
Application Note

Media Resource Control Protocol

Implementing a Media
Resource Control Protocol
(MRCP) Client Application
with Dialogic®

Telecommunications
Products

Application Note Implementing a Media Resource Control Protocol (MRCP) Client Application with
Dialogic® Telecommunications Products

Executive Summary

The Media Resource Control Protocol (MRCP), a proposed standard
within the Internet Engineering Task Force (IETF), provides the means
for a client device requiring audio streams to control stream processing
resources in the network. Applying this definition to Dialogic’s
telecommunications product line, MRCP can be used to control speech
synthesizers and recognizers that provide speech recognition, and to
stream audio from a common location to a user. There are several
benefits for adopting MRCP for media requirements:

• MRCP provides a mechanism to provide the same audio to both
phone and web customer interfaces

• MRCP does not lock a solution into one vendor

• During the development effort, Dialogic worked with several major
speech vendors who are moving to an MRCP-only interface for their
text-to-speech and speech recognition products

This application note focuses on the work Dialogic has done to establish
a starting point for integrating MRCP version 1.0 into applications
based on Dialogic® telecommunications products. This application note
refers to the following software:

• MRCP Client Library

• MRCP Client Verification application

• A sample integration application using the MRCP client library

Implementing a Media Resource Control Protocol (MRCP) Client Application with Application Note
Dialogic® Telecommunications Products

1

Table of Contents
Introduction... 2

Architecture .. 2

MRCP Client Library .. 2

MrcpClient Class .. 3

MrcpRecognize Class ... 3

MrcpRtpHandler Class ... 4

RtspPacket Class ... 4

MrcpUtils Class .. 4

MRCP Client Library Usage Overview... 4

Getting Started ... 4

Using Automatic Speech Recognition .. 4

InitializeMrcpSession.. 5

MrcpDefineGrammar.. 5

MrcpRecognizeSpeech... 6

TearDownMrcpSession ... 7

Using Text-to-Speech and File Streaming... 8

InitializeMrcpSession.. 9

MrcpSpeak .. 9

TearDownMrcpSession .. 11

Summary.. 12

Acronyms ... 12

For More Information.. 12

2

Introduction

The Media Resource Control Protocol (MRCP)
represents a paradigm shift for telephony application
developers using speech technologies. Instead of using
vendor-specific commands to generate text-to-speech
(TTS) or perform automatic speech recognition (ASR),
MRCP commands are sent from the client to the server
application. Additionally, instead of loading pre-recorded
audio files locally, commands are sent to an MRCP server
containing a URL of the file to be played to the caller.
These commands generate an audio stream sent to the
client application which should then direct it to the caller.
This application note covers the mechanics of directing
the audio to a caller via Dialogic® telecommunications
components from Dialogic. In summary, MRCP presents
a new application layer protocol using existing network
protocols to control a user’s audio experience.

When this application note was written, MRCP version
1.0 was supported by a majority of speech services
vendors providing MRCP support. Version 1.0 uses the
Real Time Streaming Protocol (RTSP) to establish
connections from an MRCP client application to an
MRCP server. All MRCP commands are then tunneled
via RTSP Announce messages between the MRCP client
and server. Version 2.0 of MRCP will replace the use of
RTSP for command and control with the session
initiation protocol (SIP). Although Dialogic’s MRCP
client library was designed to be easily extensible to
support MRCP version 2.0, Dialogic has developed a
separate MRCP version 2.0 reference library. Refer to the
“Architecture” section for additional information.

MRCP commands between the client and the server are
used to establish (bi-directional) audio paths between the
client and server using the Real time Transport Protocol
(RTP). RTP packets sent from the client application to
the MRCP server contain the caller’s speech, commonly
referred to as utterances, sent for recognition. Conversely,
RTP packets sent from the server to the client contain
either TTS (speech synthesis) or streamed audio retrieved
from a web server. A majority of the speech vendors
require this RTP traffic to be encoded using the G.711
coder to ensure quality audio for recognition and delivery
to the caller. Dialogic’s MRCP client library contains an
RTP broker to ensure that MRCP is possible across
Dialogic’s telecommunications product line regardless of
the components’ RTP capabilities. Refer to the
“Architecture” section for additional information.

Architecture

MRCP supports a multitiered client server architecture.
In a typical MRCP implementation, multiple clients
establish sessions with one or more MRCP servers that
can be directed to stream audio, located on multiple web
servers, to the clients. It is possible to use one MRCP
server for recognition and a separate server for TTS or
streaming file play. Implementers may choose MRCP
servers from multiple vendors based on a vendor’s
strength or ability to support a particular language such as
French or Spanish.

