
Application Note

Developing Call
Monitoring Applications
Using Dialogic® SS7
Signaling and Media
Products

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

Executive Summary

This application note provides information about developing a call
monitoring application using the Dialogic® SS7 signaling and media
products. Dialogic developed a sample application that provides both a
starting point and a reference for those who choose to develop an SS7-
based application that monitors SS7 links and records calls on the links.
Call recording can be triggered based on information related to the call.
Calls may be recorded to multiple files or streamed through the data net-
work for real-time monitoring.

The reference application and supporting applications’ source codes are
available for download with this application note.

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

1

Table of Contents
Introduction.. 2

Architecture.. 2

Simulating a Signaling Environment... 3

Stimulus Server... 4

Streaming Server... 4

Monitor Server... 4

Integrating SS7 Components with Media Components... 4

system.txt.. 5

config.txt.. 5

gcss7.cfg... 5

Mapping SS7 Channel Identification Codes to Network Devices....................... 5

Walkthrough of the Sample Reference Application.. 6

Overivew.. 6

Stimulus Server ... 6

Streaming Server... 6

Monitor Server... 6

SignalingMonitor Application Description... 6

Functionality by Class.. 6

Dialogic® Signaling API Usage.. 11

Dialogic® Media API Usage... 11

Appendix A. Signaling Configuration.. 12

Appendix B. Media Configuration.. 16

Acronyms... 18

For More Information.. 18

Materials List for Reference Application.. 19

Introduction

Signaling System 7 (SS7) is a collection of

telecommunications standard protocols used to provide

communications between various Public Switched

Telephone Network (PSTN) network elements. An

example of SS7 control messages are the signaling

messages exchanged to set up a telephone call.

Monitoring signaling messages used to control a call can

provide information such as the “called” and “calling”

party numbers, as well as details of a call’s duration.

Using this type of information, it is possible to develop a

“Lawful Intercept” type application, where the signaling

messages of a call are monitored and the audio (speech)

path is recorded for the call’s duration.

This document provides information that can be used

by those who choose to build a monitoring application

using Dialogic® signaling and media products. The

accompanying reference application is an example of

how the Dialogic® signaling and media product APIs

can be used to implement a monitoring application.

The architectures of both the development and

the production environments are presented, as is a

walkthrough of the accompanying monitoring software.

A Zip file containing the reference application (the

monitoring application) and the supporting software

source code (for the stimulus application and the

streaming application) are available for download (see the

For More Information section).

Architecture

The PSTN is comprised of multiple network elements
that perform functions such as communicating with
each other in order to traverse a call from a calling
party to a called party, and checking on the validity of
a subscriber. Some of these network elements can be
Class 5 central office switches, Class 4 tandem switches,
or databases containing subscriber information and
servers that provide additional call control, among
others. Each of these network elements use SS7 messages
to communicate with each other. Additionally, Signal
Transfer Points (STPs) act as routers for SS7 messages
to allow this communication. Bearer paths, made up of
T1/E1 spans, DS3 spans, or optical links, provide the
conduits for the voice traffic. These network elements use
SS7 messaging to facilitate call delivery over the PSTN,
so that the voice traffic can be effectively routed through
the PSTN. When a call is made in the PSTN network,
SS7 messages are generated and routed through the
network from the local switch the caller is using to the
switch to which the called party is connected.

The SS7 ISDN User Part (ISUP) protocol defines a
series of messages used to establish and terminate a call.
The Initial Address Message (IAM) is the first ISUP
message sent to establish a call (see Figure 1). The IAM
message contains the called number and, if provided,
the calling number.

Note: Providing the calling number is optional; a field in
the ISUP IAM message identifies if the value is present
or not.

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

2

Call Initiated

Call Hung Up

Destination PBX

Destination PBX

ISUP IAM Message

ISUP REL Message

Call Audio Path

Call Audio Path

ISUP ACM Message

ISUP RLC Message

Figure 1. ISUP Call Flow

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

Accessing ISUP IAM messages, while not interfering

with their delivery, is the first step for a monitoring

solution. Passive tap equipment is available that provides

the capability of accessing SS7 signaling messages

without interfering with their delivery in the network.

High impedance taps ensure signal integrity is not

impacted by the tap connection. Dialogic signaling

products can be used with both high impedance and

non-high impedance taps (see Figure 2).

Simulating a Signaling Environment

During the development phase of a monitoring
application, a simulated environment can be established,
eliminating the need for connection to the PSTN
signaling environment.

The simulated signaling environment consists of two
servers, a stimulus server and a monitor server, each
containing a Dialogic® Signaling Board and a Dialogic®
DM3 Media Board) (see Figure 3).

