraph are included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing the copyright
notice or references to the Internet Society or other Internet organizations, except as
needed for the purpose of developing Internet standards in which case the procedures
for copyrights defined in the Internet Standards process must be followed, or as
required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the
Internet Society or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis
and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK
FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE.

March 2020 254

Using Third Party IP Stacks

The Brooktrout Bfv Fax can be integrated with systems that have
their own IP call control stacks. The primary IP stacks are SIP and
H.323. These stacks negotiate an RTP and a T.38 port to perform
fax. With the use of the Brooktrout SR140 software, a pure fax
software solution can be integrated on systems that have VoIP
features.

Systems that have available board slots can take advantage of the
TR1034-N board to unload CPU cycles from the system to the board
for fax processing. With this integration, it will be up to the third
party IP stack to negotiate RTP and T.38 ports.

March 2020 255

Integrating Bfv IP Fax

Figure 21 shows the individual components that an application
interacts with via the Bfv API. Although other facilities exist, only
the fax-related facilities are shown below.

Figure 21. Components Interacting with Application

March 2020 256

Components

The following figure shows the components included in this
configuration. Note that you must disable the functionality of the
following:

 ECC Component

 H.323 Stack

 SIP Stack

Refer to Disable ECC Component on page 257 which disables the
stacks too.

Figure 22. Components in Configuration

March 2020 257

Configuration

You can configure the Bfv with the Brooktrout Configuration Tool on
Windows or by creating the callctrl.cfg files manually.

The Brooktrout Configuration Tool is a full-solution configuration
because the call control is included in the configuration along with
the IP Stack which has been integrated with BFV.

It can be used to create the initial callctrl.cfg and btcall.cfg.
However, for this setup, you must edit the callctrl.cfg manually.

Dialogic does not recommend that you use Brooktrout Configuration
Tool beyond the initial creation of the configuration files. Refer to the
Call Control Configuration File section in the Dialogic® Brooktrout®
Bfv APIs Reference Manual for more information on the parameters
available in callctrl.cfg.

Disable ECC Component

To disable the ECC component and allow a third party to manage
call control, remove the following sections in callctrl.cfg:

[module.X/host_cc.1]

[host_module.1]

[host_module.1/t38parameters]

[host_module.1/parameters]

The following callctrl.cfg examples are for Linux with paths to the
default installation directory.

Brooktrout SR140 Software-Based Integration -
Linux

The following callctrl.cfg configuration is an example for a
Brooktrout SR140 “pure” software based integration for Linux in the
default installation directory.

March 2020 258

callctrl.cfg

#

Sample Call Control configuration file for Boston Bfv
API with SR140.

#

[module.41]

 vb_firm=/usr/sys/Brooktrout/Boston/fw/bostvb.so

This parameter should be set to the number of channels
licensed for the SR140 product

 channels=30

[module.41/ethernet.1]

 ip_interface=eth0

TR1034 Board-Based Integration - Linux

The following callctrl.cfg configuration is an example for a TR1034
board based integration for Linux in the default installation
directory.

callctrl.cfg

#

Sample Call Control configuration file for Boston Bfv
API with TR1034.

#

[module.2]

 cc_type=1

 channels=30

 set_api=bfv

 pcm_law=mulaw

[module.2/clock_config]

 clock_mode=master

 clock_source=internal

 clock_compatibility=none

 bus_speed=2

 master_ref_fallback=disabled

 master_drive=clock_a

[module.2/ethernet.1]

March 2020 259

Specify a staic IP address such as 192.168.0.2

 ip_address=0.0.0.0

Specify an IP mask such as 255.255.255.0

 ip_netmask=0.0.0.0

Specify an IP address such as 192.168.0.1

 ip_gateway=0.0.0.0

 ip_broadcast=0.0.0.0

 ethernet_speed=auto

 ip_arp_timeout=10

Call Negotiation

Inbound Call

The following section uses SIP to demonstrate the interaction
between the third party stack in the application and the Bfv API for
negotiating RTP and T.38 for an inbound call.

Applications that perform their own RTP can generate the
CED/ANSam tone and avoid setting the RTP stream on the Bfv API.

If this is the case, applications can skip calling
BfvCallSWConnectIP(FullDuplex RTP) and BfvTonePlayBeep()
CED.

March 2020 260

If both RTP and T.38 are done with the Bfv API, some ICMP errors
may appear as the port is switched from RTP to T.38. To avoid the
ICMP errors use unique ports for RTP and T.38.

Figure 23. Inbound SIP Sequence

Outbound Call

The following section uses SIP to demonstrate the interaction
between the third party stack in the application and Bfv API for
negotiating RTP and T.38 for an outbound call.

Applications that perform their own RTP can generate the CNG tone
and avoid setting the RTP stream on the Bfv API. If this is the case
applications can skip calling BfvCallSwitchConnectIP(Listen RTP
local IP/Port), BfvCallSWConnectIP(FullDuplex RTP),
BfvLineCallProgressEnable() Generates CNG, and
BfvLineCallProgressDisable.

If RTP is also going to be done with the Bfv API, make sure the port
used in BfvCallSWConnectIP is unused.

March 2020 261

If both RTP and T.38 are done with the Bfv API, some ICMP errors
may appear as the port is switched from RTP to T.38. To avoid the
ICMP errors use unique ports for RTP and T.38.

Figure 24. Outbound SIP Sequence

March 2020 262

SR140 Internet Aware Fax (IAF) Support over UDP

The T.38 IAF mode allows fax endpoints that are directly
interconnected by an IP network, to send the fax at much higher
speeds than normal, since they are not constrained by modem or
G.711 limitations. This mode is defined in the ITU-T T.38
Recommendation defining a real-time method for sending faxes
directly between two fax-over-IP (FoIP) endpoints over an all-IP
network. Real-time and standards based; continues to support
existing business compliance.

This feature takes advantage of direct IP-IP interconnection, such as
Enterprise IP Networks or SIP Trunks with Peering. This will allow
the SR140 to support T.38 speeds of up to 150kbps between two IAF
devices.

This feature requires an optional, additional Dialogic® Brooktrout®
SR140 Fax Software license for speeds up to 150 kbps. The IAF
feature license shall belong to the full SR140 family and requires a
fax channel license for use. This will not co-exist with SR140-L or
SR140-LL. IAF is supported for 60 simultaneous channels at image
speeds of 150kbps.

SR140 IAF requires SIP call control, T.38 version 1 or higher and
ECM to be enabled.

March 2020 263

The following is an example of the SIP call flow between two IAF
enabled endpoints that negotiate into IAF mode:

Figure 25. SIP Call Flow

March 2020 264

A device will advertise that it supports an IAF transaction by setting
bit 123 in its T.30 DIS capabilities message. When both T.38
endpoints support IAF mode, and all the feature requirements have
been met, a T.38 re-invite will be sent requesting to perform a T.38
transaction as an IAF. When this request is accepted, the fax data
rate will be transmitted at the new IAF negotiated rate and the
transmitter will respond with its T.30 DCS capabilities indicating
IAF. If an endpoint does not support IAF or does not respond to an
IAF re-invite, the fax will continue as a T.38 or G.711 fax.

To support the configuration of IAF, new User-Defined
Configuration (btcall.cfg) parameters have been made available:

'iaf_enable' ,decimal units, to enable or disable IAF support.
Default 0, disabled.
'iaf_max_bit_rate', unsigned int, bps units, Default 0 means max
supported by license.

The following Bfv API structure changes will be made to support
T.38 IAF functionality. Please see the Dialogic® Brooktrout® Bfv
API Reference Manual for more information.

A new field has been added to the args_fax_t30_params structure
defined in mill_api.h to allow Bfv applications to specify the IAF
maximum bitrate on a per-call basis using BfvFaxT30Params().
The new field is named iaf_max_bitrate and is defined as follows:

struct args_fax_t30_params {

RES res;

unsigned bit_rate;

unsigned scan_time;

unsigned modulation_type;

unsigned line_compression;

MILL_LINE *async_lp;

unsigned iaf_bit_rate;

char xmt_level;

char rcv_level;

};

March 2020 265

When passing the args_fax_t30_params structure to the
BfvFaxT30Params() function in order to specify an IAF maximum
bitrate, the modulation_type field of the args_fax_t30_params
structure should be set to MODULATION_IAF.

Two new fields have been added to the PAGE_RES structure to
return information to the Bfv application notifying whether the fax
transmission occurred in IAF mode and, if so, what the data rate was
for the page image. The new fields are named iaf_initial_speed and
iaf_final_speed and are defined as follows:

typedef struct page_res {

 int page_complete_type;

 int continue_breaks;

 unsigned ascii_bytes;

 …

 unsigned char iaf_initial_speed;

 unsigned long iaf_final_speed;

} PAGE_RES;

March 2020 266

7 - Robbed Bit Signaling

This chapter describes robbed bit signaling as used with BSMI-level
call control.

The chapter has the following sections:

 General Information on page 266

 Wink Start & Delay Dial Signaling on page 277

 Wink Start with Feature Group B & D on page 282

 Immediate Start/Fixed Pause Signaling on page 286

 Ground Start Signaling on page 290

 Loop Start Signaling on page 302

 FXO Loop Start on page 303

General Information

This chapter covers protocols Dialogic supports for interfacing with
the Local Exchange Carrier (LEC) Network (that is, the North
American Telephone Network).

Note: This chapter applies only to BSMI (low-level call control)
users. Bfv API call control users do not need to be concerned
with this information.

March 2020 267

These protocols apply either to digital (T1 or E1) or analog lines. The
different types of lines simply provide a different mechanism for
conveying the signal-electric signals (loop current and ring voltage)
on analog lines and bits on digital lines.

On digital lines, these protocols are sometimes referred to as
Channel Associated Signaling (CAS) or Robbed-Bit Signaling (RBS)
due to the nature of the signaling. Each channel's state is
represented as a set of 2 signaling bits, and these bits are
transmitted on the line at constant intervals. The LEC protocols are
normally associated with T1 lines, where they were originally used,
but nowadays it is possible to find these protocols used in PBX's
using E1 lines (which provide 4 signaling bits per channel).

A different technique is to reserve a full channel on a T1 or E1 line to
carry information about all channels, and to use the available bits as
a continuous stream carrying information “packets” instead of
repeating a number of signaling bits over time. This technique is
called Common-Channel Signaling (CCS), and is used on ISDN lines
among others.

In T1 lines, audio and line state information is grouped in frames,
each frame consists of 8 bits of data for each of the 24 channels, plus
a framing bit, adding to 193 bits/frame (8 bits/byte * 1 byte/channel *
24 channels/frame + 1bit). The sampling rate is 8000 Hz, so the bit
rate is 8000x193=1,544,000, or 1.544 Mb/s.

The technique used for carrying the signaling bits on T1 is to use
(“rob,” hence the term Robbed-Bit Signaling) some of the bits
normally intended to represent data (voice/fax/data) on a channel for
the purposes of call control. Research has shown that robbing the
least significant bit of each channel's sample every 6th frame causes
a virtually imperceptible (for humans) level of distortion for voice.
However, when raw data is being sent, this loss becomes
unacceptable, so for simplicity only 7 of the 8 bits are used for data
applications. This technique allows for all 24 channels to be used for
calls, as opposed to 23 channels used for calls and one for call control
(23B+D), as with ISDN.

In E1 lines (32 timeslots per line), one of the timeslots (0) in each
frame is reserved for framing and synchronization data, and another
(timeslot 16) is used for the signaling bits — in the first frame it
carries information about audio timeslots 1 and 17, in the second
frame for timeslots 2 and 18 and so on until all audio channels are
covered, and then the process starts over.

March 2020 268

The protocols describe the value and meaning of the signaling bits
and the timing between changes in their value.

Modules support the following LEC protocols:

 E&M Wink Start

 E&M Immediate Start

 E&M Delay Dial

 FXO Loop Start

 FXS Loop Start

 FXO Ground Start

 FXS Ground Start

All signaling modes support pulsed (10 pulses per second), DTMF
and MF dialing. However, detection of digits must be handled by the
host.

ITU's R2 protocol, normally used in E1 lines is also supported, and it
is described in Using the BSMI R2 Signaling Capability on page 335.

Wink Start, Immediate Start and Delay Dial protocols are typically
used to connect equivalent devices (for example, Central Offices).
The same protocol must be loaded on both channel involved in a call.
Loop Start and Ground Start protocols connect different types of
devices (a Central Office or PBX to a Station). In this case the side
acting as Central Office must load the FXO (foreign exchange office)
version of the protocol, while the Station side must load the FXS
(foreign exchange station) version.

The messages and data structures used for the host application and
the module to communicate form the BSMI interface, described in
Volume 5 of the Dialogic® Brooktrout® Bfv API Reference Manual.
The same Bfv API is used also for ISDN and R2 — the same
messages are used to control/notify similar events across all
protocols.
Structure IISDN_BCHANNEL_ID contains fields common to all
CAS protocols plus data structures containing LEC- and R2-specific
configuration (structures IISDN_ROBBED_BIT_DATA and IISDN_
E1_CAS_R2_DATA respectively). Some of the message fields have
names that reflect their ISDN roots, but their definition is extended
for use with all CAS protocols (LEC protocols as well as R2). The
most important ones are lapdid, which in CAS protocols identifies
the trunk number in the module (0-based) and call_ref, a 16-bit
value in which the most-significant byte must always contain the
trunk number (same value as lapdid) and the least significant byte

March 2020 269

the B-channel number on that trunk (also 0-based). Some of the data
structures associated with the message will have a specific field for
specifying the B-channel, which must also be set.

Enabling a channel and selecting the protocol to run is done through
message L4L3mENABLE_CAS, while message L4L3mDISABLE_
CAS is used to disable a channel. It is possible to have different
channels on the same T1 trunk running different protocols. Once a
DS0 channel is configured to run a LEC protocol most processing
specific to that protocol, is handled by the module. Channels are
numbered 0-(N-1) for all line types (T1, E1 and analog) and
protocols.

Dialogic supports the most common protocols. Contact Dialogic to
make requests for ones not known to be officially supported. See
Getting Technical Support on page 19 for contact information.

Timer Definitions

The LEC structure (named IISDN_ROBBED_BIT_DATA for
historical reasons) contains a series of 16-bit values used to configure
the various timing parameters associated with the protocols.
Table 13 lists the timers in alphabetical order and contains each
timer's unit, meaning, and default value. The unit indicates by how
much a timer value must be multiplied to find its actual duration in
milliseconds, while the default (the number in parentheses following
its define value) indicates the number of ticks.

Proper timing with LEC protocols is very important. There are over
30 unique timings that are set, with a significant subset of these
applicable to several protocols. You should match their entries in the
table to the appropriate timing diagrams.

Table 13. Robbed Bit Signaling Timers

Timer Granularity Definition Default Value

answer_timer 50 ms Timed Answer Supervision.
Timer started after the last digit
has been dialed. Used to report
distant end answer when the
protocol doesn't provide a
specific signal to indicate the
called party has answered the
call.

IISDN56_ANSW_TIMER_
DEFAULT (60)
3 seconds

March 2020 270

critical_timer 50 ms Critical Interdigit Timer. While
racking incoming distant digits,
the maximum time to wait
between digits before giving up
and returning an incomplete
rack.

IISDN56_CRIT_TIMER_
DEFAULT (20)
1 second

delayed_on_
hook_timer

50 ms Delayed on hook timer. If set to a
value greater than 0, the
amount of time it waits for the
host to set the line onhook
(message L4L3mCLEAR_
REQUEST) after the protocol
has detected termination of the
call. If this timer expires, the
protocol sets the line onhook
automatically. If this value is set
to 0 or infinity (0xFFFF), the
protocol waits forever for the
host to set the line onhook. The
timer is only used if field
delayed_onhook_mode is set to
TRUE.

IISDN56_DELAYED_ON_
HOOKTIMER_DEFAULT (20)
1 second

delayed_wink_
timer

20 ms Delayed Wink timer. If set to a
value greater than 0, the
amount of time it waits for the
host to send the wink ((message
L4L3mTX_WINK) after the
protocol has detected an
incoming call. If this timer
expires, the protocol sends the
wink automatically. If this value
is set to 0 or infinity (0xFFFF),
the protocol waits forever for the
host to send the wink. The timer
is only used if field delayed_
wink_mode is set to TRUE.

IISDN_DELAYED_WINK_
TIMER_DEFAULT (20)
1 second

dptimer_break 10 ms Dial Pulse Break.

On-hook (break) time for
outdialing a dial pulse digit.

IISDN56_DPBREAK_TIMER_
DEFAULT (4)

40 ms

dptimer_end_
dial_pause

10 ms Dial Pulse Pause After Dialing.

Time after outpulsing the last
digit before Instant ISDN sends
any supervision signals or
receives answer supervision.

IISDN56_DPEND_DIAL_TIMER_
DEFAULT (5)

50 ms

Table 13. Robbed Bit Signaling Timers (Continued)

Timer Granularity Definition Default Value

March 2020 271

dptimer_
immed_delay

10 ms Dial Pulse Immediate Delay.

Time after an incoming seizure
before Instant ISDN will accept
incoming dial pulse digits.

IISDN56_IMMED_DELAY_
TIMER_DEFAULT (10)

100 ms

dptimer_
interdigit

10 ms Dial Pulse Interdigit.

Time between digits when
performing digit outpulsing.

IISDN56_DPINTERDGT_TIMER_
DEFAULT (30)

300 ms

dptimer_make 10 ms Dial Pulse Make.

Off-hook (make) time for
outdialing a dial pulse digit.

IISDN56_DPMAKE_TIMER_
DEFAULT (6)

60 ms

dptimer_post_
wink

10 ms Amount of time the protocol will
keep the line in idle state after
transmission of a wink signal
before reporting to the host the
wink has been sent. This
ensures a minimum period for
the idle signal to be present on
the line, even if the host sends
the line offhook immediately
after being notified of an
incoming call or end of a
transmitted wink.

IISDN56_DPPOSTWINK_TIMER_
DEFAULT (5)

50 ms

dptimer_pre_
wink

10 ms Dial Pulse Prewink.

Time Instant ISDN pauses
before sending a wink signal.

IISDN56_DPPREWINK_TIMER_
DEFAULT (5)

50 ms

dptimer_wink 10 ms Duration of a transmitted wink. IISDN56_DPWINK_TIMER_
DEFAULT (20)

200 ms

first_indigit_
timer

50 ms Normal First Interdigit Timer.
While racking incoming digits,
the maximum time to wait for
the first digit before giving up
and returning an incomplete
rack (valid during normal
interdigit timing only).

IISDN56_FIRST_DGT_TIMER_
DEFAULT (60)
3 seconds

fixed_pause_
timer

50 ms Fixed Pause Wait Timer.
Time to wait before allowing
outgoing dialing to commence
(applies when outgoing start dial
type is fixed pause only).

IISDN56_FIXP_TIMER_
DEFAULT (2)
100 ms

Table 13. Robbed Bit Signaling Timers (Continued)

Timer Granularity Definition Default Value

March 2020 272

glare_
detection_
timer

10 ms Glare Detection.
Timer started at the beginning
of outseizure that determines if
a wink start or delay dial was
returned too quickly to be an
acknowledgment of the
outseizure, but should be treated
as glare.

IISDN56_GLARE_TIMER_
DEFAULT (5)

50 ms

guard_
interval_timer

50 ms Guard Interval Timer. Time
after the circuit becomes idle
before it is used for another
outgoing call.

IISDN56_GUARD_TIMER_
DEFAULT (20)
1 second

hookflash_
timer

10 ms Hookflash Timer. Duration of a
transmitted hook flash signal.

IISDN56_HOOKFLASH_TIMER_
DEFAULT(80)

800 ms

hooktimer_
onhook_rls

10 ms Normal Outgoing Release Filter.

Filter on receive signal bit
detector or the amount of time it
must be idle before distant end
releasing is assumed. This filter
is in effect some time after
answer (specified by modified
outgoing release time) until
completion of call.

IISDN56_ONHK_TIMER_
DEFAULT (50)

500 ms

hooktimer_
onhk_mod_in_
rls

10 ms Modified Incoming Release
Filter.

Filter on receive signal bit
detector or the amount of time it
must be idle before distant end
releasing is assumed. This filter
is in effect from inseizure until
sometime after answer (specified
by modified incoming release
time).

IISDN56_MOD_ONHK_IN_
TIMER_
DEFAULT (80)
800 ms

hooktimer_
onhk_mod_
out_rls

10 ms Modified Outgoing Release
Filter. Filter on receive signal
bit detector or the amount of
time it must be idle before
distant end releasing is
assumed. This filter is in effect
from answer until some time
after answer (specified by
modified outgoing release time).

IISDN56_MOD_ONHK_OUT_
TIMER_DEFAULT (80)
800 ms

Table 13. Robbed Bit Signaling Timers (Continued)

Timer Granularity Definition Default Value

March 2020 273

hooktimer_
offhook_inseize

10 ms Inseizure Filter.

Time that the receive signal bit
must be in-use to be considered
an inseizure from the connected
equipment.

IISDN56_OFHK_INSZ_TIMER_
DEFAULT (5)

50 ms

hooktimer_
offhook_
answer

10 ms Answer Filter.

Filter used on the receive signal
bit during the interval during
which Instant ISDN is looking
for an answer from the
connected equipment.

IISDN56_OFHK_ANS_TIMER_
DEFAULT (10)

100 ms

hooktimer_
min_wink

10 ms Wink Filter.

Minimum off-hook that will be
interpreted as a valid start dial
signal when outgoing start dial
is selected as wink start or delay
dial.

IISDN56_MIN_WINK_TIMER_
DEFAULT (10)

100 ms

hooktimer_
maxmake

10 ms Longest make duration that is
counted as part of a dial pulse.

A longer make signal will cause
digit racking to be terminated.

IISDN56_MAXMAKE_TIMER_
DEFAULT (8)

8 ms

hooktimer_
maxbreak

10 ms Longest break duration that is
counted as part of a dial pulse.

A longer break signal will be
considered the end of a pulse
digit. If the duration eventually
exceeds the value specified in
field critical timer, it is
interpreted as a disconnection
signal.

IISDN56_MAXBREAK_TIMER_
DEFAULT (8)

8 ms

hooktimer_
minmake

10 ms Minimum Dial Pulse Make
Time.

Shortest make region that is
counted as a dial pulse make
region. Anything shorter should
be ignored.

IISDN56_MINMAKE_TIMER_
DEFAULT (1)

1 ms

Table 13. Robbed Bit Signaling Timers (Continued)

Timer Granularity Definition Default Value

March 2020 274

hooktimer_
minbreak

10 ms Minimum Dial Pulse Break
Time.

Shortest break region that is
counted as a dial pulse break
region. Anything shorter should
be ignored.

IISDN56_MINBREAK_TIMER_
DEFAULT (1)

1 ms

ign_insz_post_
rls_timer

10 ms Ignore Inseize After Release
Timer.

Time after the interface has
idled before Instant ISDN will
allow an inseizure from the
connected equipment.

IISDN56_IGNINSZ_TIMER_
DEFAULT (5)

50 ms

ign_rls_post_
ans_timer

10 ms Ignore Release After Answer
Timer.

Time after the call has been
answered before Instant ISDN
will allow the connected
equipment to try to tear down
the call.

IISDN56_IGNRLS_TIMER_
DEFAULT (5)

50 ms

modified_in_
rls_timer

50 ms Modified Incoming Release
Timer.

Timer started at answer that
determines when modified
incoming release filter timing
ends and normal incoming
release filter timing begins.

IISDN56_MOD_INRLS_TIMER_
DEFAULT (10)
500 ms

modified_out_
rls_timer

50 ms Modified Outgoing Release
Timer.

Timer started at answer that
determines when modified
outgoing release filter timed
ends, and normal outgoing
release filter timing begins.

IISDN56_MOD_OUTRLS_TIMER_
DEFAULT (10)
500 ms

no_ringing_
timer

50 ms Interval between rings during
the ring cycle on outbound calls
(FXS Loop Start and FXS
Ground Start calls only).

IISDN56_NO_RINGING_TIMER_
DEFAULT (80)

4 seconds

Table 13. Robbed Bit Signaling Timers (Continued)

Timer Granularity Definition Default Value

March 2020 275

outseize_ack_
timer

50 ms CO Outseize Acknowledge
Timer.

Time to continue looking for the
outgoing start dial signal from
the connected equipment on
outseizure before declaring an
outseizure failure.

IISDN56_OUTS_ACK_TIMER_
DEFAULT (60)

3 seconds

ringing_timer 50 ms Duration of ring signal during
the ring cycle on outbound calls
(FXS Loop Start and FXS
Ground Start calls only).

IISDN56_RINGING_TIMER_
DEFAULT (40)

2 seconds

Table 13. Robbed Bit Signaling Timers (Continued)

Timer Granularity Definition Default Value

March 2020 276

Timing Diagrams

To aid in the development process, timing diagrams that illustrate
call setup and call teardown signaling in the various supported
protocols are provided in the sections that follow. The diagrams
consist of four parts:

 IISDN SMI Messages: Indicates the Bfv API messages sent to
and received from the card during the call scenario.

 IISDN Timers: The timers possibly in use during the call
scenario are listed, and active only during the periods on the
diagram where the graph blocks are shaded.

 Receive and Transmit Signaling Bits: The thick black lines
represent the signaling bits used to represent the call states in
each protocol. Wink Start, Immediate Start/Fixed Pause and
Delay protocols use only one bit (A-bit) to carry information, so
only one line is shown for each direction. In these protocols, the
value of the A-bit is seen as the “hook switch state” (“on hook” is
low or zero, “off hook” is high or one). FXO/FXS Loop Start and
Ground Start protocols use 2 signaling bits, A and B, to carry
information, so two lines are shown for each direction. In these
protocols, the bit values represent current feed and ring signal
(FXO protocols), and hook state/ring current and ring ground
(FXS protocols).

 Arrows and Vertical Dashed Lines: The arrows and vertical
dashed lines indicate that there is a causal relationship between
an event that occurs to the start of other events. For instance,
the expiration of a timer can result in a change in the hook
switch state, or a change in hook switch state can result in the
start of a timer and issuance of an L3L4 message.

Note: The diagrams are designed to give the reader a general
understanding of the sequence of events for various robbed bit
protocols over time. The timers and spacing on the graphs are
not proportional to the actual events that occur.

March 2020 277

Wink Start & Delay Dial Signaling

In the Wink Start protocol, the device seizing the line expects a wink
signal (a short-duration - 140 to 290ms - offhook signal) to be sent
back as acknowledgment before sending the address digits.

In the Delay Dial, the device seizing the line expects an off-hook
response from the far end for at lest 140ms, and waits for the far end
to return to on-hook state before sending the address digits.

Although the protocols are different, the sequence of signals sent by
both Wink Start and Delay Dial protocols is virtually identical, so
these two protocols are often handled together.

Only two signaling bit patterns are used for these protocols.
Pattern 00 (A and B bits zero) indicates the line is idle, while AB =
11 indicates a line seizure on the initiating end and the off-hook
signal on the receiving end. Since the two bits must always have the
same value, usually only the A bit is verified and the B bit ignored,
thus eliminating the need to handle invalid bit patterns.