Figure 1 illustrates a network topology for an MRCP
client server implementation. Due to the time-sensitive
nature of MRCP traffic:

• MRCP servers are to be deployed on the same
network segment as the MRCP clients

• MRCP servers and clients are deployed on the same
network segment as the web server containing audio
content to be streamed

• Bandwidth on the network segment supporting
MRCP are managed to give priority to MRCP
commands and RTP traffic

In an MRCP implementation based on Dialogic’s
telecommunications products, the MRCP clients would
contain the products used to communicate with the
caller. Dialogic’s MRCP client library, available as an
accompanying download to this document, provides an
RTP broker that allows products without RTP support to
be used in an MRCP-based solution.

MRCP Client Library

Dialogic’s MRCP client library is a simple, lightweight
class library written in C++. This library supports the
functionality required for developing an MRCP-based
application. Functionalities like MRCP state machines,
state transitions, and memory management must be pro-
vided in the client application developed using the library.

The classes defined within the MRCP client library
include:

• MrcpClient class

• MrcpRecognize class

• MrcpRtpHandler class

• RtspPacket class

• MrcpUtils class

Application Note Implementing a Media Resource Control Protocol (MRCP) Client Application with
Dialogic® Telecommunications Products

MRCP Servers

MRCP Clients

Web Servers

Class hierarchy within the class library is flat, designed to

be easily understood and extended, adding complexity or

features as desired. Detailed information on each class

follows.

MrcpClient Class

This is the main class that must be instantiated by all

applications using the MRCP client functionality

provided within the application. A single instantiation of

the MrcpClient class will support one recognizer and one

synthesizer session. The recognizer functionality supports

speech recognition on the MRCP server, while the

synthesizer session supports TTS and streaming file play.

Session identifiers returned by the MRCP server when a

session is initiated are maintained within the library, elim-

inating the need for the client application to track this

value. The library also maintains sequence identifiers

(increments occur as needed) and has access to pending

request sequence numbers (available as needed).

Additional information can be found in the “MRCP

Client Library Usage Overview” section, as well as the

Media Resource Control Protocol (MRCP) Client Library
User’s Guide document.

MrcpRecognize Class

This class must be instantiated by the client application

wishing to use the speech recognition method within the

MrcpClient class. The MrcpRecognize class contains all

Figure 1. MRCP Multitiered Client Server Implementation

3

Implementing a Media Resource Control Protocol (MRCP) Client Application with Application Note
Dialogic® Telecommunications Products

4

accessor methods necessary to set the parameters used by
the MRCP server to perform speech recognition. Each
parameter within the class has a default value that
provided a good level of recognition during the
development and testing of the MRCP client library.

Construction and destruction of this class are the
responsibility of the client application using the library.
Additional information is provided within the “MRCP
Client Library Usage Overview” section of this document.

MrcpRtpHandler Class

This class is instantiated by the MrcpClient class when a
recognizer or synthesizer session with the MRCP server
begins providing RTP broker services. This class strips the
RTP headers from packets sent from the MRCP server
and adds RTP headers to packets sent from the MRCP
client. Use of this class helps support a wide range of
Dialogic’s communications products in an MRCP-based
solution. Any of Dialogic’s communications products that
support dx_playiottdata and ec_stream can use this
library to develop an MRCP client application.

Although construction and destruction of this class are
handled within the MrcpClient class, the application
using the library must provide Standard Template Library
(STL) container class pointers of type STL string on
speak and recognize methods in the MrcpClient class.
Additionally, methods contained within the MrcpClient
class provide a mechanism to shut down the RTP streams
and may be needed based on the design of the client
application. Additional information can be found in the
“MRCP Client Library Usage Overview” section of this
document.

RtspPacket Class

This class provides an abstract implementation and is
responsible for adding RTSP headers to all MRCP com-
mands sent to the MRCP server. The MRCP client
library uses the version parameter in the MrcpClient class
constructor to instantiate the protocol class matching the
version of MRCP in use. Dialogic has developed an
MRCP version 2.0 reference library. See the “For More
Information” section for the related application notes.

MrcpUtils Class

This class is never instantiated; rather, its methods are
called directly by classes contained within the MRCP
client library. The methods included within the class pro-

vide network socket functionality, parsing functions, and
data conversion methods.