3

PSTN Cloud T1/E1 Trunk

PBXPBX

Monitor Server

Y Cable Splitter
or HiZ Line Tap

E1/T1 Tx
Audio Cable

E1/T1 Rx
Audio Cable

E1/T1
Trunk Tap

E1/T1
Trunk Tap

Dialogic®
Signaling Board

Dialogic® DM3
Media Board

Data Network

Stimulus Server

Monitor Server

Streaming Server /
Recording Store

Y Cable Splitter
or HiZ Line Tap

Rx CableTx Cable

LIU2 LIU3

Dialogic®
Signaling Board

Dialogic® DM3
Media Board

Dialogic®
Signaling Board

Dialogic® DM3
Media Board

Figure 2. Monitoring Application in Production

Figure 3. Simulated Monitoring Environment

Stimulus Server

The stimulus server application runs in loopback mode,
sending and receiving calls between signaling ports using
an interconnected signaling network cable. The cable
used in loopback mode is connected to a Y-splitter, which
provides the same functionality as a network tap device
by tapping into the transmit and receive paths of a call.
A network tap could be substituted for the Y-splitter.
Two additional cables are connected to the Y-splitter, one
completing the loopback circuit to a second signaling
port Line Interface Unit (LIU) on the stimulus server’s
Signaling Board. The second cable is a Y-splitter that
splits the transmit and receive channels for the call to
two LIU ports on the monitoring server. A Dialogic®
SS7HDP SS7 Interface Board, on the monitor server,
can be configured to provide a HiZ termination for the
transmit and receive monitor cables. HiZ termination
protects the signaling channels from a potential loss of
signals due to the E1/T1 tap.

Streaming Server

The streaming server in Figure 2 accepts network socket
connections that are established by the monitor server.
Real-time audio for active calls can be streamed to the
server using the network socket. This provides the ability
to monitor active calls audio in real time. Refer to the
For More Information section (specifically the Hardware
section) for a list of the equipment used.

Monitor Server

The monitor server establishes network socket
connections to the streaming server. In the sample
provided, the monitor server records the audio received
to a file local to the server. The audio received could be
monitored in real time if the monitor server application
was modified to support playing of the stream.

Integrating SS7 Components with Media
Components

Dialogic® signaling and media components can be
combined in a server to provide a call monitoring
solution. Interconnecting media and signaling
components via the CT Bus allows an application to
utilize resources of both SS7 and media components.

A single application can use a Dialogic® signaling API
in conjunction with Dialogic® media APIs to process
signaling messages and trigger call audio processing. The

Dialogic signaling API is documented in the Software
Environment Programmer’s Manual and the Dialogic
media APIs (Dialogic® Global Call API and Dialogic®
R4 API) used are documented in the Dialogic® Voice
API Programming Guide (see the For More Information
section). Refer to the Dialogic Signaling API Usage and
Dialogic Media API Usage sections in this application
note for information concerning the specific APIs. The
CT Bus connection provides the flexibility of terminating
the PSTN line tap cables on either the Signaling Board
or DM3 Media Board.

Note: CT Bus is an auxiliary telecom bus defined by the
ECTF in specifications H.100 and H.110.

Both the media and signaling components are recognized
and can be controlled via the Dialogic® Configuration
Manager (DCM) tool running on the Host computer.
Documentation on the DCM utility can be found in
the Architecture PCI Products on Windows Configuration
Guide (see the For More Information section). The dlstart
and dlstop utilities provide DCM-like functionality on
Linux operating systems. The DCM has some differences
in the level of control that it provides to the media versus
signaling components.

While the DCM (use dlstart and dlstop on Linux)
downloads and starts the media components, it requires
the signaling component to be started separately via
the gctload utility. The DCM start function can
be configured to start and activate signaling links
via settings in the gcss7.cfg file (see Global Call SS7
Technology Guide referenced in the For More Information
section). Link activation is required on the server running
the stimulus application accompanying this application
note. Activating links is not required for signaling
applications whose function is to merely monitor links.
This is because the monitoring application is not actively
participating in the signaling process. Similarly, stopping
the components via DCM stops the media components
and closes the signaling links. However, the Dialogic
gctload utility is not affected by the DCM stop function.
Additionally, exiting the gctload utility and attempting to
restart it while DCM is in a running state will cause the
gctload utility to fail.

The configuration needed to define the operation and
functionality of the Dialogic® signaling products with
Dialogic® media products is contained in three files:
config.txt, system.txt, and gcss7.cfg. Information for

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

4

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

configuring the config.txt and system.txt files is found

in the SS7HD Programmer’s Manual and information

covering the configuration in the gcss7.cfg file is located

in the Global Call SS7 Technology Guide (see the For
More Information section).

system.txt

The system.txt file contains information concerning

which signaling protocol modules are loaded and whether

they run on the Signaling Board or on the server hosting

the Signaling Board. The SS7HD Programmer’s Manual
contains additional information related to the system.txt

configuration settings. Appendix A has a listing of the

actual system.txt files used by the accompanying reference

application for both the monitor and stimulus servers.

config.txt

The config.txt file is used to set up the configuration of

the T1/E1 interfaces and the operating parameters for

the Signaling Board(s) used. The SS7HD Programmer’s
Manual contains additional information related to the

config.txt configuration settings. Appendix A contains

a listing of the actual config.txt files used by the

accompanying reference application for both the monitor

and stimulus servers.

gcss7.cfg

Dialogic® Global Call SS7 implements the Dialogic®

Global Call Software architecture, allowing the Global

Call APIs to be used with the Dialogic signaling

products. The gcss7.cfg file must be configured for the

DCM to recognize and control the Signaling Board

installed.