Wink start and delay dial trunks use almost identical signaling. To
configure a module for standard wink start signaling, the host must
issue an L4L3mENABLE_CAS with an IISDN_ROBBED_BIT_
DATA structure that contains the following settings:

 send_glare_err_event = 0 (not used for wink start)

 in_trunk_type = IISDNttWINK_START (the default value)

 out_trunk_type = IISDNttWINK_START (the default value)

 fgb_fgd_mode = 0 (refer to Wink Start with Feature Group B
& D on page 282 for wink start with Feature Group B and D
signaling)

To configure a module for delay dial signaling, the host must issue
an L4L3mENABLE_CAS with an IISDN_ROBBED_BIT_DATA
structure that contains the following settings:

 send_glare_err_event = 0 (not used for wink start)

 in_trunk_type = IISDNttDELAY_DIAL

 out_trunk_type = IISDNttDELAY_DIAL

 fgb_fgd_mode = 0

March 2020 278

The remaining settings are described in the context of incoming and
outgoing calls in the subsections that follow. Modules process calls in
the same manner on both wink start and delay dial trunks.

Incoming Call Processing

During an incoming call, the host receives an L3L4mPRE_SEIZE
message if send_preseize_event = 1 in the IISDN_ROBBED_BIT_
DATA structure. This message is sent when the module detects an
incoming seizure (off hook). The module automatically responds to
the seizure by sending a wink signal, indicating it is ready to receive
digits. The maximum number of digits the module expects to receive
must be specified in the max_incoming_digit_count field. The digits
are reported to the host in an L3L4mSETUP_IND message. To
answer the call, the host must issue an L4L3mCONNECT_
REQUEST message.

Figure 26 shows how a module processes an incoming call received
over a wink start or delay dial trunk.

March 2020 279

Figure 26. Wink Start and Delay Dial – Incoming Call Timing

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
A

LE
R

T
IN

G
_R

E
Q

U
E

S
T

 o
r

L4
L3

m
P

R
O

G
R

E
S

S
_R

E
Q

U
E

S
T

L4
L3

m
C

O
N

N
E

C
T

_R
E

Q
U

E
S

T

L3
L4

m
P

R
E

_S
E

IZ
E

L3
L4

m
S

E
T

U
P

_I
N

D

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

m
od

ifi
ed

_i
n_

rls
_t

im
er

ho
ok

tim
er

_o
nh

k_
m

od
_i

n_
rls

cr
iti

ca
l_

tim
er

ho
ok

tim
er

_m
ax

m
ak

e
ho

ok
tim

er
_m

in
m

ak
e

ho
ok

tim
er

_m
ax

br
ea

k
ho

ok
tim

er
_m

in
br

ea
k

fir
st

_i
nd

ig
it_

tim
er

dp
tim

er
_i

m
m

ed
_d

el
ay

dp
tim

er
_p

os
t_

w
in

k
dp

tim
er

_w
in

k
dp

tim
er

_p
re

w
in

k
de

la
ye

d_
w

in
k_

tim
er

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.
R

ev
is

ed
 1

0-
N

ov
-9

8
R

ev
is

io
n

1.
3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 280

Outgoing Call Processing

During an outgoing call, the host receives an L3L4mPROGRESS in
response to the L4L3mCALL_REQUEST to start the call. The host
then receives an L3L4mSEIZE_COMP message if send_seize_comp_
event = 1 in the IISDN_ROBBED_BIT_DATA structure. This
message is sent when the module detects a wink from the network,
indicating the network is ready to receive digits. After the digits are
transmitted, the module waits for answer supervision from the
network (indicating the far end has gone off hook) or for an answer
timer to expire (if timed_answer_supervision = 1). When answer
supervision is received or the timer expires, the host receives an
L3L4mCONNECT indicating the call is connected.

Figure 27 shows how the module makes an outgoing call over a wink
start or delay dial trunk.

Call Teardown Processing

For an incoming call teardown, refer to Figure 47 on page 314 at the
end of this section; for an outgoing call teardown, refer to Figure 48
on page 315 at the end of this section.

March 2020 281

Figure 27. Wink Start and Delay Dial – Outgoing Call Timing

II
S

D
N

 S
M

I
M

E
S

S
A

G
E

S
:

L4
L3

m
C

A
LL

_R
E

Q
U

E
S

T

L3
L4

m
P

R
O

G
R

E
S

S
L3

L4
m

S
E

IZ
E

_C
O

M
P

L3
L4

m
C

O
N

N
E

C
T

II
S

D
N

 T
IM

E
R

S
:

m
od

ifi
ed

_o
ut

_r
ls

_t
im

er
ho

ok
tim

er
_o

ff
ho

ok
_a

ns
w

er
dp

tim
er

_e
nd

_d
ia

l_
pa

us
e

dp
tim

er
_i

nt
er

di
gi

t
dp

tim
er

_m
ak

e
dp

tim
er

_b
re

ak
fix

ed
_p

au
se

_t
im

er
ho

ok
tim

er
_o

nh
k_

m
od

_o
ut

_r
ls

ho
ok

tim
er

_m
in

_w
in

k
ou

ts
ei

ze
_a

ck
_t

im
er

gl
ar

e_
de

te
ct

io
n_

tim
er

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

N
O

T
E

:
 T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f
th

e
se

qu
en

ce
 o

f
ev

en
ts

 f
or

 t
hi

s
ro

bb
ed

bi
t

pr
ot

oc
ol

 o
ve

r
tim

e.

T
he

 t
im

er
s

an
d

sp
ac

in
g

on
 t

hi
s

gr
ap

h
ar

e
no

t
pr

op
or

tio
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
R

ev
is

io
n

1

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 282

Wink Start with Feature Group B & D

To configure a module for wink start with Feature Group B and D
signaling, the host must issue an L4L3mENABLE_CAS with an
IISDN_ROBBED_BIT_DATA structure that contains the following
settings:

 send_glare_err_event = 0 (not used for wink start)

 in_trunk_type = IISDNttWINK_START (the default value)

 out_trunk_type = IISDNttWINK_START (the default value)

 fgb_fgd_mode = 1 (enabling Feature Group B and D)

The remaining settings are described in the context of incoming and
outgoing calls in the subsections that follow.

Incoming Call Processing

During an incoming call, the host receives an L3L4mPRE_SEIZE
message if send_preseize_event = 1 in the IISDN_ROBBED_BIT_
DATA structure. This message is sent when the module detects an
incoming seizure (off hook). The module automatically responds to
the seizure by sending a wink, indicating it is ready to receive digits.
The maximum number of digits the module expects to receive must
be specified in the max_incoming_digit_count field. The digits are
reported to the host in an L3L4mSETUP_IND message.

To acknowledge the receipt of digits, the host must issue an
L4L3mTX_WINK message to send another wink to the network. To
answer the call, the host must issue an L4L3mCONNECT_
REQUEST message.

Figure 28 shows how a module processes an incoming Feature Group
B and D call received over a wink start trunk.

March 2020 283

Figure 28. Wink Start with Feature Group B&D - Incoming Call
Timing Diagram

II
S

D
N

 S
M

I
M

E
S

S
A

G
E

S
:

L4
L3

m
C

O
N

N
E

C
T

_R
E

Q
U

E
S

T
L4

L3
m

A
LE

R
T

IN
G

_R
E

Q
U

E
S

T
 o

r
L4

L3
m

P
R

O
G

R
E

S
S

_R
E

Q
U

E
S

T
L4

L3
m

T
X

_W
IN

K

L3
L4

m
P

R
E

_S
E

IZ
E

L3
L4

m
S

E
T

U
P

_I
N

D
L3

L4
m

T
X

W
IN

K
_E

N
D

II
S

D
N

 T
IM

E
R

S
:

ho
ok

tim
er

_o
nh

oo
k_

rls
m

od
ifi

ed
_i

n_
rls

_t
im

er
ho

ok
tim

er
_o

nh
k_

m
od

_i
n_

rls
cr

iti
ca

l_
tim

er
ho

ok
tim

er
_m

ax
m

ak
e

ho
ok

tim
er

_m
in

m
ak

e
ho

ok
tim

er
_m

ax
br

ea
k

ho
ok

tim
er

_m
in

br
ea

k
fir

st
_i

nd
ig

it_
tim

er
dp

tim
er

_i
m

m
ed

_d
el

ay
dp

tim
er

_p
os

t_
w

in
k

dp
tim

er
_w

in
k

dp
tim

er
_p

re
w

in
k

de
la

ye
d_

w
in

k_
tim

er
ho

ok
tim

er
_o

ff
ho

ok
_i

ns
ei

ze

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

R
ev

is
ed

 1
0-

N
ov

-9
8

N
O

T
E

:
 T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f
th

e
se

qu
en

ce
 o

f
ev

en
ts

 f
or

 t
hi

s
ro

bb
ed

R
ev

is
io

n
1.

3
bi

t
pr

ot
oc

ol
 o

ve
r

tim
e.

T

he
 t

im
er

s
an

d
sp

ac
in

g
on

 t
hi

s
gr

ap
h

ar
e

no
t

pr
op

or
tio

na
l t

o
th

e
ac

tu
al

 e
ve

nt
s

th
at

 o
cc

ur
.

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 284

Outgoing Call Processing

The host receives an L3L4mPROGRESS in response to the
L4L3mCALL_REQUEST to start the call. The host then receives an
L3L4mRX_WINK message when the module detects a wink from the
network. The module waits a period of time (determined by the fixed
pause timer) before sending digits. When the timer expires, the host
receives an L3L4mSEIZE_COMP message if send_seize_comp_
event = 1 in the IISDN_ROBBED_BIT_DATA structure.

Call Teardown Processing

For an incoming call teardown, refer to Figure 47 at the end of this
section; for an outgoing call teardown, refer to Figure 48 at the end of
this section.

Wink start with Feature B and D is designed to support transmitting
digits other than dial pulse digits. If called_party_digits = 0 in the
L4L3mCALL_REQUEST that started the call, the module waits in
outdialing state indefinitely. During that time, another device
connected to the module over the TDM bus (such as a digital tone
generator) is used to outpulse digits to the network. When that
device is finished transmitting, the host must issue an L4L3mEND_
DIAL message to make the module continue call processing.

After the digits are transmitted, the network acknowledges their
receipt by sending a wink to the module. The host receives an
L3L4mRX_WINK when this wink is detected. The module then
waits for answer supervision from the network (indicating the far
end has gone off hook) or for an answer timer to expire (if timed_
answer_supervision = 1). When answer supervision is received or the
timer expires, the host receives an L3L4mCONNECT indicating the
call is connected.

Figure 29 shows how the module makes an outgoing Feature Group
B/D call over a wink start trunk.

March 2020 285

Figure 29. Wink Start with Feature Group B&D - Outgoing Call
Timing Diagram

II
S

D
N

 S
M

I
M

E
S

S
A

G
E

S
:

L4
L3

m
C

A
LL

_R
E

Q
U

E
S

T

L3
L4

m
P

R
O

G
R

E
S

S
L3

L4
m

R
X

_W
IN

K
L3

L4
m

S
E

IZ
E

_C
O

M
P

L3
L4

m
R

X
_W

IN
K

L3
L4

m
C

O
N

N
E

C
T

II
S

D
N

 T
IM

E
R

S
:

m
od

ifi
ed

_o
ut

_r
ls

_t
im

er
ho

ok
tim

er
_o

ff
ho

ok
_a

ns
w

er
dp

tim
er

_e
nd

_d
ia

l_
pa

us
e

dp
tim

er
_i

nt
er

di
gi

t
dp

tim
er

_m
ak

e
dp

tim
er

_b
re

ak
fix

ed
_p

au
se

_t
im

e r
ho

ok
tim

er
_o

nh
k_

m
od

_o
ut

_r
ls

ho
ok

tim
er

_m
in

_w
in

k
ou

ts
ei

ze
_a

ck
_t

im
e r

gl
ar

e_
de

te
ct

io
n_

tim
e

r

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

N
O

T
E

:
 T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f
th

e
se

qu
en

ce
 o

f
ev

en
ts

 f
or

 t
hi

s
ro

bb
ed

bi
t

pr
ot

oc
ol

 o
ve

r
tim

e.

T
he

 t
im

er
s

an
d

sp
ac

in
g

on
 t

hi
s

gr
ap

h
ar

e
no

t
pr

op
or

tio
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 286

Immediate Start/Fixed Pause Signaling

Immediate Start signaling applies to incoming calls only; Fixed
Pause signaling applies to outgoing calls only. Since these signaling
types functionally complement each other, they are handled together
by modules. The exact protocol to be used for a call is automatically
selected depending on whether an incoming or outgoing call is being
handled. To avoid confusion, the symbolic constants used to select
these two protocols, IISDNttIMMEDIATE_DIAL and
IISDNttFIXED_PAUSE, are set to the same value.

To configure a module for immediate start and fixed pause mode
signaling, the host must issue an L4L3mENABLE_CAS with an
IISDN_ROBBED_BIT_DATA structure that contains the following
settings:

 send_glare_err_event = 0 (not used)

 in_trunk_type = IISDNttIMMEDIATE_DIAL or
IISDNttFIXED_PAUSE

 out_trunk_type = IISDNttIMMEDIATE_DIAL or
IISDNttFIXED_PAUSE

 fgb_fgd_mode = 0 (not used)

The remaining settings are described in the context of incoming and
outgoing calls in the subsections that follow.

Incoming Call Processing (Immediate Start)

During an incoming call, the host receives an L3L4mPRE_SEIZE
message if send_preseize_event = 1 in the IISDN_ROBBED_BIT_
DATA structure. This message is sent when the module detects an
incoming seizure (off hook). The module then collects dial pulse
digits from the network; the maximum number of digits the module
expects to receive must be specified in the max_incoming_digit_
count field. The digits are reported to the host in an L3L4mSETUP_
IND message. To answer the call, the host must issue an
L4L3mCONNECT_REQUEST message.

Figure 30 shows how a module processes an incoming call received
over an immediate start trunk.

March 2020 287

Figure 30. Immediate Start – Incoming Call Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
A

LE
R

T
IN

G
_R

E
Q

U
E

S
T

 o
r

L4
L3

m
P

R
O

G
R

E
S

S
_R

E
Q

U
E

S
T

L4
L3

m
C

O
N

N
E

C
T

_R
E

Q
U

E
S

T

L3
L4

m
P

R
E

_S
E

IZ
E

L3
L4

m
S

E
T

U
P

_I
N

D

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

m
od

ifi
ed

_i
n_

rls
_t

im
er

ho
ok

tim
er

_o
nh

k_
m

od
_i

n_
rls

cr
iti

ca
l_

tim
er

ho
ok

tim
er

_m
ax

m
ak

e
ho

ok
tim

er
_m

in
m

ak
e

ho
ok

tim
er

_m
ax

br
ea

k
ho

ok
tim

er
_m

in
br

ea
k

fir
st

_i
nd

ig
it_

tim
e r

dp
tim

er
_i

m
m

ed
_d

el
ay

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 288

Outgoing Call Processing (Fixed Pause Mode)

During an outgoing call, the host receives an L3L4mPROGRESS in
response to the L4L3mCALL_REQUEST to start the call. The
module waits a period of time (determined by the fixed pause timer)
before sending digits. When the timer expires, the host receives an
L3L4mSEIZE_COMP message if send_seize_comp_event = 1 in the
IISDN_ROBBED_BIT_DATA structure. After transmitting digits,
the module waits for answer supervision from the network
(indicating the far end has gone off hook) or for an answer timer to
expire (if timed_answer_supervision = 1). When answer supervision
is received or the timer expires, the host receives an
L3L4mCONNECT indicating the call is connected.

Figure 31 shows how the module makes an outgoing call over a fixed
pause mode trunk.

Call Teardown Processing

For an incoming call teardown, refer to Figure 47 at the end of this
section; for an outgoing call teardown, refer to Figure 48 at the end of
this section.

March 2020 289

Figure 31. Fixed Pause – Outgoing Call Timing Diagram

II
S

D
N

 S
M

I
M

E
S

S
A

G
E

S
:

L4
L3

m
C

A
LL

_R
E

Q
U

E
S

T

L3
L4

m
P

R
O

G
R

E
S

S
L3

L4
m

S
E

IZ
E

_C
O

M
P

L3
L4

m
C

O
N

N
E

C
T

II
S

D
N

 T
IM

E
R

S
:

m
od

ifi
ed

_o
ut

_r
ls

_t
im

er
ho

ok
tim

er
_o

ff
ho

ok
_a

ns
w

er
dp

tim
er

_e
nd

_d
ia

l_
pa

us
e

dp
tim

er
_i

nt
er

di
gi

t
dp

tim
er

_m
ak

e
dp

tim
er

_b
re

ak
fix

ed
_p

au
se

_t
im

e r
ho

ok
tim

er
_o

nh
k_

m
od

_o
ut

_r
ls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

N
O

T
E

:
 T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f
th

e
se

qu
en

ce
 o

f
ev

en
ts

 f
or

 t
hi

s
ro

bb
ed

bi
t

pr
ot

oc
ol

 o
ve

r
tim

e.

T
he

 t
im

er
s

an
d

sp
ac

in
g

on
 t

hi
s

gr
ap

h
ar

e
no

t
pr

op
or

tio
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 290

Ground Start Signaling

Modules support two types of ground start signaling:

 Foreign Exchange - Office (FXO)

 Foreign Exchange - Subscriber (FXS)

When operating in FXO mode, the module assumes the far end of the
connection is an FXS termination. When operating in FXS mode, the
module assumes the far end is an FXO termination. The timing
diagrams on the pages that follow use the labels “FXO” or “FXS”
rather than “Rx” or “Tx” for hookswitch states to illustrate this point.

FXO Ground Start

To configure a module for FXO ground start signaling, the host must
issue an L4L3mENABLE_B_CHANNEL with an IISDN_ROBBED_
BIT_DATA structure that contains the following settings:

 in_trunk_type = IISDNttFXO_GDSTART

 out_trunk_type = IISDNttFXO_GDSTART

 timed_answer_supervision = 1 (timer expiration indicates far
end answer)

 fgb_fgd_mode = 0 (not used)

The remaining settings are described in the context of incoming and
outgoing calls in the subsections that follow.

Incoming Call Processing

During an incoming call, the host receives an L3L4mPRE_SEIZE
message if send_preseize_event = 1 in the IISDN_ROBBED_BIT_
DATA structure. This message is sent when the module detects ring
ground at the far end (FXS end). The module then collects dial pulse
digits from the network; the maximum number of digits the module
expects to receive must be specified in the max_incoming_digit_
count field. The digits are reported to the host in an L3L4mSETUP_
IND message. To answer the call, the host must issue an
L4L3mCONNECT_REQUEST message.

Figure 32 shows how a module processes an incoming call received
over an FXO ground start trunk.

March 2020 291

Figure 32. FXO Ground Start – Incoming Call Timing Diagram

II
S

D
N

 S
M

I
M

E
S

S
A

G
E

S
:

L4
L3

m
A

LE
R

T
IN

G
_R

E
Q

U
E

S
T

 o
r

L4
L3

m
P

R
O

G
R

E
S

S
_R

E
Q

U
E

S
T

L4
L3

m
C

O
N

N
E

C
T

_R
E

Q
U

E
S

T

L3
L4

m
P

R
E

_S
E

IZ
E

L3
L4

m
S

E
T

U
P

_I
N

D

II
S

D
N

 T
IM

E
R

S
:

ho
ok

tim
er

_o
nh

oo
k_

rls
m

od
ifi

ed
_i

n_
rls

_t
im

er
ho

ok
tim

er
_o

nh
k_

m
od

_i
n_

rls
cr

iti
ca

l_
tim

er
ho

ok
tim

er
_m

ax
m

ak
e

ho
ok

tim
er

_m
in

m
ak

e
ho

ok
tim

er
_m

ax
br

ea
k

ho
ok

tim
er

_m
in

br
ea

k
fir

st
_i

nd
ig

it_
tim

e r
dp

tim
er

_i
m

m
ed

_d
el

ay
ho

ok
tim

er
_o

ff
ho

ok
_i

ns
ei

ze

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
,

F
X

S
:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

,
F

X
O

:

A
 B

it

B
 B

it
(ig

no
re

d)

N
O

T
E

:
 T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f
th

e
se

qu
en

ce
 o

f
ev

en
ts

 f
or

 t
hi

s
ro

bb
ed

bi
t

pr
ot

oc
ol

 o
ve

r
tim

e.

T
he

 t
im

er
s

an
d

sp
ac

in
g

on
 t

hi
s

gr
ap

h
ar

e
no

t
pr

op
or

tio
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 292

Outgoing Call Processing

If send_glare_err_event = 0 in the IISDN_ROBBED_BIT_DATA
structure, the host receives an L3L4mERROR message containing
the value L3L4errGLARE if the outgoing call attempt fails due to
glare. Glare occurs when the module attempts to make an outgoing
call on a channel at the same time an incoming call arrives on the
channel. The call attempt fails because the network always wins
channel contention.

During an outgoing call, the host receives an L3L4mPROGRESS in
response to the L4L3mCALL_REQUEST to start the call. The host
then receives an L3L4mSEIZE_COMP message if send_seize_comp_
event = 1 in the IISDN_ROBBED_BIT_DATA structure. This
message is sent after the fixed pause timer expires. No digits are
collected in FXO ground start mode; the module simply waits for an
answer timer to expire (if timed_answer_supervision = 1). When the
timer expires, the host receives an L3L4mCONNECT indicating the
call is connected.

Figure 33 shows how the module makes an outgoing call over an
FXO ground start trunk.

Call Teardown Processing

For an incoming call teardown, refer to Figure 34; for an outgoing
call teardown, refer to Figure 35.

March 2020 293

Figure 33. FXO Ground Start – Outgoing Call Timing Diagram

II
S

D
N

 S
M

I
M

E
S

S
A

G
E

S
:

L4
L3

m
C

A
LL

_R
E

Q
U

E
S

T

L3
L4

m
P

R
O

G
R

E
S

S
L3

L4
m

S
E

IZ
E

_C
O

M
P

L3
L4

m
C

O
N

N
E

C
T

II
S

D
N

 T
IM

E
R

S
:

fa
ke

_a
ns

w
er

_t
im

er
ho

ok
tim

er
_o

ff
ho

ok
_a

ns
w

er
ho

ok
tim

er
_o

nh
k_

m
od

_o
ut

_r
ls

fix
ed

_p
au

se
_t

im
er

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
,

F
X

S
:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

,
F

X
O

:
N

O
T

E
:

 N
o

di
gi

ts
 a

re
 c

ol
le

ct
ed

 o
n

th
e

fa
r

en
d

in
 t

hi
s

m
od

e.

A
 B

it

B
 B

it
(ig

no
re

d)

N
O

T
E

:
 T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f
th

e
se

qu
en

ce
 o

f
ev

en
ts

 f
or

 t
hi

s
ro

bb
ed

bi
t

pr
ot

oc
ol

 o
ve

r
tim

e.

T
he

 t
im

er
s

an
d

sp
ac

in
g

on
 t

hi
s

gr
ap

h
ar

e
no

t
pr

op
or

tio
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 294

Figure 34. FXO Ground Start - Incoming Clear Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T

L3
L4

m
D

IS
C

O
N

N
E

C
T

L3
L4

m
C

LE
A

R
_R

E
Q

U
E

S
T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
de

la
ye

d_
on

ho
ok

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
S

:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

O
:

A
 B

it

B
 B

it
(ig

no
re

d)

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 295

Figure 35. FXO Ground Start - Outgoing Clear Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T L3

L4
m

C
LE

A
R

_R
E

Q
U

E
S

T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
S

:

A
 B

it

B
 B

it

TR
A

N
S

M
IT

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it
(ig

no
re

d)

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

Revised
20-Oct-03

Rev 1.4

March 2020 296

FXS Ground Start

To configure a module for FXS ground start signaling, the host must
issue an L4L3mENABLE_CAS with an IISDN_ROBBED_BIT_
DATA structure that contains the following settings:

 in_trunk_type = IISDNtt5ESS_GDSTART

 out_trunk_type = IISDNtt5ESS_GDSTART

 max_incoming_digit_count = 0 (no digits collected)

 timed_answer_supervision = 1 (timer expiration indicates far
end answer)

 fgb_fgd_mode = 0 (not used)

The remaining settings are described in the context of incoming and
outgoing calls in the subsections that follow.

Incoming Call Processing

During an incoming call, the host receives an L3L4mPRE_SEIZE
message if send_preseize_event = 1 in the IISDN_ROBBED_BIT_
DATA structure. This message is sent when the module detects an
incoming seizure. No digits are collected in FXS ground start mode;
to answer the call, the host must issue an L4L3mCONNECT_
REQUEST message.

Figure 36 shows how a module processes an incoming call received
over an FXS ground start trunk.

March 2020 297

Figure 36. FXS Ground Start – Incoming Call Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
A

LE
R

T
IN

G
_R

E
Q

U
E

S
T

 o
r

L4
L3

m
P

R
O

G
R

E
S

S
_R

E
Q

U
E

S
T

L4
L3

m
C

O
N

N
E

C
T

_R
E

Q
U

E
S

T

L3
L4

m
P

R
E

_S
E

IZ
E

L3
L4

m
S

E
T

U
P

_I
N

D

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

m
od

ifi
ed

_i
n_

rls
_t

im
e r

ho
ok

tim
er

_o
nh

k_
m

od
_i

n_
rls

fir
st

_i
nd

ig
it_

tim
e r

dp
tim

er
_i

m
m

ed
_d

el
ay

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it
(ig

no
re

d)

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

S
:

N
O

T
E

:
N

o
di

gi
ts

 a
re

 c
ol

le
ct

ed
 o

n
th

e
ne

ar
 e

nd
 in

 th
is

 m
od

e.

A
 B

i t

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 298

Outgoing Call Processing

If send_glare_err_event = 0 in the IISDN_ROBBED_BIT_DATA
structure, the host receives an L3L4mERROR message containing
the value L3L4errGLARE if the outgoing call attempt fails due to
glare. Glare occurs when the module attempts to make an outgoing
call on a channel at the same time an incoming call arrives on the
channel. The call attempt fails because the network always wins
channel contention.

During an outgoing call, the host receives an L3L4mPROGRESS in
response to the L4L3mCALL_REQUEST to start the call. The
module starts the fixed pause timer when it detects tip ground at the
far end (FXO end). When the timer expires, the host receives an
L3L4mSEIZE_COMP message if send_seize_comp_event = 1 in the
IISDN_ROBBED_BIT_DATA structure.

FXS ground start supports transmitting digits other than dial pulse
digits. If called_party_digits = 0 in the L4L3mCALL_REQUEST that
started the call, the module waits in outdialing state indefinitely.
During that time, another device connected to the module over the
TDM bus (such as a digital tone generator) is used to outpulse digits
to the network.

After the digits are transmitted, the module waits for an answer
timer to expire (if timed_answer_supervision = 1). When the timer
expires, the host receives an L3L4mCONNECT indicating the call is
connected.

Figure 37 shows how the module makes an outgoing call over an
FXS ground start trunk.

Call Teardown Processing

For an incoming call teardown, refer to Figure 38; for an outgoing
call teardown, refer to Figure 39.