MRCP Client Library Usage Overview

This section provides information regarding the use of the
MRCP client library as learned during the development
of the MRCP client library and related documents. Refer
to the Media Resource Control Protocol (MRCP) Client
Library User’s Guide and the MRCP Client Library source
code for additional information on library use. The sam-
ple application available for download with this docu-
ment (see the “For More Information” section) contains a
basic MRCP client implementation example, and code
snippets from it will be presented in the following sec-
tions.

Getting Started

The first step in using the MRCP client library is
instantiating the MrcpClient class. Generally, an MRCP
client application establishes two sessions with the MRCP
server during the course of a call. One session is used for
recognition; the other is used for speech synthesis or
streaming file play.

The InitializeMrcpSession method in the MrcpClient
class is used to establish both the synthesizer and
recognizer sessions with an MRCP server. This method is
called once for each established session. Generally, the
recognizer and synthesizer sessions are torn down as soon
as their task has completed or has been interrupted. The
TearDownMrcpSession method in the MrcpClient class
provides the means to tear down the MRCP session to
the server.

Using Automatic Speech Recognition

Generally, MRCP client applications provide automatic
speech recognition (ASR) and have a caller’s speech or
utterances trigger barge-in processing. In order to support
ASR in a barge-in mode, the recognizer session must be
established with the MRCP server in advance of any
audio being played that supports barge-in. MRCP client
library methods must be called in this order to perform
recognition:

• InitializeMrcpSession

• MrcpDefineGrammar

• MrcpRecognizeSpeech

• TearDownMrcpSession

Application Note Implementing a Media Resource Control Protocol (MRCP) Client Application with
Dialogic® Telecommunications Products

5

Implementing a Media Resource Control Protocol (MRCP) Client Application with Application Note
Dialogic® Telecommunications Products

All code samples shown are from the reference application that is available for download with this application note.

InitializeMrcpSession
This method initializes the MRCP session with the MRCP server for a recognizer session.

string mrcpClient = m_ipParms.mrcpIpClient;

//this is the client address of the Dialogic

comms server

string mrcpPort = m_ipParms.mrcpPort;

nRet = m_pMrcpClient->InitializeMrcpSession(

“recognizer”,mrcpClient,mrcpPort);

if (200 != nRet)

{

printf(“<———-MRCP initialization ERROR = %d\n”,nRet);

return nRet;

}

When the recognizer session is established, the response message sent from the MRCP server identifies the MRCP server

sockets to which the collected audio must be streamed for recognition. The MRCP client library parses the MRCP server

response for the RTP port and stores it for use throughout the session.

MrcpDefineGrammar
This method identifies the grammar to be loaded from a web server and compiled, as well as the universal resource

identifier (URI) that identifies that grammar for use.

string sContType = “ text/uri-list”;

string sContId = “ com.Dialogic.mrcp.gram-1”;

string sGrammar = “http://192.168.100.124/location.grxml”;

nRet = m_pMrcpClient->MrcpDefineGrammar(sContType, sContId, sGrammar);

if (200 != nRet)

{

printf(“<—————MRCP define grammar ERROR = %d\n”,nRet);

return nRet;

}

In the sample shown, sContType identifies the format of the grammar file stored on the server. A value of “text/uri-list”

indicates that the format of the grammar is extensible markup language (XML)-based, either a grammar XML (GRXML)

or other XML format file.

The value contained in sContId is the URI that links the compiled grammar to the recognition procedure when called.

If specified, the URI is stored and used in the MrcpRecognizeSpeech method.

Finally, sGrammar contains the http address of the grammar file to load and compile.

Grammar can also be dynamically defined by passing the grammar definition to the MRCP server as a parameter in the

MrcpRecognizeSpeech method. This method of defining grammar is not recommended for large grammars due to the

delay it may add to the recognition process.

http://192.168.100.124/location.grxml%E2%80%9D

6

Application Note Implementing a Media Resource Control Protocol (MRCP) Client Application with
Dialogic® Telecommunications Products

MrcpRecognizeSpeech
This method sets up the parameters for a recognition session with the MRCP server. The setup parameters are contained
within the MrcpRecognize class instantiated in the following sample. If a call to the MrcpDefineGrammar method has
been made and a URI specified, that URI will be used in the recognition process. The default value is
com.Dialogic.mrcp.gram-1.

typedef std::list<std::string> RecognizeBuffers;

MrcpRecognize *mrcpRec = new MrcpRecognize();

nRet = m_pMrcpClient->MrcpRecognizeSpeech(*mrcpRec, &m_recognizeBuffs);

if (200 != nRet)

{

printf(“<———-MRCP recognize ERROR = %d\n”,nRet);

return nRet;

}

nRet = m_pMrcpClient->MrcpStartRecognizeTimer();

if (200 != nRet)

{

printf(“<————MRCP start recognize timer error = %d\n”,nRet);

return nRet;

}

The MrcpStartRecognizeTimer method must be called as soon as the MRCP client application wants to activate the
recognition engine on the MRCP server.