Although additional modifications are needed in gcss7.cfg,

modifying the following line:

System.Configuration = “None”

to

System.Configuration = “Card”

is the only modification required for DCM to identify

that the Signaling Board is installed in the server.

Additional modifications are related to identifying

directories containing signaling configuration files,

defining logging to be used, and identifying the ISUP

circuit groups controlled by the Signaling Board.

The actual gcss7.cfg files used on both the monitor and
stimulus servers in the reference application are included
in Appendix B. The files in Appendix B only contain the
uncommented lines from the actual configuration files.
Actual configuration files are included in the software
distribution that can be downloaded (see the For More
Information section).

Mapping SS7 Channel Identification Codes to
Network Devices

SS7 signaling messages use a Channel Identification
Code (CIC) to identify which trunk channel contains
the audio for a particular call. The Dialogic media API
uses network identifiers and CT Bus time slots to take
action on a call. In the reference application instance,
that action is to record the call audio using the network
transmit time slots of the called and calling party. The
application developer needs to provide a mapping of
the Dialogic® network device to the CIC information
received for a call. The following describes the steps to
establish this mapping:

1. �Install and configure both media and signaling devices
so they appear in the DCM utility and can be stopped
and started using this utility.

2. �Run an application like the “gc_basic_call_model”
demo. This generates an ss7.log file in the directory
from which the application was run.

3. �Use the ss7trace utility, found in the dialogic\bin
directory, to translate the ss7.log into a readable format.

4. �The converted ss7.log file identifies the LIUs configured
in the config.txt file and identifies both the network
name and CT Bus time slot for each of the CICs
resident on the configured trunks.

Notes

• Signaling Board LIU numbering starts from LIU 0.

• �The translated ss7.log file does not determine
whether or not the attached trunk is E1- or
T1-based. It contains the network device and CT
Bus time slot information for 32 devices per the
configured LIU.

• �Although building a map of CIC to CT Bus time
slot is generally straightforward, building the same
map when connected to multiple point codes
supplied by multiple PSTN network providers may
make the mapping task more difficult.

5

Walkthrough of the Sample Reference
Application

This section is intended to provide a walkthrough of
the reference application and supporting applications
that accompany this document. These applications
were developed using Microsoft® Visual Studio® 2003;
however, no Microsoft® specific operating system or
development environment specific features were used.

The SignalingMonitor application showcases both the
Dialogic® signaling and media APIs used for a call
monitoring application. This application was developed
in C++ with a basic object-oriented design. The design
complexity was reduced in order to provide a clear
example of the API commands needed.

The following sections contain information to assist
developers in gaining a complete understanding of the
code base provided.

Overview

The code available for download contains the
components for running the simulated call monitoring
environment shown in Figure 2. An application runs on
each of the servers (stimulus server, streaming server, and
monitor server), which are shown in Figure 3.

Stimulus Server

The first server and application is the stimulus server.
This server runs a modified copy of the Dialogic® Global
Call Software demo, “gc_basic_call_model”. The demo
has been modified to simulate a conversation between the
called and calling parties on a call. Modifications include
the called and calling party instances opening and playing
a pre-recorded audio file for a limited duration once the
called party answers. Identification of the called and
calling parties is defined in the gc_basic_call_model.cfg
file.

Note that signaling network devices are identified as
“dkBxKy”, where x = 1-4 and y = 1-31. There are 31
possible “y” network device values to cover the situation
where E1 trunks are attached to the Signaling Board.
DCM and Global Call Software do not attempt
to determine whether a T1 or E1 cable is attached.
Additionally, DCM and Global Call Software do
not identify the trunk channels used for signaling or

synchronization (for E1, channel 16 and channel 0,
respectively; and for T1, channel 24 and channel 0,
respectively).

Streaming Server

The second server and application is the streaming
server. This server runs an application that listens for and
accepts socket connect requests received from the data
network. In the reference application, the monitoring
server application can be configured to open a network
connection to the streaming server for the purpose of
streaming call audio in real time to this server. The
streaming server application records the audio received in
a file as verification of the streaming functionality. This
application provides the ability for users to listen in on
actual calls as they are occurring.

Monitor Server

The third sever is the monitor server that is used to
run the SignalingMonitor application. This application
utilizes the signaling API and the media API to provide
the call monitoring function. Signaling messages are
parsed to check for ISUP protocol messages. ISUP IAM
messages are parsed to collect called party information
and caller information, if available. Receipt of an
IAM message also triggers the start of local recording
and, if configured, network streaming of the call’s
audio. Call audio is streamed to the network address
(StreamingIpAddress) and port (StreamingIpPort)
identified in the application’s configuration file.