March 2020 299

Figure 37. FXS Ground Start – Outgoing Call Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

A
LL

_R
E

Q
U

E
S

T

L3
L4

m
P

R
O

G
R

E
S

S
L3

L4
m

S
E

IZ
E

_C
O

M
P

L3
L4

m
C

O
N

N
E

C
T

IIS
D

N
 T

IM
E

R
S

:
an

sw
er

_t
im

er
ho

ok
tim

er
_o

ffh
oo

k_
an

sw
er

ho
ok

tim
er

_o
nh

k_
m

od
_o

ut
_r

ls
dp

tim
er

_e
nd

_d
ia

l_
pa

us
e

dp
tim

er
_i

nt
er

di
gi

t
dp

tim
er

_m
ak

e
dp

tim
er

_b
re

ak
fix

ed
_p

au
se

_t
im

er
ho

ok
tim

er
_o

nh
k_

m
od

_o
ut

_r
ls

gl
ar

e_
de

te
ct

io
n_

tim
er

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it
(ig

no
re

d)

TR
A

N
S

M
IT

 H
O

O
K

S
W

IT
C

H
, F

X
S

:

A
 B

it

B
 B

it

N
O

TE
:

Th
is

 d
ia

gr
am

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r t

hi
s

ro
bb

ed
bi

t p
ro

to
co

l o
ve

r t
im

e.
 T

he
 ti

m
er

s
an

d
sp

ac
in

g
on

 th
is

 g
ra

ph
 a

re
 n

ot
 p

ro
po

rti
on

al
 to

 th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 300

Figure 38. FXS Ground Start - Incoming Clear Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T

L3
L4

m
D

IS
C

O
N

N
E

C
T

L3
L4

m
C

LE
A

R
_R

E
Q

U
E

S
T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
de

la
ye

d_
on

ho
ok

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it
(ig

no
re

d)

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

S
:

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 301

Figure 39. FXS Ground Start - Outgoing Clear Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T L3

L4
m

C
LE

A
R

_R
E

Q
U

E
S

T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it
(ig

no
re

d)

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

S
:

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 302

Loop Start Signaling

Modules support two types of loop start signaling:

 FXO Loop Start

 FXS Loop Start

When operating in FXO mode, the module assumes the far end of the
connection is an FXS termination. When operating in FXS mode, the
module assumes the far end is an FXO termination.

FXS Loop Start is the protocol used for Brooktrout's analog modules.
The sequence of events and timings is the same for both analog or
digital line interfaces.

The timing diagrams in this section show the Receive and Transmit
Signaling Bits in reference to the digital signaling mode. The analog
signals are a direct mapping of the signaling bits.

In the FXS diagrams, the electric signals sent by the station are
represented in bit A: loop current presence (off-hook) is represented
by setting bit A high (one); absence (on-hook) by bit A low (zero). Bit
B does not change. The signals received by the station, ring signal
and loop current feed (battery), are represented using both A and B
bits: loop current feed is represented by setting bit A low (zero);
absence by bit A high (one). Presence of ring signal is represented by
setting bit B low (zero); absence by bit B high (one).

The FXO diagrams are the mirror-image of the FXS diagrams. The
signals sent by the module (FXO) toward the network (FXS) are the
same that the station (FXS) received from the network (FXO) on the
FXS diagrams.

March 2020 303

FXO Loop Start

To configure a module for FXO loop start signaling, the host must
issue an L4L3mENABLE_CAS with an IISDN_ROBBED_BIT_
DATA structure that contains the following settings:

 send_glare_err_event = 0 (not used for loop start)

 in_trunk_type = IISDNttFXO_LPSTART

 out_trunk_type = IISDNttFXO_LPSTART

 timed_answer_supervision = 0 (answer supervision required)

 fgb_fgd_mode = 0 (not used)

The remaining settings are described in the context of incoming and
outgoing calls in the subsections that follow.

Note: The FXO end of a loop start connection uses the same A and B
bit values for both idle and connected states. Because of this,
the module cannot detect when the FXO end goes on hook. To
idle the channel, the host must detect the presence of a
busy/reorder tone coming from the FXO end and issue an
L4L3mCLEAR_REQUEST to disconnect the call. To ensure
the FXO end returns to an idle state, the host must also reset
the channel by issuing an L4L3mDISABLE_CAS immediately
followed by an L4L3mENABLE_CAS in order to make another
call.

March 2020 304

Incoming Call Processing

During an incoming call, the host receives an L3L4mPRE_SEIZE
message if send_preseize_event = 1 in the IISDN_ROBBED_BIT_
DATA structure. This message is sent when the module detects an
incoming seize from the far end (FXS end). The module then collects
dial pulse digits from the network; the maximum number of digits
the module expects to receive must be specified in the max_
incoming_digit_count field. The digits are reported to the host in an
L3L4mSETUP_IND message. To answer the call, the host must
issue an L4L3mCONNECT_REQUEST message. Figure 40 shows
how a module processes an incoming call received over an FXO loop
start trunk.

Outgoing Call Processing

During an outgoing call, the host receives an L3L4mPROGRESS in
response to the L4L3mCALL_REQUEST to start the call. The
module automatically transmits a ringing pattern using the B
signaling bit. When the far end goes off hook, the host receives an
L3L4mCONNECT indicating the call is connected.

Figure 41 shows how the module makes an outgoing call over an
FXO ground start trunk.

Call Teardown Processing

For an incoming call teardown, refer to Figure 42; for an outgoing
call teardown, refer to Figure 43.

March 2020 305

Figure 40. FXO Loop Start – Incoming Call Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
A

LE
R

T
IN

G
_R

E
Q

U
E

S
T

 o
r

L4
L3

m
P

R
O

G
R

E
S

S
_R

E
Q

U
E

S
T

L4
L3

m
C

O
N

N
E

C
T

_R
E

Q
U

E
S

T

L3
L4

m
P

R
E

_S
E

IZ
E

L3
L4

m
S

E
T

U
P

_I
N

D

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

m
od

ifi
ed

_i
n_

rls
_t

im
er

ho
ok

tim
er

_o
nh

k_
m

od
_i

n_
rls

cr
iti

ca
l_

tim
er

ho
ok

tim
er

_m
ax

m
ak

e
ho

ok
tim

er
_m

in
m

ak
e

ho
ok

tim
er

_m
ax

br
ea

k
ho

ok
tim

er
_m

in
br

ea
k

fir
st

_i
nd

ig
it_

tim
er

dp
tim

er
_i

m
m

ed
_d

el
ay

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
S

:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

O
:

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 306

Figure 41. FXO Loop Start – Outgoing Call Timing Diagram

II
S

D
N

 S
M

I
M

E
S

S
A

G
E

S
:

L4
L3

m
C

A
LL

_R
E

Q
U

E
S

T

L3
L4

m
P

R
O

G
R

E
S

S
L3

L4
m

C
O

N
N

E
C

T

II
S

D
N

 T
IM

E
R

S
:

m
od

ifi
ed

_o
ut

_r
ls

_t
im

er
ho

ok
tim

er
_o

nh
k_

m
od

_o
ut

_r
ls

no
_r

in
gi

ng
_t

im
e r

rin
gi

ng
_t

im
er

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
,

F
X

S
:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

,
F

X
O

:
N

O
T

E
:

 N
o

di
gi

ts
 a

re
 c

ol
le

ct
ed

 o
n

th
e

fa
r

en
d

in
 t

hi
s

m
od

e.

A
 B

it

B
 B

it

N
O

T
E

:
 T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f
th

e
se

qu
en

ce
 o

f
ev

en
ts

 f
or

 t
hi

s
ro

bb
ed

bi
t

pr
ot

oc
ol

 o
ve

r
tim

e.

T
he

 t
im

er
s

an
d

sp
ac

in
g

on
 t

hi
s

gr
ap

h
ar

e
no

t
pr

op
or

tio
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

T
R

A
N

S
M

IT
T

E
D

R
E

C
E

IV
E

D
 B

IT
S

,

R
ev

is
ed

March 2020 307

Figure 42. FXO Loop Start – Outgoing Clear Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T L3

L4
m

C
LE

A
R

_R
E

Q
U

E
S

T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
S

:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

O
:

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

T
R

A
N

S
M

IT
T

E
D

R
E

C
E

IV
E

D
 B

IT
S

,

R
ev

is
ed

March 2020 308

Figure 43. FXO Loop Start – Incoming Clear Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T

L3
L4

m
D

IS
C

O
N

N
E

C
T

L3
L4

m
C

LE
A

R
_R

E
Q

U
E

S
T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
de

la
ye

d_
on

ho
ok

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
S

:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

O
:

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 309

FXS Loop Start

To configure a module for FXS loop start signaling, the host must
issue an L4L3mENABLE_CAS with an IISDN_ROBBED_BIT_
DATA structure that contains the following settings:

 in_trunk_type = IISDNtt5ESS_LPSTART

 out_trunk_type = IISDNtt5ESS_LPSTART

 max_incoming_digit_count = 0 (no digits collected)

 timed_answer_supervision = 1 (timer expiration indicates far
end answer)

 fgb_fgd_mode = 0 (not used)

The remaining settings are described in the context of incoming and
outgoing calls in the subsections that follow.

Note: The FXO end of a loop start connection uses the same A and B
bit values for both idle and connected states. Because of this,
the module cannot detect when the FXO end goes on hook. To
idle the channel, the host must detect the lack of data coming
from the FXO end and issue an L4L3mCLEAR_REQUEST to
disconnect the call. To ensure the FXO end returns to an idle
state, the host must also reset the channel by issuing an
L4L3mDISABLE_CAS immediately followed by an
L4L3mENABLE_CAS in order to make another call.

Incoming Call Processing

During an incoming call, the host receives an L3L4mPRE_SEIZE
message if send_preseize_event = 1 in the IISDN_ROBBED_BIT_
DATA structure. This message is sent when the module detects
ringing from the far end (FXO end). No digits are collected in FXS
loop start mode; to answer the call, the host must issue an
L4L3mCONNECT_REQUEST message.

Figure 44 shows how a module processes an incoming call received
over an FXS loop start trunk.

Outgoing Call Processing

During an outgoing call, the host receives an L3L4mPROGRESS in
response to the L4L3mCALL_REQUEST to start the call. The host
then receives an L3L4mSEIZE_COMP message if send_seize_comp_

March 2020 310

event = 1 in the IISDN_ROBBED_BIT_DATA structure. This
message is sent after the fixed pause timer expires. When the timer
expires, the host receives an L3L4mSEIZE_COMP message if send_
seize_comp_event = 1 in the IISDN_ROBBED_BIT_DATA structure.

FXS ground start supports transmitting digits other than dial pulse
digits. If called_party_digits = 0 in the L4L3mCALL_REQUEST that
started the call, the module waits in outdialing state indefinitely.
During that time, another device connected to the module over the
TDM bus (such as a digital tone generator) is used to outpulse digits
to the network.

After the digits are transmitted, the module waits for an answer
timer to expire (if timed_answer_supervision = 1). When the timer
expires, the host receives an L3L4mCONNECT indicating the call is
connected.

Figure 45 shows how the module makes an outgoing call over an
FXS ground start trunk.

Call Teardown Processing

In this mode, an incoming call teardown cannot be detected; the host
must determine when the call is inactive and initiate an outgoing
call teardown. For an outgoing call teardown, refer to Figure 46.

March 2020 311

Figure 44. FXS Loop Start – Incoming Call Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
A

LE
R

T
IN

G
_R

E
Q

U
E

S
T

 o
r

L4
L3

m
P

R
O

G
R

E
S

S
_R

E
Q

U
E

S
T

L4
L3

m
C

O
N

N
E

C
T

_R
E

Q
U

E
S

T

L3
L4

m
P

R
E

_S
E

IZ
E

L3
L4

m
S

E
T

U
P

_I
N

D

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

m
od

ifi
ed

_i
n_

rls
_t

im
er

ho
ok

tim
er

_o
nh

k_
m

od
_i

n_
rls

fir
st

_i
nd

ig
it_

tim
er

dp
tim

er
_i

m
m

ed
_d

el
ay

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

S
:

N
O

T
E

:
N

o
di

gi
ts

 a
re

 c
ol

le
ct

ed
 o

n
th

e
ne

ar
 e

nd
 in

 th
is

 m
od

e.

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 312

Figure 45. FXS Loop Start – Outgoing Call Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

A
LL

_R
E

Q
U

E
S

T

L3
L4

m
P

R
O

G
R

E
S

S
L3

L4
m

S
E

IZ
E

_C
O

M
P

L3
L4

m
C

O
N

N
E

C
T

IIS
D

N
 T

IM
E

R
S

:
an

sw
er

_t
im

er
ho

ok
tim

er
_o

ffh
oo

k_
an

sw
er

ho
ok

tim
er

_o
nh

k_
m

od
_o

ut
_r

ls
dp

tim
er

_e
nd

_d
ia

l_
pa

us
e

dp
tim

er
_i

nt
er

di
gi

t
dp

tim
er

_m
ak

e
dp

tim
er

_b
re

ak
fix

ed
_p

au
se

_t
im

er
gl

ar
e_

de
te

ct
io

n_
tim

er

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

S
:

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

D
P

 D
ig

it
"2

"
D

P
 D

ig
it

"1
"

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 313

Figure 46. FXS Loop Start – Outgoing Clear Timing Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T

L3
L4

m
C

LE
A

R
_R

E
Q

U
E

S
T

IIS
D

N
 T

IM
E

R
S

:
gu

ar
d_

in
te

rv
al

_t
im

er

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
, F

X
O

:

A
 B

it

B
 B

it

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

, F
X

S
:

A
 B

it

B
 B

it

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

N
O

T
E

:
F

or
 F

X
S

 L
oo

p
S

ta
rt

 M
od

e,
 th

er
e

is
 n

o
m

an
ne

r
us

in
g

th
e

si
gn

al
lin

g
bi

ts
 in

 w
hi

ch
 to

 d
et

ec
t t

ha
t t

he
 r

em
ot

e
si

de
 h

as
 h

un
g

up
.

T
he

 o
nl

y
w

ay
 to

 d
o

th
is

 is
 to

 d
et

ec
t a

 la
ck

 o
f d

at
a

on
 th

e
co

nn
ec

tio
n,

 a
nd

 th
en

 in
ita

te
 c

al
l t

ea
rd

ow
n

fr
om

 th
e

lo
ca

l s
id

e.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D
 B

IT
S

,

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 314

Figure 47. Non-FXO/FXS RBS Protocols - Incoming Clear Timing
Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T

L3
L4

m
D

IS
C

O
N

N
E

C
T

L3
L4

m
C

LE
A

R
_R

E
Q

U
E

S
T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
de

la
ye

d_
on

ho
ok

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
ed

 1
0-

N
ov

-9
8

R
ev

is
io

n
1.

3

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 315

Figure 48. Non-FXO/FXS RBS Protocols - Outgoing Clear Timing
Diagram

IIS
D

N
 S

M
I M

E
S

S
A

G
E

S
:

L4
L3

m
C

LE
A

R
_R

E
Q

U
E

S
T L3

L4
m

C
LE

A
R

_R
E

Q
U

E
S

T

IIS
D

N
 T

IM
E

R
S

:
ho

ok
tim

er
_o

nh
oo

k_
rls

ho
ok

tim
er

_o
ffh

oo
k_

in
se

iz
e

gu
ar

d_
in

te
rv

al
_t

im
er

ig
n_

in
sz

_p
os

t_
rls

_t
im

er
ho

ok
tim

er
_o

nh
oo

k_
rls

R
E

C
E

IV
E

 H
O

O
K

S
W

IT
C

H
:

T
R

A
N

S
M

IT
 H

O
O

K
S

W
IT

C
H

:

N
O

T
E

:
T

hi
s

di
ag

ra
m

 is
 d

es
ig

ne
d

to
 g

iv
e

th
e

re
ad

er
 a

 g
en

er
al

 u
nd

er
st

an
di

ng
 o

f t
he

 s
eq

ue
nc

e
of

 e
ve

nt
s

fo
r

th
is

 r
ob

be
d

bi
t p

ro
to

co
l o

ve
r

tim
e.

 T
he

 ti
m

er
s

an
d

sp
ac

in
g

on
 th

is
 g

ra
ph

 a
re

 n
ot

 p
ro

po
rt

io
na

l t
o

th
e

ac
tu

al
 e

ve
nt

s
th

at
 o

cc
ur

.

R
ev

is
e

R
E

C
E

IV
E

D

T
R

A
N

S
M

IT
T

E
D

R
ev

is
ed

March 2020 316

8 - ISDN Call Processing and
Management

This chapter describes ISDN call processing using BSMI-level call
control.

The chapter has the following sections:

 ISDN Call Processing Overview on page 318

 Translating Q.931 to Simple Message Interface on page 327

 Using the overlap_rcv feature of L4L3mENABLE_PROTOCOL
on page 328

 Q.921/Q.931 Timers on page 332

Modules provide multipurpose platforms for fully integrated
network access. The nature of the functions performed by this
interface are determined by the host application developed to control
this interface.

Note: This chapter applies only to BSMI (low-level call control)
users. Bfv API call control users do not need to be concerned
with this information.

Note: QSIG and IP are not supported by BSMI.

C language code fragments have been included to illustrate key
points in the text. It is recommended that the information in this
section be reviewed in conjunction with the BSMI section of the
Dialogic® Brooktrout® Bfv API Reference Manual, Volume 5.

March 2020 317

BSMI interprets undecoded Q.931 packets from the network,
removing information not needed by most applications and making it
available via an L3L4m message. If you need specific Q.931
information not delivered with the message but that is documented
as contained in a Q.931 packet, such as call setup messages which
have two IEs (Information Elements) – Lower and Higher level
compatibilities, you can get access to the entire undecoded packet via
an L3L4mRAW_QDATA message (see the BSMI section of the
Dialogic® Brooktrout® Bfv API Reference Manual, Volume 5, for
details). Raw data for Q.931 packets that are not even processed by
BSMI in the first place and for Q.931 packets containing
user-defined ISDN messages is also notified via this message.

March 2020 318

ISDN Call Processing Overview

This subsection presents an overview of ISDN incoming and
outgoing call setup and tear down and overlapped dialing. Switched
56 calls use a similar mechanism.

Making an ISDN Incoming Call

A typical incoming ISDN call is illustrated in Figure 49. In this call
scenario, the module is answering a call. The following message
exchange is relative to the module:

1. Call arrival is indicated by receipt of a SETUP message from the
network containing information about the call (calling party and
called party numbers, etc.).

2. The module generates two messages upon receipt of the SETUP.

 CALL PROCEEDING message to the network indicating the
call is being processed.

 L3L4mSETUP_IND message to the host indicating receipt of
the SETUP message from the network; information about
the call (calling party and called party numbers, etc.) is
included in this message if received from the network.

3. If the incoming call is to be accepted, the host optionally sends an
L4L3mALERTING_REQUEST message to the module.

4. Upon receipt of the L4L3mALERTING_REQUEST message, the
module sends an ALERTING message to the network.

5. The host then sends an L4L3mCONNECT_REQUEST to the
module, asking that the call be connected; the host can consider
the call connected at this point unless an error indication is
received.

6. Upon receipt of the L4L3mCONNECT_REQUEST message, the
module sends a CONNECT message to the network.

7. The network immediately responds with a CONNECT
ACKNOWLEDGE message and the call is connected.

This scenario does not use B-channel negotiation, which would
require additional message exchanges between the module and host.
B-channel negotiation is a feature that allows you to specify on
which B-channel you want an incoming call to be established.

March 2020 319

Notification of incoming calls comes via a SETUP_IND message
which contains the B-channel number the network would like to set
the call up on. By turning on negotiation, you can specify a different
(specific) B-channel on which to establish rather than the one
requested by the network. In this case, a CALL PROCEEDING
message will not get sent to the network and it is your responsibility
to notify the network of the desired B-channel via any one of the
following three messages: L4L3mCALL_PROCEEDING_REQUEST,
L4L3mALERTING_REQUEST, and L4L3mCONNECT_REQUEST.

Note: If using more than one of these messages, you should be
consistent on the B-channel value.

You might want to do B-channel negotiation in situations where
each of the channels is hard-code mapped to different locations
depending on the type of call (data, voice, fax) received. If an
incoming call to a channel is not the type of call that is handled by
that (network-assigned) channel, then it must be (re)established on a
channel that can handle the type of that call, or else the call won’t be
handled properly.

This feature is turned on by setting:

l43.data.enable_protocol.level3.cnfg.q931.b_chan_negot=1

in the ENABLE_PROTOCOL message. In the case where the
network indicates that the B-channel it is offering is non-negotiable,
and the l43.data.enable_
protocol.level3.cnfg.q931.proc_on_exclusv field was set
when the protocol was enabled, the calling process will proceed with
a CALL PROCEEDING message being sent to the network without
requiring you to indicate one. The network indicates that the
B-channel it is offering is non-negotiable. The user had agreed to
proceed by having set the proc_on_exlusv field.

Connect Acknowledge is reported to the module but is not
automatically reported to the host via the Bfv API. In order to
retrieve L3L4mCONN_ACK_IND, set the field below to 1 in your
ENABLE_PROTOCOL message:

l43.data.enable_protocol.level3.cnfg.q931.subscribe_connack=1

The stack can consider the call connected after sending the
L4L3mCONNECT_REQUEST message or wait until it receives the
CONNECT ACKNOWLEDGE from the network. If you do not want
to wait for the network response, set the field below to 1 in your
ENABLE_PROTOCOL message:

l43.data.enable_protocol.level3.cnfg.q931.no_rx_conn_ack=1

March 2020 320

It is also possible to configure BSMI to generate a SETUP_ACK
rather than a CALL_PROCEEDING message upon arrival of a setup
message.

Figure 49. ISDN Incoming Call

As in the case of a call, BSMI also handles the call model where a
SETUP_ACK generated instead of a call proceeding.

Network Module Host

CALL PROCEEDING

ALERTING

CONNECT

L3L4mSETUP_IND

SETUP

L4L3mALERTING_REQUEST

L4L3mCONNECT_REQUEST

CONNECT ACKNOWLEDGE

March 2020 321

Making an ISDN Outgoing Call

A typical outgoing ISDN call is illustrated in Figure 50. In this call
scenario, the module is making an outgoing call. During an outgoing
call, if the phone number is more than 20 digits long, the application
automatically sends the number using overlapped dialing (See ISDN
Overlapped Dialing on page 323 for more information). The following
message exchange is relative to the module:

1. The host initiates an outgoing call by sending an L4L3mCALL_
REQUEST message to the module; this message must contain
information about the call (calling party and called party
numbers, and so on).

2. Upon receipt of the L4L3mCALL_REQUEST message, the
module issues a SETUP message to the network; this message
must contain information about the call (calling party and called
party numbers, and so on).

3. The network responds to the SETUP with a CALL
PROCEEDING message indicating the call request is being
processed.

4. Following the CALL PROCEEDING, the network sends an
ALERTING message indicating the called party is ringing.

5. Upon receipt of the ALERTING message, the module generates
an L3L4mALERTING message to the host.

6. The network then sends a CONNECT message to the module
indicating it is connecting the call.

7. The module generates two messages upon receipt of the
CONNECT.

 L3L4mCONNECT message to the host; the host can consider
the call connected at this point

 CONNECT ACKNOWLEDGE message to the network
indicating the CONNECT message has been acknowledged

March 2020 322

Figure 50. ISDN Outgoing Call

Call Proceeding (L3L4mCALL_PROCEEDING) is reported to the
module but is not automatically reported to the host via the Bfv API.
In order to retrieve this message, set the field below to 1 in your
ENABLE_PROTOCOL message:

143.data.enable_protocol.level3.cnfg.q931.report_incoming_callproc=1

The default is that the stack sends a CONNECT ACKNOWLEDGE
upon receiving a CONNECT. If you do not want to automatically
respond in this manner, set the field below to 1 in the ENABLE_
PROTOCOL message:

l43.data.enable_protocol.level3.cnfg.q931.no_tx_conn_ack = 1

You can specify that, if a desired B-Channel to establish a call on is
unavailable, another available B-Channel, which is chosen by the
module, will automatically be used. To do this, set l43.data.call_
req_data.preferred = 1 to enable this feature in the CALL_
REQUEST message.

Network Module Host

CALL PROCEEDING

ALERTING

CONNECT

L4L3mCALL_REQUEST

SETUP

L3L4mALERTING

L3L4mCONNECTCONNECT ACKNOWLEDGE

March 2020 323

ISDN Overlapped Dialing

The Euro-ISDN protocol only allows 20 digits to be sent as a group
(en-block) when placing a call. For longer phone numbers, the
application must use overlapped dialing— the process of sending
extra digits after the initial call setup. This process allows:

 The application to dial very large phone numbers
 The remote end to start answering a call before it receives all the

digits

The Bfv API automatically performs overlapped dialing on Euro-
ISDN outgoing calls using E1 or BRI lines when the phone number
is longer than 20 digits. Users will be able to place a call with up to
255 digits in the dial string on Euro-ISDN without requiring changes
in the application.

Applications automatically send overlapped digits when the user
calls BfvCallSetup, BfvLineDialString or
BfvLineOriginateCall and provides a dial string of more than 20
digits when Euro-ISDN is being used.

The feature divides the dial string into banks of 20 digits and uses
the overlapped dialing feature in Euro-ISDN to send one block of
digits at a time.

ISDN Call Clearing - Initiated by Module

A typical module-initiated call clearing (tear down) sequence is
illustrated in Figure 51. The following message exchange is relative
to the module:

1. The host initiates the call clearing procedure by sending an
L4L3mCLEAR_REQUEST message to the module.

2. Upon receipt of the L4L3mCLEAR_REQUEST message, the
module sends a DISCONNECT message to the network.

March 2020 324

3. The network responds to the DISCONNECT with a RELEASE
message.

4. The module generates two messages upon receipt of the
RELEASE:

 RELEASE COMPLETE message to the network, indicating
the call has been cleared

 L3L4mCLEAR_REQUEST message to the host, indicating
the call has been disconnected

Figure 51. ISDN Call Clearing - Initiated by Module

Network Module Host

RELEASE

L4L3mCLEAR_REQUEST

DISCONNECT

L3L4mCLEAR_REQUESTRELEASE COMPLETE

March 2020 325

If you want manual control over the sending of RELEASE
COMPLETE, set the field below to 1:

l43.data.enable_protocol.level3.cnfg.q931.release_complete_control = 1

An L4L3mCLEAR_REQUEST message will then send the
RELEASE COMPLETE message.

The host cannot consider a call disconnected and the channel
available for another call until the L3L4mCLEAR_REQUEST
message has been received from the module.

If the call is made using Switched 56 robbed bit signaling (not
ISDN), there is an additional waiting period between sending the
L4L3mCLEAR_REQUEST and receiving the L3L4mCLEAR_
REQUEST indicating the channel is available. This interval is equal
to the value of the guard_interval_timer and is usually 100 ms. Refer
to Robbed Bit Signaling on page 266 for more information on robbed
bit signaling timers.

ISDN Call Clearing - Initiated by Network

A typical ISDN call clearing is illustrated in Figure 52. In this call
scenario, the module responds to the network’s request to disconnect
a call. The following message exchange is relative to the module:

1. The network initiates the call clearing procedure by sending a
DISCONNECT message to the module.

2. Upon receipt of the DISCONNECT, the module generates an
L3L4mDISCONNECT message to the host indicating the
network is clearing the call.