Although all MRCP commands are asynchronous, most complete in a near synchronous time frame. One exception is the
MrcpRecognizeSpeech command. MRCP ASR does not begin to process received audio until the MRCP recognition start
timers command (supported with the MrcpStartRecognizeTimer method) is given. Once recognition is underway, the
MRCP server will return a “proceeding” message followed by a “recognition-complete” message. An STL list of strings
container, constructed by the client application, is used to send received audio to the MRCP client library for processing to
send to the MRCP server. Completion events are sent from the MRCP server. The class library handles the events and
provides a method to access these events.

The Dialogic® application programming interface (API), ec_stream, is used to get the caller’s utterances. For each buffer
generated, the MRCP client application should use the GetListLock method to lock the STL list of strings container, add
the buffer to the list, and release the lock using the UnlockList method.

m_xpbRec.wFileFormat = FILE_FORMAT_VOX;

m_xpbRec.wDataFormat = DATA_FORMAT_MULAW;

m_xpbRec.nSamplesPerSec = DRT_8KHZ;

m_xpbRec.wBitsPerSample = 8;

if (ec_stream(m_handle, 0, &m_xpbRec, &CVoiceDevice::csp_write,

EV_ASYNC)==-1)

{

printf(“ec_stream(%s) error:%s\n”,

m_name, ATDV_ERRMSGP(m_handle));

return -1;

}

7

Implementing a Media Resource Control Protocol (MRCP) Client Application with Application Note
Dialogic® Telecommunications Products

Sleep(5000);

if (ec_stopch(m_handle, FULLDUPLEX, EV_ASYNC) == -1)

{

printf(“ec_stopch)%s) error:%s\n”, m_name,

ATDV_ERRMSGP(m_handle));

return -1;

}

Although the sample MRCP client application available for download with this application note is synchronous, the
following code snippet from that application could be run in a thread to maintain an MRCP state machine.

while (true)

{

res = m_pMrcpClient->GetRequestStatus(“recognizer”,nRet,false);

if (res.find(“RECOGNITION-COMPLETE”)!= string::npos)

{

m_pMrcpClient->ShutdownAsrLoop(true);

break;

}

}

GetRequestStatus will return each time a status message for the recognition request is received. The ShutdownAsrLoop
method must be called to close the MRCP client library thread that’s running an infinite loop to package caller speech for
the MRCP server.

Although not used in the accompanying sample application, any events received by the event processor such as dual tone
multifunction (DTMF; touchtone) or other forms of barge-in may require the client application to send a recognize stop
command (MrcpRecognizeStop) to the MRCP server.

The GetRecognitionValue method can be called to parse the recognition-complete message received from the MRCP
server. It returns the value recognized from the caller’s utterances based on the grammar defined.

TearDownMrcpSession
This method should be called as soon as the requested audio function has completed or has been interrupted. Prompt
calling of teardown will

• Reduce the risk of creating “orphaned” sessions on the MRCP server

• Reduce the license and server resource usage

nRet = m_pMrcpClient->TearDownMrcpSession(“recognizer”);

if (200 != nRet)

{

printf (“teardown recognizer ERROR = %d\n”,nRet);

return nRet;

}

Figure 2 shows the state transitions that are possible within an MRCP-based solution for ASR processing.

8

Generally, an MRCP state machine is implemented

within the MRCP client application.

Using Text-to-Speech and File Streaming

The MRCP architecture defines how all pre-recorded

audio played during the course of a call can be streamed

from a web server to the MRCP client application.

Hosting the audio files used in an MRCP application on

a central web server provides the capability for the same

audio to be played to both callers and web users. That is,

the same audio could be played to users accessing a

company’s web site as is played to callers calling the

company.

TTS support is similar to the streaming play of a file.
Audio is generated on the MRCP server and is streamed
to the MRCP client application. A common use of TTS
is to speak a customer’s input back to them for
confirmation, or to play dynamically generated informa-
tion retrieved from a database. MRCP client library
methods must be called in this order to provide either
streaming file play or TTS:

• InitializeMrcpSession

• MrcpSpeak

• TearDownMrcpSession

All code samples shown are from the reference application
that is available for download with this application note
(see the “For More Information” section).