Call recording and network streaming for a call are
stopped when an ISUP Release Complete Message
(RLC) is received for any active call being monitored.
Although not implemented in the sample code provided,
the streaming server software could be modified by
adding a web-based interface that allows the live call
audio to be monitored anywhere on the web.

SignalingMonitor Application Description

Functionality by Class

The following sections provide a breakdown of the
functionality provided by class in the SignalingMonitor
application (see Figure 4). Figure 5 shows the state
transitions that the monitoring software goes through
when it runs.

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

6

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

MonitorMain
The MonitorMain class is the entry point for the

SignalingMonitor application. The application is console-

based and is stopped by either a user entering control-c

in the console window or terminating the application via

the Task Manager.

The “interrupt_handler” catches these interrupts and

gracefully shuts down the application by releasing

Dialogic® resources and deleting objects. A graceful

shutdown includes closing all open Dialogic® signaling

and media devices, deleting all created objects, and

closing all open threads.

The SignalingMonitor application uses a configuration

file to control its operation. The application will operate

with default parameters if the configuration file is

missing or not completely configured. MonitorMain

calls the accessor for the configuration object, then calls

the initialization module to set operating parameters.

The application log and the voice device objects are then

instantiated and initialized.

7

MonitorMain

-Entry Point

+Main Loop()
+Exit Hndlr()

CConfigurationProc

+Load Cfg()
+Cfg Accessors()

CMediaRecorder

+getVoiceDev()
+Record()

CSignaling

+ProcessSignal Msgs()

CVoiceDevices

-PoolMgr

Utilities

+singleton Ptrs

+Sockets Rtns()

CAppLogger

+WriteToLog()

Main Loop

/ Start

/ Stop Signal Processing

/ Start

/ Stop Process Call Audio

/ Call Signal

/ Stop

/ Get Dev / Call Audio

/ Interrupt

/ No Dev

/ Rtn Dev

Media Recorder

Record or
Stream Audio

Reserve Voice
Device

Log Error

Figure 4. Classes

Figure 5. State Transitions

Finally, the signaling object is instantiated and its
method is called to process signaling messages (it enters
a loop waiting for an interrupt). This application was
developed as a proof of concept for a low volume signaling
environment. Developers may need to add additional
signaling objects in order to process higher volume
signaling environments.

CConfigurationProc
The CConfigurationProc class is the class responsible for
reading, parsing, and processing the configuration for the
SignalingMonitor application. This class is a singleton
(an object designed to have a single instance with a means
for global access), and, as a singleton, other classes can
globally access the class to get configuration information,
reducing parameters passed between classes. The
CConfigurationProc opens and reads parameters stored in
a configuration file named MonitoringSampleApp.cfg.

All of the information contained in the configuration file
is read at once. The parameter values are parsed from the
comments, spaces, and parameter names and stored as
member variables. Public accessors provide the means for
all classes to access parameter values.

Configuration parameters and the functions they provide
are listed below:

LoggingEnabled — Turns on and off logging for the
application (value is true or false)

LogFileName — Identifies the name of the log file used
to log results of the operation

NumberOfRecordingDevices — The number of
recording devices to be used to record conversations

StreamingEnabled — Turns on or off streaming of call
audio through the network (value is true or false)

StreamingIpAddress — The IP address, in dotted
decimal form, to stream call audio to. Only used if
StreamingEnabled is true.

StreamingIpPort — The IP port at the
StreamingIpAddress to stream call audio to. Only used if
StreamingEnabled is true.

RecordSecondFileEnabled — Causes the call audio to be
recorded to an additional file (value is true or false)

SecondFilePrefix — Identifies the prefix to be appended
to the filename containing the additional call audio

recording. Only used if “RecordSecondFIleEnabled” is
set to true.

Parameters can be added to the configuration file with
modifications to the “setParametersFromFile” method.
Developers would need to add parameter names to
the “CommonParameters” array, set an enum value
for the parameter, and add an accessor in order to add
parameters to the configuration file.

CSignaling
The CSignaling class is the class responsible for receiving
signaling messages from the queue and processing
those messages. As part of the signaling environment
configuration, system.txt was modified to include the entry
0x3d, which represents the SignalingMonitor application
(see Figure 6). This 0x3d value is used in the “GCT_
receive” function which, combined with the system.txt
entry, deliver all signaling messages to the application.

*

* �Optional modules running on the host:

*

LOCAL 0x3d * Monitor app

Figure 6. system.txt Entry for Monitoring Application

BuildTimSlotMap is the method used to establish the
mapping between the Dialogic version of CT Bus time
slots and CICs. This mapping is stored in a Standard
Template Library Map, providing a fast lookup for
mapping time slots to CICs.

Because the SignalingMonitor application is monitoring
the signaling links for messages and is not an active
participant in keeping the signaling link synchronized,
the Dialogic® signaling software is run in monitor mode.
As a result, the application is responsible for parsing
signaling messages received in order to access various
parameters contained within the message.