3. The host responds with an L4L3mCLEAR_REQUEST message
indicating the call should be cleared.

4. Upon receipt of the L4L3mCLEAR_REQUEST, the module
generates a RELEASE message to the network.

5. The network responds to the received RELEASE by generating a
RELEASE COMPLETE message.

6. Upon receipt of the RELEASE COMPLETE message, the module
informs the host the call has been cleared using the
L3L4mCLEAR_REQUEST message.

It should be noted that the host cannot consider a call disconnected
and the channel available for another call until the L3L4mCLEAR_
REQUEST message has been received from the module.

March 2020 326

If the call is made using Switched 56 robbed bit signaling (not
ISDN), there is an additional waiting period between sending the
L4L3mCLEAR_REQUEST and receiving the L3L4mCLEAR_
REQUEST indicating the channel is available. This interval is equal
to the value of the guard_interval_timer and is usually 100 ms. Refer
to Robbed Bit Signaling on page 266 for more information on robbed
bit signaling timers.

Figure 52. ISDN Call Clearing - Initiated by Network

Network Module Host

RELEASE

DISCONNECT

RELEASE COMPLETE

L3L4mDISCONNECT

L4L3mCLEAR_REQUEST

L3L4mCLEAR_REQUEST

March 2020 327

Translating Q.931 to Simple Message Interface

Table 14 translates Q.931 messages to the appropriate Simple
Message Interface (SMI) message and compares them to their
corresponding message.

Table 14. Q.931 Message Comparison Table

Q.931Message BSMI Message(L4L3m) BSMI Message (L3L4m)

ALERTing ALERTING_REQUEST ALERTING

CALL PROCeeding
CALL_PROCEEDING_
REQUEST

CALL_PROCEEDING

CONNect CONNECT_REQUEST CONNECT

CONNect ACKnowledge nothing CONN_ACK_IND

PROGress PROGRESS_REQUEST PROGRESS

SETUP CALL_REQUEST SETUP_IND

SETUP ACKnowledge SETUP_ACK_REQUEST SETUP_ACK

RESume RESUME_REQUEST RESUME_REQUEST

RESume REJect RESUME_REJECT RESUME_REJECT

SUSPend SUSPEND_REQUEST SUSPEND_REQUEST

SUSPend ACKnowledge SUSPEND_ACK SUSPEND_ACK

SUSPend REJect SUSPEND_REJECT SUSPEND_REJECT

USER INFOmation USER_INFO USER_INFO

DISConnect CLEAR_REQUEST DISCONNECT

RELease CLEAR_REQUEST CLEAR_REQUEST

RELease COMPlete nothing CLEAR_REQUEST
Note: If l43.data.enable_

protocol.level3.cnf
g.q931.release_
complete_control is
set, CLEAR_REQUEST
will send this message.

RESTart
RESTART CLEAR_WITH_RESTART_

REQUEST or RESTART

March 2020 328

Using the overlap_rcv feature of
L4L3mENABLE_PROTOCOL

What is Overlap Receive?

When an ISDN call is received from the Public Telephone Network,
the caller information arrives in a Q.931 SETUP message. Typically,
this SETUP message contains all the information necessary for the
user to properly route, switch and/or complete the call: information
about the type of call (voice, modem, data, and so on), caller ID
information, and so on.

Overlap Receive mode occurs when the incoming SETUP message
contains no CALLED party information, or incomplete CALLED
party information. The CALLED party information is necessary to
complete a circuit-switched call, because it identifies the complete
number that the originator is dialing.

The ITU Q.931 Recommendation defines a SENDING_COMPLETE
Information Element as an indicator of when a SETUP message has
complete CALLED party number information. If a SETUP message
is received and there is no SENDING_COMPLETE info element in
the message, the user is expected to enter Overlap Receive mode.

RESTart ACKnowledge nothing nothing

SEGMENT nothing nothing

CONGestion CONtrol nothing nothing

INFOmation INFO_REQUEST INFO

NOTIFY nothing UNIVERSAL

STATus nothing STATUS_IND

STATus ENQuiry nothing nothing

FACILITY UNIVERSAL UNIVERSAL

Table 14. Q.931 Message Comparison Table (Continued)

Q.931Message BSMI Message(L4L3m) BSMI Message (L3L4m)

March 2020 329

BSMI Reference Notes

Support for Overlap Receive mode are enabled using the overlap_rcv
flag in the BSMI_Q931_CNFG structure of L4L3mENABLE_
PROTOCOL messages.

If the host application expects to support Overlap Receive calling
models (more typical of E1 and EURO-based BRI installations than
domestic T1 installations), it should set the overlap_rcv flag to “1”
when enabling the Q.931 D-channel. Example:

L4_to_L3_struct l43msg;

memset (&l43msg, 0, sizeof(l43msg));
l43msg.lapdid = 0;
l43msg.msgtype = L4L3mENABLE_PROTOCOL;
l43msg.data.enable_protocol.level1.l1_mode = IISDNl1modHDLC;
l43msg.data.enable_protocol.level2.l2_mode = IISDNl2modLAP_D;
l43msg.data.enable_protocol.level2.dce_dte = IISDNdirUSER_SIDE;
l43msg.data.enable_protocol.level3.l3_mode = IISDNl3modQ931;
l43msg.data.enable_protocol.level3.cnfg.q931.switch_type =
 IISDNstUNKNOWN;
l43msg.data.enable_protocol.level3.cnfg.q931.variant = IISDNvarCCITT;
l43msg.data.enable_protocol.level3.cnfg.q931.overlap_rcv = 1;

BSMIControlWrite (fd, l43msg);

March 2020 330

How Overlap Receive Mode Changes
Call Control Events Presentation

Volume 5, Dialogic® Brooktrout® Bfv API Reference Manual
describes the normal call control events associated with ISDN Call
Processing and Management. These events occur when incoming
SETUP messages contain all the appropriate CALLED_PARTY
information elements and SENDING_COMPLETE information
elements.

When the overlap_rcv flag is enabled and the SETUP message arrives
with incomplete CALLED_PARTY information, the call control
events change as follows:

1. Network presents SETUP message to the module, with either
incomplete CALLED_PARTY information element present, or no
SENDING_COMPLETE info element present.

2. Instant ISDN activates the T302 timer, sends a SETUP_
ACKNOWLEDGE message to the Network, and enters the
Overlap Receive state. Instant ISDN also presents the initial call
information to the host in an L3L4mSETUP_IND message.

Note: The T302 timer is under host control (see IISDN_Q931_
TIMERS in the IISDN.H header file) with a default timer
value of 15 seconds.

3. The Network sends the remainder of the call information (if any)
in one or more INFORMATION messages. Each information
message arrives as an L3L4mINFO event to the host application,
which contains CALLED_PARTY information elements, as well
as an indicator for SENDING_COMPLETE information
elements. Each time an INFORMATION message is received
without a SENDING_COMPLETE info element present in the
message, Instant ISDN restarts the T302 timer.

4. Presence of the SENDING_COMPLETE information element is
optional. Some ISDN switches and dialing plans will present all
of the CALLED_PARTY information and never send a
SENDING_COMPLETE info element in the final
INFORMATION or SETUP message.

5. When the final INFORMATION message has been received
(indicated by presence of the SENDING_COMPLETE
information element, or when the host has determined that the
CALLED_PARTY information is sufficient to complete the call),
the host application issues an L4L3mCALL_PROCEEDING and
the call control events will then transpire normally.

March 2020 331

Network Brooktrout Controller Host

Setup (no sending complete
or called party #IE)

overlap_rcv ENABLED

SETUP ACKNOWLEDGE

INFORMATION

L3L4mSETUP_IND

L3L4mINFO

If no SENDING_COMPLETE IE is present, or when
Module cannot determine if CALLED_PARTY info
is complete, Module issues request for further info.

L3L4mINFO_REQUEST

INFORMATION REQUEST

INFORMATION L3L4mINFO

L3L4mINFO_REQUEST

INFORMATION

L3L4mINFO

If no SENDING_COMPLETE IE is present, or when
Module determines that CALLED_PARTY info is complete,
Module moves to CALL_PROCEEDING state.

L3L4mCALL_PROCEEDING_REQUEST

CALL_PROCEEDING

March 2020 332

Q.921/Q.931 Timers

An application can change the default behavior in Instant ISDN
Software Level 2 and Level 3 parameters by issuing ENABLE_
PROTOCOL.

L4L3mENABLE_PROTOCOL contains an IISDN_L2_CONST
structure that defines Level 2 parameters and an IISDN_Q931_
TIMERS structure that configure Level 3 timers. The IISDN_Q931_
TIMERS structure is only valid when the Level 3 mode (l3_mode)
value in the message is IISDNl3modQ931. Table 15 and Table 16 list
the parameters for both structures.

When altering these values, refer to the system specification for the
switching system to which you are connecting the Brooktrout
Controller for valid timer and window values. Level 2 timers are
specified in 1 millisecond “ticks;” Level 3 timers in 100 millisecond
“ticks.”

Note: Dialogic strongly recommends that you use the default values
for Level 2 and Level 3 parameters and internal buffers.
Failure to do so might result in a system irregularity. If you do
need to change the configurations and buffer sizes, call
Dialogic Technical Services and Support first and seek
consultation. Internal buffer sizes for different Brooktrout
Controller configurations are found in IISDN.h.

Table 15. Q.921 Timers (Level 2 Parameters)

Data Type Mnemonic Definition

IISDN_L2_
LAP_
CONSTS

12 Setting a field to 0 causes the default value to be
used. Some timers have two possible default values
depending on whether or not the line is a BRI (set
by the q931_cnfg.basic_rate flag.

unsigned
short

t200 Maximum retransmission time. Default value is
1000 (1 second).

unsigned
short

t201 Minimum retransmission TEI Identity check.
Default value is 1000 (1 second).

unsigned
short

t202 Minimum TEI Identity request. Default value is
2000 (2 seconds).

unsigned
short

t203 Maximum link inactivity. Default value is 30
seconds. For NET-5 signaling, this timer should be
set to 10 seconds. BRI default is 10000 (10
seconds).

March 2020 333

unsigned
short

n200 Maximum number of retransmissions. Default
value is 3.

unsigned
short

n201 Maximum number of octets in an I frame.
Currently the maximum is 240.

unsigned
short

n202 Maximum number of transmissions of a TEI
request message. Default value is 3.

unsigned
short

K Maximum transmit window. Default value is 7;
maximum value is 127. BRI default is 1.

Table 15. Q.921 Timers (Level 2 Parameters) (Continued)

Data Type Mnemonic Definition

Table 16. Q.931 Timers (Level 3 Parameters)

Data Type Mnemonic Definition

IISDN_Q931_
TIMERS

q931 Structure that includes changes to the Q.931 timer
values, if any. A value of 0xFFFF disables the
timer. Setting a field to 0 causes the default to be
used. Some timers have two possible default
values depending on the connection type/variant
used. For example, if the variant field value is
IISDNvarCCITT in an L4L3mENABLE_
PROTOCOL message, or the conn_type field
contains an IISDNctCCITT value in an
L4L3mENABLE_D_CHANNEL message, the
CCITT default value below is used. For all other
connection type or variant values, the standard
default value is used.

unsigned
short

t302 Q.931 Overlap Receiving timer. Default value is
150 (15 seconds).

unsigned
short

t305 Q.931 Disconnect Request state timer. Default
value is 50 (5 seconds) and the ITU-T default value
is 300 (30 seconds).

unsigned
short

t308 Q.931 Release Request state timer. Standard
default value is 50 (5 seconds) and the ITU-T
default value is 40 (40 seconds).

unsigned
short

t313 Q.931 Connect Request state timer. Default value
is 50 (5 seconds) and the ITU-T default value is 40
(4 seconds).

unsigned
short

t314 Q.931 Segment message time. Default value is 40
(4 seconds).

unsigned
short

t316 Q.931 Restart Request state timer. Default value is
1200 (120 seconds).

March 2020 334

If layer 2 has been enabled, you will receive the data (termed
payload) you expect with the layer 2 headers stripped off and all the
data reliability checks already performed. If layer 2 has not been
enabled, you will receive intact layer 2 packets, which will contain
the payload. These packets will need to be processed, and a layer 2
stack will have to be implemented all the while extracting the
payload.

HDLC packetization does not need to be enabled, instead you can
choose the raw mode option. To do this, both HDLC headers will
need to be either stripped off or recognized, and the layer 2 packet
headers inside the HDLC headers to get to the payload.

unsigned
short

t318 Q.931 Resume Request state timer. Default value
is 1200 (120 seconds).

unsigned
short

t319 Q.931 Suspend Request state timer. Default value
is 1200 (120 seconds).

unsigned
short

t3m1 Q.931 Maintenance SERVICE ACK timer. Default
value is 1200 (120 seconds). Default value must be
used for NFAS configurations.

unsigned
short

t321 Q.931 NFAS D-channel backup timer. Default
value is 400 (40 seconds).

Table 16. Q.931 Timers (Level 3 Parameters) (Continued)

Data Type Mnemonic Definition

March 2020 335

9 - Using the BSMI R2 Signaling
Capability

This chapter describes R2 signaling as used with BSMI-level call
control.

The chapter has the following sections:

 CPE Signaling Model on page 336

 Enabling the R2 Protocol on page 341

Brooktrout boards offer E1 CAS signaling for customer premise
equipment (CPE).

The protocols supported are:

 ITU's R2 (Line Signaling and Inter-register Signaling) and
national variants

 LEC protocols (Wink Start, Delay Dial, Immediate Start, FXO
Loop Start, FXS Loop Start, FXO Ground Start, FXS Ground
Start)

Dialogic's implementation of the R2 protocol contains a number of
parameters that are used to configure the module to conform to the
ITU recommendations (refer to ITU Blue Book, Signaling System
R2, Volume VI Fascicle VI.4, Q.421 - Q.424, digital line signaling,
and Q.440 - Q.458, compelled inter-register signaling). The fully
embedded R2 protocol stack consists of digital line signaling (R2

March 2020 336

Line Signaling) and MF compelled (MFC) (R2 Inter-register
Signaling). Signaling is controlled via the BSMI interface in a
manner similar to Q.931 and LEC protocols.

Note: This chapter applies only to BSMI (low-level call control)
users. Bfv API call control users do not need to be concerned
with this information.

The LEC protocols are described in Robbed Bit Signaling on
page 266.

Please contact Dialogic Technical Services and Support for a list of
supported variants of the R2 protocol. See the Dialogic®
Brooktrout® Bfv API Reference Manual, Volume 5 for details.

CPE Signaling Model

This section describes the general signaling model that is
implemented by the Brooktrout R2 stack. This model is valid for a
large number of national variants that are found worldwide.
Customization via the BSMI will not be possible for variants that are
not described by this model.

The line signaling part of the protocol is illustrated in Table 17. The
Brooktrout implementation assumes that trunks are configured for
“both-way” working, that is outbound and inbound calls are possible
on the same trunk. Outbound-only and inbound-only trunk
configuration is not currently supported. In the discussion to follow,
“forward” is synonymous with outbound and “backward” is
synonymous with inbound.

March 2020 337

Table 17. Line Signaling Model

State CAS Bits Notes

Outbound AB Inbound AB

Idle 10 10 Both outbound and inbound
channels are sending idle signal.

Seize 00 10 Outbound channel seizes the line.

Seize Acknowledge 00 11 Inbound channel initializes MFC
inter-register signaling and sends
the seize acknowledgment. When
the seize acknowledgment is
recognized by the outbound
channel, inter-register signaling
begins with the transmission of the
first DNIS digit.

If the call is accepted by the inbound side via the inter-register signaling, the answered state
is entered.

Answer 00 01

Answer 00 11 Metering pulses are possible. In
this example the pulse is
transmitted on the A bit. The
outbound side must not confuse
this with a clear back signal.

Answer 00 01 Metering pulse over, inbound
resumes transmission of the
answer signal.

If the call is rejected by the inbound side via the inter-register signaling, the outbound side is
responsible for clearing the call.

Clear forward 10 11 Outbound side sends clear forward.

Idle 10 10 Inbound side sends the idle signal.

Disconnection initiated by the inbound side.

Clear back 00 11 or 00 The hang-up might be signaled by a
clear back (AB=11) or by a forced
release (AB=00), as indicated by
network specifications.

Clear forward 10 11 or 00 Outbound side sends the clear
forward signal.

March 2020 338

The inter-register signaling performs the exchange of address
information via R2 MF tones. The split-band forward and backward
tone sets allow the definition of sets of forward and backward
protocol signals. The exchange is performed in a compelled manner
with the outbound channel sending a forward address signal that is
acknowledged by a backward signal that itself directs the
transmission of the next piece of address information. Information
passed from the outbound side to the inbound side is:

 DNIS digits (Dialed Number Identification Service) representing
the called party

 ANI digits (Automatic Number Identification) representing the
calling party

 DNIS category (a.k.a. Call, Group II, or Toll category)

 ANI category (a.k.a. Caller, User, or Group I category)

 Circuit type (terrestrial or satellite)

 Half echo-suppressor to be used or not used

Idle 10 10 Inbound side sends the idle signal.

Disconnection initiated by the outbound side.

Clear forward 10 01 Outbound side sends the clear
forward signal.

Release guard

(Optional; refer to
network
specifications)

10 11 This state is optional. The inbound
side responds to the clear forward
with a clear back signal and holds it
for a specified length of time.

Idle 10 10 Inbound side sends the idle signal.

Channel blocking is implemented according to ITU recommendations for “both-way” trunks.
The side performing the blocking is considered the inbound or backward channel.

Idle 10 10 Both ends of the channel are idle.

Blocked 10 11 Blocking signal is transmitted.

Idle 10 10 Blocking signal is removed and
both ends are in the idle state.

Table 17. Line Signaling Model (Continued)

State CAS Bits Notes

Outbound AB Inbound AB

March 2020 339

Information passed from the inbound side to the outbound side is:

 Called line condition (for example, free with change, busy, etc.)

 Network congestion

ITU recommendations specify a set of 6 frequencies to be used for
forward signals, and another 6 for backward signals. Each signal
consists of 2 frequencies, thus providing 15 forward signals and
15 backward signals. The recommendations allow countries to use
only 5 frequencies (10 signals) for forward signaling and 4
frequencies (6 signals) for backward signaling. Both the forward and
backward signals can assume a number of meanings depending on
the signaling state. Transition from one set of meanings (called a
'group') to another is controlled by transmission of specific signals.
ITU recommendations define 2 groups for forward signals (groups I
and II) and 2 for backward signals (groups A and B). Some countries
chose to define 3 groups in each direction (I, II and III for forward
signals and A, B and C for backward signals). The concept of 'groups'
allows more information to be conveyed (2 groups containing up to
15 signals results in 30 signals in each direction) without having to
increase the number of signal generators and detectors, which are
expensive resources.

The forward channel initiates inter-register signaling with the
transmission of the first DNIS digit. Subsequent forward
transmission is controlled by the last backward channel signal
response.

1. DNIS transmission processing

2. ANI transmission processing

3. Called line condition processing

The backward channel controls inter-register signaling in the sense
that after the first DNIS digit transmission, each subsequent forward
channel signal is a response to the last backward channel signal.
Following the first DNIS digit, the backward channel directs the
collection of the address information according to the inbound
application parameters associated with the call. The backward
protocol is abstracted into four processing states that correspond to
the four blocks of information that are sent by the forward side:

1. DNIS number collection

2. DNIS category

3. ANI number collection

4. ANI category

March 2020 340

Figure 53 illustrates an example inter-register exchange in which
the inbound protocol is configured to collect DNIS digits first,
followed by collection of ANI information, and concluding with the
exchange of DNIS category and called line condition. However,
variations on this exchange are possible, resulting from different
settings of the inbound protocol control parameters and the absence
of certain signals in a given variant. For instance, the inbound
protocol is configured to request ANI information following reception
of N DNIS digits. Following completion of ANI collection, the DNIS
collection is resumed. Another example is that a certain variant
might not define the forward signal that indicates the end of the
DNIS string. In this case, the inbound protocol must count the DNIS
digits and signal a request for other information when the required
number of DNIS digits has been collected.

Enabling the R2 Protocol on page 341 provides further detail on the
protocol control parameters, protocol signals, and protocol processing
actions provided by the Brooktrout R2 stack.

Figure 53. Inter-register Signaling

DNIS "digit" 1

Send next DNIS digit

DNIS "digit" 2

Send next DNIS digit

DNIS complete

Send ANI information

ANI catagory

Send next ANI

ANI digit "9"

Send next ANI

ANI digit "8"

Send next ANI

ANI complete

Send DNIS catagory

DNIS catagory

Called line condition (free, busy, etc.)

Backward
Channel (called
number is 12)

Forward
Channel

(calling from
number 98)

March 2020 341

Enabling the R2 Protocol

Using the R2 protocol is similar to using the LEC protocols. Each
individual channel is enabled using an L4L3mENABLE_CAS
message. When the module receives this message, it will initialize all
timers and data structures associated with the specified channel, put
the line in idle state “onhook” and respond with an L3L4mCAS_
STATUS message.

The application must select the following signaling type:

l43msg.data.cas_data.signalling_type = IISDNsigtypeR2_
CAS;

This mode operates the inter-register protocol stack on the DSP
processors. The iisdn.h file also identifies CAS signaling type
IISDNsigtypeR2_MF. This is an IISDN provision for operating R2
signaling on certain controller modules that incorporate modem
chips that provide basic MF generation and detection services to
IISDN. This capability is not currently released.

For all types of CAS signaling, the lapdid value (zero-based) in the
common message header indicates the network interface (line) on
the module receiving the message. The call reference value (field
call_ref) is a 16-bit value that must have the lapdid value in the most
significant 8 bits and the B-channel in the least significant 8 bits (if
no B-channel needs to be specified, use 0 for the least significant
byte). Since not all BSMI messages involve a B-channel, there is no
field in the common message header to specify the B-channel. For
some messages the B-channel is specified in the message-specific
data structure, and for others the B-channel is inferred from the call
reference value. Line and B-channel numbering is 0-based, and the
B-channel numbering is line-specific (that is, the first B-channel on
the second line is numbered 0).

All of the necessary trunk customization parameters are contained
in the IISDN_E1_CAS_R2_DATA portion of the L4L3mENABLE_
CAS structure. It is important that all parameters be filled. Most of
the parameters are network specific and cannot be modified without
resulting in protocol failure. Others are modifiable according to the
requirements of the user's application. Dialogic supplies C header
files that specify the parameter settings for certain national
variants.

March 2020 342

BSMI does not support varying any parameter settings from channel
to channel on a single trunk. Trunk level configuration is performed
upon receipt of the first L4L3mENABLE_CAS message on that
trunk. However, L4L3mENABLE_CAS must be sent for every
channel in order for the channel to initialize and go on-hook.
Therefore, the IISDN_E1_CAS_R2_DATA structure should be filled
out identically for each channel's L4L3mENABLE_CAS.

The IISDN_E1_CAS_R2_DATA structure itself contains two
structures. Table 18 identifies the IISDN_R2_DIGITAL_LINE_SIG_
PARAMS sub-structure that contains the parameters required for
configuring the E1 CAS line protocol. None of these parameters is
modifiable once correctly specified for a particular network.

Table 18. R2 Digital Line Signaling Parameters

Name Description Units Range

r2OutSeizeTimer Time outbound side waits
for seize
acknowledgement signal.

ms Refer to network
specification, however, this
is typically set to 100-200
ms for a terrestrial circuit,
or 1-2 seconds for a satellite
circuit, plus approximately
32 ms to account for internal
detection latency.

r2OutAnswerTimeOut Maximum time between
reception of MF call
acceptance signal and
inbound answer.

ms Refer to network
specification.

inboundReleaseGuardTime Certain networks require
the inbound side to hold a
“release guard” state
(clear-back) for a certain
amount of time following
detection of the outbound
clear-forward signal.

ms 0: disable release guard

>0: refer to network
specification

inboundLineQualTimerIdle Inbound line signaling
event qualification time
during the idle state.

ms 0: qualify bits immediately

>0: refer to network
specification

March 2020 343

Table 19 identifies the IISDN_R2_INTERREGISTER_PARAMS
sub-structure containing the parameters required used to configure
the MFC inter-register signaling.

c_d_cas_bits Specification of the CAS C
bit and D bit settings.

0: CD=00

1: CD=01

2: CD=10

3: CD=11

ClearbackControl Used by the outbound side
to determine whether the
network will use a release
guard (AB=11) or a forced
release (AB=00) signal to
tear down a call, The
selected signal is handled
accordingly, while the
other is simply ignored.

0: release guard

1: forced release

Table 18. R2 Digital Line Signaling Parameters (Continued)

Name Description Units Range

Table 19. R2 MFC Inter-register Signaling Parameters

Name Description Units Range

The Following Parameters Can Be Modified According to Application Requirements:

dnisMaxNumDigits Maximum number of DNIS digits
required.

[0-IISDN_MAX_
DIGITS]

aniMaxNumDigits Maximum number of ANI digits
required.

[0-IISDN_MAX_
DIGITS]

dnisNumDigitsBeforeANI The number of DNIS digits to
collect before requesting ANI.

[1...N], where N =
dnisMinNumDigits

interForwardToneTimeOut Period associated with the inbound
channel “T3” timer that supervises
the interval elapsing between
recognition of two consecutive
forward tones. (Ref. ITU Q.476).

Seconds Typically, set to [8-24],
but refer to network
specification.

prePulseToneDelay The interval from the end of the
last backward signal and the start
of a backward pulse signal
(Ref. ITU Q.442).

ms Set to >= 100

March 2020 344

pulseToneDuration Duration of a backward pulse
signal (Ref. ITU Q.442).

ms Typically [100 - 200]

Outbound MFC Timers

forwardToneMaxOnTime Time associated with the outbound
“T1” timer that supervises the
interval between start of a forward
tone and cessation of the forward
tone (Ref. ITU Q.476).

Seconds This is typically in the
range [12-18], but refer
to network
specification.

forwardToneMaxOffTime Time associated with the outbound
“T2” timer that supervises the
interval when no forward tones are
sent. This interval consists of the
period waiting for the backward
tone to stop, as well as any
additional time needed for the next
forward tone to be known.

Seconds Typically set to > 24

(Q.476), but refer to
network specification.

forwardGroup2MaxOnTime Not used. Seconds Not used.

Protocol Control

dnisTimeOutAction Not used. Not used.

Protocol State Transition Specification

Each of the following is an array of length 16. Element zero is invalid and elements 1-15 correspond to
R2 MF signals 1-15. These allow the Call Setup Service Pack software to construct the proper state
transition tables for a given trunk.

Forward Channel Signal Definitions

endOfDNIS Signal end of DNIS pulsing; NOT
defined in some variants.

Table 20

endOfANI_Available Signal end of ANI identification
when ANI digits are available.

Table 20

InfoNotAvailable Indicates that ANI information is
restricted. There is usually no need
to distinguish from signal
“aniRequestNotAccepted”.

Table 20

aniCategoryDefault Default Group 1 category. Used if
category is not specified in a given
call request.