Idle
State

Recognizing
State

Recognized
State

Recognize

Stop

Stop

Recognition-Complete

Recognition

Define Grammar

Stop

Define Grammar

Start-of-Speech

Define Grammar
Start-Recognition-Timers

Get-Result

Figure 2. MRCP Recognition State Transitions

Application Note Implementing a Media Resource Control Protocol (MRCP) Client Application with
Dialogic® Telecommunications Products

9

InitializeMrcpSession

This method initializes the MRCP session with the MRCP server for a synthesizer session.

string mrcpClient = m_ipParms.mrcpIpClient;

//this is the client address of the Dialogic comms server

string mrcpPort = m_ipParms.mrcpPort;

nRet = m_pMrcpClient->InitializeMrcpSession(“synthesizer”,mrcpClient,mrcpPort);

if (200 != nRet)

{

printf(“<———-MRCP initialization ERROR = %d\n”,nRet);

return nRet;

}

The code snippet above is very similar to the use of the InitializeMrcpSession defined within the “Using Automatic Speech
Recognition” section of this document. One difference from an MRCP client perspective is that the MRCP command pro-
vides the MRCP server with the socket number that it will listen to in order to receive the audio.

MrcpSpeak
This method both initiates a streaming file play from an MRCP server and triggers a TTS audio stream from the MRCP server.

In the following code, the TTS capabilities of the MRCP server are invoked to speak the phrase, “MRCP text to speech
sample”.

string s_ttsAudioSample = “MRCP Text to speech sample”;

nRet = m_pMrcpClient->MrcpSpeak(s_ttsAudioSample, &m_audioBuffs);

if (MIN_MRCP_SEQUENCE > nRet)

{

printf(“<——————MRCP speak ERROR %d\n”,nRet);

return nRet;

}

The following code provides an example of using the MrcpSpeak method to trigger a streaming file play.

string s_audioFile = “<audio

src=\”http://192.168.100.124/this_is_an_Example.ulaw\”

fetchtimeout=\”7s\” fetchint=\”prefetch\” />”;

nRet = m_pMrcpClient->MrcpSpeak(s_AudioContent, &m_audioBuffs);

if (MIN_MRCP_SEQUENCE > nRet)

{

printf(“<——————MRCP speak ERROR %d\n”,nRet);

return nRet;

}

Note that although the two code examples use the same method, the audio parameter for a streaming file play is the URL
of the file to be played.

Although all MRCP commands are asynchronous, most complete in a near synchronous time frame. One exception is the
MrcpSpeak command. Once the speak request has been received and processed, the MRCP server will return a
“proceeding” message followed by a “speak-complete” message. An STL list of strings container, constructed by the client
application, is used to collect audio received from the MRCP server. The MRCP client library removes the RTP headers
before adding the audio buffer to the STL container.

Implementing a Media Resource Control Protocol (MRCP) Client Application with Application Note
Dialogic® Telecommunications Products

http://192.168.100.124/this_is_an_Example.ulaw%5C%E2%80%9D

10

Dialogic’s voice APIs, dx_setuio and dx_playiottdata, are used to present the MRCP-supplied audio to the caller. For each
buffer retrieved from the STL list, the MRCP client application should use the GetListLock method to lock the STL list of
strings container, extract and remove the buffer from the list, and release the lock using the UnlockList method.
GetListLock and UnlockList make use of mutexes to prevent contention when working with the STL containers.

// set the UIO callbacks

m_uioblk.u_read = CVoiceDevice::uio_read;

m_uioblk.u_write = CVoiceDevice::uio_write;

m_uioblk.u_seek = CVoiceDevice::uio_seek;

if (dx_setuio(m_uioblk) == -1)

{

printf(“error setting uio for streaming \n”);

}

.

.

if (dx_playiottdata(m_handle, &m_iott, 0, &m_xpb, EV_ASYNC)==-1)

{

printf(“dx_playiottdata error:%s\n”, ATDV_ERRMSGP(m_handle));

return -1;

}

Although the sample MRCP client application available for download with this application note is synchronous, the
following code snippet from that application could be run in a thread to maintain an MRCP state machine.

while (true)

{

res = m_pMrcpClient->GetRequestStatus(“synthesizer”,nRet,false);

if (res.find(“SPEAK-COMPLETE”)!= string::npos)

{

m_pMrcpClient->ShutdownTtsLoop(true);

break;

}

}

GetRequestStatus will return each time a status message for the MrcpSpeak request is received. The ShutdownTtsLoop
method must be called to close the MRCP client library thread running in an infinite loop to receive audio from the
MRCP server.