The “ProcessSignalMessages” method performs the
parsing of the messages received. There are differences
in the location of the signaling message content needed
between the ITU and ANSI formats (ITU is the
European standard for SS7 typically used outside the
US/Canada, etc., and ANSI is the US standard for SS7).
Both ITU and ANSI signaling messages are parsed for
content within this class. A pre-compiler value of ITU

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

8

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

causes signaling messages to be parsed using the ITU

format. Not having the pre-compiler value set triggers the

application to parse the messages using the ANSI format.

For demonstration purposes, the ProcessSignalMessages

method is run in a separate thread of execution. As

messages arrive, they are pushed onto a standard template

library queue and a semaphore notification is sent out

to alert the parsing thread to process the message. The

parsing thread, ProcessSignalMessages, then pulls the

signaling message from the queue, parses it, and takes

action based on the message type. Additional message

parsing threads used to deal with higher message

volumes are defined in the constructor and cleaned up

in the destructor. The Boost C++ libraries (see the For

More Information section) are used for the thread and

semaphore capabilities provided in this class due to their

platform independence and their robust implementation.

The ProcessSignalMessages thread has a one-to-one

relationship with the “CMediaRecorder” class. This one-

to-one relationship can reduce the class complexity by

eliminating the need for state checking. Additional state

machines and “ProcessSignalThreads” may be needed in a

production environment containing multiple signaling links.

As discussed in the Architecture section, ISUP IAM

messages are the messages parsed to get the detail needed

by the SignalingMonitor application (see Figure 7).

They include vital information, such as the called party

information and a field identifying whether or not the

optional parameter calling party is available. If present,

the calling party information is parsed as well. The

“process Digits” method is used to extract both called

and calling party information from its Binary Coded

Decimal (BCD) format to ANSI number format.

9

SIO & Routing Label

CIC LSB

2 bits Spare CIC MSB

Msg Type

Connection Indicators

Fwd Call Indicators

Fwd Call Indicators

Calling Party Cat.

Offset 1st Mandatory

Offset 2nd Mandatory

Offset start opt. part

Length user service info

User Service Info #octects
= length user service

Length called party #

Called Party No

Optional Param Code

Optional Param Length

Optional Param

End Optional Param

ANSI IAM Message

SIO & Routing Label

CIC LSB

4 bits Spare CIC MSB

Msg Type

Connection Indicators

Fwd Call Indicators

Fwd Call Indicators

Calling Party Cat.

Transmission Medium

Offset 1st Mandatory

Offset start opt. part

Length called party #

Called Party No

Optional Param Code

Optional Param Length

Optional Param

End Optional Param

ITU IAM Message

Figure 7. ISUP IAM Message Formats

When an interrupt has been detected in the application,
the destructor for the “CSignaling” class sends a shutdown
metaphor to the thread it created. The destructor then
joins that thread such that the shutdown of the thread
completes before the destructor exits. Each added thread
to the application should be joined in the destructor so
that proper shutdown occurs.

CMediaRecorder
The “CMediaRecorder” class is responsible for performing
the media functions related to handling the call audio
for the monitored phone call. Functionality provided by
this class is dependant on the configuration defined. The
functions include recording to a primary and secondary
audio file, as well as streaming to a network address/port.

The “StartRecording” method is called by the CSignaling
class to begin recording and streaming audio for a
monitored call. “StopRecording” is called when the
ISUP Release Complete Message (RLC) is received for a
particular call. The “StopRecording” method closes all
open recording files and the streaming network socket, if
that is open for that particular call.

A single Dialogic® voice device is used to synchronize
and record both halves of a conversation to an 8 bit,
8 kHz VOX file. The “processCallAudio” method is a
custom Dialogic® output method defined in the
dx_setuio function. This method provides the recording
and the network streaming of call audio for those calls to
be monitored. Because the dx_setuio function requires
the definition of all custom I/O routines (read, write,
seek), the “CRecordRead” and the “CRecordSeek”
methods were added. These routines simply return the
size information passed in to them.

CVoiceDevices
The “CVoiceDevices” class is responsible for opening
the Dialogic® voice devices and for maintaining a pool

of voice devices for use by the “CMediaRecorder” class.

This object is a singleton object and is instantiated in

“MonitorMain” on startup. The “InitializeVoiceDevices”

method opens the number of Dialogic voice devices

defined in the configuration file. If this value is not set,

31 voice devices are opened.

As each voice device is opened, it is added to a standard

template library-based list of available devices. When

the “CMediaRecorder” class requests a voice device to

record a monitored call, the “GetVoiceDevice” method

pulls the voice device handle from the head of the

available list and adds the handle to a list of devices

in use. When monitoring of a call is complete, the

“ReturnVoiceDevice” method is called moving the voice

device from the in-use list to the available list.

Upon shutdown, the destructor walks through the list

of available devices, closing each device on the list. The

in-use list is then traversed, with the voice devices being

stopped before being closed.