Table 20

Table 19. R2 MFC Inter-register Signaling Parameters (Continued)

Name Description Units Range

March 2020 345

Backward Channel Signal Definitions

sendNextDigitDNIS Signal request for next DNIS digit
(state DNIS).

Table 20

sendLastButOneDigitDNIS Signal request for last-but-one
DNIS digit (state DNIS). This
signal is not currently used.

Table 20

sendCallCategoryAndSwitch
ToGroupB_DNIS

Requests transmission of the Call
Category and switch of the forward
channel to reception of the Group B
line condition (state DNIS).

Table 20

congestion Signals congestion (state DNIS). Table 20

sendCallingPartyCategory Requests transmission of the
calling party information starting
with the Calling Category (state
DNIS).

Table 20

callComplete_
SetUpSpeechPath

Signals call acceptance, with
charge, without the need for the
Group II/Group B exchanges (state
DNIS).

Table 20

sendLastButTwoDigitDNIS Refer to ITU A-7. This signal is not
currently used.

Table 20

sendLastButThreeDigitDNIS Refer to ITU A-8. This signal is not
currently used.

Table 20

sendFirstDigitDNIS This signal is not currently used. Table 20

sendNextDigitANI Request transmission of the next
ANI digit (state ANI).

Table 20

changeFrom_ANI_To_DNIS_
SendNextDigit

Signal return to DNIS digit
collection, requesting the next
DNIS digit (state ANI).

Table 20

changeFrom_ANI_To_DNIS_
SendLastDigit

Signal return to DNIS digit
collection, requesting the last
DNIS digit. This signal is not
currently used. (State ANI).

Table 20

Table 19. R2 MFC Inter-register Signaling Parameters (Continued)

Name Description Units Range

March 2020 346

The MFC inter-register protocol is specified through a subset of the
parameters in Table 17 on page 337 that define the following:

1. Signal meaning definitions (events).

2. Actions associated with a given signal event. These specifications
are used to create a set of state transition tables for the desired
variant.

3. Protocol control parameters.

The parameter set might require extensions as support is added for
variants unidentified at this time. In addition, for a given variant,
certain signals and actions might not be defined. This restricts the
way in which the protocol can move through the processing states.

groupB_LineConditions Structure of Group B called line
conditions indexed by enumeration
IISDN_R2MFCP_GROUP_B_
CALLED_LINE_CONDITIONS.

Only a subset of these signals are
used in a given protocol variant.
Set those that are not used to the
“invalid” tone code.

Refer to Table 22

Call Progress Signal Generation

cpSignals Array of IISDN_CPGEN_MF_
PARAMS structures that define
the characteristics of the RING and
BUSY call progress signals. RING
must be defined as cpSignals[0]
and BUSY must be defined as
cpSignals[1].

Refer to Table 24

Table 19. R2 MFC Inter-register Signaling Parameters (Continued)

Name Description Units Range

March 2020 347

Protocol Parameter Mechanics

The set of protocol parameters is specified according to a simple
procedure. Individual signal meanings are set to the appropriate MF
tone code. R2 MF tone codes for both forward and backward
channels are defined according to the enumeration in Table 20. If a
signal is not defined for a particular variant, its value is set to zero.

Table 20. IISDN_R2MF_SIGNAL_CODES Enumeration

Name Forward (Backward) Channel Value

IISDN_R2F_INVALID / IISDN_R2B_INVALID 0

IISDN_R2F_01 / IISDN_R2B_01 1

IISDN_R2F_02 / IISDN_ R2B_02 2

IISDN_R2F_03 / IISDN_R2B_03 3

IISDN_R2F_04 / IISDN_R2B_04 4

IISDN_R2F_05 / IISDN_R2B_05 5

IISDN_R2F_06 / IISDN_R2B_06 6

IISDN_R2F_07 / IISDN_R2B_07 7

IISDN_R2F_08 / IISDN_R2B_08 8

IISDN_R2F_09 / IISDN_R2B_09 9

IISDN_R2F_10 / IISDN_R2B_10 10

IISDN_R2F_11 / IISDN_R2B_11 11

IISDN_R2F_12 / IISDN_R2B_12 12

IISDN_R2F_13 / IISDN_R2B_13 13

IISDN_R2F_14 / IISDN_R2B_14 14

IISDN_R2F_15 / IISDN_R2B_15 15

March 2020 348

Forward Channel

The set of forward channel actions to backward channel signals is
defined in Table 21.

Actions #2 - #8 might be used when processing DNIS or ANI digits
according to a particular protocol variant. The processing changes
state according to the current state and the particular event. For
instance, when in the ANI state, if a backward signal event requires
processing action PROCESS_NEXT_DNIS_DIGIT_REQUEST, then
that action occurs with a return to the DNIS state. In certain
protocol variants, a particular action might not be possible in a
particular state. For instance, a particular China PRC variant uses
R2B_01 to signal both the request for the next ANI digit and the
request for the next DNIS digit. Since there is no other, DNIS
related signal defined, the protocol cannot return to DNIS collection
until all ANI digits have been delivered.

Table 21. IISDN_R2MFC_FORWARD_ACTIONS

Name Description State

PROCESS_INVALID_BACKWARD_SIGNAL Process a backward
signal not defined; results
in protocol termination.

Any

PROCESS_NEXT_DNIS_DIGIT_REQUEST Process request for next
DNIS digit; if invoked
from the ANI state, then
a state change to DNIS
occurs.

DNIS or
ANI

PROCESS_LAST_BUT_1_DNIS_DIGIT_REQUEST Process request for N-1
DNIS digit.

DNIS or
ANI

PROCESS_LAST_BUT_2_DNIS_DIGIT_REQUEST Process request for N-2
DNIS digit.

DNIS or
ANI

PROCESS_LAST_BUT_3_DNIS_DIGIT_REQUEST Process request for N-3
DNIS digit

DNIS or
ANI

PROCESS_RESTART_DNIS_REQUEST Process request for DNIS
restart.

DNIS or
ANI

PROCESS_CALL_COMPLETE_CHANGE_TO_
GROUP_B

Send Group II call
category and change to
Group B reception.

DNIS or
ANI

March 2020 349

Backward Channel

Table 19 identifies the set of backward inter-register signals. The
tones defined are those used to support DNIS and ANI services
appropriate for customer premise equipment. Not all tones that are
possible under the ITU recommendations are required nor
implemented at this time. Certain tones might not be defined in a
particular variant. In such a case, the values of those tones should be
set to R2B_INVALID. In addition, certain signals are normally
expected to have the same absolute signal code whether the forward
channel is in state DNIS or state ANI. For example, this is true for
the congestion signal. However, distinct definitions are provided in
these cases to allow customization for an arbitrary variant.

PROCESS_CONGESTION_SIGNAL Process congestion signal. DNIS or
ANI

PROCESS_NEXT_ANI_DIGIT_REQUEST Process request for next
ANI digit.

ANI

PROCESS_CALLING_PARTY_CATEGORY_
REQUEST

Process request for
calling party (ANI)
information.

DNIS

PROCESS_CALL_ACCEPTED_NO_GROUP_B Process call accepted
without need for Group B
line condition.

DNIS

PROCESS_NATURE_OF_CIRCUIT_QUERY Process request for circuit
nature.

DNIS

PROCESS_ECHO_SUPPRESSOR_QUERY Process request for use of
echo suppressor.

DNIS

PROCESS_GROUP_B_LINE_CONDITION Process received
(Group B) called line
condition.

Line
condition

Table 21. IISDN_R2MFC_FORWARD_ACTIONS (Continued)

Name Description State

March 2020 350

Table 22 identifies the enumeration of Group B called line
conditions. This enumeration forms the set of indices to array
groupB_LineConditions (Table 19). This allows the mapping of the
invariant enumeration values to and from the corresponding
backward signal codes that vary from trunk to trunk. A number of
user defined spares are provided.

Table 22. IISDN_R2MFCP_GROUP_B_CALLED_LINE_
CONDITIONS Enumeration

Name Description Value

IISDN_R2MFCP_LINE_FREE_CHARGE Line is free, charged. 0

IISDN_R2MFCP_LINE_FREE_NO_CHARGE Line is free, no charge. 1

IISDN_R2MFCP_LINE_ALTERNATE_ANSWER Line is free, alternate answer. 2

IISDN_R2MFCP_LINE_BUSY Line busy. 3

IISDN_R2MFCP_LINE_OUT_OF_ORDER Line is out of order. 4

IISDN_R2MFCP_LINE_UNALLOCATED Line is unallocated. 5

IISDN_R2MFCP_LINE_CONGESTION Circuit congestion. 6

IISDN_R2MFCP_LINE_SPARE_CONDITION_1 Spare 7

IISDN_R2MFCP_LINE_SPARE_CONDITION_2 Spare 8

IISDN_R2MFCP_LINE_SPARE_CONDITION_3 Spare 9

IISDN_R2MFCP_LINE_SPARE_CONDITION_4 Spare 10

IISDN_R2MFCP_LINE_SPARE_CONDITION_5 Spare 11

IISDN_R2MFCP_LINE_SPARE_CONDITION_6 Spare 12

IISDN_R2MFCP_LINE_SPARE_CONDITION_7 Spare 13

IISDN_R2MFCP_LINE_SPARE_CONDITION_8 Spare 14

IISDN_R2MFCP_LINE_SPARE_CONDITION_9 Spare 15

March 2020 351

Table 23 identifies the set of backward channel actions to forward
signals.

Table 23. IISDN_R2MFCP_BACKWARD_ACTIONS

Name Description Valid
State

PROCESS_INVALID_FORWARD_SIGNAL This action is performed
when the protocol cannot
recover and the register must
immediately release. This
action is used in any protocol
state.

Any

PROCESS_DNIS_DIGIT Process received DNIS digit. DNIS

PROCESS_DNIS_END_OF_PULSING Process end-of-pulsing
(DNIS) signal.

DNIS

PROCESS_CALL_CATEGORY_AND_SEND_
LINE_STATE

Saves the call category and
requests the line state.

DNIS
Category

PROCESS_CALL_CATEGORY_AND_
REJECT_CALL

Processes an invalid call
category, rejecting the call.

DNIS
Category

PROCESS_CALLING_CATEGORY_AND_
DONT_REQUEST_ANI

Processes a calling category
for which there is no request
for ANI digits.

ANI
Category

PROCESS_CALLING_CATEGORY_AND_
REQUEST_ANI

Processes calling category
and requests ANI digits.

ANI
Category

PROCESS_CALLING_CATEGORY_AND_
REJECT_CALL

Processes a calling category
that results in the rejection of
the call.

ANI
Category

PROCESS_CALLING_CATEGORY_
REQUEST_DENIED

Process denied request for
the calling category.

ANI
Category

PROCESS_ANI_DIGIT Process received ANI digit. ANI

PROCESS_ANI_END_OF_ID Process end of ANI signal
when digits are available.

ANI

PROCESS_ANI_NOT_AVAILABLE Process signal indicating that
ANI digits are not available.

ANI

PROCESS_ANI_RESTRICTED Process signal indicating that
ANI is restricted.

ANI

March 2020 352

Inbound calls require generation of call progress tones. If a call has
been accepted, BSMI will generate a finite number of RING tone
cycles before entering the answered state. If a call has been rejected,
BSMI will generate the BUSY signal until the call is cleared by the
outbound side. Table 24 identifies the IISDN_CPGEN_MF_
PARAMS structure that contains the parameters required to define
a call progress signal for generation by a DSP resource.

Table 24. IISDN_CPGEN_MF_PARAMS

Name Description Units Range

freqTone1 Frequency of tone #1 Hz [0-4000]

powerTone1 Power of tone #1 0.5 dB, relative to
power0dBm
Output

freqTone2 Frequency of tone #2 Hz [0-4000]

powerTone2 Power of tone #2 0.5 dB, relative to
power0dBm
Output

numCadences Number of distinct
cadences to generate
(on/off pairs)

[1,2,3]

makeTime1 Duration of first ON
cadence

ms [1 - 8191]: tone plays
for this duration

0: no generation

 >0: tone played
continuously

breakTime1 Duration of first OFF
cadence

ms [1 - 8191]: tone is off
for this duration

0: silence not
generated between ON
cadences

< 0: silence is played
continuously

makeTime2 See makeTime1; not used
if numCadences = 1

breakTime2 See breakTime1; not used
if numCadences = 1

March 2020 353

makeTime3 See makeTime1; not used
if numCadences = 2

breakTime3 See breakTime1; not used
if numCadences = 2

numCycles Number of cadence cycles
to generate.

0: pattern repeats
indefinitely

>0: finite number of
cycles

Table 24. IISDN_CPGEN_MF_PARAMS (Continued)

Name Description Units Range

March 2020 354

R2 Call Control

This section presents an overview of R2 outbound and inbound call
setup and tear down. LEC protocols and ISDN use a similar
mechanism.

Once the trunk is configured, a particular channel that is enabled is
ready to dial an outbound call or process an inbound call from the
network. The R2 protocol stack automatically selects a DSP channel
(Boston channel) to perform the tone detection/generation
operations. The first B-channel on the first line uses the first DSP
channel, then each subsequent B-channel selects the next DSP
channel.

The first B-channel on the next line selects the DSP channel
immediately following the DSP channel selected for the last
B-channel of the previous line, thus ensuring there are no gaps in
the DSP channel usage caused by different number of timeslots in T1
and E1 lines.

During call setup - either inbound or outbound - the application
must not issue any commands to the Tone Generation and Tone
Detection facilities, as these would interfere with the R2 signaling
and cause the call to be abnormally terminated. If the application
connecting DSP channels and B-channels through the Telephony
Bus (H.100), it must ensure the appropriate DSP channel is free and
connected to the corresponding B-channel when it is ready to
receive/place calls. Once the call is connected, the DSP and
B-channels are remapped.

March 2020 355

Outbound Call Setup

An outbound call request sequence that results in call acceptance by
the remote side is illustrated in Figure 54. The host application
issues the module an L4L3mCALL_REQUEST message with the
following R2 payload entries:

l43msg.msgtype = L4L3mCALL_REQUEST;

l43msg.lapdid = 0x1;

l43msg.data.call_req_data.bchannel = 1;

l43msg.data.call_req_data.called_party.num_digits

l43msg.data.call_req_data.called_party.dnis_category
(set to an IISDN_R2MF_SIGNAL_CODES value)

l43msg.data.call_req_data.called_party.digits (ASCII
string)

l43msg.data.call_req_data.calling_party.num_digits

l43msg.data.call_req_data.calling_party.ani_category
(set to an IISDN_R2MF_SIGNAL_CODES value)

l43msg.data.call_req_data.calling_party.presentation_ind
(set to an IISDN_R2_ANI_XXXX value)

l43msg.data.call_req_data.calling_party.digits (ASCII
string)

l43msg.data.call_req_data.call_type (set to
IISDNcalltypR2_GND for a terrestrial circuit or
IISDNcalltypR2_SAT for a satellite circuit)

March 2020 356

Call acceptance by the remote end is determined by BSMI during
MFC inter-register signaling. At this point, BSMI issues an
L3L4mALERTING message to the host containing the IISDN_R2_
CALL_STATUS structure. The structure element

l34msg.data.al_con_data.r2_call_status.call_status,

provides indication (IISDN_R2_CALL_STATUS_CODES) of
whether the inbound side provided a Group B line condition
(IISDNR2statGROUP_B_AVAILABLE), or whether the call was
accepted without such indication (IISDNR2statGROUP_A_CALL_
ACCEPTED). In the case of the former, element

l34msg.data.al_con_data.r2_call_status.group_B

indicates the Group B call acceptance code.

When the inbound side answers the call, BSMI issues an
L3L4mCONNECT message to the host.

Figure 54. Outbound Call Accepted

(1) L4L3mCALL_REQUEST

Host

(3) L3L4mCONNECT

(2) L3L4mALERTING

March 2020 357

An outbound call request sequence that results in call rejection by
the remote side is illustrated in Figure 55. In this case, BSMI
determines that the call has been rejected during inter-register
signaling and automatically clears the call request. BSMI then
provides the host indication of the failed call attempt with the
L3L4mCLEAR_REQUEST message. As in the case of call
acceptance, this message contains the IISDN_R2_CALL_STATUS
structure that is examined to determine the precise reason for call
failure. Normally, the call has been rejected by the remote side and a
status code of IISDNR2statGROUP_B_AVAILABLE is indicated
with the associated Group B reason for the rejection. However, other
failures are possible during abnormal operation and are indicated by
other values in enumeration IISDN_R2_CALL_STATUS_CODES.

Figure 55. Outbound Call Rejected

(1) L4L3mCALL_REQUEST

Host

(2) L3L4mCLEAR_REQUEST

March 2020 358

Inbound Call Setup

Inbound call setup is illustrated in Figure 56. The host optionally
receives an L3L4mPRE_SEIZE message when BSMI detects an
incoming seizure. When all DNIS and ANI address information has
been collected, BSMI issues an L3L4mSETUP_IND message. After
examination of the address information, the host application might
wish to accept or reject the call.

In the case of call acceptance, the host provides an appropriate
Group B line condition in the L4L3m_CONNECT_REQUEST
message,

l43msg.data.al_con_data.r2_call_status.group_B = IISDN_R2MFCP_LINE_FREE_NO_
CHARGE;

Also, the number of ring cycles might be varied from the default
setting in Table 19 by setting the following parameter to a non-zero
value,

l43msg.data.al_con_data.r2_call_status.numberRings = 2;

The trunk can also be configured to accept all calls via the
inter-register parameter “addressCompleteMode.” In this case, the
L4L3m_CONNECT_REQUEST message is still sent, although the
Group B code is not required. Following completion of R2 MF
register signaling, BSMI will automatically play the RING signal for
a finite number of cycles. When the ring signal completes, BSMI
enters the answered state and issues an L3L4mCONN_ACK_IND
message to the host.

In the case of call rejection, the host provides an appropriate Group
B line condition in an L4L3mCLEAR_REQUEST message,

l43msg.data.clr_data.r2_call_status.group_B = IISDN_R2MFCP_LINE_BUSY;

Following completion of R2 MF register signaling, BSMI will
automatically play the BUSY signal for an indefinite number of
cycles. When the call has been cleared by the outbound side, BSMI
will issue an L3L4mCLEAR_REQUEST message to the host after
both sides have assumed the idle state.

March 2020 359

In the event that a failure occurs after the optional L3L4mPRE_
SEIZE message, but before the L3L4mSETUP_IND message, BSMI
will issue an L3L4mSTATUS_IND message containing the IISDN_
R2_CALL_STATUS structure that identifies the reason for the call
failure. No host action is required in this case, but the status
indication is logged for informational purposes.

Figure 56. Inbound Call Setup

(1) L3L4mPRE_SEIZE

Host

(2) L3L4mSETUP_IND

If call is accepted ...

(3) L4L3mCONNECT_REQUEST

(4) L3L4mCONN_ACK_IND

Else, if call is rejected ...

(3) L4L3mCLEAR_REQUEST

(4) L3L4mCLEAR_REQUEST

March 2020 360

Call Tear Down

Figure 57 illustrates a call disconnection initiated by the network.
BSMI issues an L3L4mDISCONNECT message. The host responds
with a clear request that is followed with an L3L4mCLEAR_
REQUEST message when the channel has returned to the idle state.

Figure 57. Call Cleared by the Network

(1) L3L4mDISCONNECT

Host

(3) L3L4mCLEAR_REQUEST

(2) L4L3mCLEAR_REQUEST

March 2020 361

Figure 58 illustrates a call disconnection initiated by the host
application. The host issues an L4L3mCLEAR_REQUEST message.
BSMI responds with an L3L4mCLEAR_REQUEST message when
the channel has returned to the idle state.

Figure 58. Call Cleared by the Module

(1) L4L3mCLEAR_REQUEST

Host

(2) L3L4mCLEAR_REQUEST

March 2020 362

Channel Blocking

BSMI provides a mechanism for the host application to block and
unblock individual channels as well as to receive indication that the
far end has blocked or unblocked a particular channel. Although the
R2 protocol remains “enabled”, a blocked channel is not available for
outbound or inbound calls. The BSMI message sequences for local
blocking and blocking by the network are illustrated in Figure 59.

Figure 59. Channel Blocking

(1) L4L3mCAS_CHAN_BLOCK

Host

(2) L3L4mCAS_CHAN_BLOCKED

Unblock a channel,

(3) L4L3mCAS_CHAN_BLOCK

(4) L3L4mCAS_CHAN_BLOCKED

Network blocks, unblocks a channel,

(3) L4L3mCAS_CHAN_BLOCK

(4) L3L4mCAS_CHAN_BLOCKED

Block a channel,

March 2020 363

10 - Packaging Your Application for
Windows

This chapter describes how to package Dialogic® Brooktrout®
software so that you can deliver it to your customers as part of your
product.

The chapter has the following sections:

 Package Options on page 365

 Installation on page 366

 About Plug and Play Components on page 392

 Modifying Configuration Files on page 397

 Including the Brooktrout Configuration Tool on page 398

 Downloading Firmware Files on page 400

 Removing Software on page 401

 Removing the Plug and Play Driver on page 402

The Dialogic® Brooktrout® software includes an installation
package (boston.msi) to help you easily package your application for
deployment on a Windows based platform. This package is referred
to as the Dialogic® Brooktrout® Runtime Software. This installation
package provides you with the option to distribute Brooktrout
runtime software with your application by spawning it from your
own installation program.

March 2020 364

You can also select appropriate components of the Dialogic®
Brooktrout® SDK installation package (sdk_windows.exe) and create
your own installation package by:

 Integrating the required merge modules (*.msm file extension)
into your own installation package a merge module consists of a
component such as a .dll file and its related files, resources,
registry entries, and setup logic. To use the merge modules
packaging option of Windows Installer, Dialogic grouped
features of the Dialogic® Brooktrout® SDK into selectable
modules that allow you to choose:

 The features you want to include in your package

 The location of the installed features

 The conditions governing when to install the features

 Selecting your application's required runtime objects and
including these Brooktrout files inside your own package as you
can do with other operating systems.

The Brooktrout Runtime Software consists of a collection of software
components in a simple installation package known as boston.msi
that installs the basic drivers and other required runtime
components to support modules. These components include:

 Library (dll) files excluding those required to develop your
application

 Firmware files

 Protocol files

 Configuration files

 Brooktrout Configuration Tool

 Additional supporting utilities

You can also select appropriate components of Brooktrout Fax
Software and create your own installation package by:

 Integrating the required merge modules (*.msm file extension)
into your own installation package

 Selecting your application’s required runtime objects and
including these Brooktrout files inside your own package as you
can do with other operating systems.

March 2020 365

Windows Server 64-bit

Installing the Dialogic® Brooktrout® Runtime Software installs a
second package called Visual Studio 2005 Components. This package
appears in the Add/Remove Programs list of packages installed. This
package contains the Visual Studio 2005 64-bit libraries needed by
the driver to run on a Windows 64-bit platform. To remove this
package, you need to remove the main package, Dialogic®
Brooktrout® Runtime Software. The main package removes all of its
dependencies, including the Visual Studio 2005 Components
package. If you try to remove Visual Studio 2005 Components
independently the system will return an error.

If you have developed an application using the 64-bit Bfv API, you
will also need to install the 64-bit Brooktrout components
separately. The 64-bit Brooktrout components can be installed using
the Brooktrout_x64.msi installation package.

Note: The Brooktrout_x64.msi installation package is not required if
you are running a 32-bit application on a 64-bit Windows
operating system.

This chapter helps you to understand your distribution options, how
to implement them, and how to customize plug and play installation.
Using this information to guide you, you can create an installation
package that will help your customers successfully install
Brooktrout Fax Software and hardware.

Package Options

To redistribute Brooktrout Fax Software with your installation
package, choose one of these options:

 Spawn the Dialogic® Brooktrout® Runtime Software
installation (boston.msi) from your installation program (see
page 367)

 Select the software feature modules to merge into your own MSI
installation package using the merge modules feature of
Windows Installer (see page 375). The merge modules are
available from the Dialogic® Brooktrout® SDK installation
(sdk_windows.exe)

March 2020 366

 Choose software files from the Dialogic® Brooktrout® SDK and
create your own installation package

Dialogic created its installation package using InstallShield
Developer Version 2009 that supports Windows Installer Version
2.0.

Installation

This section provide instructions for the following:

 Installing boards and virtual modules (SR140)

 Installing software

Installing Modules

Your customers can install either the software first or the module
first. Brooktrout’s application supports both methods. In your
instructions to customers, tell them to do the following if they install
the module before installing software:

1. Turn off the computer.

2. Install the module.

3. Restart the computer.

4. Place the CD in the computer.

5. At this point, the Found New Hardware application starts up.

6. Answer screen questions.

When the software asks for a driver location, the customer must
select the CD.

Note: For computer systems that need plug and play drivers, it helps
to store the WinPnP folder at a readily available location on
the CD.

Note: If you choose to use boston.msi for deploying Brooktrout Fax
Software with your product, the recommended method of
installation is to first install the software, i.e. boston.msi, and
then install the hardware.

March 2020 367

Installing Virtual Modules (SR140)

If you purchased a SR140 virtual module, follow the instructions in
the next section to install the software and then run the license
manager to activate your virtual module.

Installing Software

Depending on how you choose to deliver your package to your
customers, Dialogic provides its software as an MSI package
(boston.msi) or as merge modules that you can merge into an
existing MSI package. This section discusses these options and
provides instructions to implement them.

Installing the Brooktrout Runtime Software

Dialogic delivers this installation package as a Microsoft Software
Install (msi file extension) module to allow you to distribute
Brooktrout runtime software and also to integrate the package
within your setup (installation) program. In this case, integration
means the ability to launch this package from another program. Our
package can either be spawned by:

 Creating a link to boston.msi in your autorun application, or
 Double clicking on the boston.msi file.

Options for Spawning MSI

Use one of the following Windows Installer Options to spawn the
Dialogic® Brooktrout® Runtime Software (boston.msi) installation
package so that you can use it or adapt it for your own setup
(installation) program.

1. Use the /I option to install the product.

Example:

C:\WINDOWS\System32\msiexec /I D:\boston.msi

where, "C:\WINDOWS\System32\msiexec" is the executable
name including the path.
"/I D:\boston.msi" are the command line arguments.

2. Use the /qn option to run the boston.msi package in silent mode.

March 2020 368

Example: msiexec /I boston.msi /qn

3. Use the /L option to print the output of the install to a log file.

Example: msiexec /I boston.msi /qn /L boston_msi.log

4. Use the following syntax to set the public properties of the
boston.msi package:

msiexec /I boston.msi INSTALLDIR=C:\ProductFolder REBOOT=1
.

If you use your own installation program instead of boston.msi and the
Brooktrout INF file to install Brooktrout files, check for the presence of
Brooktrout Fax Software by examining the registry entries (see
page 372). Remove the entries before installing the new Brooktrout
version.

The boston.msi package only installs the runtime components such
as the firmware, configuration files, and configuration tools. This
collection installs under [INSTALLDIR]\bin.

INSTALLDIR is the directory where you choose to install the
Brooktrout Fax Software. The default is
[WINDOWS_VOL]\Program Files\Brooktrout where
WINDOWS_VOL is the drive on which your Operating System is
installed.

The device driver is installed under windows\system32\drivers.