Although not used in the accompanying sample application, any events received by the event processor, such as DTMF or
other forms of barge-in, may require the client application to send an MrcpSpeakStop or an MrcpSpeakBargeIn command
to the MRCP server.

In a more complete MRCP implementation, MrcpSpeakStop would be used in cases where the audio could be resumed
while MrcpSpeakBargeIn would be used to halt the audio stream.

Application Note Implementing a Media Resource Control Protocol (MRCP) Client Application with
Dialogic® Telecommunications Products

11

TearDownMrcpSession
This method should be called as soon as the requested audio function has completed or has been interrupted. Prompt
calling of teardown will

• Reduce the risk of creating “orphaned” sessions on the MRCP server

• Reduce the license and server resource usage

nRet = m_pMrcpClient->TearDownMrcpSession(“synthesizer”);

if (200 != nRet)

{

printf (“teardown recognizer ERROR = %d\n”,nRet);

return nRet;

}

Figure 3 shows the state transitions that are possible within an MRCP-based solution for TTS processing.

The implementation of a MRCP state machine within the MRCP client application is strongly recommended.

Implementing a Media Resource Control Protocol (MRCP) Client Application with Application Note
Dialogic® Telecommunications Products

Idle
State

Speaking
State

Paused
State

Speak

Stop

Stop

Control

Stop

Speak Complete

Barge-in-Occurred

Pause

Resume
Pause

Speak-Marker

Define Grammar

Speak

Control

Figure 3. TTS State Transition Diagram

12

Summary

MRCP is a rapidly growing standard that is gaining wide
support in the speech and telecommunications markets of
today. This application note provides an overview and a
starting point for developing MRCP client applications
utilizing Dialogic® communications products. Combining
the information in this application note with the
information contained in the Media Resource Control
Protocol (MRCP) Client Library User’s Guide helps define a
migration path to MRCP-based applications for legacy
telecommunications applications with Dialogic®

components.

Acronyms

API Application Programming Interface

ASR Automatic Speech Recognition

DTMF Dual Tone Multifunction

IETF Internet Engineering Task Force

GRXML Grammar XML

MRCP Media Resource Control Protocol

RTP Real-time Transport Protocol

RTSP Real Time Streaming Protocol

SIP Session Initiation Protocol

STL Standard Template Library

TTS Text-To-Speech

URI Universal Resource Identifier

URL Universal Resource Locator

XML eXtensible Markup Language

For More Information

Internet Engineering Task Force; Internet-Draft; draft-
shanmugham-mrcp-01 MRCP: Media Resource Control
Protocol

A Zip file containing the sample application for this
application note can be downloaded at
http://www.dialogic.com/goto/?10666

MRCP V1 Client Library User’s Guide —
http://www.dialogic.com/goto/?9603

A Zip file, MRCP V1 Client Library, containing the
source code for the MRCP V1 Client Library can be
downloaded at http://www.dialogic.com/goto/?10568

MRCP V2 Client Library User’s Guide —
http://www.dialogic.com/goto/?10285

A Zip file, MRCP V2 Client Library, containing the
source code for the MRCP V2 Client Library be
downloaded at http://sourceforge.net/projects/
openmrcpclient

Application Note Implementing a Media Resource Control Protocol (MRCP) Client Application with
Dialogic® Telecommunications Products

http://www.dialogic.com/goto/?10666
http://www.dialogic.com/goto/?9603
http://www.dialogic.com/goto/?10568
http://www.dialogic.com/goto/?10285
http://sourceforge.net/projects/openmrcpclient

www.dialogic.com

To learn more, visit our site on the World Wide Web at http://www.dialogic.com
Dialogic Corporation
9800 Cavendish Blvd., 5th floor
Montreal, Quebec
CANADA H4M 2V9

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF DIALOGIC CORPORATION OR ITS SUBSIDIARIES (“DIALOGIC”). NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Dialogic may make changes to specifications, product descriptions, and plans at any time, without notice.

Dialogic is a registered trademark of Dialogic. Dialogic’s trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted
by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic’s trademarks will be subject
to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners. Dialogic encourages all users of its products to
procure all necessary intellectual property licenses required to implement their concepts or applications, which licenses may vary from country to country.

Copyright © 2007 Dialogic Corporation All rights reserved. 09/07 9591-02

http://www.dialogic.com
http://www.dialogic.com