CAppLogger

The “CAppLogger” is responsible for logging information

while the application is running. Log files are written to

the same directory in which the application resides and

are overwritten each time the application runs. This class

is also a singleton class such that a single logging object

exists for the entire application.

The name of the log file can be set via a parameter

in the configuration file. A default log file name of

“SignalMonitor.log” is used for logging if the configuration

file does not have the log file name parameter set. It is

also possible to disable logging via the configuration file

by setting the “LoggingEnabled” parameter to false. See

Figure 8 for a sample signal monitor log.

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

10

16:23:58.281 SUCCESS Opened voice devicedxxxB1C1 device handle =1

16:23:58.703 Monitor Signaling App Started

16:24:07.546 service indicator = 5

16:24:07.562 Message Type = 18

16:24:07.578 sio 5 ssf 8 dpc 1 opc 3 cic 1

16:24:07.593 service indicator = 5

16:24:07.609 Message Type = 19

16:24:07.625 sio 5 ssf 8 dpc 3 opc 1 cic 1

Figure 8. Sample Signal Monitor Log

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

Utilities
The “Utilities” module is not a class; rather, it contains
common methods used in other classes within the
application. One of the functions provided is the global
point of access methods for the various singleton classes.
These global points of access first check to see if an
object of the type of a specific class has been instantiated.
If a singleton object has previously been instantiated, a
pointer to the object is returned. Otherwise the object is
instantiated prior to its pointer being returned.

Other significant utility modules provide the network
socket support for the application. Socket open, close,
and the means to send data over a TCP socket are
provided within this module. Lastly, a time stamp
method is provided to be used by the logging function to
provide timestamps on the log file entries.

Dialogic® Signaling API Usage

A limited number of Dialogic signaling API’s functions
are used within the SignalingMonitor application. These
functions are documented in the Software Environment
Programmer’s Manual. The first function used is “GCT_
receive”, which has a parameter of the applications
the process ID defined within the system.txt file. This
call is a blocking call returning only when there is a
signaling message in the queue. After the messages have
been queued to the worker thread for processing, the
“GCT_send” function is used to send the message to the
Dialogic® signaling logger. This frees the message and its

memory usage from the signaling message queue, which

is a necessary step. An alternative to this would involve

using the “relm” function to release the message from the

queue and free the related memory.

The “unpackbits” macro is used in parsing the signaling

packets received in the signaling queue. This macro

converts the signaling packet data for a specified size into

a human readable format.

Dialogic® Media API Usage

A limited number of the Dialogic media API’s functions

are used, mainly to provide the recording functionality

for monitored calls. The “CVoiceDevice” class uses

the “dx_open” function to open the voice devices and

“dx_close” function to close open voice devices. On

shutdown, the “dx_stopch” function is used to stop the

voice device before it is closed.

The “CMediaRecorder” is the only other class to use

the Dialogic media APIs. A call to the “dx_setuio”

function is used to establish the custom output method

used to record audio to multiple files and stream into

the network. The “dx_mreciottdata” function is used to

mix the two halves of a phone conversation into a single

media stream. Finally, “dx_stopch” and “dx_unlisten”

functions are used by the “StopRecording” method to

stop the audio and listening on the two CT Bus time

slots being recorded.

11

Appendix A: Signaling Configuration

Stimulus/Call Simulation Server

config.txt

**

* Configure individual boards:

 SEPTELPCI _ BOARD 0 0x0042 ss7.dc3 ISUP

* Configure individual E1/T1 interfaces:

* LIU _ CONFIG <board _ id> <liu _ id> <liu _ type> <line _ code> <frame _ format> <crc _ mode>

 LIU _ CONFIG 0 2 4 4 7 4

 LIU _ CONFIG 0 3 4 4 7 4

* MTP Parameters:

* MTP _ CONFIG <reserved> <reserved> <options>

MTP _ CONFIG 0 0 0x00040f00

* MTP _ LINKSET <linkset _ id> <adjacent _ spc> <num _ links> <flags> <local _ spc> <ssf>

MTP _ LINKSET 0 1 1 0x0000 3 0x08

MTP _ LINKSET 1 3 1 0x0000 1 0x08

* Define signaling links:

* MTP _ LINK <link _ id> <linkset _ id> <link _ ref> <slc> <board _ id> <blink> <stream> <timeslot> <flags>

MTP _ LINK 0 0 0 0 0 0 2 24 0x0006

MTP _ LINK 1 1 0 0 0 1 3 24 0x0006

* Define a route for each remote signaling point:

* MTP _ ROUTE <dpc> <linkset _ id> <user _ part _ mask>

MTP _ ROUTE 3 1 0x0020

MTP _ ROUTE 1 0 0x0020

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

12

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

system.txt

**

* Essential modules running on host:

*

LOCAL		 0x20		 * ssd/ssds - Board interface task

LOCAL		 0x00		 * tim _ nt - Timer task

* Optional modules running on the host:

*

LOCAL		 0xcf		 * s7 _ mgt - Management/config task

LOCAL		 0xef		 * s7 _ log

LOCAL		 0x3d		 * ctu - Example user part task

LOCAL 	 0x4d		 * global call ss7

*

* Modules running on the board (all redirected via ssd):

*

REDIRECT 	 0x23	 0x20	 * ISUP module

REDIRECT	 0x22	 0x20	 * MTP3 module

REDIRECT	 0x71	 0x20	 * MTP2 module

REDIRECT	 0x10	 0x20	 * CT bus/Clocking control module

REDIRECT	 0x8e	 0x20	 * On-board management module

* Redirection of status indications:

REDIRECT	 0xdf	 0xef	 * LIU/MTP2 status messages -> s7 _ log

FORK _ PROCESS	 ssds.exe -d

FORK _ PROCESS	 tim _ nt.exe

FORK _ PROCESS	 tick _ nt.exe

FORK _ PROCESS	 s7 _ mgt.exe -d -i0x4d

FORK _ PROCESS	 s7 _ log.exe -td -m0xef -o0xff1f -fss7.log

*

13

Monitor Server

config.txt

**

* Configure individual boards:

*

SS7 _ BOARD 0 SS7HDP 0x0043 ss7.dc4 MON

* LIU _ CONFIG <board _ id> <liu _ id> <liu _ type> <line _ code> <frame _ format> <crc _ mode> [<build _

out>]

LIU _ CONFIG 0 2 4 4 7 4

LIU _ CONFIG 0 3 4 4 7 4

MONITOR _ LINK 1 0 0-1 2 24 0x3d 0 0 0x00

MONITOR _ LINK 2 0 0-2 3 24 0x3d 0 0 0x00

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

14

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

system.txt

**

LOCAL		 0x20		 * ssd/ssds/ssdh - Board interface task

LOCAL		 0x00		 * tim _ nt - Timer task

LOCAL		 0xcf		 * s7 _ mgt - Management/config task

LOCAL		 0xef		 * s7 _ log - Display and logging utility

LOCAL		 0x3d		 * Monitor app?

LOCAL		 0x4d		 * global call ss7

REDIRECT 0x81 0x20 * MTP2 module _ id for SP 0 (SS7HD boards only)

REDIRECT 0x91 0x20 * MTP2 module _ id for SP 1 (SS7HD boards only)

REDIRECT 0xe1 0x20 * MTP2 module _ id for SP 2 (SS7HD boards only)

REDIRECT 0xf1 0x20 * MTP2 module _ id for SP 3 (SS7HD boards only)

REDIRECT 0x10 0x20 * CT bus/Clocking control module

REDIRECT	 0x8e	 0x20	 * On-board management module

REDIRECT 0x23 0x20 *ISUP

REDIRECT 0x22 0x20 *mtp3

REDIRECT 0xce 0x20 * MGMT module _ id for SP 0

REDIRECT 0xde 0x20 * MGMT module _ id for SP 1

REDIRECT 0xee 0x20 * MGMT module _ id for SP 2

REDIRECT 0xfe 0x20 * MGMT module _ id for SP 3

REDIRECT	 0xdf	 0xef	 * LIU/MTP2 status messages -> s7 _ log

FORK _ PROCESS	 ssdh.exe -d

FORK _ PROCESS	 tim _ nt.exe

FORK _ PROCESS	 tick _ nt.exe

FORK _ PROCESS	 s7 _ mgt.exe -d -i0x4d

FORK _ PROCESS	 s7 _ log.exe -td -m0xef -o0xff1f -fss7.log

15

Appendix B. Media Configuration

Stimulus Server – gcss7.cfg

###

System.Configuration = “Card”

Library.LogFile = “ss7.log”

Library.LogLevels = “All”

Library.LogMaxSize = 2000

Service.LogLevels = “All”

Service.LogMaxSize = 2000

Service.GCTLOAD _ Control = “No”

Service.GCTLOAD _ Path = “c:\septel”

Service.ModuleID = 0x4d

Service.WatchDogMaxTime = 0

SeptelCard.ConfigDir = “c:\septel”

SeptelCard.Auto _ Links _ Activation = “All”

SIU.HostID = 0

CGrp <gid> <”trunk _ name”> [<base _ TS> [<”Pref _ SIU”>]]

CGrp 0 dkB1

CGrp 1 dkB2

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

16

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

Monitor Server – gcss7.cfg

###

Format: String - [“None”, “Card”, “SIU”, “DualSIU”, “UserPart”]

System.Configuration = “Card”

Library.LogFile = “ss7.log”

Library.LogLevels = “All”

Library.LogMaxSize = 2000

Service.LogLevels = “All”

Service.LogMaxSize = 2000

Service.GCTLOAD _ Control = “No”

Service.GCTLOAD _ Path = “c:\septel”

Service.ModuleID = 0x4d

Service.WatchDogMaxTime = 0

SeptelCard.ConfigDir = “c:\septel”

SeptelCard.Auto _ Links _ Activation = “None”

SIU.HostID = 0

ClearGrp dkB1 0x7fffff

ClearGrp dkB2 0x7fffff

17

Acronyms

CIC 	 Channel Identification Code. Identifies the trunk channel containing the audio for a call.