The bostsrv.exe service is installed under windows\system32
directories.

When you install this package, it creates a bin directory under an
INSTALLDIR folder that contains all the runtime objects required
for the application you developed using the Brooktrout SDK.

The Dialogic® Brooktrout® Runtime Software provides the files
listed in Table 25.

Note: Note: Do not install the Dialogic® Brooktrout® Runtime
Software and the Dialogic® Brooktrout® SDK on the same
machine. If you install the two packages, files will be
duplicated on different locations because the Dialogic®
Brooktrout® Runtime Software package contains a subset of
the files in the Dialogic® Brooktrout® SDK. Managing the

March 2020 369

duplicate files may cause issues due to the installation folder
structure being different. For example the location of the
Dialogic® Brooktrout® Configuration Tool.

Table 25. Brooktrout Fax Software System Files

Install Location File Name Purpose

INSTALLDIR\:
All other folders are
under that folder.

Brooktrout Windows End User
Guide.pdf

Brooktrout license agreement

bin\ AxisClient.dll License Manager file

bin\ AxisTransport.dll License Manager file

bin\ AxisXMLParser.dll License Manager file

bin\ axis_notice.txt License notice text file

bin\ bostvb.dll Host based firmware dll

bin\ brktcctrace.exe Call Tracer utility file

bin\ brktlicmgr.exe License Manager file

bin\ brktlicmgrhelp.zip License Manager Help files

bin\ btver.exe Brooktrout Fax Software and
firmware version information

bin\ confighelp.zip Help files for the Brooktrout
Configuration Tool

bin\ configtool.exe Brooktrout Configuration Tool

bin\ connect.gif License Manager file

bin\ cp.bin Firmware

bin\ dh.exe Dump History stand-alone utility

bin\ dsp1000.hex Firmware

bin\ dsp1000_ld.hex Firmware

bin\ dsp1000_ud.hex Firmware

bin\ dsp1000_v34.hex Firmware

bin\ dsp1034_ud.hex Firmware

bin\ feature.exe Utility to query or download the
modules features

bin\ filtersettings.cfg Call Tracer Utility Filter Settings
configuration file

bin\ firm.exe Firmware flash update file

bin\ firmload.exe Firmware update utility file

bin\ FulfillResources.properties License Manager file

March 2020 370

bin\ libeay32.dll License Manager file

bin\ modinfo.exe Module information utilities

bin\ SSLeay32.dll License Manager file

bin\ vtty_tracer.exe ISDN Message and Network Layer
Tracing utility

bin\ xerces-c_2_2_0.dll License Manager file

bin\ xerces_license.txt License Manager text file

config\ analog_loopstart_europe.lec Protocol file

config\ analog_loopstart_us.lec Protocol file

config\ btcall.cfg User-defined configuration file

config\ BT_CPARM.CFG Country-specific configuration
parameters file

config\ callctrl.cfg Call control configuration file

config\ ctr21.qslac Protocol file

config\ epsonec.fnt Font file

config\ epsonec.fz8 Font file

config\ epsones.fnt Font file

config\ epsones.fz8 Font file

config\ epsonpc.fnt Font file

config\ epsonpc.fz8 Font file

config\ epsonps.fnt Font file

config\ epsonps.fz8 Font file

config\ fxo_groundstart.lec Protocol file

config\ fxo_loopstart.lec Protocol file

config\ fxs_groundstart.lec Protocol file

config\ fxs_loopstart.lec Protocol file

config\ ibmpcps.fnt Font file

config\ ibmpcps.fz8 Font file

config\ immediatedial.lec Protocol file

config\ itu_argentina.r2 Country specific configuration file

config\ itu_brazil.r2 Country specific configuration file

config\ itu_china.r2 Country specific configuration file

config\ itu_egypt.r2 Country specific configuration file

Table 25. Brooktrout Fax Software System Files (Continued)

Install Location File Name Purpose

March 2020 371

config\ itu_honduras.r2 Country specific configuration file

config\ itu_korea.r2 Country specific configuration file

config\ itu_mexico.r2 Country specific configuration file

config\ us600.qslac Protocol file

config\ winkstart.lec Protocol file

driver\install\ install.exe Installation file for 32-bit OS

driver\install\ installx64.exe Installation file for 64-bit OS. This
file is only present when the package
is installed on a 64-bit OS.

driver\pnp\ brooktrout.cat Security catalog file for the pnp driver
components

driver\pnp\ trxstream.inf INF file for installing pnp boston

driver\pnp\
TRxStream\x86\

boston.pdb Driver symbol file for 32-bit OS

driver\pnp\
TRxStream\x86

boston.sys Plug and Play driver for 32-bit OS

driver\pnp\
TRxStream\x86

bfktBdevpp.pdb Property Page symbol file for 32-bit
OS

driver\pnp\
TRxStream\x86

brktBdevpp.dll Device Property Page dll for 32-bit OS

driver\pnp\
TRxStream\x64\

boston.pdb Driver symbol file for 64-bit OS

driver\pnp\
TRxStream\x64

boston.sys Plug and Play driver for 64-bit OS

driver\pnp\
TRxStream\x64

bfktBdevpp.pdb Property Page symbol file for 64-bit
OS

driver\pnp\
TRxStream\x64

brktBdevpp.dll Device Property Page dll for 64-bit OS

%System Root%\
system32\

bostdlld.dll Bfv API library file for 32-bit OS

%System Root%\
system32\

bostsrv.dll Boston Host Service dll for 32-bit OS

%System Root%\
system32\

bostsrv.exe Boston Host Service for 32-bit OS

%System Root%\
system32\

brkth323.dll H.323 library file for 32-bit OS

%System Root%\
system32\

brktsip.dll SIP library file for 32-bit OS

Table 25. Brooktrout Fax Software System Files (Continued)

Install Location File Name Purpose

March 2020 372

In addition to copying the files to the destination folders, this option
registers (service installation) bostsrv.exe with the host system. The
bostsrv.exe service registers with a dependency on the boston.sys
device driver.

Because the boston.msi also installs the plug and play boston device
driver, you do not have to manually install the pnp driver using the
Found New Hardware Wizard. This installation occurs automatically.

Dialogic recommends that all the above tools/files that are provided
from Dialogic be installed with your software. If your customer ever
needs assistance from Dialogic to configure or troubleshoot a
problem, Dialogic Technical Services and Support might ask your
customer to run or view these files to ensure the configuration is set
up properly.

Registry Entries

The installation creates one of the following keys:

 For a 32-bit system:

HKEY_LOCAL_MACHINE\SOFTWARE\Brooktrout Technology
\Brooktrout System Software

 For a 64-bit system:

HKEY_LOCAL_MACHINE\SOFTWARE\wow6432Node
\Brooktrout Technology\Brooktrout System Software

and adds the following entries:

%System Root%\
syswow64\

bostdlld.dll Bfv API library file for 64-bit OS

%System Root%\
syswow64\

bostsrv.dll Boston Host Service dll for 64-bit OS

%System Root%\
syswow64\

bostsrv.exe Boston Host Service for 64-bit OS

%System Root%\
syswow64\

brkth323.dll H.323 library file for 64-bit OS

%System Root%\
syswow64\

brktsip.dll SIP library file for 64-bit OS

Table 25. Brooktrout Fax Software System Files (Continued)

Install Location File Name Purpose

March 2020 373

Name Value

Install Home [INSTALLDIR] where INSTALLDIR is the directory you selected to
install the Brooktrout Fax Software.

Default location value: [WindowsVolume]\Program
Files\Brooktrout where WindowsVolume is the drive where the
operating system is installed.

Runtime Configtool
Path

[INSTALLDIR]\bin where INSTALLDIR is the directory you
selected to install the Brooktrout Fax Software.

Default location value: [WindowsVolume]\ Program
Files\Brooktrout where WindowsVolume is the drive where the
operating system is installed.

Version Brooktrout Software Version (for example, 6.4)

Shortcuts

The installation creates the following shortcut under
Start –> Programs:

Name Location

Brooktrout Configuration
Tool

[INSTALLDIR]\bin\configtool.exe

Where INSTALLDIR is the directory that you selected to install the
configuration tool. The Brooktrout Configuration Tool is a utility
that is used to create and modify the configuration files, edit and
update the driver parameters, and configure and initialize both
physical and virtual modules. See Including the Brooktrout
Configuration Tool on page 398.

Brooktrout License
Manager

[INSTALLDIR]\bin\brktlicmgr.exe

Where INSTALLDIR is the directory that you selected to install the
Brooktrout Fax Software. The Brooktrout License Manager is a
utility that is used to obtain, install, update, and remove the SR140
license.

Reboot Options

When the driver is installed, the system must be rebooted but only
under certain circumstances which are detected during the driver
installation.

March 2020 374

The MSI installs the driver during installation and removes it
during the un-installation. Sometimes the installation or removal of
the driver requires the need for a system reboot for the changes to
take effect.

The system creates the following registry keys and values if the
package detects that a reboot is needed during the installation and
un-installation. These key entries will be present only if a reboot is
required.

For 64-bit system

Key Generated HKEY_LOCAL_MACHINE\Software\brkttmp

Value Generated HKEY_LOCAL_MACHINE\Software\brkttmp\reboot

For 64-bit system

Key Generated HKEY_LOCAL_MACHINE\Wow6432Node\Software\brkttmp

Value Generated HKEY_LOCAL_MACHINE\Wow6432Node\Software\brkttmp\reboot

During the full installation of the User Interface, a dialog appears
indicating that a reboot is necessary. However, if you are running a
quiet installation, all dialog boxes are suppressed including the
reboot dialog box.

You will have to refer to the reboot values above stored in the
registry to know if a reboot is necessary.

A REBOOT public property is available in the package to
automatically reboot the package at the end of the installation. Use
it as follows:

 If the property is set to 1 and a reboot is required, the package
reboots automatically.

 If the property is set to 0 and a reboot is needed, the package will
not reboot automatically and the registry key needs to be used.

If you run boston.msi in quiet mode without changing the REBOOT
property, the package will not automatically reboot - even if
required. You must refer to the registry to know if a reboot is
required.

Installation

Enter the following from a command line to install the package.

msiexec /i boston.msi /qn

March 2020 375

Enter the following from a command line to remove the package:

msiexec /x boston.msi /qn

If you change the REBOOT property to 1 and a reboot is required,
the package will automatically reboot when the installation is
completed.

The following are examples of installing and removing the package
using the REBOOT property above.

Install:

msiexec /i boston.msi /qn REBOOT=1

Remove:

msiexec /x boston.msi /qn REBOOT=1

In these cases, if a reboot is needed (install or remove) the package
will automatically reboot.

About the Merge Module Feature

A Microsoft Software Merge (MSM) module file consists of a
simplified MSI database created to deliver components to an MSI
application package. Like an MSI package, it contains instructions,
components, and setup logic. Unlike an MSI package, it cannot be
separately installed and must be merged into an existing MSI
package. The merging process permanently alters the original MSI
package by adding the merge module's components and logic to it.
However, the merge module itself is not changed by the merging
process and is reused when no components in the module need
updating.

Each merge module contains unique version information that the
Windows Installer database maintains for each application to
prevent premature removal of a component that the application
needs. After you have included a module in your install package, any
incremental version of a component in the module makes it
necessary to create a new merge module. When Dialogic supplies an
updated merge module, you must remove the old module and merge
the new module into your existing MSI package. Merging in a new
module eliminates problems such as version conflicts, missing
registry entries, and improperly installed files.

March 2020 376

To allow you to implement the merge modules feature of Windows
Installer, Dialogic separated the files into several sets of features
and created one module for each set. You can merge one or more of
these modules into your installation package depending on the
features you want to include. The following paragraphs indicate
when to use each module and what each module includes.

The Brooktrout merge modules consist of:

 Dynamically Linked DLLs (dynamic_dlls.msm) on page 376

 Dynamically Linked 64-bit DLLs (dynamic_dlls_x64.msm) on
page 377

 Configuration and Protocol Files (configdata.msm) on page 378

 Firmware (firmware.msm) on page 379

 SR140 Firmware (Firmware_sr140.msm) on page 379

 Brooktrout Configuration Tool (configtool.msm) on page 380

 License Manager (softwarelicense.msm) on page 382

 Utility Programs (utilities.msm) on page 383

 Boston Host Service (bostsrv.msm) on page 384

 TECUpdate (TECUpdate.msm) on page 381

Dynamically Linked DLLs (dynamic_dlls.msm)

Merge this module to install the dynamically linked version of the
Bfv API DLLs and supporting files.

Files Installed The module contains the following files:

Registry Entries None

Environment Variables None

File Name

bostdlld.dll

brkth323.dll

brktsip.dll

osidlld.dll

bsmidlld.dll

March 2020 377

Shortcuts None

Services None

Dependency None

Dynamically Linked 64-bit DLLs
(dynamic_dlls_x64.msm)

Merge this module to install the dynamically linked version of the
64-bit Bfv API DLLs and supporting files.

Files Installed The module contains the following files:

Registry Entries None

Environment Variables None

Shortcuts None

Services None

Dependency None

File Name

bostdlld.dll

osidlld.dll

bsmidlld.dll

March 2020 378

Configuration and Protocol Files (configdata.msm)

Merge this module to install the configuration, protocol, and font
files.

Files Installed The module contains the following files:

Registry Entries None

Environment Variables None

Shortcuts None

Services None

Dependency None

File Names

analog_loopstart_europe.lec fxo_loopstart.lec

analog_loopstart_us.lec fxs_groundstart.lec

btcall.cfg fxs_loopstart.lec

BT_CPARM.CFG ibmpcps.fnt

callctrl.cfg ibmpcps.fz8

ctr21.qslac immediatedial.lec

epsonec.fnt itu_argentina.r2

epsonec.fz8 itu_brazil.r2

epsones.fnt itu_china.r2

epsones.fz8 itu_egypt.r2

epsonpc.fnt itu_honduras.r2

epsonpc.fz8 itu_korea.r2

epsonps.fnt itu_mexico.r2

epsonps.fz8 us600.qslac

fxo_groundstart.lec winkstart.lec

March 2020 379

Firmware (firmware.msm)

Merge this module to install the firmware files.

Files Installed The module contains the following files:

Registry Entries None

Environment Variables None

Shortcuts None

Services None

Dependency None

SR140 Firmware (Firmware_sr140.msm)

Merge this module to install the SR140 firmware files.

Files Installed The module contains the following files:

Registry Entries None

Environment Variables None

Shortcuts None

Services None

Dependency None

File Name

cp.bin

dsp1000.hex

dsp1000_ld.hex

dsp1000_ud.hex

dsp1000_v34.hex

dsp1034_ud.hex

File Name

bostvb.dll

March 2020 380

Brooktrout Configuration Tool (configtool.msm)

Merge this module to install the Brooktrout Configuration Tool and
its help files.

Files Installed The module contains the following files:

Registry Entries RuntimeConfigtoolPath

configtool.exe

Environment Variables None

Shortcuts Creates an advertised shortcut under Start Menu –> Program files.

Services None

Dependency  Depends on the following modules:

1. Dynamically linked DLL (dynamic_dlls.msm)

2. Configuration and Protocol files (configdata.msm)

3. Firmware (firmware.msm)

4. SR140 Firmware (Firmware_sr140.msm) only if using SR140.

File Name

configtool.exe

confighelp.zip

Shortcut Name Target

Brooktrout
Configuration Tool

configtool.exe

March 2020 381

TECUpdate (TECUpdate.msm)

Distribute TECUpdate to your end users even if you do not plan to
distribute the Brooktrout Configuration Tool so that your customers
can update their systems as needed. Merge this module to install
TECUpdate utility files.

Files Installed The module contains the following files:

Registry Entries None

Environment Variables None

Shortcuts Creates an advertised shortcut under Start Menu –> Program files.

Services None

Dependency None

File Name

bostdlld210.dll

bostdlld301.dll

bostdlld303.dll

bostdlld310.dll

bostdlld320.dll

bostdlld330.dll

TECUpdate.exe

TECUpdate_Guide.pdf

TECUpdateHelp.zip

Shortcut Name Target

TECUpdate License
Upgrade Tool

TECUpdate.exe

March 2020 382

License Manager (softwarelicense.msm)

Distribute the License Manager to all end users so that your
customers can activate a software license on a system. The License
Manager validates the license activated by the customer and turns
on the Brooktrout product functionality.

Merge this module to install the license program files.

Files Installed The module contains the following files:

Registry Entries brktlicmgr.exe

Environment Variables BRKTD_LICENSE_FILE set to C:\Program Files\Common
Files\Brooktrout

Shortcuts Creates an advertised shortcut under Start Menu –> Program files
–> Brooktrout.

Services None

Dependency None

File Name

axis_notice.txt

AxisClient.dll

AxisTransport.dll

AxisXMLParser.dll

brktlicmgr.exe

brktlicmgrhelp.chm

connect.gif

FulfillResources.properties

libeay32.dll

SSLeay32.dll

xerces_license.txt

xerces-c_2_2_0.dll

dh.exe

feature.exe

Shortcut Name Target

License Manager brktlicmgr.exe

March 2020 383

Utility Programs (utilities.msm)

Merge this module to install the utility programs used for querying
hardware and software information, downloading firmware and
performing other related tasks.

Files Installed The module contains the following files:

Registry Entries None

Environment Variables None

Shortcuts None

Services None

Dependency  Depends on the following modules:

1. Dynamically linked DLL (dynamic_dlls.msm)

2. Configuration and Protocol files (configdata.msm)

3. Firmware (firmware.msm)

4. SR140 Firmware (Firmware_sr140.msm) only if using SR140.

File Name

brktcctrace.exe

btver.exe

dh.exe

feature.exe

filtersettings.cfg

firm.exe

firmload.exe

modinfo.exe

vtty_tracer.exe

March 2020 384

Boston Host Service (bostsrv.msm)

Merge this module to install and register the Boston Host Service.

Files Installed The module contains the following files:

Registry Entries The bostsrv.msm module creates the following registry entry.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Services\bostservice\Parameters

Set values for the following properties in your installer program to
provide the Boston Host Service module with the location of these
files:

Name Value

btcall [BTCALLLOCATION] where BTCALLLOCATION identifies where your
installation application installs the btcall.cfg configuration file.

Note: This property holds the path and file name of the btcall.cfg
configuration file.

firmware_path [FIRMWARELOCATION] where FIRMWARELOCATION identifies where
your installation application installs the folder containing the
firmware files.

Environment Variables None

Shortcuts None

Services The module installs the following service:

Dependency  Depends on the following modules:

1. Dynamically linked DLL (dynamic_dlls.msm)

2. Configuration and protocol files (configdata.msm)

3. Firmware (firmware.msm)

4. SR140 Firmware (Firmware_sr140.msm) only if using SR140.

File
Number

File Name Default Location

1 bostsrv.exe System Folder (Windows\System32)

2 bostsrv.dll System Folder

Display Name Service Name Default Start Mode

Boston Host Service bostservice Demand start

March 2020 385

Installing the Merge Module Feature

The Brooktrout SDK (sdk_windows.exe) includes the Merge Module
feature that installs all the *.msm files. When you launch
sdk_windows.exe, the files (merge modules) install under
[INSTALLDIR]\mergemodules where INSTALLDIR identifies the
location that you select for storing the Brooktrout SDK package.

Integrating the Modules

Microsoft Software Merge (*.msm extension) module files cannot be
directly installed on a system. The feature requires you to merge
modules into an installer for each application that uses the
component. This merging process ensures that the application
installs components consistently, and it eliminates problems such as
version conflicts, missing registry entries, and improperly installed
files.

After installing your Brooktrout SDK, copy the merge modules to a
location accessible by your install project.

The next step requires you to add all the dependent merge modules
to your project and set their destination paths.

Note: The design of the Brooktrout merge modules excludes any
dependencies due to a defect in the InstallShield Developer 8.0
IDE. This defect prevents a developer (Dialogic (formerly
Brooktrout) as the developer of the merge modules) from
setting the destination path of dependent merge modules.
Without a specified destination, InstallShield uses a default
destination that installs the merge module files under:
[WINDOWS_VOLUME]

where WindowsVolume is the drive where the operating
system is installed.

March 2020 386

The Brooktrout merge modules consist of:

 dynamic_dlls.msm (independent module)
 dynamic_dlls_x64.msm (independent modules)
 configdata.msm (independent module)
 firmware.msm (independent module)
 Firmware_sr140.msm (independent module)
 configtool.msm (module with dependencies)
 softwarelicense.msm (independent module)
 utilities.msm (module with dependencies)
 bostsrv.msm (module with dependencies)
 TECUpdate.msn (independent module)

You can only install the independent modules as individual features
that do not require any other component or feature. The modules
with dependencies require the dynamic_dlls.msm, configdata.msm,
and firmware.msm (Firmware_sr140.msm also if using SR140)
modules.

 Using Figures 60 and 61 for guidance, perform the following
steps to integrate a merge module into your install project:

1. Create a feature or features for the merge module.

2. Associate the merge module with the feature.

3. Set the install location for the merge module.

This step is mandatory for all merge modules except bostsrv.msm.

4. To install the Boston Host Service (bostsrv.msm) merge module,
create BTCALLLOCATION and FIRMWARE location properties.

5. Create custom actions to set these properties to appropriate
values.

Perform these custom actions after you select the destination
folder.
Note: If you do not install the files contained in the

dynamic_dlls.msm module in the same location as your
application, you must add the destination location of the
files installed by dynamic_dlls.msm to the Path system
environment variable. Failure to set this system
environment variable prevents your application from

March 2020 387

linking to the DLLs. With the system variable set, you can
simply append the absolute path to these files to the Path
environment variable.
You can also add the destination location of *.exe files
within the merge modules to the system path so that they
are executed from anywhere on your system.

Rather than relying on the Path variable, it is strongly
recommended that the destination of dynamic_dlls.msm and
bostsrv.msm be set to [SystemFolder], and the destination of
dynamic_dlls_x64.msm be set to [System64Folder]. This is especially
important on a 64-bit version of Windows using 64-bit applications.

Examples

When merging modules into your installation program, you can
choose from the following cases:

CASE I Associate multiple merge modules with a single feature (see
Figure 60). Set the install location of each of the merge modules to
that feature’s folder property so that changing the install location of
the feature also affects the associated merge modules. For example:

1. Create Feature 1 with a folder property of
{FEATURE1_INSTALL_LOCATION}.

2. Set the locations of all the merge modules that this feature
contains to:

{FEATURE1_INSTALL_LOCATION}

These settings apply any change to this folder location to all the
modules set to the original location. If you intend to install one of the
merge modules in a different location, you must create a second
feature and associate the module with the feature as shown in
Figure 61.

CASE II Create a feature for each merge module. Figure 61 shows an example
of this case.

CASE III Install the module as a required hidden feature when you don't want
to expose the merge module to your user.

March 2020 388

Figure 60. Merging Modules into a Single Feature

March 2020 389

Figure 61. Merging Modules into Multiple Features

March 2020 390

Determining Versions of Microsoft Visual C
Runtime Components

The Dialogic® Brooktrout® installation packages for the SDK (EXE)
and runtime components (MSI) include and install, via
redistributable merge modules (MSM) from Microsoft, a version of
the MS Visual C 2005 runtime components.

If you want to install components of the Dialogic® Brooktrout® SDK
manually, you must also make sure to install the MS Visual C 2005
runtime components. While it is always safe to use the latest version
of the runtime component redistributables available for download
from Microsoft, it may be desirable to determine the version that is
included with the Dialogic® Brooktrout® installation packages.

The Microsoft tool called Orca can be used to determine this. Install
and launch Orca, and load the boston.msi file. Under the list of
Tables, go to the one named Files. There will be many, such as
msvcr80.dll.<something>, which are listed. These all have the same
version number, such as 8.0.50727.6195. Use Orca to determine
various information about such packages.

If your own CRT redistributable version is earlier than this, then
you must make sure to update them for use with the Dialogic®
Brooktrout® SDK components. Note that while redistributables can
normally be found on a Microsoft web site for download, if a
Windows development system has VS 2005 installed, and the
Windows Updates are configured to install for other Microsoft
products, then it will update your local copy of the runtime
component merge modules commonly located in "c:\program
files\common files\merge modules".

March 2020 391

The following is an example of an Orca screen.

March 2020 392

About Plug and Play Components

Plug and Play happens outside the process of the application that
uses the drivers. The Brooktrout SDK includes Plug and Play
compatible drivers and the INF file. The INF file contains essential
information needed for the Windows Class Installers to correctly
identify components in an INF file and install them.

The user installs the hardware in the computer by following the
instructions in the hardware installation card that comes with the
module the hardware in the computer by following the instructions
in the hardware installation guide that comes with the module.
When Windows starts and the user logs on, the Found New Hardware
Wizard screen appears.

 Follow the steps below:

1. Select No, not this time and press Next.

2. Select "Install from a list or specific location (Advanced) then
press Next.

3. Select Search for the best driver in these locations. Place the
software CD in the system (this is a Brooktrout CD or your
application CD with the Brooktrout Plug and Play driver) and
press Next.

March 2020 393

4. Optionally you can select the Include this location in the search:
and browse to the location of the INF files. The Windows Plug and
Play manager finds the driver and installs it on the computer.

Note: Existing Dialogic® Brooktrout® Fax Products SDK
Developers: You cannot start or stop the Plug and Play driver
using commands like the net start/stop commands that
you might be using in your application. The user cannot restart
the driver since it is now a Windows Device Manager Plug and
Play driver. For any change requiring a driver restart, such as
change in history size and debug options, you must:

 Check for the current state of the service

 Tell the user to restart Windows if the driver is not
started

You can install and uninstall the PnP driver using install.exe
application that is already installed with the Brooktrout Fax
Software.

Dialogic does recommend that the only driver settings that you do
change are the History Enable, and History Size. However, your
changes will only take effect by rebooting the system or by using the
Brooktrout Configuration Tool. You can run the Brooktrout
Configuration Tool in silent mode for the changes to take effect. You
do not need to run it in Advanced mode.

As stated earlier, Microsoft leaves few interfaces for the hardware
vendor to implement. Table 26 summarizes the components for these
interfaces.

March 2020 394

Structure of the Brooktrout PnP Folder

The Brooktrout PnP folder has the following structure:

PnP

 | brooktrout.cat

 | trxstream.inf

 |- TRxStream

 | |- x86

 | | boston.sys

 | | boston.pdb

 | | brktBdevpp.dll

 | | brktBdevpp.pdb

 | |- x64

 | | boston.sys

 | | boston.pdb

 | | brktBdevpp.dll

 | | brktBdevpp.pdb

Note: It is very important for this folder structure to be maintained
when installed or copied for the Plug and Play to work
correctly. If you change the structure, the driver will not install
correctly.

Table 26. Brooktrout Plug and Play Components

Reference Brooktrout Component

Device Brooktrout hardware

Function Driver boston.sys

INF File trxstream.inf

Property Page Symbol File bfktBdevpp.pdb

Device Property Page brktBdevpp.dll

Brooktrout Catalog File brooktrout.cat

Driver Symbol File boston.pdb

March 2020 395

About the INF File

Brooktrout-supplied INF files (such as trxstream.inf) should be
available in a location readily accessible to Windows. The INF file
contains important information for Windows Plug and Play to work.
The primary function is to copy over a driver suitable for the device
that has been discovered. Windows also offers several extension
activities implemented using the INF file. These activities can allow
the creation of a vendor specific device class, registration of
co-installers, and providing user mode services and device property
pages. We make use of all these features offered by Windows.