CT Bus 	 Computer Telephony. An auxiliary telecom bus defined by the ECTF in specifications H.100 and H.110.

IAM 	 Initial Address Message. ISUP message used to signal the start of a call.

ISUP 	 ISDN User Part. Signaling protocol used to signal for call setup and termination.

LIU 	 Line Interface Units

RLC 	 Release Complete Message. ISUP message used to signal a hang up complete for a call.

PSTN	 Public Switched Telephone Network

SS7 	� Signaling System 7. Worldwide commonly used protocol for communication and control in the Public
Switched Telephone Network.

Singleton object
	 Ensures the object has only one instance and global access is provided to it.

Standard Template Library
	 A software library included in the C++ standard library.

For More Information

A Zip file containing the source code and reference application and supporting applications’ source code can be
downloaded at http://www.dialogic.com/goto/?10970

Architecture PCI Products on Windows Configuration Guide —
http://www.dialogic.com/manuals/docs/dm3_pci_config_win_v1.pdf

Dialogic® Voice API Programming Guide —
http://www.dialogic.com/manuals/docs/voice_programming_win_v2.pdf

Global Call SS7 Technology Guide —
http://www.dialogic.com/manuals/docs/globalcall_for_ss7_v5.pdf

Software Environment Programmer’s Manual —
http://resource.dialogic.com/telecom/support/ss7/cd/GenericInfo/GeneralDocumentation/U10SSS05-SwEnv-PM.pdf

SS7HD Programmer’s Manual —
http://resource.dialogic.com/telecom/support/ss7/cd/ProductSpecific/SS7HD/Documentation/SS7HD-PM-Iss008.pdf

Application Note	 Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products

18

Developing Call Monitoring Applications Using Dialogic® SS7 Signaling and Media Products	 Application Note

Materials List for Reference Application

Software
Boost version 1.33.1 — Used to provide threading and semaphore capabilities in sample application
http://boost.org/

Dialogic® Signaling Software — Windows® Development Package and User Part Development Package
http://www.dialogic.com/support/helpweb/signaling/software3.htm

Dialogic® Signaling Software Documentation —
http://www.dialogic.com/support/helpweb/signaling/software4.htm

Dialogic® Media Software — Documentation is installed from the downloaded development kit
http://www.dialogic.com/products/tdm_boards/system_release_software/System_Release_60_Win.htm

Microsoft® Visual Studio® 2003 — Development environment

Hardware
Stimulus and Call Simulation Server

Dialogic® SPCI4S Signaling Board and Dialogic® SPCI4 SS7 Interface Board (Dialogic® SPCI2S SS7 Interface Board
could also be used) — http://www.dialogic.com/products/signalingip_ss7components/Signaling_Boards_SPC.htm

Dialogic® DM3 Media Board (must have voice capabilities) —
http://www.dialogic.com/products/tdm_boards/media_processing/default.htm

T1/E1 splitter and Y-cable

Monitor Server

Dialogic® SS7HDP SS7 Interface Board —
http://www.dialogic.com/products/signalingip_ss7components/Signaling_Boards_SS7HDP.htm

Also, could use Compact PCI version: Dialogic® SS7HDC SS7 Interface Board —
http://www.dialogic.com/products/signalingip_ss7components/Signaling_Boards_SS7HDC.htm

Dialogic® DM3 Media Board (must have voice capabilities) —
http://www.dialogic.com/products/tdm_boards/media_processing/default.htm

19

www.dialogic.com

To learn more about Dialogic® products, go to www.dialogic.com.

Dialogic Corporation
9800 Cavendish Blvd., 5th floor
Montreal, Quebec
CANADA H4M 2V9

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF DIALOGIC CORPORATION OR ITS SUBSIDIARIES (“DIALOGIC”). NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Dialogic may make changes to specifications, product descriptions, and plans at any time, without notice.

Dialogic is a registered trademark of Dialogic Corporation. Dialogic”s trademarks may be used publicly only with permission from Dialogic. Such permission may only
be granted by Dialogic”s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic”s trademarks
will be subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic”s trademarks requires proper acknowl-
edgement.

Microsoft, Windows, and Visual Studio are registered trademarks of Microsoft Corporation in the United States and/or other countries. Other names of actual compa-
nies and products mentioned herein are the trademarks of their respective owners. Dialogic encourages all users of its products to procure all necessary intellectual
property licenses required to implement their concepts or applications, which licenses may vary from country to country.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible for your decision to use open source in connection
with Dialogic products (including without limitation those referred to herein), nor is Dialogic responsible for any present or future effects such usage might have,
including without limitation effects on your products, your business, or your intellectual property rights.

Copyright © 2008 Dialogic Corporation All rights reserved. 	 03/08 10968-01