 Once you identify the INF file (specifically trxstream.inf), the
following actions occur.

For an authoritative description of the Plug and Play install
process always use information from Microsoft (available at
MSDN).

1. During the hardware installation, Windows creates a new device
under Computer Telephony class. The Device Manager lists all
Brooktrout hardware devices under Computer Telephony
class/node:

Class = Computer Telephony

Class GUID = {8CF4CA66-A2CC-48FA-BC1D-6A64E47F6D27}

2. Copies the driver files for the identified device to the
system32\drivers folder.

3. Copies the device property page to the system32 folder.

4. Registers the device property page on the host system.

5. Installs the device driver(s) if not already installed.

6. Starts the device driver(s).

About the Device Property Page

The device property pages are dynamic-link libraries (DLLs) that
work in conjunction with the Device Manager. They typically display
property sheets for examining and modifying the settings and
configuration of a device. The Device Manager provides a default
property page that gives access to typical device properties. The
Device Manager also gives the property page provider an
opportunity to add a custom property page. The custom provider
must be registered in order for the Device Manager to use it.

March 2020 396

The Brooktrout Device Manager Property Page is a custom DLL
(brktBdevpp.dll) that provides basic integration with Microsoft
Management Console. Its primary function displays feature
information and its secondary function provides the option to launch
the Brooktrout Configuration Tool.

March 2020 397

Modifying Configuration Files

This section describes each of the configuration files. You can edit
the configuration files with a standard text editor or you can use the
Brooktrout Configuration Tool to make changes (see the installation
and configuration guide that came with your software).

Assuming the default installation, the configuration files are located
in Brooktrout\Boston\config. Sample configuration files are located
in Brooktrout\Boston\config\samples.cfg.

For details about parameters and valid values, see the Dialogic®
Brooktrout® Bfv API Reference Manual, Volume 6, Appendix A,
Configuration Files.

User-Defined Configuration File (btcall.cfg)

The user-defined configuration file contains parameters that set
values such as specific fax formatting. The Brooktrout SDK supplies
a default configuration file named btcall.cfg.

If you have a btcall.cfg file created for a previous release of the
Bfv API, delete the following parameters from the file. These
parameters have been removed or moved to another configuration
file as indicated:

Parameter Description

did_digits This DID digit detection parameter has been modified and moved to the
callctrl.cfg file.

did_variable This DID digit detection parameter has been modified and moved to the
callctrl.cfg file.

digital The call control (callctrl.cfg) configuration file replaces the configuration
file defined by the digital parameter.

isdn The call control (callctrl.cfg) configuration file replaces the configuration
file defined by the isdn parameter.

line_encoding The call control configuration file (callctrl.cfg) that replaces the teleph.cfg
file (see Volume 6 of the Dialogic® Brooktrout® Bfv API Reference Manual)
does not use this parameter.

nrings This parameter has been renamed num_rings and moved to the callctrl.cfg
file.

March 2020 398

Parameters are listed in any order and typed in either uppercase or
lowercase or both. Only one parameter per line is permitted.
Parameters must be separated from their values: a decimal integer,
a hexadecimal integer, or a character string by one or more spaces.
Commas, colons, and dashes are not valid parameter separators. The
default value is automatically supplied for each missing parameter;
and parameters that do not match any of the valid keywords are
ignored. If a parameter appears more than once, the last occurrence
is the one that will take effect.

For details about parameters and valid values, see the Dialogic®
Brooktrout® Bfv API Reference Manual, Volume 6, Appendix A,
Configuration Files.

Call Control (callctrl.cfg) Configuration File

This file contains configuration parameters that define how you
want the Bfv API to configure the modules for call control.

For details about parameters and valid values, see the Dialogic®
Brooktrout® Bfv API Reference Manual, Volume 6, Appendix A,
Configuration Files.

Including the Brooktrout Configuration Tool

When you decide to include the Brooktrout Configuration Tool in
your application, you can launch it in different modes depending on
your customer needs. The tool provides the following modes:

 Advanced Mode

 Offline Mode

 Silent Mode

 Timer Mode

switch_hook This parameter has been renamed flash_hook_duration and moved to the
callctrl.cfg file.

teleph The call control (callctrl.cfg) configuration file replaces the configuration
file defined by the teleph parameter.

Parameter Description

March 2020 399

 Wizard Mode

Note: The Brooktrout Configuration Tool initializes the default
location of the configuration, protocol, and firmware files using
the Registry entries created by the installation. See Registry
Entries on page 372. However, if you decide to ship the tool
separately, then you need to create a custom settings.cfg file
that the Brooktrout Configuration Tool can use. Refer to the
install and configuration guide for more information.

For details on these modes and running the Brooktrout
Configuration Tool in the various modes, see the installation and
configuration guide that came with your software).

March 2020 400

Downloading Firmware Files

In addition to installing the software, you must:

 Update the boot ROM flash memory

 Download the firmware files

 Optionally configure the call control parameters.

The Configuration Tool can only be used to configure the call control
parameters and start the Boston Host Service; this utility cannot be
used to update the boot ROM flash memory.

Use the instructions in your installation and configuration guide to
manually update the boot ROM flash memory and download the
firmware files.

Use the Brooktrout Configuration Tool to configure the call control
parameters (see your installation and configuration guide), or
manually edit the callctrl.cfg file included in your Brooktrout SDK.
For details about the call control parameters and valid values, see
the Dialogic® Brooktrout® Bfv API Reference Manual, Volume 6,
Appendix A, Configuration Files.

March 2020 401

Removing Software

The Add/Remove Programs selection on the Windows Control Panel
screen provides options to initiate the following on the installed
components for the package (see Uninstalling or Modifying the
Software in the installation and configuration guide that came with
your software):

Modify – Selecting this option displays a custom setup dialog that
allows the user to select the features to be installed or removed. This
option is helpful if the user wants to install features that were not
selected to be installed during the first installation.

Repair – Selecting this option should do the following:

 Repair all runtime components that are currently installed on
the user system

 Re-install some of the files that might have been deleted,
renamed, or moved

 Replace missing registry entries and shortcuts.

Note: Windows MSI framework can only detect file corruption if the
file is tagged as a KEY file. Only critical files in the installation
package are tagged as such. All the runtime binaries that are
installed by Brooktrout SDK and are tagged as KEY files.

Remove – This option should remove the package, including all the
files that were copied over by the installation. This option only
deletes the files that were created or copied by the installation. It
should remove bostsrv.exe service and delete all registry entries
created for this service. It should also remove all the registry entries
that were created by applications such as the Brooktrout
Configuration Tool.

On Plug and Play operating systems, you must completely remove
the Plug and Play driver by following the instructions in Removing
the Plug and Play Driver on page 402.

Note: The group responsible for maintaining the install project
MUST be notified of any registry entries, files, folders, services
and shortcuts that should be removed through the
Add/Remove Programs process.

March 2020 402

Removing the Plug and Play Driver

Installing a Brooktrout device using the Plug and Play Manager
(Found New Hardware Wizard) creates some backup files and registry
entries. The Windows Plug and Play Manager uses this information
to automatically install the device on rebooting.

To completely remove the Plug and Play driver from the system, you
must perform a complete cleanup after you remove the device from
the Device Manager.

Make sure you stop all your applications and the Boston Host Service
before uninstalling the device driver.

 To remove the Plug and Play driver:

1. Open Windows Device Manager.

2. Expand the Computer Telephony node.

3. Right-click the Brooktrout TRxStream board node and select
Uninstall.

4. Uninstall all the Brooktrout boards listed under the Computer
Telephony node.

5. Open Command Prompt and type “net stop boston” to stop the
driver that might still be running.

6. Delete the following files:

C:\WINNT\SYSTEM32\DRIVERS\boston.sys
C:\WINNT\SYSTEM32\brktBdevpp.dll

7. Examine the registry value InfPath located under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\
Control\Class\{8CF4CA66-A2CC-48FA-BC1D-
6A64E47F6D27}.

8. Search for the first key which contains the following values:

DriverDesc=Brooktrout TRxStream Board
This key should contain the name of the backup copy of the
trxstream.inf file that Windows created during the device
installation under C:\winnt\INF

9. Delete the INF file of this name from C:\WINNT\INF along with
the corresponding PNF file.

March 2020 403

Except for the extension, the INF file and the PNF file have the
same names. For example, if the INF file is oem11.inf, the name
of the PNF file is oem11.pnf.

10. Delete the following registry keys:

For 32-bit operating system:

HKEY_LOCAL_MACHINE\SOFTWARE\Brooktrout Technology
\DevicePropertyPage

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\boston

For 64-bit operating system:

HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node
\Brooktrout Technology \DevicePropertyPage

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\boston

11. Reboot the system and verify that the Brooktrout TRxStream
node(s) is not listed under Computer Telephony class node in the
Device Manager.

March 2020 404

Appendix A
G3 Legacy Utilities

This appendix describes legacy utilities that help manipulate raw
G3 fax files.

The utilities described in this chapter permit you to manipulate
raw G3 fax files (rather than infopkt-formatted files) from the
command line. These are legacy utilities that are provided to
users who need to manipulate raw G3 files. They have been
tested with previous versions of the Bfv API and are expected to
work, but they are no longer tested/supported.

Output files will usually contain a 128-byte Brooktrout header.
When you create an infopkt file using one of these output files,
you must either use the BTG3 type infopkt or remove the
header.

For input files, the 128-byte Brooktrout header is optional.
However, a header can provide crucial information to the
utilities about resolution and image width. This information is
particularly important to the Print utility.

The G3 utilities only support the resolutions 200H x 100V
(Normal) and 200H x 200V (Fine). They do not support any of
the higher resolutions.

All utilities except for the G3 conversion utility use file names
with the .3XX extension. The first page of a fax has the extension
.301, the second .302, etc. Many of these utilities will ignore
actual extensions supplied and add or convert to these
extensions.

March 2020 405

The G3 utilities include:

ASCII to Fax Conversion
Utility

Converts ASCII text files to Brooktrout G3 fax image files.

Cut and Paste Utilities Used in conjunction, removes parts of fax images and stores them in
a separate file and recombines them into another file.

Epson to Fax Conversion
Utility

Converts Epson print files to Brooktrout G3 fax image files.

Fax Display and Edit Utility Displays fax files and provides a visual interface to the cut utility.

G3 Conversion Utility Converts raw fax files between any of these formats – MH, MR,
MMR, PCX, and bitmap.

Print Utility Prints fax files to any of several printers.

An example of how to use each utility and its parameters is included
with each description.

All utility executable programs are found in the
Brooktrout/Boston/bfv.api/<platform>/utils/bin.

Note: For the operating system you are using, substitute its name for
<platform> in the following instructions and use the
appropriate location where the installed files are located (that
is, /usr/sys for Linux; and C: for Windows.

March 2020 406

ASCII to Fax Conversion Utility (asctog3)

Converts ASCII text files to Brooktrout Group 3 fax image files.
Although this utility is included, in most cases ASCII file
transmission is better accomplished utilizing the ability of the
Brooktrout fax modules to convert ASCII to G3 on-the-fly. This is a
legacy utility.

Command Syntax

asctog3 argument-list

Where:

The ASCII to Fax Utility displays help information on ASCII to
Group 3 file conversion when no arguments are specified. For
example:

asctog3 -imemo.txt -fibmpcps.fnt

converts a text file named memo.txt to a Group 3 fax file using a
standard 80 column font.

-i (input file) Specifies the input file to convert to Group 3.

-o (output file) Specifies the output file name. If omitted, an
output file is created with the same input file name but is
given a .3XX file extension.

-mfine (fine resolution) Specifies fine (200 vertical lines/inch)
resolution. The default is normal resolution (100
lines/inch).

-margin# (margin) Adds a left margin specified in tenths of an inch
(#). Width is optional and defaults to either 0.5 inch, if the
-margin option is specified, or to 0 if the -margin option
is not specified.

-f (font file) Species the font file to use for the conversion.

-lines# (page length) Specifies the page length in terms of text
lines. Defaults to 66 lines/page for standard 11'' paper.

-nopad (no pad) Prevents padding short pages to standard 11"
page length. The default pads short pages to 11" length,
regardless of the input file.

-skip# (letterhead) Makes the first page of output shorter by #
text lines. Leaves room for a letterhead.

-w# Makes lines of the specified width: 0 = A4, 1 = B4, 2 = A3.

March 2020 407

Cut and Paste Utilities

The next two utility commands, g3chop and g3combin, permit
cutting and pasting of fax images at the command line. These two
commands are most commonly used to create letterhead and
signature files.

Cut Utility (g3chop)

Removes portions of Brooktrout Group 3 fax files and stores them in
a separate file.

Command Syntax

g3chop -sx -cy -ifile1.301 -ofile2.301

Where:

For example:

g3chop -s5 -c20 -isalute.301 -oadvert.301

skips the first five lines of the file salute.301, chops the next 20 lines,
and puts them into the output file advert.301.

-s (start chop) Specifies the distance in 1/10" units, from
the top of the file, to skip before chopping.

-c (chop size) Specifies the distance in 1/10" units to chop.

-ifile1.301 (input file) Specifies the name of the file to chop.

-ofile2.301 (output file) Specifies the name of the output file which
contains the resulting chopped file.

-l (lines) Changes the -s and -c arguments to work with
G3 lines as the units.

The number of lines are calculated in inches using the
file resolution if you know how far down in inches you
want to start and you use the -l argument: to skip 2
inches from the top of the file in normal resolution, skip
200 lines; for fine resolution, skip 400 lines.

The number of lines to chop can also be calculated based
on the file resolution and the number of inches to remove
from the file.

March 2020 408

Paste Utility (g3combin)

Combines portions of Brooktrout Group 3 fax files, and, although it
is most commonly used to create letterhead and signature files, it
can combine all types of fax files. Although this utility is included, in
most cases combining fax files is better accomplished using infopkt
files.

To attach a letterhead, specify the letterhead file as file1. To attach a
signature file, specify the signature file as file2. If the resolution of
the two files is different, you can specify which resolution to use for
the output file.

Command Syntax

g3combin <file1.301> <file2.301> <file3.301> [-l] [-s] [-pad]

Where:

For example:

g3combin -1 lethd.301 sign.301 busrpt.301

combines the contents of lethd.301 with the contents of sign.301 into
the output file busrpt.301. The contents of lethd.301 (letterhead) is
placed at the top of the output file, and sign.301 (signature) is placed
at the bottom of the output file. The resolution of sign.301 is
assigned to the output file busrpt.301.

-l (file2 resolution) Specifies the resolution of file2 for the
resolution of the output file when the resolutions of the
input files are different.

-s (file1 resolution) Specifies the resolution of file1 as the
resolution of the output file when the resolutions of the
input files are different.

file1.301 (top input file) Specifies the name of the file to place on top
of the combined document.

file2.301 (bottom input file) Specifies the name of the file to place on
the bottom of the combined document.

file3.301 The output file containing the combined contents of
file1.301 and file2.301.

-pad (pad short pages) Pads short pages to a standard 11" page
length.

March 2020 409

Epson to Fax Conversion Utility (epstog3)

Converts Epson print files to Brooktrout Group 3 fax images and
provides complete emulation of the Epson-LX80 printer (including
bold, italics and graphics).

Command Syntax

epstog3 argument-list

Where:

-i (input file) Specifies the input printer file
(Epson-format) and optional path name.

-o (output file) Specifies the output fax image file name
and optional pathname.

-mfine (fine resolution) Specifies fine (200 vertical lines/inch)
resolution. The default is normal resolution (100
vertical lines/inch).

-132 (132 column) Scales printer files that contain wide
(132 column) documents, spreadsheets, or
multicolumn word processed documents so they fit on
standard 8.5" x 11" paper.

-margin# (margin) Adds a left margin specified in tenths of an
inch. Width is optional and defaults to either 0.5 inch,
if the -margin option is specified, or to 0 if -margin
option is not specified.

-fibm (emulation) Changes the default printer emulation
from an Epson to an IBM graphics printer. This, in
effect, changes the font used when converting text
data.

-lines# (page length) Specifies the page length in terms of text
lines. Defaults to 66 lines/page for standard 11'' paper.

-nopad (no pad) Prevents padding short pages to a standard
11" page length. The default pads pages to an 11" page
length, regardless of the length of the input file.

-skip# (letterhead) Makes the first page of output shorter by
text lines. Leaves room for a letterhead.

March 2020 410

The epstog3 utility displays help information on converting graphics
files to fax image files, on the command line.

Note: Fonts must be located in the current directory for all platforms
except those platforms that use MS-DOS executables
(Windows). For these cases, the fonts must be located either in
the font subdirectory of the directory named by the FMAIL
environment variable, if it is set, or in the boston\bfv.api\fonts
directory.

For example:

epstog3 -icap001.epc

converts a graphics file named cap001.epc to a Group 3 fax image
file.

If the output file name is not specified, it is automatically created
using the input file name and given an extension of .3XX.

If the input file does not reside in the current or default directory,
the path name must also be specified.

If the path name of the output file is not specified, the output file is
placed in the same directory as the input file.

March 2020 411

Fax Display and Edit Utility: Supershow (ss)

Displays a fax file on screen for viewing and editing. Editing options
include scaling, rotating, and reversing video.

Note: Supershow does not scale images automatically to maintain
aspect ratios or to fit images on the screen. Each pixel in the
file corresponds to one pixel on the screen. Supershow does
support manual scaling with the commands described on the
help screen.

To see a complete list of arguments and display options, type ss
without any arguments at the system prompt. To access the
Supershow help screen, which lists movement and display
commands, press the? key during a fax display.

Supershow automatically determines the adapter type, so the -h and
other display-related arguments are optional on all environments.
Use these arguments to select a display mode that differs from the
default for the current adapter type.

All arguments are optional, except -i.

Command Syntax

ss[-[r][h|c|e|v|ea|va]][-xs#][-ys#][-x#][-y#][-w#][-m#] -ifilename

Where:

-r Displays the image in reverse video. You can combine
this argument with one of the other arguments: h, c,
e, v, ea, or va.

-h Forces the display type to Hercules graphics.

-c Forces the display type to IBM CGA.

-e Forces the display type to IBM EGA.

-v Forces the display type to IBM VGA.

-ea Forces the display type to IBM EGA alternate mode.

-va Forces the display type to IBM VGA alternate mode.

-ifilename Specifies the name of the fax file to display.

-x Specifies the X-offset. Units are in tenths of an inch.

-y Specifies the Y-offset. Units are in tenths of an inch.

-xs Specifies the X scale factor. Values are 1, 2, or 3.

March 2020 412

For example:

ss -rv -iletsig.301

displays a file named letsig.301 on the screen in reverse video on a
PC equipped with a VGA adapter.

-ys Specifies the Y scale factor. Values are 1, 2, or 3.

-w Specifies the width (0 = A4, 1 = B4, 2 = A3) and
overrides the header.

-m Specifies the number of kilobytes of memory to use for
an image. The default is 512K. Using large values
might slow response times. (This argument is not
available for Windows.)

March 2020 413

G3 Conversion Utility (g3cvt)

Converts a raw fax file between any of these formats—MH, MR,
MMR, PCX, and bitmap. It accepts files that use either MSB or LSB
bit order, and (optionally) skips past a Brooktrout 128-byte header.
Output from this utility does not contain a 128-byte Brooktrout
header.

As it proceeds, g3cvt displays dots across the screen. If it detects an
error in the input file, g3cvt displays an error message. With some
input formats, g3cvt cannot continue after it encounters an input
error.

For bitmap conversion, this utility uses raw bitmap format. The -w
option determines the number of bits per line, and the -b option
determines the bit order. Raw bitmap format does not use
start-of-image, end-of-line, or end-of-image marks.

When decoding MH or MR files, if this utility encounters an input
line with errors, it writes a copy of the previous line in the output
file.

To display usage information, type g3cvt without any arguments.

Command Syntax

g3cvt <i_fmt> <i_file> <o_fmt> <o_file> [options]

Where:

i_fmt Format of the input file—MH, MR, MMR, PCX, or BIT.

i_file Name of the input file.

o_fmt Format of the output file—MH, MR, MMR, PCX, or BIT.

o_file Name of the output file.

Options

-w<width> Specifies the width of the lines; A4 (default), B4, or A3.

-b<b_o> Specifies the bit order of both the input and output files –
M (MSB), the default, or L (LSB).

March 2020 414

For example:

g3cvt MMR fax.mmr MH fax.mh

converts a fax file from MMR format to MH format.

-h Causes g3cvt to copy the first 128 bytes of the input file to
the output file, with no conversion.

-f Specifies fine resolution input. Used with MR or PCX
output only.

MR output—The program represents the data slightly
differently and more efficiently when it knows the input
is in fine resolution.

PCX output—Since PCX format is always in fine
resolution, the program must know whether the input file
is in fine or normal resolution. If the input is in normal
resolution, the program doubles each line in the output
file.

A PCX input file automatically activates the -f option.

March 2020 415

Print Utility (p)

Prints the fax file to any one of several printers.

Command Syntax

p argument-list

p [-ppmode] [-xXOFF] [-yYOFF] [-xsXSCALE][-ysYSCALE] -ifiles [-ooutfile]
[-paper[A4/LET]] [-w[width]]

Where:

-ppmode (print mode) Indicates the printer and resolution to use
for printing: where pmode is the character string that
defines the print mode and is one of the following:
psd Single density: 60 dpi
plsd Low speed double density: 120 dpi
phsd High speed double density: 120 dpi
pqd Quadruple density: 240 dpi
pqds Low speed quadruple density: 240 dpi
peps Epson QX-10 mode: 80 dpi
poto One-to-one plotter: 72 dpi
pd90 90 dpi
pibmprosd IBM Proprinter single density
pibmprolsd IBM Proprinter low speed double

density
pibmprohsd IBM Proprinter speed double density
pibmproqd IBM Proprinter quadruple density
pljl HP Laser Jet: 75 dpi
pljm HP Laser Jet: 100 dpi
pljh HP Laser Jet: 300 dpi
plj2l HP Laser Jet II: 75 dpi
plj2m HP Laser Jet II: 100 dpi
plj2h HP Laser Jet II: 300 dpi
pnec NEC P6 24-Nadel Drucker: 360 dpi
pnec0 NEC P6 24-Nadel Drucker: 180 dpi
pfx2000 Axiom Edwards FX-2000: 200 dpi

-xXOFF (x offset) Selects an X direction offset in tenths of inches.
Only the portion of the image to the right of this position
is displayed.

March 2020 416

The Print Utility displays help information when no arguments are
specified.

Note: The Print utility automatically scales the image to maintain
the correct size and aspect ratio for each supported printer
type and resolution. If the Print utility encounters a 128-byte
header at the beginning of the input file, it uses the actual
resolution of the fax for scaling; otherwise, it uses normal
resolution for scaling.

Note: When using widths larger than the standard A4, you do not
need to include the -w argument. However, because these
larger widths exceed printers’ standard width, the Print utility
truncates the image horizontally to fit the standard width. If
you do include the -w argument, the Print utility reduces the
size of the image to fit the standard width.

For example:

p -phsd -xs10 -ys10 -idemo.301

prints a file, demo.301, on an Epson/IBM compatible printer in high
speed, double density mode scaling the image in both the x and y
directions to one-half size.

-yYOFF (y offset) Selects a Y direction offset in tenths of inches.
Only the portion of the image below this position is
displayed.

-xsXSCALE (x scale factor) Selects an X direction scale factor in 5%
increments. The image is scaled to this factor of its
original size in the X direction.

-ysYSCALE (y scale factor) Selects a Y direction scale factor in 5%
increments. The image is scaled to this factor of its
original size in the Y direction.

-ifiles (input file name) Specifies the Group 3 files to print. The
file name and pages to print are specified: file name (first
page, last page).

-ooutfile (output file name) Directs output to the specified file
rather than the printer.

-paper (paper type) Specifies the paper size to use.
-w[width] Scales horizontally and vertically to fit an image of the

specified width: 0 = A4, 1 = B4, 2 = A3. If no width is
specified, this utility uses the width from the 128-byte
Brooktrout header.

A4 Specifies an A4 feeder and A4 size paper.
LET 8.5" x 11" standard size paper.

March 2020 417

Appendix B
Recompiling On Linux Platforms

Refer to “Recompiling on Linux Platforms” in the Dialogic®
Brooktrout® Fax Products SDK Installation and Configuration
Guide.

March 2020 418

Glossary

API Application Programming Interface

ASR Automatic Speech Recognition

Channel A logical channel of operations provided by a Boston module. See
logical channel number, ordinal channel number, work channel.

EC Echo cancellation

External-Telephony
Mode

Using the Bfv API directly instead of a speech engine API to
perform call control (Mixed Mode)

Facility A software entity responsible for a set of related functions that
provide services to the host, e.g., fax facility and voice facility.

HDLC High level Data Link Control

ISDN Integrated Services Digital Network

IVR Interactive Voice Response

March 2020 419

lapdid The term lapdid has its origins with the LAP-D protocol used for call
control, but has an extended meaning for Brooktrout products. For
call control for all protocols, trunk 1 = lapdid 0, trunk 2 = lapdid 2,
trunk 3 = lapdid 4 and trunk 4 = lapdid 6.

LEC Local Exchange Carrier

Line A T1/E1 slot or a single analog slot. Lines are numbered starting at
1.

Logical channel number A number used with the hardware module number to reference a
channel in a system. Channel 0 is reserved and channel 1 is the
administrative channel. Other channels are numbered from
2 to n+1 (where n is the number of work channels defined for the
module).

Millennium Address An address of a communicating Boston or Millennium entity such as
a facility and channel on a Boston module or the Boston device
driver. Each address consists of 4 components, the facility, the
channel, the module, and the machine. It is possible to make use of
most features of the firmware and the APIs without requiring direct
use of these addresses.

Module A communicating Boston entity that usually represents a CPU on a
Brooktrout board, a host application, or the driver. See section TBS
for more information about modules and module number
assignment.

NVRAM Non-Volatile RAM. Random Access Memory that is not erased when
the board is powered off or when the firmware is downloaded again.

Ordinal channel number A number in the range 0 to n-1 where n is the total number of work
channels on all the boards in the system.

Packet In the Boston architecture, a sequence of bytes containing a Boston
destination address, source address, and one or more commands.

PCI Peripheral Component Interconnect

PDF Portable Document Format

Port A TDM bus (MVIP, H110, etc.) or a DS-1 interface (T1/E1).

RBS Robbed-Bit Signaling

March 2020 420

Stream A logical data entity that corresponds to a physical data line on a
TDM bus.

T1/E1 span The set of slots that comprises one T1 (24) or one E1 (30) line. The
spans are numbered starting at 1.

TCP Transmission Control Protocol

Time slot A logical entity that corresponds to one telephone call.

Unit number 1. In telephony configuration files and functions, a unit is a
hardware port on a Brooktrout board and is numbered starting at 0
(to denote a TDM bus); from 1 to n (for a specific T1/E1 interface).

2. In some Bfv functions (e.g., BfvLineAttach), an ordinal channel
number. Its range is 0...n-1, where n is the number of channels in a
system.

VAD Voice Activity Detection

Work channel One of the channels on a module that is available for
non-administrative purposes as a result of downloading firmware. A
module configured for 48 channels when firmware download is
performed has 48 work channels and one administrative channel.
Logical work channel numbers start at 2 on each module.

March 2020 421

A
About merge modules 375
Accessing the telephone system 34
Active redirecting for Japan (call transfer) 181
Add/Remove Programs

Removing packaged software 401
Administration, management and configuration Bfv

functions 24
Administrative channels 28
ALERTING Q.931 message 318, 321
API debug mode 91

parsed commands in output 97
app.src directory 120
Applications

accessing infopkt streams from 82
accessing TIFF-F files 86
developing using Bfv API 54
fax status information from 88
remote logging 127
Turning on remote logging 127

Argument structures 32
ASCII fonts

downloading 143
ASCII to fax (asctog3) conversion utility 406
ASR, two-channel call transfers 185
Audio conferencing

API 22, 37

B
bapp.src directory 120

B-channel negotiation 318
Bellcore standards 108
Bfv API 21

call control 34
functions 24
introducing 20
libraries 23

BfvCallSWClearConns
Two-channel call transfers 187

BfvCallSWConnect
Connecting and disconnecting resources for two-

channel call transfer 187
Two-channel call transfers 187

BfvCallSWGetConns
Two-channel call transfers 187

BfvCallSWGetInfo
Two-channel call transfers 187

BfvLineTransfer 170, 197
BfvLineTransferCapabilityQuery 170
Board

monitoring condition 121
status and monitoring functions 31

boardmon program 121
Boston Host Service 384
Boston Simple Message Interface (BSMI) API 21
brktBdevpp.dll

Packaging 396
Brooktrout Configuration Tool 373, 380, 381
Brooktrout License Manager 382
Brooktrout software

Checking for presence of 368
BSMI API

Boston Simple Message Interface 21

Index

March 2020 422

call control 34
control messages 35

BT_CPARM.CFG file 30
btcall.cfg

configuration files 30
Modifying for packaging software 397

BTLINE structure 23, 26
btver program

debugging tool 99
using 122

C
call clearing

initiated by the board 323
initiated by the network 325

Call control 34
Bfv API 34
BSMI API 34
call progress signals 36

CALL PROCEEDING Q.931 message 318, 321
Call switching connections

listing 123
CALL_RES structure 32
Changing driver settings

Packaging 393
Channel

definition 418
numbering 28
storing information 26

Circuit-switched call control
Bfv API functions 24

Command/Response (C/R) bit 102
Communication between Brooktrout board and

T1/E1 ISDN lines 34
Compiling sample applications

Developer Studio Project files 165
Configuring

call transfers for echo cancellation 189
files 30
firmware for packaging software 400
functions 29
modifying btcall.cfg for packaging software 397
Modifying for packaging software 397
showing parameters 151

CONNECT ACKNOWLEDGE Q.931 message 318,
321

CONNECT Q.931 message 318, 321
Connecting resources

Two-channel call transfers 186
connlist program 123

debugging tool 99
Converting

DCX to raw PCX format 131
infopkt to raw data 144

Country-specific parameters file 30
csend program 124
Cut utility (g3chop) 407

D
Data infopkts 43
D-channel message header 104
DCX

converting to raw PCX format 131
creating files 145

deact program 125
Deactivating a hardware module 125
Deallocating a BTLINE structure 26
debug_control program 127
Debugging

and error handling functions 31
Debugging tools

API debug mode 91
BfvDataFSK 91
BfvLineDumpStructure 91
Dump History utility 92
utilities 99

decode program 128
Defining Registry entries 384
Delay dial signaling 279, 281
Detecting and displaying incoming tones 154
Developer Studio Project files, for compiling sample

files 165
Developing applications 54
Device class, packaging 395
Device Property Page

Packaging software 395
dfax program 129
Diagnostic utilities, tracing messages 100
Dialing

restrictions 130
dialing

ISDN overlapped 323

March 2020 423

Dialing database functions 130
digits

dial pulse 270, 271
timers 269

DISCONNECT Q.931 message 323, 325
Disconnecting resources

Two-channel call transfers 195
dlfax program 129
Downloading

ASCII fonts 143
feature set data 139
firmware 141, 142

driver recompiling for different Linux versions 417
dstrip program 131
DTMF tones

detecting and displaying 154
detection and generation 36

Dump history
interpreting the output 95
parsed commands in output 97
utility 94
utility program 92

E
eccllvoice program 132
Echo cancellation

Configuring for two-channel call transfer 189
Two-channel call transfers 189

Epson to fax (epstog3) conversion utility 409
Euro-ISDN

dialing long numbers 323
Examples

I Frame header 103
Information Elements 106
merging modules 387–389
Message header 104

Explicit call transfer (ECT) 183

F
Facility

definition 418
Fax 21

application for sending 124
display and edit utility (ss) 411
functions 37

infopkt parameters 50
remote node parameters 89
sending

channel to channel 60
from external fax 61

sending and receiving 134, 145
status information 88

Fax over IP 207–253
Call Control 209
Call Progress Values 223
debug_control mode 240
INVITE message sample 246
Receiving faxes 238
Sample INVITE Request 215
Sending faxes 238
Troubleshooting 240

fax program 60, 133
faxhl program 134
faxll program 135
faxml program 137
faxp program 138
faxpml program 138
Feature Group B 282
Feature Group D 282
Feature program 139
Feature set data 139
File format manipulation functions 39
Files

configuration 30
locations 372, 384

firm program 141
firmload script 142
Firmware

Configuring for packaging software 400
downloading 141, 142
functions and macros 29

Fixed pause signaling 289
font program 143
Frame Check Sequence (FCS) 103
full duplex call transfer, see Two-channel call

transfers
Functions

administration and initialization 25
board status and monitoring 31
configuration 29
debugging and error handling 31
fax 37
file format manipulation 39

March 2020 424

firmware 29
high-level 38
high-level fax 38
low-level 38
low-level fax 39
mid-level 38
mid-level fax 39
miscellaneous 33

FXO signaling 290
FXS signaling 290

G
G3 Conversion Utility 413
G3 utilities 404

ASCII to fax conversion utility(asctog3) 406
cut (g3chop) 407
Epson to fax conversion utility(epstog3) 409
fax display and edit (ss) 411
g3 conversion (g3cvt) 413
paste (g3combin) 408
print (p) 415

g3chop cut utility 407
g3combin paste utility 408
glare 272
Guard timing 325, 326

H
H.323

Address Forms 225
E.164 Alias 226
ID Alias 226
Introduction 224
IP Address 225

Hardware
channel 28

Hardware module
deactivating 125
listing information 149

High-level functions
receiving a fax 63
sending a fax 62
using 62

Hookflash transfer 173
Analog loop start signaling 173
L4L3mTX_HOOKFLASH 174

T1 and analog BSMI applications 174
T1 Robbed Bit 173

I
I Frame header example 103
Immediate start signaling 287
Incoming call

timing diagram for E&M Immediate Start 287
timing diagram for E+M Wink Start/Delay Dial

279
Indirect infopkts 43
INF file, Packaging 395
Infopkt streams 44

accessing from applications 82
building files 146
creating 45, 46, 48
decode utility 128
sending TIFF-F files within 83

Infopkt structure 48
Infopkt to raw data conversion utility 144
Infopkt-formatted fax

receiving and storing in MMR format 77
Infopkts 40

fax parameters 50
speech parameters 49

Information Elements (IEs)
example 106
identifiers 107

InstallHome Path, Packaging software 373
Installing boards, Instructions for packaging

software 366
Installing merge modules 385
Instant ISDN Software, Layer 2 and Layer 3

parameters 332
Integrating Brooktrout software with your software

367
Integrating merge modules 385–389
IP

Receiving IP Calls 211
Sending IP Calls 210

ipstrip program 144
ISDN calls

call clearing 323
dialing long numbers 323
incoming call handling 318
outgoing call handling 321

March 2020 425

Overlapped dialing 323
ivr program 145

L
L3L4mALERTING

outgoing call example 321
L3L4mCLEAR_REQUEST

call clearing example 324, 325
L3L4mCONNECT

outgoing call example 321
L3L4mDISCONNECT

call clearing example 325
L3L4mPRE_SEIZE

usage 282, 290, 296, 304, 309
L3L4mRX_WINK

usage 284
L3L4mSEIZE_COMP

usage 284, 288, 292, 298, 309, 310
L3L4mSETUP_IND

incoming call example 318
L3L4mUNIVERSAL

call hold 205
L4L3CALL_REQUEST

Release Link Trunk 198
L4L3mALERTING_REQUEST

incoming call example 318
L4L3mCALL_REQUEST

outgoing call example 321
usage 284, 298, 310

L4L3mCLEAR_REQUEST
call clearing example 323, 325

L4L3mCONNECT
usage 282

L4L3mCONNECT_REQUEST
incoming call example 318

L4L3mENABLE_B_CHANNEL
usage 282, 290, 296, 303, 309

L4L3mENABLE_PROTOCOL 198
changing Layer 2 and Layer 3 parameters 332

L4L3mEND_DIAL
usage 284

L4L3mTX_HOOKFLASH
setting 174

L4L3mTX_WINK
usage 282

L4L3mUNIVERSAL

call hold 205
Level 2 and Level 3 parameters 332
Level 2 trace 100
Libraries, Bfv API 23
Line

definition 419
states 26

Linux
recompiling the driver 417
supported versions 417

Logical channel number
definition 419
numbering channels 28

Loopback modes 109
Low-level functions

Bfv API 62
receiving a fax 66
sending a fax 65

M
Macros

administration and initialization 25
firmware 29
miscellaneous 33

Making registry entries 384
Maximum transmit window (K) 333
Media processing

Bfv functions 24
types of applications 36

Merge modules
About the feature 375
Defining file locations 384
Dependent 386
Feature content 376
Independent 386
Installing 385
Integrating 385–389
Merging examples 387–389
msm files 376–384
Registry entry 384

Messages
header 104
recording and playing 145

MF tone
detection 36
generation 36

March 2020 426

Mid-level fax functions 39
Miscellaneous functions 33
Miscellaneous macros 33
mkdcx program 145
mkinfopk program 45, 146
mkprompt program

using 58, 148
mktiff program 148
MMR format

receiving and storing in 77
sending in 80

modinfo program
debugging tool 99
using 149

Module, definition 419
Monitoring

board condition 121
MR format, receiving and storing in 78
msm files 376–384

N
N200 333
N201 333
N202 333
Noninfopkt-formatted fax

receiving and storing in MR format 78
sending in MMR format 80

Noninfopkt-formatted raw G3 Files
functions to receive faxes 72
functions to send faxes 68

Numbering
channels 28

NVRAM
definition 419

O
Ordinal channel number

definition 419
numbering system 28

outgoing call
timing diagram for E&M Wink Start/Delay Dial

281
timing diagram for E+M Fixed Pause 289

P
p print utility 415
Packaging software

Add/Remove Programs 401
brktBdevpp.dll 396
Brooktrout Software System Files 369
btcall.cfg 397
callctrl.cfg file 398
Changing driver settings 393
Checking for Brooktrout software 368
Configuration files 397
Custom provider registration 395
Device class 395
Device Property Page 395
did_digits parameter 397
did_variable parameter 397
digital parameter 397
Inf file 395
InstallHome Path 373
Instructions for installing boards 366
Instructions for Plug and play drivers. 366
Integrating software 367
isdn parameter 397
Making registry entries 372
Merge module 375
modifying btcall.cfg 397
Modifying Configuration Files 397
nrings parameter 397
Registry file locations 373
Removing Software 401
Removing the Plug and play driver 402
RuntimeConfigtool Path 373
Shortcut to installation package 373
Structure for Brooktrout PnP folder 394
switch_hook parameter 398
teleph parameter 398
Uninstalling software 401

Packet, definition 419
Page transmission parameters 89
Parsed commands (debugging) 97
Paste utility (g3combin) 408
Performing echo cancellation, two-channel call

transfers 189
Playing

messages 57, 145
phrases from a prompt file 150
speech 55, 132, 160, 162, 163

March 2020 427

Playing back voice
Two-channel call transfer 192

playp program 150
Plug and Play

Folder structure for packaging software 394
Instructions for packaging drivers 366
Removing the driver 402

Poll/Final (P/F) bit 102
Port, definition 419
Print utility (p) 415
Prompt files

creating new 58
creating or updating 148
playing phrases 150
updating 59
using 57

Q
Q.931 messages

ALERTING 318, 321
CALL PROCEEDING 318, 321
CONNECT 318
CONNECT ACKNOWLEDGE 318
DISCONNECT 323, 325
Message header 104
RELEASE 324, 325
RELEASE COMPLETE 324, 325
SETUP 318, 321
tracing 100

Querying the feature set data 139

R
R2 signaling

library 21
protocol 35

Receiving a fax 145
in MMR format 77
in MR format 78
using DCX routines 129
using high-level functions 63
using infopkt file polling routines 138
using infopkt file routines 133, 134, 137
using low-level infopkt functions 66
using noninfopkt raw data routines 135
using noninfopkt-formatted Raw G3 files 72

using TIFF-F files 75
using TIFF-F routines 153

Recording
a message 145
speech 56, 132, 160, 162, 163
voice 55

Registry entries
File locations 373, 384
Packaging 372

RELEASE COMPLETE Q.931 message 324, 325
Release Link Trunk 197
RELEASE Q.931 message 324, 325
Remote fax node parameters 89
Remote logging, turn on 127
Removing Software, for packaged software 401
RES structure 32
Resource connection type, two-channel call transfers

186
Resources

Connecting for two-channel call transfers 186
Source and destination resources for two-channel

call transfers 186
Return values for Bfv API functions 32
Robbed bit signaling, guard timing 325, 326
RuntimeConfigtool Path, packaging software 373

S
Sample applications

boardmon 121
btver 122
compiling 165, 167
connlist 123
csend 124
deact 125
debug_control 127
decode 128
dfax 129
dlfax 130
dstrip 131
eccllvoice 132
fax 133
faxhl 134
faxll 135
faxml 137
faxp 138
faxpml 138

March 2020 428

feature 139
firm 141
firmload 142
font 143
introduction 120
ivr 145
mkdcx 145
mkinfopk 146
mkprompt 148
mktiff 148
modinfo 149
playp 150
shoparam 151
telreset 151
telsave 152
tfax 153
tiffdump 153
tones 154
transfer 154
tstrip 159
voice 160
voiceraw 162
wave 163

sample files
compiling using Developer Studio Project files 165

Sending a fax 145
in MMR format 80
TIFF-F file 83
using DCX routines 129
using high-level functions 62
using infopkt file polling routines 138
using infopkt file routines 133, 134, 137
using infopkt routines 130
using low-level infopkt functions 65
using noninfopkt raw data routines 135
using noninfopkt-formatted Raw G3 files 68
using TIFF-F files 74
using TIFF-F routines 153

Service Access Point Identifier (SAPI) 102, 103
Setting up the two-channel call transfer 186
SETUP Q.931 message 318, 321
shoparam program 99, 151
Shortcut, configuration tool 373, 380, 381
Shortcut, license manager 382
Signal generation and detection 21, 36
Single pages, combining data on 84
SIP

Overview of functionality 242

Overview of operation 243
Understanding the protocol 241
Using a SIP Proxy Server 212
Verifying Dialed Strings 212

Software
module information 149
Removing in packaged software 401
Uninstalling 401

Speech
infopkt parameters 49
recording and playing 132, 160, 162, 163
recording and playing wave files 163

Status information, fax 88
Storing information about a channel 26
Streams, definition 420
Structures 32
Supershow (ss) display and edit utility 411
Switched 56 calls, guard timing 325
System

Packaging software files 369

T
T.38 Protocol

Receiving faxes 235
Sending faxes 235

T1
delay dial signaling 279
immediate start signaling 287
robbed bit 21
wink start signaling 279, 281

T1 ISDN PRI, making a two B-channel transfer 175
T1/E1 ISDN

library 21
T1/E1 span, definition 420
Tag infopkts 41
Telephony

configuration file 30
configuration, resetting state 151
modes

R2 signaling 21
T1 robbed bit 21
T1/E1 ISDN 21

parameters, saving to NVRAM 152
telreset program 151
telsave program 152
Terminal Endpoint Identifier (TEI) 102, 103

March 2020 429

Terminating the full duplex connection, avoiding
noise in two-channel call transfers 192

Terminating the two-channel call transfer 194
tfax program 153
tiffdump program 153
TIFF-F files

accessing from applications 86
combining data on single pages 84
creating 148
displaying the contents 153
function to receive faxes 75
function to send faxes 74
sending within infopkt streams 83
writing G3 pages 159

Time slot, definition 420
Timers

robbed-bit signaling timers 269
T200 332
T201 332
T202 332
T203 332
T302 333
T305 333
T308 333
T313 333
T316 333
T318 334
T319 334
T321 334
T3m1 334

Timers, robbed bit signaling 269
Tone detection 36
tones program 154
Touchtones, detecting and displaying 154
Trace string components 103
Tracing

Level 2 100
Transfer mode 89
transfer program 154
transferll program 156
trombone program 158
Tromboning, see Two-channel call transfers
tstrip program 159
Two B-channel transfer 175
Two-channel call transfers

ASR applications 185
BfvCallSWClearConns 187
BfvCallSWConnect 187

BfvCallSWGetConns 187
BfvCallSWGetInfo 187
Conditions for termination 194
Configuring echo cancellation 189
Connecting resources 186
Connection type 186
Defining source and destination resources 186
Disconnecting resources 188, 195
Echo cancellation 189
Noise when terminating the full duplex

connection 192
Removing conflicting connections 187
Resources 186
Restoring echo canceler defaults after

termination 196
Setting up 186
Source code for disconnecting resources 195
Source code for echo cancellation 190
Terminating 194
Types of resources 186
understanding 185–196
Voice playback methods 192

U
Unit number

definitions 420
numbering system 28

User-defined configuration file
about 30
keywords 398
parameters 398

User-defined infopkts 44
Utility programs 120

for debugging 99

V
V.17 fax 37
V.34 fax 37
Version information for driver, Bfv API, and

firmware 122
Voice

developing applications 55
generation and detection 21
play 37
playing 57

March 2020 430

record 37
recording and playing 55

Voice playback methods, two-channel call transfer
192

voice program 160
voiceraw program 162
Voice-response system application 145
VTTY feature, commands 110

W
wave program 163
wink start signaling 279, 281
Work channel

definition 420
numbering system 28

	Dialogic® Brooktrout® Fax Products SDK
	Contents
	Preface
	Introduction
	Related Documents
	Operating System Support
	Manual Conventions
	Terminology
	Updated Terminology

	Getting Technical Support

	1 - Introduction to the Dialogic® Brooktrout® Bfv API
	Bfv API and Associated Libraries
	The Bfv API Functions
	Administration, Management, and Configuration
	Administration and Initialization Functions and Macros
	Firmware Functions and Macros
	Configuration Functions
	Module Status and Monitoring Functions
	Debugging, Error Handling, and Return Values
	Miscellaneous Functions and Macros

	Call Control
	Bfv Call Control
	BSMI-Level Call Control

	Media Processing
	Signal Generation and Tone Detection
	Voice Record and Play
	Fax Functions
	File Format Manipulation Functions
	The Infopkt Stream
	Fax Infopkt Parameters

	2 - Developing Applications Using the Bfv API
	Developing a Voice Application
	Recording and Playing Voice
	Recording Voice
	Playing Back the Voice Message

	Using Prompt Files
	Using the mkprompt Utility
	Creating a New Prompt File
	Updating an Existing Prompt File

	Developing a Fax Application
	Sending and Receiving a Fax
	Sending a Fax from One Channel to Another
	Sending a Fax to a Channel from an External Fax Machine

	Using Bfv API Fax Functions
	Using High- and Low-Level Functions
	Sending a Fax Using Function Calls for Noninfopkt-Formatted Raw G3 Files
	Receiving a Fax Using Function Calls for Noninfopkt-Formatted Raw G3 Files
	Sending a Fax Using Calls for TIFF-F Files
	Receiving a Fax Using Calls for TIFF-F Files
	Receiving and Storing a Fax in MMR or MR Format

	Accessing an Infopkt Stream from an Application
	Sending a TIFF-F Fax File Within an Infopkt Stream
	Combining Data on a Single Page Using TIFF-F Fax Files
	Accessing a TIFF-F File from an Application

	Determining Fax Status Information from an Application

	3 - Debugging
	Bfv API Debug Mode
	BfvDataFSK
	BfvLineDumpStructure
	Dump History
	Invoking Dump History
	Interpreting the Output
	Status Header Line
	Event Logging Lines
	Event Logging Line Format

	Parsed Command Information
	Utility Programs for Debugging
	btver
	connlist
	feature -q
	modinfo
	shoparam

	BSMI Debugging
	BSMI Message Tracing
	Running a Layer 2 Trace
	Understanding Trace Hexadecimal Strings

	VTTY Tracing Feature
	VTTY Console Commands
	VTTY Tracer GUI

	Call Tracer
	Command Syntax
	Arguments

	Configuration File Format

	4 - Sample Applications and Utilities
	boardmon
	btver
	connlist
	csend
	deact
	debug_control
	decode
	dfax
	divert
	dlfax
	dstrip
	eccllvoice
	fax
	faxhl
	faxll
	faxml
	faxp
	faxpml
	feature
	firm
	firmload
	font
	ipstrip
	ivr
	mkdcx
	mkinfopk
	mkprompt
	mktiff
	modinfo
	playp
	rtp
	shoparam
	telreset
	telsave
	tfax
	tiffdump
	tones
	transfer
	transferll
	trombone
	tstrip
	voice
	voiceraw
	wave
	Compiling Sample Applications Using Microsoft Developer Studio Project Files
	Using Brooktrout Files

	Compiling Sample Applications Using Makefiles
	Combining the Sample Applications
	Compatibility for Compiling

	5 - Transferring Calls
	Making Call Transfers Using Bfv
	Making Hookflash Transfers
	Using Bfv Applications
	Using BSMI Applications

	Making Two B-Channel Transfers
	Making Call Transfers Using QSIG
	ISDN QSIG
	Supplementary Services Support

	Making Call Transfers Using Active Redirection (Japan)
	Making Explicit Call Transfers (ECT) With E1 ISDN and BRI
	Making Two-Channel Call Transfers (Tromboning)
	Setting up the Two-Channel Call Transfer
	Connecting Resources

	Actions During a Two-Channel Call Transfer
	Performing Echo Cancellation
	Playing Back Voice Recordings

	Terminating the Two-Channel Call Transfer
	Disconnecting Resources

	Transferring Calls Using Release Link Trunk Transfer
	Using Bfv Applications
	Using BSMI Applications
	Call Control Sequence Diagrams
	Non-RLT Call Transfer
	RLT Call Transfer

	Sample Application

	Placing Calls on Hold Using BSMI

	6 - Managing Fax and Voice over IP Sessions
	Managing Calls Using IP Telephony
	Adding IP Call Control using the Bfv API
	Outgoing IP Calls
	Incoming IP Calls

	Understanding SIP Functionality
	Using a SIP Proxy Server
	Verifying Dialed Strings
	Sample INVITE Request
	Call Progress Values
	SIP Options

	Understanding H.323 Functionality
	Using H.323 Address Forms

	Failover Based on Telephony Cause Codes
	Overview
	Common Failures
	Failover Scenarios
	Known Failures From Various Gateways
	H.323 and SIP

	SIP to Q.931 Conversion

	Processing Media Using the T.38 Protocol
	Sending and Receiving Faxes

	Configuring T.38, RTP and IP Call Control Activities
	Troubleshooting
	Understanding the SIP Protocol
	Introduction to the SIP Protocol
	Overview of SIP Functionality
	Overview of Operation

	Using Third Party IP Stacks
	Integrating Bfv IP Fax
	Components

	Configuration
	Disable ECC Component
	Brooktrout SR140 Software-Based Integration - Linux
	TR1034 Board-Based Integration - Linux

	Call Negotiation
	Inbound Call
	Outbound Call

	SR140 Internet Aware Fax (IAF) Support over UDP

	7 - Robbed Bit Signaling
	General Information
	Timer Definitions
	Timing Diagrams

	Wink Start & Delay Dial Signaling
	Incoming Call Processing
	Outgoing Call Processing
	Call Teardown Processing

	Wink Start with Feature Group B & D
	Incoming Call Processing
	Outgoing Call Processing
	Call Teardown Processing

	Immediate Start/Fixed Pause Signaling
	Incoming Call Processing (Immediate Start)
	Outgoing Call Processing (Fixed Pause Mode)
	Call Teardown Processing

	Ground Start Signaling
	FXO Ground Start
	Incoming Call Processing
	Outgoing Call Processing
	Call Teardown Processing

	FXS Ground Start
	Incoming Call Processing
	Outgoing Call Processing
	Call Teardown Processing

	Loop Start Signaling
	FXO Loop Start
	Incoming Call Processing
	Outgoing Call Processing
	Call Teardown Processing

	FXS Loop Start
	Incoming Call Processing
	Outgoing Call Processing
	Call Teardown Processing

	8 - ISDN Call Processing and Management
	ISDN Call Processing Overview
	Making an ISDN Incoming Call
	Making an ISDN Outgoing Call
	ISDN Overlapped Dialing

	ISDN Call Clearing - Initiated by Module
	ISDN Call Clearing - Initiated by Network

	Translating Q.931 to Simple Message Interface
	Using the overlap_rcv feature of L4L3mENABLE_PROTOCOL
	What is Overlap Receive?
	BSMI Reference Notes
	How Overlap Receive Mode Changes Call Control Events Presentation

	Q.921/Q.931 Timers

	9 - Using the BSMI R2 Signaling Capability
	CPE Signaling Model
	Enabling the R2 Protocol
	Protocol Parameter Mechanics
	Forward Channel
	Backward Channel
	R2 Call Control
	Outbound Call Setup
	Inbound Call Setup
	Call Tear Down
	Channel Blocking

	10 - Packaging Your Application for Windows
	Package Options
	Installation
	Installing Modules
	Installing Virtual Modules (SR140)
	Installing Software
	Installing the Brooktrout Runtime Software
	About the Merge Module Feature
	Installing the Merge Module Feature
	Integrating the Modules
	Determining Versions of Microsoft Visual C Runtime Components

	About Plug and Play Components
	Structure of the Brooktrout PnP Folder
	About the INF File
	About the Device Property Page

	Modifying Configuration Files
	User-Defined Configuration File (btcall.cfg)
	Call Control (callctrl.cfg) Configuration File

	Including the Brooktrout Configuration Tool
	Downloading Firmware Files
	Removing Software
	Removing the Plug and Play Driver

	G3 Legacy Utilities
	ASCII to Fax Conversion Utility (asctog3)
	Cut and Paste Utilities
	Cut Utility (g3chop)
	Paste Utility (g3combin)

	Epson to Fax Conversion Utility (epstog3)
	Fax Display and Edit Utility: Supershow (ss)
	G3 Conversion Utility (g3cvt)
	Print Utility (p)

	Recompiling On Linux Platforms
	Glossary
	Index

